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ABSTRACT 

Sub-Saharan Africa (SSA) largely bears the burden of the global malaria disease, with the 

transmission and intensity influenced by the interaction of a variety of climatic, environmental, 

socio-economic, and human factors. Other factors include parasitic and vectoral factors. In 

South Africa (SA) in general and KwaZulu-Natal (KZN) in particular, the change of the malaria 

control intervention policy in 2000, may be responsible for the significant progress over the 

past two decades in reducing malaria case report to near zero. Currently, malaria incidence in 

KZN is less than 1 case per 1000 persons at risk placing the province in the malaria elimination 

stage. To meeting the elimination target, it is necessary to study the dynamics of malaria 

transmission in KZN employing various analytical/statistical models. Thus, the aim of this 

study was to explore the factors that influence malaria transmission by employing different 

analytical models and approaches in a setting with low malaria endemicity and transmission. 

This involves a sound appraisal of the existing literature on the contribution of remote sensing 

technology in understanding malaria transmission, evaluation of existing malaria control 

intervention; delineation of empirical map of malaria risk; provide information on the climatic, 

environmental and socio-economic factors that influences malaria risk and transmission; and 

formulation of a relevant malaria forecast and surveillance models. The investigator started 

with a systemic review of studies in chapter two. The studies were aimed at identifying 

significant remotely-sensed climatic and environmental determinants of malaria transmission 

for modelling malaria transmission and risk in SSA via a variety of statistical approaches. 

Normalised difference vegetation index (NDVI) was identified as the most significant 

remotely-sensed climatic/environmental determinants of malaria transmission in SSA. Majority 

of the studies employed the generalised linear modelling approach compared to the Bayesian 

modelling approach. In the third chapter, malaria cases from the endemic areas of KZN with 

remotely-sensed climatic and environmental data were used to model the climatic and 

environmental determinants of malaria transmission and develop a malaria risk map in KZN. 

The spatiotemporal zero inflated Poisson model formulated indicates that at 95% Bayesian 

credible interval (BCI) NDVI (0.91; 95% BCI = 0.71, -1.12), precipitation (0.11; 95% BCI = 

0.08, 0.14), elevation (0.05; 95% BCI = 0.032, 0.07) and night temperature (0.04; 95% BCI = 

0.03, 0.04) are significantly related to malaria transmission in KZN, SA. The area with the 

highest risk of malaria morbidity in KZN was identified as the north-eastern part of the 

province. The fourth chapter was to establish the socio-economic status (SES) that influence 
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malaria transmission in the endemic areas of KZN, by employing a Bayesian inference 

approach. The obtained posterior samples revealed that, significant association existed between 

malaria disease and low SES such as illiteracy, unemployment, no toilet facilities and no 

electricity at 95% BCI Lack of toilet facilities (odds ration (OR) =12.54; 95% BCI = 0.63, 

24.38) exhibited the strongest association with malaria and highest risk of malaria disease. This 

was followed by no education (OR =11.83; 95% BCI = 0.54, 24.27) and lack of electricity 

supply (OR =10.56; 95% BCI = 0.43, 23.92) respectively. In the fifth chapter, the seasonal 

autoregressive integrated moving average (SARIMA) intervention time series analysis (ITSA) 

was employed to model the effect of the malaria control intervention, 

dichlorodiphenyltrichloroethane (DDT) on confirmed monthly malaria cases. The result is an 

abrupt and permanent decline of monthly malaria cases (w0= −1174.781, p-value = 0.003) 

following the implementation of the intervention policy. Finally, the sixth chapter employed a 

SARIMA modelling approach to predict malaria cases in the endemic areas of KZN. Three 

plausible models were identified, and based on the goodness of fit statistics and parameter 

estimation, the SARIMA (0,1,1)(0,1,1)12 model was identified as the best fit model. The 

SARIMA (0,1,1)(0,1,1)12 model was used to forecast malaria cases during 2014, and it was 

observed to fit closely with the reported malaria cases during January to December 2014. The 

models generated in this study demonstrated the need for the KZN malaria program, relevant 

policy makers and stakeholders to further strengthen the KZN malaria elimination efforts. The 

required malaria elimination fortification are not limited to the implementation of additional 

sustainable developmental approach that combines both improved malaria intervention 

resources and socio-economic conditions, strengthening of existing community health workers, 

and strengthening of the already existing cross-border collaborations. However, more studies 

in the area of statistical modelling as well as practical applications of the generated models are 

encouraged. These can be accomplished by exploring new avenues via cross-sectional survey 

to understand the impact of community and social related structures in malaria burden; 

strengthening of existing community health workers; knowledge, attitude and practices in 

malaria control and intervention; and the likely effects of temporal/seasonal and spatial 

variations of malaria incidence in neighbouring endemic countries should be explored.  
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1.1 Background 

The mortality and morbidity attributed to malaria disease across sub-Saharan Africa (SSA) 

region is alarming. Malaria is responsible for majority of the infectious disease related deaths 

in the region. The latest World Health Organisation (WHO) reports suggest that SSA accounted 

for 90% of the 212 million malaria cases, and 92% of the estimated 429,000 malaria deaths 

globally. With respect to the five medically important malaria parasites of the Plasmodium 

species, the infectious stages are transmitted to humans by an infected female Anopheles 

mosquito [1]. However, other factors have been suggested to contribute directly and indirectly 

to the spatial and temporal heterogeneity of malaria risk and transmission. Some of these factors 

are ecological, climatic, environmental and socio-economical [2-9]. Considering the spatial and 

temporal heterogeneity of malaria risk and transmission in endemic areas, it is crucial to 

investigate and have an in-depth understanding of malaria [10-14]. This in turn can provide 

insight into how relevant malaria prevention and control parastatals can develop and implement 

tailor-made interventions. 

 

In South Africa (SA), malaria endemicity is limited to areas in the east bordering Mozambique 

and the north bordering Zimbabwe. Malaria is endemic in regions lying at altitudes lower than 

1 000m above sea level of KwaZulu-Natal (KZN), Limpopo and Mpumalanga provinces [15, 

16]. This pre-disposes the approximately 5.4 million people living in these regions to malaria 

due to little or no immunity they possess [15]. Infants and vulnerable people such as children 

below 5 years old, the elderly above 65 years old, pregnant and post-partum women, 

splenectomised people, immunocompromised people including people living with HIV/ AIDS, 

nonimmune travellers and migrants are mainly at high risk of contracting malaria disease [15]. 

 

Malaria transmission in KZN is confined to uMkhanyakude, uThungulu and Zululand district 

municipalities. These areas are bordered by Swaziland and Mozambique to the north and the 

Indian Ocean stretching from the east down to the southeast [15-17]. The parasite responsible 

for over 99% of malaria cases in the province is Plasmodium falciparum, while Anopheles 

arabiensis and Anopheles funestus of the Anopheles gambiae complex are the major malaria 

vector species  [16, 17]. The malaria incidence in KZN is low with cases from 0.01 to 0.10 per 

1000 persons [18, 19], positioning the province within the malaria elimination trigger in the 

WHO malaria elimination continuum.  
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The observed low malaria transmission and burden caused by Plasmodium falciparum in KZN 

can be attributed to the change of SA's malaria vector control policy which included the re-

introduction of dichlorodiphenyltrichloroethane (DDT) for malaria vector control purposes 

after it was discontinued in 1995. DDT is a chemical with insecticide properties but was earlier 

believed to be unsafe to humans and hence the discontinuation in most countries. In SA, after 

DDT got reintroduced, it was up-scaled and sustained as an investment in malaria control and 

intervention in the peak of the 1999/2000 malaria epidemic [15, 20-22]. As an implication, 

Indoor residual spraying (IRS) with DDT, became the mainstay of KZN’s malaria vector 

control i.e., intervention. Other malaria interventions responsible for the low malaria 

transmission and burden in the province alongside the use of DDT are active and passive 

malaria case surveillance using rapid diagnostic test (RDT) or microscopy and treatment with 

Artemisinin-Based Combination Therapy (ACT)) [16, 17]. In addition, cross-border malaria 

initiatives and collaborations like the Lubombo Spatial Development Initiative (LSDI) and 

MOZIZA (Mozambique, Zimbabwe and South Africa) cross-Border malaria initiative were 

also instrumental in accelerating and sustaining the low local malaria transmission recorded in 

KZN and across the endemic regions in SA [16, 18]. Malaria cross-border initiative like the 

MOSASWA (Mozambique, SA and Swaziland) malaria cross-border initiative [18, 23] and 

Elimination 8 (E8) malaria initiative are regional collaborative ventures currently aiding the 

sustained low malaria in KZN and SA by addressing imported cases of malaria in addition to 

already existing malaria intervention resources [19, 23].  

 

Irrespective of the limited malaria transmission in KZN and across SA, the South Africa 

National Department of Health (SA NDOH) considers malaria as one of the priority disease, 

because of its propensity to result in an epidemic with a related high illness and death [15, 16]. 

Accordingly, the KZN malaria programme aims to eliminate malaria in 2020, i.e., no cases of 

public health importance, and prevent the resurgence of malaria transmission in subsequent 

years [16, 19]. Pivotal to meeting the elimination target, are sound assessments and 

understanding of the multiple factors that are influencing and sustaining the low malaria 

transmission in KZN, and delineate high risk areas of malaria transmission. In addition, 

formulating surveillance models and systems that provides information on the spatial and 

temporal distribution of malaria cases are important.  
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One group of factors that have been suggested by the WHO and SA NDOH that needs to be 

assessed and monitored in relation to malaria transmission and elimination are climatic and 

environmental factors [1, 16, 24]. This cannot be overemphasised because previous malaria 

outbreaks in KZN have been attributed to climatic variations and climatic suitability for malaria 

vector proliferation [20]. Substantial studies across SSA and other malaria endemic regions of 

the world have shown variations in the types of climatic and environmental factors that 

influence malaria transmission [25-27]. With the advent of remote sensing technology, a wide 

range of climatic and environmental proxy data such as precipitation, rainfall estimate (RFE), 

day land surface temperature (LST), night LST, vegetation indices such as normalized 

difference vegetation index (NDVI) and enhanced vegetation index (EVI), actual 

evapotranspiration (ETa), elevation, landuse and landcover can be obtained with ease for 

defined locations instead of interpolating and extrapolating data obtained from weather stations 

[28-33]. In turn this can lead to improved understanding of the dynamics of malaria 

transmission by collecting climatic and environmental data specific to each location [4, 34-36].  

