4,216 research outputs found

    Simulation-Based Inference for Global Health Decisions

    Get PDF
    The COVID-19 pandemic has highlighted the importance of in-silico epidemiological modelling in predicting the dynamics of infectious diseases to inform health policy and decision makers about suitable prevention and containment strategies. Work in this setting involves solving challenging inference and control problems in individual-based models of ever increasing complexity. Here we discuss recent breakthroughs in machine learning, specifically in simulation-based inference, and explore its potential as a novel venue for model calibration to support the design and evaluation of public health interventions. To further stimulate research, we are developing software interfaces that turn two cornerstone COVID-19 and malaria epidemiology models COVID-sim, (https://github.com/mrc-ide/covid-sim/) and OpenMalaria (https://github.com/SwissTPH/openmalaria) into probabilistic programs, enabling efficient interpretable Bayesian inference within those simulators

    DM-PhyClus: A Bayesian phylogenetic algorithm for infectious disease transmission cluster inference

    Full text link
    Background. Conventional phylogenetic clustering approaches rely on arbitrary cutpoints applied a posteriori to phylogenetic estimates. Although in practice, Bayesian and bootstrap-based clustering tend to lead to similar estimates, they often produce conflicting measures of confidence in clusters. The current study proposes a new Bayesian phylogenetic clustering algorithm, which we refer to as DM-PhyClus, that identifies sets of sequences resulting from quick transmission chains, thus yielding easily-interpretable clusters, without using any ad hoc distance or confidence requirement. Results. Simulations reveal that DM-PhyClus can outperform conventional clustering methods, as well as the Gap procedure, a pure distance-based algorithm, in terms of mean cluster recovery. We apply DM-PhyClus to a sample of real HIV-1 sequences, producing a set of clusters whose inference is in line with the conclusions of a previous thorough analysis. Conclusions. DM-PhyClus, by eliminating the need for cutpoints and producing sensible inference for cluster configurations, can facilitate transmission cluster detection. Future efforts to reduce incidence of infectious diseases, like HIV-1, will need reliable estimates of transmission clusters. It follows that algorithms like DM-PhyClus could serve to better inform public health strategies

    A linear noise approximation for stochastic epidemic models fit to partially observed incidence counts

    Get PDF
    Stochastic epidemic models (SEMs) fit to incidence data are critical to elucidating outbreak dynamics, shaping response strategies, and preparing for future epidemics. SEMs typically represent counts of individuals in discrete infection states using Markov jump processes (MJPs), but are computationally challenging as imperfect surveillance, lack of subject-level information, and temporal coarseness of the data obscure the true epidemic. Analytic integration over the latent epidemic process is impossible, and integration via Markov chain Monte Carlo (MCMC) is cumbersome due to the dimensionality and discreteness of the latent state space. Simulation-based computational approaches can address the intractability of the MJP likelihood, but are numerically fragile and prohibitively expensive for complex models. A linear noise approximation (LNA) that approximates the MJP transition density with a Gaussian density has been explored for analyzing prevalence data in large-population settings, but requires modification for analyzing incidence counts without assuming that the data are normally distributed. We demonstrate how to reparameterize SEMs to appropriately analyze incidence data, and fold the LNA into a data augmentation MCMC framework that outperforms deterministic methods, statistically, and simulation-based methods, computationally. Our framework is computationally robust when the model dynamics are complex and applies to a broad class of SEMs. We evaluate our method in simulations that reflect Ebola, influenza, and SARS-CoV-2 dynamics, and apply our method to national surveillance counts from the 2013--2015 West Africa Ebola outbreak

    Multivariate Hierarchical Frameworks for Modelling Delayed Reporting in Count Data

    Get PDF
    In many fields and applications count data can be subject to delayed reporting. This is where the total count, such as the number of disease cases contracted in a given week, may not be immediately available, instead arriving in parts over time. For short term decision making, the statistical challenge lies in predicting the total count based on any observed partial counts, along with a robust quantification of uncertainty. In this article we discuss previous approaches to modelling delayed reporting and present a multivariate hierarchical framework where the count generating process and delay mechanism are modelled simultaneously. Unlike other approaches, the framework can also be easily adapted to allow for the presence of under-reporting in the final observed count. To compare our approach with existing frameworks, one of which we extend to potentially improve predictive performance, we present a case study of reported dengue fever cases in Rio de Janeiro. Based on both within-sample and out-of-sample posterior predictive model checking and arguments of interpretability, adaptability, and computational efficiency, we discuss the advantages and disadvantages of each modelling framework.Comment: Biometrics (2019

    Space-time variation of malaria incidence in Yunnan province, China

    Get PDF
    BACKGROUND Understanding spatio-temporal variation in malaria incidence provides a basis for effective disease control planning and monitoring. METHODS Monthly surveillance data between 1991 and 2006 for Plasmodium vivax and Plasmodium falciparum malaria across 128 counties were assembled for Yunnan, a province of China with one of the highest burdens of malaria. County-level Bayesian Poisson regression models of incidence were constructed, with effects for rainfall, maximum temperature and temporal trend. The model also allowed for spatial variation in county-level incidence and temporal trend, and dependence between incidence in June-September and the preceding January-February. RESULTS Models revealed strong associations between malaria incidence and both rainfall and maximum temperature. There was a significant association between incidence in June-September and the preceding January-February. Raw standardised morbidity ratios showed a high incidence in some counties bordering Myanmar, Laos and Vietnam, and counties in the Red River valley. Clusters of counties in south-western and northern Yunnan were identified that had high incidence not explained by climate. The overall trend in incidence decreased, but there was significant variation between counties. CONCLUSION Dependence between incidence in summer and the preceding January-February suggests a role of intrinsic host-pathogen dynamics. Incidence during the summer peak might be predictable based on incidence in January-February, facilitating malaria control planning, scaled months in advance to the magnitude of the summer malaria burden. Heterogeneities in county-level temporal trends suggest that reductions in the burden of malaria have been unevenly distributed throughout the province.This project was supported by a University of Queensland New Research Scientist Start-Up Fund grant. RWS is a Wellcome Trust Principal Research Fellow (#079080) and receives additional support from the Wellcome Trust for the Malaria Atlas Project (MAP, http://www.map.ox.ac.uk)

    Climatic, environmental and socio-economic factors for malaria transmission modelling in KwaZulu-Natal, South Africa.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Sub-Saharan Africa (SSA) largely bears the burden of the global malaria disease, with the transmission and intensity influenced by the interaction of a variety of climatic, environmental, socio-economic, and human factors. Other factors include parasitic and vectoral factors. In South Africa (SA) in general and KwaZulu-Natal (KZN) in particular, the change of the malaria control intervention policy in 2000, may be responsible for the significant progress over the past two decades in reducing malaria case report to near zero. Currently, malaria incidence in KZN is less than 1 case per 1000 persons at risk placing the province in the malaria elimination stage. To meeting the elimination target, it is necessary to study the dynamics of malaria transmission in KZN employing various analytical/statistical models. Thus, the aim of this study was to explore the factors that influence malaria transmission by employing different analytical models and approaches in a setting with low malaria endemicity and transmission. This involves a sound appraisal of the existing literature on the contribution of remote sensing technology in understanding malaria transmission, evaluation of existing malaria control intervention; delineation of empirical map of malaria risk; provide information on the climatic, environmental and socio-economic factors that influences malaria risk and transmission; and formulation of a relevant malaria forecast and surveillance models. The investigator started with a systemic review of studies in chapter two. The studies were aimed at identifying significant remotely-sensed climatic and environmental determinants of malaria transmission for modelling malaria transmission and risk in SSA via a variety of statistical approaches. Normalised difference vegetation index (NDVI) was identified as the most significant remotely-sensed climatic/environmental determinants of malaria transmission in SSA. Majority of the studies employed the generalised linear modelling approach compared to the Bayesian modelling approach. In the third chapter, malaria cases from the endemic areas of KZN with remotely-sensed climatic and environmental data were used to model the climatic and environmental determinants of malaria transmission and develop a malaria risk map in KZN. The spatiotemporal zero inflated Poisson model formulated indicates that at 95% Bayesian credible interval (BCI) NDVI (0.91; 95% BCI = 0.71, -1.12), precipitation (0.11; 95% BCI = 0.08, 0.14), elevation (0.05; 95% BCI = 0.032, 0.07) and night temperature (0.04; 95% BCI = 0.03, 0.04) are significantly related to malaria transmission in KZN, SA. The area with the highest risk of malaria morbidity in KZN was identified as the north-eastern part of the province. The fourth chapter was to establish the socio-economic status (SES) that influence malaria transmission in the endemic areas of KZN, by employing a Bayesian inference approach. The obtained posterior samples revealed that, significant association existed between malaria disease and low SES such as illiteracy, unemployment, no toilet facilities and no electricity at 95% BCI Lack of toilet facilities (odds ration (OR) =12.54; 95% BCI = 0.63, 24.38) exhibited the strongest association with malaria and highest risk of malaria disease. This was followed by no education (OR =11.83; 95% BCI = 0.54, 24.27) and lack of electricity supply (OR =10.56; 95% BCI = 0.43, 23.92) respectively. In the fifth chapter, the seasonal autoregressive integrated moving average (SARIMA) intervention time series analysis (ITSA) was employed to model the effect of the malaria control intervention, dichlorodiphenyltrichloroethane (DDT) on confirmed monthly malaria cases. The result is an abrupt and permanent decline of monthly malaria cases (w0= −1174.781, p-value = 0.003) following the implementation of the intervention policy. Finally, the sixth chapter employed a SARIMA modelling approach to predict malaria cases in the endemic areas of KZN. Three plausible models were identified, and based on the goodness of fit statistics and parameter estimation, the SARIMA (0,1,1) (0,1,1)12 model was identified as the best fit model. The SARIMA (0,1,1)(0,1,1)12 model was used to forecast malaria cases during 2014, and it was observed to fit closely with the reported malaria cases during January to December 2014. The models generated in this study demonstrated the need for the KZN malaria program, relevant policy makers and stakeholders to further strengthen the KZN malaria elimination efforts. The required malaria elimination fortification are not limited to the implementation of additional sustainable developmental approach that combines both improved malaria intervention resources and socio-economic conditions, strengthening of existing community health workers, and strengthening of the already existing cross-border collaborations. However, more studies in the area of statistical modelling as well as practical applications of the generated models are encouraged. These can be accomplished by exploring new avenues via cross-sectional survey to understand the impact of community and social related structures in malaria burden; strengthening of existing community health workers; knowledge, attitude and practices in malaria control and intervention; and the likely effects of temporal/seasonal and spatial variations of malaria incidence in neighbouring endemic countries should be explored
    • …
    corecore