 

Another group of factors that may have an influential role in the malaria transmission in KZN 

are socio-economic status (SES) and factors, and yet less attention has been given to understand 

their influence on malaria transmission in the province [16]. SES and factors suggested to 

influence malaria transmission across different settings are not limited to age, gender, literacy, 

knowledge and awareness of vector control measures, sanitary facilities, electricity, 

employment type and house type [2, 7, 8, 37, 38]. Thus, it is important to evaluate the 

implications of SES on malaria transmission in KZN. It can equip the relevant authorities and 

policy makers with the necessary information to improve socio-economic conditions on one 

hand [2, 8], on the other hand, adopt appropriate malaria intervention strategies [2, 38] in 

addition to the already existing ones to fortify KZN malaria elimination efforts. 

 

An aspect that also requires close attention is the evaluation of the long-term use of DDT on 

malaria transmission in KZN [21]. In the face of seemingly DDT ineffectiveness over time due 

to the significant reduction of malaria cases to consistently low but not zero, it is necessary to 

determine whether DDT use is still viable while other factors may be needing to be adjusted to 

ultimately lead to zero malaria transmission in the province. The outcome of this evalution will 

serve as a validation of the substantive significance of DDT on malaria in KZN. This is vital to 

the province’s malaria control and elimination efforts, because it will bring to light the necessity 
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of identifying other practical ways that may be required to upscale the existing malaria vector 

control strategies to achieve zero malaria transmission.  

 

Once the factors that influence malaria transmission in KZN and the areas at highest risk of 

malaria transmission have been identified, it is vital to continuously monitor the progress of the 

malaria elimination efforts and develop robust and reliable predictive models [16]. The 

development of predictive models will strengthen the public health service in decision making 

for effective targeted malaria transmission combating and elimination strategies. In addition, 

predictive models constitue a vital tool for malaria surveillance essential to policy makers and 

public health workers to project the future occurrence of the disease and act proactively [39, 

40]. 

1.2 Aims 

As KZN seeks to eliminate malaria in 2020, it is important to explore various mechanisms 

related to malaria transmission, and evaluate their implications towards continued transmission 

and risk. This will serve as a road map for the relevant stakeholders (malaria control program, 

the community health workers, SA NDOH and SA department of social development) to 

channel intervention programmes and resources sustainably and efficiently in space and time. 

It will also aid policy makers in refining already laid down policies or generate new policies 

that will fortify the already existing policies towards actualising KZN’s malaria elimination 

goals. This is in line with the SA malaria elimination strategy drafted by SA NDOH [16]. Thus, 

the aim of this study was to explore the factors that influence malaria transmission by 

employing different analytical models and approaches in a setting with low malaria endemicity 

and transmission. 

1.3 Objectives 

The specific objectives were: 

 To systematically appraise the existing body of literature on RS-derived climatic and 

environmental determinants of malaria transmission in SSA by identifying determinants 

peculiar to regions, appraise modelling approaches, and current research shortfalls. 

 To identify the significant climatic and environmental determinants of malaria 

transmission, and delineate the malarious areas in KZN, SA. 
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 To determine the socio-economic factors that influence malaria transmission at local 

municipality level in the malarious regions in KZN, SA. 

 To evaluate the significance of the malaria control intervention (the use of DDT) on 

malaria transmission in the malarious regions in KZN, SA.  

 To develop a forecasting model to predict malaria in the malarious regions in KZN, SA. 

1.4 Outline of study 

This study comprises of seven chapters adopting the manuscript format. It has a general 

introduction to the study (Chapter 1), literature review (Chapter 2), four research chapters 

(Chapters 3 – 6) and general conclusions and recommendations (Chapter 7). Five of the seven 

chapters were prepared in a peer-reviewed publication format. Chapters 2 and 5 are published 

in peer-reviewed journals, Chapter 6 has been accepted for publication in a peer-reviewed 

journal, Chapter 5 is under review in a peer-reviewed journal and Chapter 3 is ready for 

submission to a relevant peer-reviewed journal.  

 

Chapter 1, ‘General Introduction’ provides an introduction of the malaria situation and burden 

in KZN, SA, and the justification for the study. 

 

Chapter 2, ‘Literature review’ explores the vast array of studies conducted in SSA with a view 

to appraise the utilisation and applications of RS technology in enhancing the understanding of 

malaria transmission dynamics in the region with a focus on RS-driven climatic and 

environmental variables. Detailed assessment, evaluation and understanding of this technology 

in relation to malaria were discussed in detail to harness its potential, which in turn, would 

enhance spatio-temporal risk modelling and identification of reliable malaria transmission 

predictor variables. 

 

Chapter 3, ‘Climatic and environmental determinants for modelling malaria disease risk in a 

province with low malaria transmission using Bayesian zero-inflated models in INLA’ 

describes and evaluates the application of remote sensing derived variables such as, 

precipitation, day and night LST, EVI, NDVI, and elevation in identifying relevant climatic and 

environmental determinants of malaria transmission and develop a malaria risk map in the 

malarious areas of KZN using a Bayesian spatiotemporal zero inflated model. 
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Chapter 4, ‘Socio-economic determinants of malaria transmission risk in KwaZulu-Natal, SA: 

a Bayesian approach’ describes the influence of socio-economic risk factors such as for malaria 

incidence at local municipality level in KZN, SA. The demographic and socio-economic 

variables explored were: gender, children (less than 5 years old), elderly (above 65 years old), 

no education, no electricity, no toilet facilities, unemployment. In addition, the possible ways 

the relevant agencies and policy makers can improve socio-economic conditions as a means of 

malaria control intervention alongside adopting appropriate malaria intervention strategies in 

addition to the already existing ones were assessed.    

 

Chapter 5, ‘Modelling Malaria Control Intervention effect in KwaZulu-Natal, SA using 

intervention time series analysis’ evaluates if the long-term use of DDT significantly lead to 

low and sustained malaria transmission in KZN. In addition, the possible ways the province can 

strengthen her already existing malaria control and elimination efforts, to achieve zero malaria 

transmission were assessed.  

 

Chapter 6, ‘A Seasonal Autoregressive Integrated Moving Average (SARIMA) forecasting 

model to predict monthly malaria cases in KwaZulu-Natal, South Africa’ develops a SARIMA 

temporal model using long-term historical malaria case data and predict malaria monthly cases. 

 

Chapter 7, ‘General conclusions and recommendations’ provides a brief analysis of the 

implications of the study outcomes and suggestions for future studies. 
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2.1 Abstract 

Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk 

varies in space and time. Modelling its geographic characteristics is essential for identifying the 

spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an 

important tool in providing and assessing a variety of potential climatic and environmental 

malaria transmission variables in diverse areas. This review focuses on the utilisation of RS-

driven climatic and environmental variables in determining malaria transmission in SSA. A 

systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of 

KnowledgeSM databases namely PubMed, Web of Science and Science Direct was carried out. 

The investigator identified thirty-five peer-reviewed articles that studied the relationship 

between remotely-sensed climatic variable(s) and malaria case data in the SSA sub-regions. 

The relationship between malaria case data and different climatic and environmental proxies 

was examined using different statistical methods. Across the SSA sub-region, the normalised 

difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric 

Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-

resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a 

statistically-significant variable to model both spatial and temporal malaria transmission. 

Furthermore, generalised linear models such as linear regression, logistic regression and 

Poisson regression were the most frequently-employed methods of statistical analysis in 

determining malaria transmission predictor variables in East, Southern and West Africa. By 

contrast, multivariate analysis was used in Central Africa. The investigator stress that the 

utilisation of RS in determining reliable malaria transmission predictor variables, and climatic 

and environmental monitoring variables would require a tailored approach that will have 

cognisance of the geographical and climatic setting, the stage of malaria elimination continuum, 

the characteristics of the RS variables and the analytical approach, which in turn, would support 

the channeling of intervention resources sustainably.  

 

Keywords: remote sensing, climatic variables, environmental variables, epidemiology, Sub-

saharan Africa  
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2.2 Introduction 

Malaria, of all infectious diseases, remains the number one killer in sub Saharan Africa (SSA) 

[1]. In 2013, an estimated 198 million malaria cases and 584,000 malaria deaths were recorded. 

About 90% of the malaria deaths recorded were from the SSA region [2]. Out of the five 

medically important malaria parasite species identified so far, viz. Plasmodium falciparum, P. 

vivax, P. ovale, P. malariae and P. knowlesi [2], P. falciparum is the most prevalent of the 

human malaria parasites in SSA, while P. vivax is more common across the Horn of Africa [3]. 

The spatial and temporal variation of malaria disease is known to be influenced by socio-

economic and human, ecological or environmental and climatic factors [4, 5]. The climatic 

variables suggested to possess a direct and indirect influence on malaria transmission are 

rainfall, temperature, altitude and humidity [6-12]. Rainfall, in conducive amounts, expands 

mosquito breeding habitats, which in turn increases mosquito population densities and risk of 

malaria transmission [13]. While rainfall can increase vector densities, excessive rainfall is also 

capable of flushing the breeding sites [14]. Accordingly, temperature needs to be conducive, 

ranging between 15°C and 40°C for the completion of the malaria life cycle, and between 16°C 

and 33°C for the development and survival of mosquitoes [13, 15]. Regarding bite rates and 

feeding habits, at 17°C, mosquitoes take a human blood meal every four days, while at 25°C, 

they feed on humans every two days [13]. Altitude has an indirect relationship with temperature, 

and as such, areas above 1500 m in Africa have little or no risk of malaria transmission [16]. 

Relative humidity above 60% does not substantially affect the longevity of mosquitoes, but 

relative humidity lower than 10% results in death within hours [17], while malaria parasites 

develop between 55% and 80% humidity [18]. The aforementioned climatic variables have 

been shown to be important malaria transmission indicators that can be used to determine and 

predict the spatial and temporal distribution of the disease. Consequently, this can guide malaria 

control managers in decision and policy making in distributing cost-effective intervention 

resources in time and space [19].  

 

In line with modelling and prediction practicalities, the availability of socio-economic or human 

and ecological, environmental and climate data has aroused a wide interest in the development 

of reliable malaria risk maps, forecast models or integrated malaria early warning systems. 

These data combine with historical malaria case data [6, 8-12, 20] to guide proper channelling 

of intervention resources before an epidemic occurs [19]. This further indicates the importance 

of acquiring and applicability of utilising historical climatic variables to adequately study and 
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understand the role they play in the temporal and spatial heterogeneity of malaria. 

Meteorological stations have been a long standing source of historical climatic data useful for 

identifying and modelling malaria transmission [21]. However, they are not only sparsely locate 

but also malfunctioning and limited numbers of meteorological stations make it challenging to 

obtain historical and spatially-continuous observations of climatic and environmental variables 

on a wider geographical scale in SSA [22]. Therefore, there is a need to search for and acquire 

alternative, indirect or proxy data as remote sensing (RS) becomes essential [20, 22].  

 

With the emergence of RS satellites, a wide array of environmental variables at different spatial 

and temporal scales [23-28], are now easily accessible facilitating the analytical processes for 

the association of these factors and malaria [4, 29, 30]. Detailed assessment, evaluation and 

understanding of this technology in relation to malaria is needed to adequately harness its 

potential, which in turn, would enhance spatial risk modelling and identification of reliable 

malaria transmission predictor variables. Therefore, the aim of this review is to appraise the 

utilisation and applications of RS technology and to discuss its contribution in enhancing the 

understanding of malaria transmission dynamics in SSA with a focus on RS-driven climatic 

and environmental variables. This paper will serve as a framework for health practitioners and 

researchers aiming to identify relevant climatic and environmental variables that are highly 

related to malaria in particular localities and regions in SSA.  

2.3 Methodology 

2.3.1 Search strategy 

A systematic search to retrieve relevant literature and referenced articles began in September 

2014, and the final search was conducted in March 2015. The search was aimed at identifying 

epidemiological studies in SSA that utilised RS-derived climatic and environmental variables 

in mapping, modelling or forecasting malaria by carrying out a search on Google Scholar and 

the ISI Web of KnowledgeSM databases: PubMed, Web of Science and ScienceDirect. The 

database queries were formulated using Boolean operators to combine two or more keywords. 

The keywords were identified and selected from public and environmental health studies, 

epidemiological studies and subject headings. The keywords were “remote sensing”, 

“geographical information system”, “Earth observation”, “spatial techniques”, “geo-spatial 

analysis”, “geo-spatial techniques”, “malaria”, “forecasting”, “modelling”, “mapping”, 
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“prediction”, “epidemic”, “climate change”, “climatic factors”, “climatic variables”, 

“environmental proxies”, “temperature”, “rainfall”, “normalized difference vegetation index 

(NDVI)”, “humidity”, “EL Nino Southern Oscillation”, “West Africa”, “Central Africa”, “East 

Africa”, “Southern Africa” and “Sub-Saharan Africa”. Titles and abstracts were initially 

examined to determine their relevance. Thereafter, the full texts were downloaded to ascertain 

if they met the selection criteria listed below. Finally, the reference list of each relevant article 

was assessed to identify other relevant article(s). The search strategy, screening and selection 

processes are illustrated in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Flow chart of publication screening and selection processes for the use of 

remotely sensed variables for malaria modelling and mapping in sub-Saharan Africa  

2.3.2 Selection criteria 

The selection criteria involved post hoc inclusion and exclusion criteria suggested by Arksey et 

al. [31] and Levac et al. [32]. They were developed based on familiarity with the subject matter 

through reading articles and reviews around malaria epidemiology. The authors discussed and 

agreed on the study inclusion and exclusion criteria at the beginning of the selection process, 

and various stages of the conceptual review stages and the selection criteria were refined until 

739 potential articles 

retrieved from Google 

scholar, Web of Science, 

PubMed and ScienceDirect 

498 potential articles 

identified for further 

screening 

96 potential articles 

identified for further 

screening 

402 articles screened out 

after title and abstract 

review 

241 duplicate articles 
excluded 

33 articles selected 

63 articles screened out 

after full article review 

35 relevant articles finally 

selected and reviewed 

2 articles identified from 

reference list of selected 

articles 
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the final selection criteria were accepted. This enabled us to eliminate studies that were outside 

the scope of our study aim and ensured consistency. The articles finally selected were: 

 

1. Original peer-reviewed articles published in English between 1 January 2000 and 31 

December 2014. The search period was selected because since 2000, robust appreciation 

and application of RS in malaria studies occurred, which can be attributed to the easy access 

of RS data and the emergence of improved remote sensing sensors. Furthermore, this 

period coincides with the availability of moderate resolution imaging spectrometer 

(MODIS) data [33].  

2. Articles that applied RS-derived climatic and environmental variables and/or climatic 

proxy indicators in evaluating malaria risk, distribution, transmission and mapping.  

3. Studies that assessed the impact of inter-annual climate variability on malaria transmission. 

Studies in which climate change projections were used to estimate future malaria 

distribution were excluded. 

4. Publications that used malaria incidence and/or prevalence data in their epidemiological 

study design (descriptive/explorative, spatial and/or temporal analysis and time series 

analysis). Studies that used only entomological data were excluded. 

5. Studies conducted in Sub-Saharan Africa. Continental-wide studies were excluded, 

because many African countries have made significant progress in fighting malaria, and 

malaria is clustered in small areas.  

2.3.3 Description of the study region 

SSA can be sub-divided into four regions (East, West, Central and Southern Africa) as shown 

in Figure 2.2. Malaria is endemic in a substantial part of SSA where the climate supports 20%–

100% suitability (Figure 2.3) [34]. At the fringes of this region, there are areas where malaria 

rarely occurs, because the climate is not always suitable. Nevertheless, variation in weather or 

climatic conditions could instigate an epidemic. The changes in climatic conditions are 

normally due to higher than normal rainfall and temperature in desert and highland fringes, 

respectively [34, 35].  
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Figure 2.2 Map of SSA showing study region 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Malaria risk stratification of SSA (MARA/ARMA [34]) 
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The climate of the endemic parts of East Africa favours a seasonal and perennial transmission 

of malaria, while in substantial parts of Kenya and parts of the Horn of Africa, malaria 

transmission is strongly seasonally prone to epidemics, and the duration of malaria transmission 

is between 1–3 months owing to low rainfall and inter-annual variability [34]. The White Nile 

River, Blue Nile River, Lake Victoria, Lake Albert, Lake Tanganyika and Lake Malawi, 

coupled with the varying climate, are significant risk factors for endemic and epidemic malaria 

in the region.  

 

Monthly temperature variations, which peak in the rainy season [36], coupled with rainfall that 

increases towards the Equator, may be responsible for the highly seasonal and varied malaria 

suitability in Southern Africa [37]. The climate in the malaria-free within Southern Africa, does 

not totally support malaria endemicity. However, environmental factors, such as the Orange 

River, which runs through Lesotho, Namibia and South Africa, and the Zambezi River in 

Botswana, can potentially support malaria epidemicity, while the parts of Southern Africa 

endemic to malaria can be supported by suitable climate and water bodies (Limpopo and 

Zambezi Rivers) that favour seasonal malaria transmission [34].  

 

With regards to West Africa, the endemicity of malaria spans across the whole region 

substantially, excluding only the desert and semi-desert areas. The region is characterised by 

the Sahelian, Sudanian, tropical humid and equatorial climates. In this region, temperature 

increases northwards while rainfall increases southwards [37]. The region supports seasonal 

(4–6 months) and perennial (7–12 months) malaria transmission [34]. In addition, major water 

bodies like rivers (Benue, Niger, Volta and Senegal) and lakes (Volta and Chad) can sustain 

malaria transmission in the region. 

 

In Central Africa is significantly endemic to malaria. Suitable climatic conditions (relatively 

high and reliable rainfall over the coastal and central parts and a temperature range between 

19°C and 28°C) [37] coupled with the Congo River, Lake Tanganyika and Lake Albert, 

contributes to the perennial transmission of malaria experienced in the region [34].  

2.4 Results 

Initially, 739 related publications were identified. After thoroughly assessing them according 

to the search strategy and selection criteria, 35 articles were finally selected. From the selected 
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articles, 14 out of the 35 study sites were located in East Africa (Table 2.1 ), followed by 

Southern Africa with 11 studies (Table 2.2) and then West Africa with nine studies (Table 2.3). 

The only study that covered the Central Africa region utilised datasets covering both Central 

and West Africa (Table 2.4). The study area(s), malaria case data, climatic variables and their 

sources, the statistical methods used and the main findings are provided for each study in Tables 

2.1–2.4, while Table 2.5 provides an overview of the RS variables commonly used in SSA, and 

Table 2.6 provides the characteristics of the satellites/sensors used in the selected articles. 

2.4.1 East Africa 

In East Africa, most studies were country-specific as follows: Kenya, four studies, Eritrea, two 

studies. Other study locations were Ethiopia, Burundi and Tanzania. Three cross-national 

studies were identified. One study used data that cuts across Kenya, Ethiopia and Uganda [38], 

while two other studies used national data from Kenya, Uganda and Tanzania [39, 40] (Table 

2.1). The East African countries identified in Table 2.1 are currently in the control phase of the 

World Health Organisation (WHO) malaria elimination continuum [41]. Studies conducted in 

the region mainly used National Oceanic and Atmospheric Administration (NOAA) Advanced 

Very High Resolution Radiometer (AVHRR) imagery as a source of proxy climatic and 

environmental variables for modelling malaria transmission both at the country and cross-

national level. NDVI was observed to be the most assessed RS-derived variable and also the 

most statistically-significant malaria transmission predictor variable across East Africa. In the 

province of Karuzi in Burundi, Gomez-Elipe et al. [42] used NDVI extracted from NOAA-

AVHRR at an 8 km × 8 km spatial resolution, while rainfall and maximum and minimum 

temperatures were obtained from the metrological stations. After employing the autoregressive 

integrated moving average (ARIMA) model, NDVI, rainfall and maximum temperature were 

observed to correlate with malaria cases, and hence, it constituted the best predicting model 

(R2
adj = 82%, p < 0.0001 and 93% predicting accuracy). Ceccato et al. [43] used Spearman’s 

and Pearson’s rank correlations to assess the relationship between malaria incidence and climate 

and environmental variables anomalies (to eliminate the similar seasonal pattern possessed by 

both dependent and predictor variables) in Eritrea. The climatic and environmental variables 

used by these authors included NDVI from NOAA-AVHRR at 8 km × 8 km spatial resolution, 

rainfall estimates (RFE) from Climate Prediction Centre Merged Analysis of Precipitation 

(CMAP) at a 2.5° × 2.5° grid and rainfall data from metrological stations.
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Table 2.1 Overview of studies that used RS-derived climatic variables and malaria epidemiological data in East Africa 

Reference Study Area(s) 
Malaria Epidemiological 

Data 

Climatic and Environmental Data Obtained  

via RS Technology 

Environmental/

Climatic Data 

from Other 

Sources 

Statistical Method(s) Main Findings 
Climatic and 

Environmental Data  

Source(s) of RS 

Data  

[44] 
Kenya: Western 

Kenya 

Monthly inpatient 

confirmed cases 

Multivariate El Nino 

Southern Oscillation 

Index (MENSOI) 

NOAA 

Monthly rainfall, 

mean monthly 

temperature  

Time-series technique 

of spectral density 

analysis  

MENSOI did not influence teleconnection with 

monthly malaria incidence. 

[39] 

Kenya 

Historic malaria 

distribution maps 

NDVI, MIR, LST 
NOAA-AVH R, 

Meteosat,  

USGS-DEM 

- 

Temporal Fourier 

analysis (TFA), 

discriminant analysis 

LST was noted to be the best predictor variable of 

malaria transmission intensity. NDVI and CCD 

were identified as secondary predictor variables of 

transmission intensity. Altitude significantly 

improved the predictions. 

Uganda CCD, 

Tanzania altitude 

[45] 

Kenya: Kisii Central, 

Gucha, Nandi, and 

Kericho 

Malaria cases (outpatients) RFE USGS 
Seasonal climate 

forecast 

WHO quartile, Cullen 

and cumulative sum (C-

SUM) epidemic 

detection methods 

Rainfall was able to forecast an epidemic one 

month in advance, but the outcome of seasonal 

climate forecast was erroneous and unreliable.  

[24] 

Kenya: Kisii Central, 

Gucha, Nandi, and 

Kericho 

Malaria cases (outpatients) RFE USGS 
Seasonal climate 

forecast 

WHO quartile, Cullen 

and C-SUM epidemic 

detection methods 

Seasonal climate forecasts did not predict the 

heavy rainfall. Rainfall estimates gave timely and 

reliable early warning, but monthly surveillance of 

malaria cases gave no effective warning. 

[38] 

Kenya 

Malaria cases (outpatients) 

Maximum temperature, 

minimum temperature 

and monthly rainfall 

National Climate 

data Centre, 

NOAA 

- 

t-test, WHO Cullen 

epidemic detection 

methods, forward 

stepwise regression 

Malaria incidence was significantly associated 

with monthly rainfall and maximum and minimum 

temperature at a time lag of 1–2 and 2–5 months, 

respectively. 

Ethiopia 

Uganda 

[40] 

Kenya  

Uganda  

Tanzania 

Malariometric data from 

Mapping Malaria Risk in 

Africa (MARA/ARMA) 

(children between  

0 and 15 years) 

NDVI, MIR, LST  

CCD,  

altitude,  

land cover 

NOAA-AVHRR, 

Meteosat,  

USGS-DEM, 

Landsat TM 

- 
TFA, discriminant 

analysis 

NDVI, CCD and water body area were associated 

with malaria in the dry Ecozone 1. In Ecozone 2 

where it was assumed that water was not generally 

limiting, LST and MIR were most abundant 

among the predictor variables selected. 

[43] Eritrea 
Monthly clinical  

malaria cases 

RFE,  

NDVI 

CMAP,  

NOAA-AVHRR 

Interpolated 

rainfall gauge 

data 

Spearman and Pearson 

rank correlations, 

principal component 

analysis, non-

hierarchical clustering 

analysis. 

NDVI anomalies were highly correlated with 

malaria incidence anomalies, particularly in the 

semi-arid north of the country and along the 

northern Red Sea coast, which is a highly 

epidemic-prone area. CMAP rainfall correlated 

with malaria incidence anomalies, with a lead time 

of 2–3 months; while weather station rainfall 

correlated with malaria anomalies with a lag of 2 

months. 

[42] Burundi: Karuzi 

Monthly inpatient 

confirmed and 

unconfirmed cases 

NDVI AVHRR-NOAA 

Rainfall, 

minimum and 

maximum 

temperature 

ARIMA 

NDVI, rainfall, mean maximum temperature and 

number of cases constituted the formation of the 

best predicting model (R2
adj = 82%, p < 0.0001 and 

93% forecasting accuracy in the range ±4 cases per 

100 inhabitants). NDVI, rainfall and maximum 

temperature were noted to correlate with malaria 

cases. 
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Table 2.1 (continued) 

Reference Study Area(s) 
Malaria Epidemiological 

Data 

Climatic and Environmental Data Obtained  

via RS Technology 
Environmental/

Climatic Data 

from Other 

Sources 

Statistical Method(s) Main Findings 
Climatic and 

Environmental Data  

Source(s) of RS 

Data  

[25] Eritrea 
Monthly clinical  

malaria cases 

RFE,  

NDVI 

CMAP  

NOAA-AVHRR 
- Regression analysis 

The Poisson regression analysis showed that 

CMAP rainfall estimates were significantly 

associated with malaria with a lead time of 2–3 

months in Gash Barka. NDVI showed a similar 

relationship in Anseba.  

[46] Somalia 
Survey of P. falciparum 

parasite rate (PfPR) 
EVI MODIS 

Precipitation, 

temperature, 

distance to 

permanent water 

bodies 

Logistic regression 

models, kriging, 

Bayesian binomial 

generalised linear 

geostatistical models 

The non-spatial bivariate logistic regression 

analysis showed that EVI, precipitation, maximum 

and minimum temperature and distance to water 

were highly significantly associated with PfPR. 

After employing the above covariates in the 

multivariate Bayesian geostatistical model, only 

temperature and precipitation remained significant 

(odds 95% Bayesian confidence interval (BCI)) at 

the southern part of Somalia. 

[47] 
Kenya: Nandi and 

Kisii 

Confirmed and 

unconfirmed, monthly 

inpatient and  

outpatient cases 

Dipole mode index 

(DMI), El Nino-Southern 

Oscillation (ENSO) index 

Nino 3 region (NINO3) 

NOAA Rainfall 

Time series regression,  

Poisson generalised 

linear model (GLM),  

Pearson’s correlation 

No strong association was found between NINO3 

and the number of malaria cases after adjusting for 

the effect of DMI. Malaria cases increased by 

3.4%–17.9% for each 0.1 increase above a DMI 

threshold value lagged at 3–4 months. Malaria 

cases increased by 1.4%–10.7% for each 10-mm 

increase in monthly rainfall lagged at 1–3 months. 

[48] Tanzania 

Survey of confirmed 

malaria cases among 

children less than  

5 years old 

LST, NDVI,  

altitude 

MODIS  

DEM-USGS 

Rainfall, 

permanent water 

bodies 

Multivariate logistic 

regression,  

Bayesian kriging 

The bivariate analyses showed that altitude was 

negatively associated with malaria risk at the 5% 

significance level, indicating that children at above 

1500 m had a lower risk of malaria. Rainfall, 

NDVI, day and night LST were positively 

associated with parasitemia risk.  

[20] 
Ethiopia: Amhara 

region 

Monthly confirmed 

outpatients cases 

LST, NDVI, enhanced 

vegetation index (EVI), 

actual evapotranspiration 

(ETa), RFE 

MODIS  

TRMM, NASA, 

and the Japan 

Aerospace  

Exploration 

Agency (JAXA) 

- 

Seasonal autoregressive 

integrated moving 

average (SARIMA) 

RFE, EVI, LST and ETa served as suitable malaria 

predictor as they improved the model fit, and they 

revealed a lagged positive association with malaria 

cases. ETa, which was utilised in malaria 

epidemiological study for the first time, showed a 

significant positive correlation with malaria at lags 

from 1–3 months in 3 of the 12 sites studied. EVI 

had a 3-month lag at 3 sites, while rainfall lagged 

by 1–3 months at 5 sites. LST exhibited a positive 

association lagged by 1–6 month at 6 sites. 

[49] Somalia 

Survey of PfPR data 

among children of 2 to 

less than 10 years 

EVI MODIS 

Annual mean 

precipitation, 

temperature 

suitability index 

(TSI), distance to 

larva breeding 

sites. 

Linear regression, 

Space-time  

model-based 

geostatistical (MBG) 

method 

The inclusion of 1 km2 MODIS EVI (odds ratio 

(OR) = 0.81, 95% BCI = 0.19–1.44, p-value = 

0.011) and other covariates (precipitation, 

floodplains, distance to main water bodies) in the 

analysis served as the best predictor for PfPR. 
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Table 2.2 Overview of studies that used RS-derived climatic variables and malaria epidemiological data in Southern Africa 

Reference 
Study 

Area(s) 

Malaria 

Epidemiological Data 

Climatic and Environmental Data Obtained 

via RS Technology 
Environmental/ 

Climatic Data from 

Other Sources 

Statistical Method(s) Main Findings 
Climatic and 

Environmental Data  
Source(s) of RS Data 

[50] Zimbabwe 

Monthly confirmed 

and unconfirmed cases 

(children less than 5 

years old) 

NDVI NOAA-AVHRR 

Rainfall, maximum 

temperature, minimum 

temperature, vapour 

pressure 

Bayesian Poisson model 

Vapour pressure, rainfall, mean monthly  

(28–32°C) and maximum temperature  

(24–28°C), showed a significant positive 

correlation with malaria incidence, while 

NDVI, high monthly maximum and minimum 

temperatures showed a negative association. 

[51] Botswana 
Confirmed malaria 

incidence data 

RFE,  

sea surface 

temperature (SST) 

CMAP  - 

Stepwise regression, 

Spearman’s rank order, 

Pearson’s product moment 

correlation, quadratic test, 

logistic regression,  

Mann–Whitney U-tests 

Negative anomalies of December–January 

SSTs were significantly associated with 

December–January rainfall estimates 

(Pearson’s R = −0.55 (−0.76 to −0.22) and 

Spearman’s R = −0.59 (−0.81 to −0.18)), as 

well as with the standardised malaria incidence 

anomalies and accounted for nearly 25% of the 

inter-annual variance in  

malaria incidence. 

[52] Zimbabwe 

Annual confirmed and 

unconfirmed malaria 

case (children less than 

5 years old) 

NDVI 
NOAA-AVHRR 

(NASA)  

Rainfall, vapour 

pressure, mean 

temperature, maximum 

temperature, minimum 

temperature 

Markham’s seasonality index, 

Negative binomial regression 

analysis, Bayesian negative 

binomial models 

In the bivariate analysis NDVI, vapour 

pressure, rainfall, average monthly  

(28°C–32°C) and maximum (24°C–29°C) 

temperature range revealed a significant 

positive correlation (p < 0.001) with malaria 

incidence. After employing the spatiotemporal 

model, NDVI  

became insignificant. 

[53] Botswana 
Confirmed malaria 

incidence data 
RFE CMAP SST 

Probabilistic prediction, 

Kolmogorov–Smirnov test, 

quadratic test 

Higher than expected malaria years were 

associated with above-average rainfall, while 

the lowest malaria years were associated with 

below average rainfall. 

[54] Botswana 

Malaria prevalence 

data (children between 

1 and 14 years age) 

NDVI,  

RFE 

NOAA-AVHRR, 

CMAP 

Elevation, surface water 

land cover, temperature 

vapour pressure  

Univariate logistic regression 

analysis, stepwise bootstrap 

method 

RFE (OR = 2.01, 95% BCI = 1.47–2.70), 

annual mean temperature (OR = 5.75,  

95% BCI = 4.14–8.08) and elevation (OR = 

1.82, 95% BCI = 1.49–2.22) were significantly 

associated with malaria prevalence after 

allowing for spatial correlation. 

[28] Angola 

Survey of confirmed 

malaria cases (children 

less than 5 years old) 

Day LST, night LST, 

NDVI,  

altitude  

MODIS,  

USGS-DEM 
Rainfall 

Bayesian logistic regression, 

Bayesian kriging 

NDVI (95% BCI = 6.28, 17.94; OR = 10.62) 

and rainfall (95% BCI = 6.00, 19.43; OR = 

10.80) showed a significantly positive 

relationship with malaria incidence after 

carrying out a bivariate analysis.  

[55] Zambia 

Survey of confirmed 

malaria cases among 

children less than 5 

years old 

Day LST, night LST, 

NDVI, land cover, 

altitude 

MODIS,  

USGS-DEM 

RFE, water bodies 

(lakes, rivers and 

wetlands) 

Lag time analysis, bivariate 

and multiple geostatistical 

logistic regression analysis, 

Bayesian kriging 

NDVI, night LST at 1-km2 spatial resolution 

and rainfall within the last 2.7 months showed 

positive significant association, while day LST 

reflected a significant  

negative relationship. 
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Table 2.2 (continued) 

Reference 
Study 

Area(s) 

Malaria 

Epidemiological Data 

Climatic and Environmental Data Obtained 

via RS Technology 
Environmental/ 

Climatic Data from 

Other Sources 

Statistical Method(s) Main Findings 
Climatic and  

Environmental Data  
Source(s) of RS Data 

[56] 

Namibia: 

Northern 

Namibia 

Monthly confirmed 

malaria cases 

EVI,  

precipitation 

MODIS,  

TRMM-NASA and 

JAXA 

TSI  

Non-spatial Poisson 

regression, Bayesian spatio-

temporal zero-inflated 

conditional autoregressive 

(CAR) model, zero-Inflated 

Poisson (ZIP) model 

Initially, the univariate non-spatial regression 

analysis indicated that the EVI (coefficient of 

regression, 95% BCI: 6.55, 4.25–8.87, p < 

0.001), the temperature suitability index 

acquired from the Malaria Atlas project (7.57,  

5.34–9.96, p < 0.001) and precipitation (0.02, 

0.01–0.03, p = 0.002) were significant 

predictors. However, after employing the best 

performing predictive model (the multivariate 

model), only EVI (coefficient of regression, 

95% BCI: 14.29, 9.24–19.42,  

p < 0.001) was positively correlated. 

[57] Swaziland 

Monthly confirmed 

malaria cases 

(imported and  

locally-acquired) 

NDVI, NDWI,  

elevation, TWI 

Landsat-7 ETM+, 

SRTM 

Temperature, rainfall, 

distance to nearest water 

body 

Satterthwaite t-tests, logistic 

regression mixed model, 

random forest 

Case households during the high transmission 

season tended to be located in areas of lower 

elevation, closer to bodies of water, in more 

sparsely-populated areas, with lower rainfall 

and warmer temperatures and closer to 

imported cases than random background points 

(all p < 0.001). In relation to model accuracy, 

NDWI was the most important RS-derived 

variable followed by NDVI and, lastly, TWI. 

[58] Malawi 
Monthly confirmed 

and unconfirmed cases 

Precipitation,  

altitude 

NOAA Climate 

Prediction Centre  

SRTM 

Temperature 

Negative binomial GLM, 

generalised linear mixed 

model (GLMM), Kernel 

density 

The negative binomial with only fixed effects 

was used to determine the best time lags 

between climatic variables and malaria. It 

showed that at the 0.05 significance level, 

precipitation and temperature were statistically 

significant at Lag 1–3. The maximum relative 

malaria risk is observed to be the maximum 

temperature of 28°C and precipitation of 6.24 

mm·day−1. 

[26] 

Zambia: 

Southern 

Province 

Weekly confirmed 

malaria cases 

Rainfall,  

NDVI, DWP, LST, 

elevation 

TAMSAT,  

MODIS,  

ASTER 

- 

Kruskal-Wallis tests,  

Ljung–Box Q statistics, 

Kriging, ARIMAX 

NDVI, DWP and night LST were the highly 

significant predictor variables at the high and 

low malaria transmission malaria zones 

partitioned in the study area. 
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Table 2.3 Overview of studies that used RS-derived climatic variables and malaria epidemiological data in West Africa 

Reference 
Study 

Area(s) 

Malaria 

Epidemiological Data 

Climatic and Environmental Data 

Obtained via RS Technology Environmental/ 

Climatic Data from 

Other Sources 

Statistical Method(s) Main Findings Climatic and  

Environmental 

Data  

Source(s) of RS 

Data  

[59] Mali 

Malaria prevalence data 

extracted from the 

MARA/ARMA 

database 

NDVI NOAA-AVHRR 

Rainfall, average 

maximum temperature, 

average minimum 

temperature, distance to 

the nearest water body 

Logistic regression  

analysis, kriging 

Mean NDVI from June–November (wet season), mean 

maximum temperature from March–May, months with 

more than 60 mm of rainfall and distance to water 

bodies were the significant predictor variables for 

predicting malaria prevalence. 

[60] Mali 

Malaria prevalence data 

extracted from the 

MARA/ARMA 

database 

NDVI 
NOAA/NASA-

AVHRR 

Temperature, duration of 

rainy season, distance to 

water 

Garki mode, Bayesian models 

and kriging 

In the raining season, NDVI and temperature had no 

statistical relationship with entomological inoculation 

rate (EIR). Distance to water was significantly related to 

transmission intensity, indicating high transmission in 

the areas within 4 km of the water source. 

[27] Mali 

Malaria prevalence data 

from the 

MARA/ARMA 

database (children 

between 1 and  

10 years old)  

NDVI NASA-AVHRR 

Temperature, rainfall, 

water bodies,  

season length 

Bayesian logistic regression, 

Bayesian non-stationary model, 

Bayesian kriging 

The non-stationary model showed that NDVI and 

minimum temperature had a positive statistical 

relationship with malaria risk, awhile rainfall had a 

negative statistical relationship. 

[61] 

Côte 

d’Ivoire: 

Man 

Confirmed P. 

falciparum survey in 

children between 6 and 

16 years 

NDVI, LST,  

RFE 

MODIS-USGS 

Meteosat 7 

Distance to the  

nearest river 

Bivariate logistic regression 

models 

In bivariate non-spatial models, NDVI, RFE and 

distance to rivers, were significantly associated with a 

P. falciparum infection. However, after employing the 

spatial correlation, NDVI showed only a ‘borderline’ 

significance with P. falciparum prevalence. 

[23] 
Mali: 

Bancoumana 

Confirmed P. 

falciparum survey in 

children between 0 and 

12 years 

NDVI NOAA-AVHRR - ARIMA 

The seasonal analytical approach revealed that the 

seasonality of P. falciparum incidence was significantly 

explained by NDVI with s 15-day lag (p = 0.001). The 

NDVI threshold was 0.361 (p = 0.007).  

[6] West Africa 

MARA/ARMA Malaria 

prevalence data among 

children between 1 and 

10 years 

NDVI,  

land use 

NOAA-AVHRR 

USGS 

Temperature, rainfall, 

soil water storage index 

(SWS), water bodies, 

agro-ecological zones 

Logistic regression model,  

non-parametric regression 

models  

NDVI was not associated with malaria in any of the 

four defined agro-ecological zones (Equatorial forest, 

Guinea savannah, Sahel region, Sudanese savannah). 

[62] 

Côte 

d’Ivoire: 

Man 

Survey of confirmed 

malaria cases among 

school children of 

Grades 3–5 

NDVI, LST,  

RFE DEM 

MODIS-USGS 

Meteosat 7 

SRTM 

- 

Bayesian negative binomial 

regression models, Bayesian 

kriging 

The bivariate non-spatial analysis identified NDVI, 

RFE, LST and close proximity to standing water (rivers, 

swamps and irrigated fields) as significant risk malaria 

factors. After employing the spatial analyses, only mean 

RFE remained significant over the malaria transmission 

season (June–August).  

[63] Senegal 

Confirmed malaria 

cases among children 

less than 5 years old 

Day LST, night 

LST, NDVI,  

altitude 

MODIS  

USGS-DEM 

Rainfall, permanent 

rivers and lakes 

Bayesian geostatistical  

zero-inflated binomial (ZIB), 

Bayesian kriging 

Night LST (OR 1.16; 95% BCI (0.66, 1.86)) and NDVI 

(OR 1.48; 95% BCI (0.88, 2.48)) were noted to have a 

positive association with malaria parasitemia. 

[64] Côte d’Ivoire 

Malaria prevalence data 

for children aged less 

than 16 years old 

LST, NDVI  

Elevation 

MODIS,  

USGS-DEM 

Rainfall, distance to the 

nearest water body 

Binomial regression models, 

Bayesian non-spatial and  

geo-statistical logistic regression 

models,  

Bayesian kriging 

In the non-stationary spatial model (the best model), the 

covariates rainfall (OR = 0.76; BCI = 0.70, 0.83) and 

maximum LST (OR = 0.72; BCI = 0.64, 0.79) were 

significantly negatively associated with Plasmodium 

prevalence. 
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Table 2.4 Overview of studies that used RS-derived climatic variables and malaria epidemiological data covering Central and Western 

Africa 

Reference 
Study 

Area(s) 

Malaria 

Epidemiological Data 

Climatic and Environmental Data Obtained 

via RS Technology Environmental/Climatic 

Data from Other Sources 
Statistical Method(s) Main Findings 

Climatic and 

Environmental Data  

Source(s) of RS 

Data  

[65] 

West 

Africa and 

Central 

Africa 

Malaria prevalence data 

extracted from the 

MARA/ 

ARMA database 

NDVI, land use 
NASA-AVHRR  

USGS-NASA 

Temperature, rainfall, soil 

water storage index, water 

bodies,  

agro-ecological zones, 

transmission seasonality 

Multivariate analysis, 

Garki model, 

Bayesian linear 

geostatistical model, 

Bayesian kriging 

NDVI, distance from water, length of season, 

rainfall and maximum temperature correlated 

significantly with malaria transmission 

intensity and were included in the best fitting 

model. NDVI had a significant positive 

association with malaria transmission, except 

for areas distant from water bodies. This 

negative association between malaria 

transmission and distance to water was 

observed in regions with NDVI values 

greater than 0.6. 

 

Table 2.5 Commonly-used RS variables for malaria modelling and mapping in SSA 

RS Variables Description Sources 

NDVI This is an indicator of the greenness of the biomass and varies between −1 and +1. It is calculated as [66, 67]: 
(NIR−Red)

(NIR+ Red)
 MODIS, NOAA-AVHRR 

LST (day and night) 
This can be estimated from thermal infrared sensors. It is sensitive to the thermal characteristics of the ground and atmospheric effects of 

spectral radiation [68].  
MODIS, NOAA-AVHRR 

RFE/CCD 
This provides indirect estimates of rainfall based on the detection of precipitation particles or the duration a cloud top is below a threshold 

temperature [69]. 
TRMM, CMAP, Meteosat 

EVI 

EVI provides an alternative to NDVI because it improves sensitivity over areas of denser vegetation. It is calculated  

as [66]: 𝐺 
(NIR−Red)

(NIR+𝐶1 ×Red−𝐶2×Blue+𝐿)
, where G is a gain factor, C1 and C2 are aerosol resistance coefficients and L is the canopy background 

adjustment that addresses nonlinear, differential NIR and red radiant transfer through a canopy. 

MODIS 

Elevation/altitude 
This correlates negatively with temperature and positively with precipitation and can be applied as a  

surrogate indicator [69]. 
USGS-DEM, ASTER, SRTM 

Land use and land cover This is related to the natural and physical environment and the human activities on the landscape [66]. MODIS, Landsat TM, USGS-NASA 
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Table 2.6 Overview of the RS satellites and sensors used in the malaria epidemiology studies in SSA. 

Satellite/Sensors Spectral Range Spatial Resolution Revisit Time Swath Width Radiometric Resolution 

NOAA/NASA-AVHRR 0.58–12.50 µm 1.1 km 12 h 2900 km 10 bit 

MODIS 0.40–14.50 µm 250 m, 500 m, 1 km  1–2 days 2330 km 12 bit 

Landsat TM 1 0.45–12.5 µm 30 m, 120 m 16 days 185 km 8 bit 

Landsat-7 ETM+ 2 0.45–12.5 µm 15 m, 30 m, 60 m 16 days 185 km 9 bit (8 bit transmitted)  

Meteosat 1–7 0.50–12.5 µm 2.5 km, 5 km 30 min - 8 bit 

Meteosat 8–10 0.40–14.40 µm 1 km, 3 km 15 min  10 bit 

TRMM 
VIRS 3: 0.63 µm, 1.60 µm,  

3.75 µm, 10.7 µm, and 12 µm 

VIRS: 2 km  

TMI 4: 5–45 km  

PR 5: 4.3 km  

3 hourly, daily, monthly  

VIRS: 720 km  

TMI: 780 km  

PR: 215 km  

- 

SRTM - 30 m 16 times per day 
C-radar: 225 km  

X-radar: 50 km  

C-radar: 8 bit  

X-radar: 6 bit  

ASTER 

VNIR 6: 0.52–0.86 µm  

SWIR 7: 1.60–2.43 µm  

TIR 8: 8.125–11.65 µm 

VNIR: 15 m  

SWIR: 30 m  

TIR: 90 m 

5 days  

16 days  

16 days 

60 km  

60 km  

60 km 

VNIR: 8 bit  

SWIR: 8 bit  

TIR: 12 bit 

CMAP - 0.25° × 0.25° 5 days, monthly - - 

1 Thematic Mapper; 2 Enhanced Thematic Mapper plus; 3 Visible Infrared Scanner; 4 TRMM Microwave Imager; 5 Precipitation Radar; 6 Visible Near Infrared; 7 Shortwave Infrared; 8 Thermal Infrared.  
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NDVI anomalies were highly correlated with malaria incidence anomalies, particularly in the 

semi-arid north of the country and along the northern Red Sea coast, which is a highly  

epidemic-prone area. CMAP rainfall correlated with malaria incidence anomalies, with a lead 

time of 2–3 months, while weather station rainfall correlated with malaria anomalies with a 

delay of two months. Generally, the correlation coefficients were between 0.6 and 0.8. 

Similarly, Graves et al. [25] analysed the effects of impregnated nets, larval control, malathion 

and DDT on malaria cases, while analysing the effects of RS-derived climate variables, such as 

NOAA-AVHRR NDVI (8 km × 8 km spatial resolution) and CMAP RFE (2.5° × 2.5° grid) in 

Eritrea at the district level. The Poisson regression analysis employed showed that the relation 

between the climatic variables and malaria cases varied by zones. The increase in malaria cases 

was significantly associated with RFE with a lead time of 2–3 months (0.0007711, p < 0.001) 

in the Gash Barka zone and NDVI anomalies in the current and previous months (1.820668, p 

< 0.0001). NDVI also exhibited the same relationship in the Anseba zone, but with a greater 

coefficient (11.22517, p < 0.001). Gosoniu et al. [48] employed Bayesian geostatistical models 

to analyse the effects of parasitemia risk with age, socio-economic status (wealth index and 

residence), malaria intervention (bed nets) and climatic and environmental factors (Moderate 

Resolution Imaging Spectrometer (MODIS) land surface temperature (LST), MODIS NDVI, 

altitude from the United States Geological Service (USGS) digital elevation model (DEM), RFE 

data from the Meteosat-7 satellite obtained from the Africa Data Dissemination Service 

(ADDS) and distance to nearest water body obtained from Health Mapper) in Tanzania. Apart 

from the variable rainfall with a spatial resolution of 8 km × 8 km, the climatic and 

environmental factors were retrieved at a spatial resolution of 1 km × 1 km. Altitude was 

negatively associated with malaria risk at the 5% significance level, indicating that children 

living above 1500 m had a lower risk of malaria, while rainfall, NDVI and day and night LST 

were positively associated with parasitemia risk. In a study by Omumbo et al. [39], 

malariometric data and RS-derived variables (NDVI, mid-infrared (MIR) reflectance, cold 

cloud duration (CCD), land surface and air temperature indices and altitude) from Kenya, 

Uganda and Tanzania were used to update the spatial resolution of their malaria transmission 

risk map. These authors pre-processed the RS-derived data using the temporal Fourier analysis, 

and the discriminant analysis that was employed subsequently revealed that NOAA-AVHRR 

LST was the best predictor of malaria transmission intensity, while NOAA-AVHRR NDVI and 

CCD derived from the Meteosat satellite were identified as secondary predictors of transmission 
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intensity. The forecast was significantly improved by altitude derived from USGS-DEM. Areas 

with moderated malaria were under-forecasted (false negative rate = 27.7%), while malaria-free 

areas were over-forecasted (false positive rate = 26.3%). In a similar study that used data 

covering Kenya, Uganda and Tanzania, Omumbo et al. [40] discovered that NDVI, CCD and 

water body areas were associated with malaria in the “dry” Ecozone 1 (arid and highland, with 

a climate that favors few months of mosquito proliferation). In Ecozone 2 (diverse, with a 

climate that supports the propagation of mosquitoes for longer transmission seasons), 

temperature variables were identified as the most abundant variables in the prediction model. 

The addition of ecological zoning improved the overall model accuracy by 6.1%, and kappa 

values increased from 0.397–0.477. 

2.4.2 Southern Africa 

Studies in Southern Africa in which the relationship between RS-derived climatic variables and 

malaria incidence and/or prevalence that were identified are summarised in Table 2.2. Study 

sites in Southern Africa mainly included Botswana (three studies), Zimbabwe (two studies) and 

Zambia (two studies). Other locations included Angola, Namibia, Swaziland and Malawi. Some 

Southern African countries, including Mozambique, Angola, Zimbabwe and Malawi are in the 

malaria control stage of the malaria elimination continuum [41]. South Africa, Zambia, 

Botswana and Namibia are in the pre-elimination stage [41, 70], while Swaziland is in the 

elimination stage [71]. RS-extracted climatic and environmental variables used in this region 

were obtained mainly from NOAA-AVHRR and MODIS satellite sensors. NDVI was observed 

to be the major RS-derived variable linked to malaria transmission in the region followed by 

RFE. Gosoniu et al. [28] fitted Bayesian geostatistical models to assess the effects of malaria 

intervention (insecticide-treated nets) among children less than 5 years old in Angola between 

2006 and 2007 after adjusting for socio-economic status, climatic and environmental factors 

(MODIS LST, MODIS NDVI, altitude derived from USGS DEM, distance to nearest water 

body from Health Mapper and rainfall from ADDS). These authors examined the association 

between malaria incidence and climatic/environmental factors, and found that NDVI (95% 

Bayesian credible interval (BCI) = 6.28, 17.94; odd ration (OR) = 10.62) and rainfall (95% BCI 

= 6.00, 19.43; OR = 10.80) had a significantly positive relationship with malaria incidence. 

Similarly, Riedel et al. [55] investigated the relationship that existed between malaria 

interventions and malaria risk after adjusting for selected RS (MODIS LST, MODIS NDVI, 
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MODIS land cover, ADDS RFE, altitude from USGS DEM, water bodies) and socio-economic 

variables in Zambia. A spatially independent and Bayesian geostatistical model was generated 

that used malaria cases from the Zambia Malaria Indicator Survey conducted in 2006. NDVI, 

night LST and rainfall (the last 2.7 months) were identified as positive significant predictors of 

malaria and were fitted in the model. Cohen et al. [57] conducted a study aimed at generating a 

case-based risk map for Swaziland using the 2011 malaria case data obtained from the 

Swaziland National Malaria Control Programme. Ecological variables, such as rainfall obtained 

from weather stations, temperature obtained from worldClim database, NDVI, normalised 

difference water index (NDWI), elevation, topographic wetness index (TWI) and water bodies 

obtained from the Food and Agriculture Organisation of the United Nations were assessed for 

their relevance in the formulation of a high spatial and temporal resolution malaria risk map. 

NDVI and NDWI data were calculated from a high spatial resolution imagery (30m) from the 

Landsat 7 Enhanced Thematic Mapper plus (ETM+) sensor. The Landsat 7 ETM+ is an 

improvement of the previous Landsat satellite series that provides medium-resolution 

multispectral imagery of the Earth’s surface [33]. Elevation and TWI were obtained from the 

Shuttle Radar Topography Mission (SRTM) at 90-m spatial resolution. These authors suggested 

that during the high transmission season, malaria cases tend to cluster in areas of lower 

elevation, closer to water bodies, in less populated areas, with lower rainfall and lower 

temperatures (all p < 0.001). In relation to the model accuracy, NDWI was the most important 

RS-derived predictor followed by NDVI and TWI. Finally, models formulated from the random 

forest classification were used to produce predicted probability case-based maps. Nygren et al. 

[26] explored the relationship between RS-derived environmental malaria transmission and 

forecasted malaria cases in the Southern Province of Zambia. The RS-derived variables 

included MODIS NDVI, MODIS nocturnal dew point (DWP), MODIS LST, rainfall and 

elevation. The rainfall data were obtained from the Tropical Application of Meteorology using 

satellite data and ground-based observations (TAMSAT). TAMSAT rainfall data are rainfall 

estimates obtained from Meteosat (from the thermal infrared channels) and calibrated against 

rainfall data from rain gauges [72, 73]. In addition, elevation data at 30-m spatial resolution was 

derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER), which is a sensor on-board the Terra satellite for DEM creation [33]. NDVI, DWP 

and night LST were the highly significant predictors in the high and low malaria transmission 
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areas, and the NDVI and DWP improved the ARIMAX models in all areas significantly. The 

mean average error of the forecast models was between 0.7% and 33.5%. 

2.4.3 West Africa 

In West Africa, country-specific studies took place mainly in Mali (four studies) and Côte 

d’Ivoire (three studies). Others studies were conducted in Gambia and Senegal. One regional 

study used malariometric data obtained from Mapping Malaria Risk in Africa (MARA/ARMA), 

which covered West Africa, but excluded Cape Verde [6]. All of the West African countries are 

in the control stage of the WHO malaria elimination continuum, except Cape Verde, which is 

in the pre-elimination stage [41]. A summary of studies in West Africa that used RS climatic 

and environmental variables to identify climatic and environmental predictors of malaria is 

given in Table 2.3. In the region, the most frequently-utilised RS climatic and environmental 

variables were from NOAA-AVHRR and MODIS sensors with NDVI identified as the major 

RS climatic predictor of malaria transmission. Giardina et al. [63] used malaria prevalence data 

from Senegal’s Malaria Indicator Survey to determine spatially-explicit climatic and 

environmental variables associated with malaria in Senegal by incorporating Bayesian variable 

selection methods within a geostatistical framework. The formulated model included night LST 

(OR = 1.16; 95% BCI (0.66, 1.86)), NDVI (OR = 1.48; 95% BCI (0.88, 2.48)), urban area (OR 

= 0.19; 95% BCI (0.07, 0.45)) and rural area (OR = 1), and they were noted to have a positive 

association with malaria parasitemia risk. Similarly, Gosoniu et al. [27] estimated the burden 

of malaria in Mali by using a Bayesian non-stationary model. Malaria prevalence data were 

extracted from the MARA/ARMA, 1998 database, NDVI from NASA-AVHRR, temperature 

and rainfall obtained from Hutchinson et al. [74], water bodies from World Resources Institute 

[75] and season length from Gemperli et al. [65]. The best sets of variables included in the non-

stationary model were NDVI and minimum temperature, which had a positive significant 

relationship with malaria risk. Contrarily, rainfall had a negative significant relationship. The 

authors further suggest that stationarity assumptions are vital due to their influence on the 

significance of environmental parameters and parasitemia risk map. Gaudart et al. [23] 

incorporated RS-derived variables into a temporal model to predict malaria transmission in the 

locality of Bancoumana, Mali, characterised by Sudanese savannah. Confirmed P. falciparum 

data obtained from a field study of children aged 0-12 years and 15-day composites of NDVI 

data derived from NOAA-AVHRR between 1981 and 2006 were incorporated in the ARIMA 
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time series. The analysis revealed that the seasonality of P. falciparum incidence was 

significantly explained by NDVI with a 15-day lag (p = 0.001), and the threshold was 0.361 (p 

= 0.007). The deterministic malaria transmission model, with stochastic environmental 

variables, forecasted an endemoepidemic pattern of malaria, and the value of the adjusted R2 

was 89%. Similarly, in a study conducted by Kleinschmidt et al. [59], malaria risk was 

determined on a large scale by identifying important ecological parameters, and subsequently, 

a malaria risk map was produced for Mali. These authors used an automatic stepwise variable 

selection procedure to identify the most reliable predictors of malaria prevalence for the 

multiple logistic regression model. NDVI from June–November (wet season), mean maximum 

temperature from March–May, months with more than a 60-mm rainfall and distance to water 

bodies were the significant predictor variables for predicting malaria prevalence and were 

incorporated into the final multiple logistic regression model; and finally, a map of malaria risk 

was formulated. On the other hand, Silue et al. [61] used the Bayesian model to produce 

spatially-explicit risk maps of malaria transmission in Man, Côte d’Ivoire. Initially, these 

authors analysed the relationship of malaria prevalence data with possible malaria transmission 

risk factors, including age, use of bed nets, socio-economic status, distance of health facilities, 

NDVI, rainfall, LST and distance to rivers. NDVI and LST were extracted from MODIS at a 1 

× 1 km spatial resolution, while RFE from the Meteosat-7 satellite was obtained from the ADDS 

at an 8 × 8 km spatial resolution. In bivariate non-spatial models, NDVI, RFE and distance to 

rivers were significantly associated with a P. falciparum infection. However, after employing 

the spatial correlation analysis, only age was noted to be a significant risk factor for malaria 

prevalence, while NDVI showed a “borderline” significance. 

2.4.4 Central Africa 

In the Central African region, the only study identified that examined the association of malaria 

with RS climatic and environmental characteristics is given in Table 2.4. This is a cross-regional 

study that used Malaria prevalence data obtained from the MARA/ARMA database and 

numerous malaria transmission factors, including population density, NDVI, land use, 

temperature, rainfall, water bodies, soil water storage index, agro-ecological zone and 

transmission seasonality covering Central and West Africa [65]. The authors discovered that 

NDVI extracted from the NASA-AVHRR sensor at an 8 × 8-km spatial resolution had a high 

relationship with malaria across the region, except in areas far away from water bodies. 
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Furthermore, a negative association was recorded between malaria transmission and distance to 

water, and this was observed in regions with NDVI values greater than 0.6. The spatial and non-

spatial variations were 0.398 and 41.98, respectively. With reference to the WHO malaria 

elimination continuum, all of the Central African countries are still in the control phase [41], 

excluding São Tomé and Príncipe, which are currently in the pre-elimination stage. 

2.4.5 Commonly-used RS variables and features of satellites and sensors used by the authors 

in the articles reviewed 

Table 2.5 provides an overview of the RS variables commonly used in SSA, while Table 2.6 

presents the satellite sensors used in the various selected studies (these sensors have different 

spatial, spectral, temporal, radiometric and swath width properties). NOAA-AVHRR and 

MODIS were the most frequently-utilised sources of RS-derived indices, such as NDVI, EVI, 

LST, ETa and DWP across SSA. In addition, Meteosat [26, 39, 40, 61, 62, 76] and the Climate 

Prediction Centre Merged Analysis of Precipitation (CMAP) [25, 53, 58, 77, 78] were also used 

extensively to extract RFE and precipitation data.  

2.5 Discussion 

This review highlights the contribution of RS technology in modelling malaria transmission and 

risk in SSA after taking account of potential climatic and environmental variables that can be 

used to predict malaria transmission. Malaria disease exhibits seasonal and spatial heterogeneity 

across localities, districts, provinces, countries and also in sub-continental regions. This can be 

attributed to the complex nature of malaria resulting from the diverse climatic, environmental, 

social and natural elements supporting the disease. The combination of these factors plays an 

important role in the endemicity and epidemicity of an area. RS serves as a means of obtaining 

potential climatic and environmental malaria variables and opens an avenue to better understand 

and model the environmental and climatic processes fundamentally responsible for the temporal 

and spatial heterogeneity of malaria disease. 

 

RS has proven to be a vital tool in malaria modelling and prediction. It can contribute to malaria 

intervention planning and control programs at both local and broad scales and at different 

malaria risk stratifications. The scarcity of reliable meteorological data, national health policies 

and priorities, institutional research capacity, availability and the cost of high resolution RS data 
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for research and public health purposes determines the use of RS in malaria modelling [79]. 

This notwithstanding, RS-derived variables are gaining widespread acceptance and application 

in malaria risk modelling in SSA, because the nature and characteristics of a variable of interest 

can reflect the ecological relevance and contribution to malaria transmission. For instance, RFE 

provides indirect estimates of rainfall based on the detection of precipitation particles or the 

duration a cloud top is below a threshold temperature [69]. LST is used as a proxy for 

temperature, and its values are obtained from land surface emissivity or surface reflectance in 

relation to their wavelengths and spectral characteristics [68], while NDVI serves as a surrogate 

for rainfall, temperature, land use and land cover, near-surface humidity and surface water [20, 

80]. Thus, RS-derived variables have the potential to provide information that directly exhibits 

the state of the vector habitat and the potential role that ecology can play in malaria transmission 

[29, 68]. 

 

The robust utilization of RS-derived variables across SSA has shown that malaria predictors 

and models are peculiar and subject to the influence of the reference data, scale of observation 

and environmental condition of the study area. For example, in sub-continental East Africa, the 

investigator observed that NDVI extracted from NOAA-AVHRR at 8 km × 8 km and MODIS 

at 1 km × 1 km spatial resolutions is an important predictor of malaria transmission at the 

country level in Kenya, Tanzania [48], Burundi [42] and Eritrea [25, 43]. However, at the local 

level, in the rich herbaceous and cropland vegetation of the Amhara region, which constitutes 

the Ethiopian Highlands, NDVI obtained from MODIS at a 1 km × 1 km spatial resolution was 

not significantly related to malaria. Instead, ETa (which was only recently assessed for its 

relevance in malaria risk profiling), EVI and LST variables extracted from MODIS at a 1 km × 

1 km spatial resolution were observed to be the suitable malaria predictors in Amhara, Ethiopia 

[20]. This can be explained by the fact that NDVI loses sensitivity in areas of higher vegetation 

density and at higher EVI values. The vegetation index EVI can be used as a substitute for 

NDVI, because it preserves more sensitivity over heavier vegetation; hence, good account of 

the variation and the change in a rich canopy can be recorded [81, 82]. However, it was observed 

that the application of EVI in malaria risk profiling and modelling was used sparingly in the 

East African sub-region and other SSA regions. 
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The pronounced climatic diversity in relation to malaria suitability at the country level in 

Southern Africa may have contributed to the diverse RS variables identified as significant 

malaria predictors in the sub-region. However, NDVI extracted from MODIS at 1 km × 1 km 

[26, 28] and 0.25 km × 0.25 km [55] and Landsat 7 ETM+ at 30 m × 30 m spatial resolutions 

[57] can be used to explain the geographical spread of malaria in greater parts of the malaria 

endemic areas when compared to other RS-derived variables identified as significant predictors 

of transmission. On the other hand, in the malaria endemic region of Northern Namibia, Alegana 

et al. [56] found that MODIS EVI at a 1 km × 1 km spatial resolution and precipitation derived 

from TRMM at a 0.25° × 0.25° spatial resolution, which was re-sampled to a 1 km × 1 km 

spatial resolution, were the best malaria predictors. It must be noted that NDVI was not 

considered in the study, which would have presented a good comparison with EVI.  

 

NDVI continued to exhibit its dominance in usage and significance pertaining to malaria risk 

determination across the SSA regions. NDVI extracted from either NOAA-AVHRR at an 8 km 

× 8 km spatial resolution or MODIS at a 1 km × 1 km spatial resolution, respectively, was 

identified as a suitable malaria predictor in Western Africa, especially in settings characterised 

by the Sahelian or Sudanian climate at the local level (Bancoumana, Mali) [23] and the country 

level (Mali and Senegal) [27, 59, 63]. However, in areas characterised by persistent moisture 

and heavy vegetation, different outcomes were observed. In the Man region of Côte d’Ivoire, 

Raso et al. [62] identified RFE data obtained from the Meteosat 7 satellite at an 8 km × 8 km 

spatial resolution as the predictor for malaria prevalence. Furthermore, a significant negative 

association between Plasmodium prevalence and MODIS LST at a 1 km × 1 km spatial 

resolution was recorded in a study that used data covering Cote d’Ivoire [64]. 

 

In the Central African region characterised by climatic suitability for malaria proliferation and 

heavy vegetation, the only study identified and reviewed indicated that NDVI calculated from 

the NASA-AVHRR sensor at an 8 × 8 km spatial resolution returned a better result for 

modelling malaria transmission [65]. EVI, which has been suggested to be an alternative 

predictor over denser vegetation than NDVI, may have been identified as a better malaria 

predictor in the Central African region, but it was not included in the study. Furthermore, other 

climatic and environmental factors used in the study may have been identified as suitable 

malaria predictors, but the authors did not consider the differences that might exist in the 
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climate-malaria relationship across the study area. In addition, they did not take into account 

the non-stationary characteristics of malaria data covering large areas. Disregarding this 

characteristic could result in the wrong specification of the spatial correlation and, therefore, 

erroneous values of the standard error of the predictors and prediction. In a somewhat similar 

study conducted by Gosoniu et al. [6], the authors used data covering West Africa and addressed 

the above-mentioned issues by partitioning the study area into four agro-ecological zones and 

then employing a different non-parametric model in each zone. There is a possibility that more 

studies in the Central African region may be available, but could not be identified, as the region 

is dominated by French-speaking countries. Hence, researchers from the region may have their 

articles published in French. 

 

The tremendous improvements in the RS sensors, better turnaround time and availability of 

some RS low and medium resolution datasets at no cost [83, 84] may have also contributed to 

the considerable utilisation of various RS datasets across SSA. The freely available RS datasets 

obtainable via MODIS and AVHRR satellites can be used to explain the frequent usage of these 

satellites as compared to RS datasets from other RS sources [33, 85]. Furthermore, RS datasets 

from MODIS has made it possible to evaluate new and previously unidentified environmental-

related malaria predictors. For example, contemporary studies have shown that MODIS DWP 

at a 5 km × 5 km spatial resolution and MODIS ETa at a 1 km × 1 km spatial resolution can be 

used to explain and define malaria transmission risk and malaria incidence in the Southern 

Province of Zambia and the Amhara region of Ethiopia, respectively.  

 

Countries in SSA are at different stages in their fight towards malaria elimination, and this has 

to be taken into account in line with the characteristics of the RS imagery intended to be used. 

Low and medium spatial resolution RS data can be useful in studies conducted at national and 

regional levels in the malaria endemic countries that are still at their malaria control stage, and 

to derive generalised spatio-temporal models and malaria risk map for robust application of 

intervention resources. However, in Angola, Botswana, Cape Verde, Namibia, Swaziland and 

South Africa with significantly low malaria cases [41], high spatial resolution RS data at a local 

level would be essential to carry out the cluster analysis and detection of foci and hotspots of 

malaria transmission. This would support adequate monitoring of the disease and delivery of 

interventions to specific location(s) and/or seasons, ultimately leading to malaria reduction. 
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New generation satellites, such as Landsat-8, Copernicus: Sentinel-2, the Global Precipitation 

Measurement (GPM) mission, the Soil Moisture Active/Passive (SMAP) mission, SPOT 6 and 

SPOT 7 [33], with improved spatial and radiometric resolutions, have potential for malaria 

transmission and risk modelling, especially in regions where malaria cases are low (Table 2.7). 

Furthermore, future satellite mission, like Copernicus: Sentinel-3, which would introduce data 

reliability for long-term monitoring, could also be vital in modelling spatial and temporal 

malaria transmission and research [83, 84]. The cost of obtaining high spatial resolution datasets 

remains a challenge in SSA. Hence, lessons can be drawn from the collaborative venture that 

exists between China and Brazil, which allows their researchers to obtain high spatial resolution 

data (2.5 m) freely [86]. 

 

Table 2.7 Overview of new generation RS satellites and sensors with improved 

characteristics for malaria modelling. 

Satellite/ 

Sensors 
Spectral Range Spatial Resolution Revisit Time Swath Width 

Radiometric 

Resolution 

Landsat-8 0.43–12.5 µm 15 m, 30 m, 100 m 16 days 185 km 12 bit 

Copernicus: 

Sentinel-2 
0.43–2.28 µm 10 m, 20 m, 60 m 5 days 290 km 12 bit 

GPM - 250 m, 500 m 3 h 
120 km, 245 km, 

885 km 
- 

SMAP - 3 km, 10 km, 40 km 2 days, 3 days 1000 km  - 

SPOT 6 and  

SPOT 7 
0.45–0.89 µm 

1.5 m, 2 m,  

6 m, 8 m 
1–5 days 60 km  12 bit 

 

In a bid to identify relevant and potential risk factor(s) or malaria transmission predictors at 

local, national or regional levels that can be further incorporated into forecast models/early 

warning systems and malaria risk maps, the statistical methodology employed should 

accommodate procedures that suit a particular context and setting. According to Tables 2.1– 

2.4, some classes of generalised linear models (linear regression, logistic regression and Poisson 

regression) were used frequently in Eastern, Southern and Western Africa as compared to other 

analytical approaches, but to a varying degree. This can be attributed to the simplistic, flexible 

and intuitive way this approach accommodates predictors [87]. On the other hand, in the only 

study identified that was conducted in Central Africa, a multivariate analysis was carried out. 

This further illustrates the relevance of these approaches in evaluating the relationships between 

georeferenced environmental variables and prevalence data, identifying potential risk factor(s) 

and predictor variable(s), explaining the observed variable(s) and forecasting prevalence at 
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unsampled locations. The reliability of predictive geostatistical models formulated from a 

multivariate regression analysis is important in malaria mapping, and it depends on the selected 

variables fitted in the model. Researchers intending to employ either of the above-mentioned 

approaches should bear in mind that they do not intrinsically consider correlation in the errors 

[88]. Erroneous serial autocorrelation is likely to result in underestimated standard errors, and 

in addition, the evaluation of the impact of predictors would be biased. To account for the 

impact of autocorrelation on estimates, de Jong et al. [89] exhibited the relevance of applying 

heteroscedasticity and autocorrelation consistent estimators. A variety of statistical approaches 

have been applied across SSA to varying degrees and settings. The exploration and comparison 

of different statistical approaches and models for a particular setting would be useful in 

identifying and evaluating prediction accuracy. It will also be useful in identifying approaches 

that would provide accurate and reliable predictors for either short, long or intermediate 

prediction [90].  

 

Overall, the quantitative models employed across localities and countries in SSA consistently 

revealed variability in the relationship between malaria and climatic and environmental 

variables. However, NDVI was observed to be the most significant predictor of malaria 

transmission followed by LST and RFE, and thus, they constituted the RS variable(s) that 

provided the best-fit model. To improve the overall predictive power and model robustness, the 

investigator recommended the following: (1) Large datasets should be used over longer periods. 

For example, Nygren et al. [26] generated predictive models employing 126 weeks of data. 

Therefore, it will be difficult to know if the identified RS predictors of malaria transmission and 

the relationships they found will be sustained over time. (2) The incremental validity approach, 

which involves incorporating variables as supplemental to an identified predictor, should be 

practiced, as it can improve the predictive power [91]. For example, the study conducted by 

Ceccato et al. [43] revealed that NDVI predicted about 1%–20% of the variance in the southern 

and southeastern areas of Eritrea. This means that other RS-derived variables can explain 80%–

99% of the variance. However, the addition of other RS-derived variables would be dependent 

on whether they improve the predictive validity of what the identified predictor predicts. (3) 

Linear models have been widely used across SSA. However, these models can result in 

inappropriate static regression and impose unrealistic or general assumptions. Thus, Bayesian 
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models, which provide extensions of generalised linear models and are formulated to overcome 

some of the setbacks of linear models, should be employed. 

 

The reviewed studies have shown that RS technology can contribute to the understanding of the 

complex nature of malaria across SSA. It can provide the potential climatic and environmental 

variables needed to identify significant spatially-explicit variable(s) associated with malaria risk 

and transmission. In areas like the Horn of Africa and Kenya, where malaria is highly seasonal, 

unstable and epidemic, the process of deciding climatic monitoring targets should be handled 

with caution to avoid the generation of unreliable malaria transmission models. Therefore, the 

investigator is in support of regular capacity building and multidisciplinary collaboration 

between relevant departments, e.g., ecology, geography, biological science, epidemiology, 

entomology, information technology, statisticians, mathematical modellers, public health 

decision makers and stakeholders, in generating reliable prediction models. Furthermore, 

although this study can serve as an informative tool for public and environmental health 

workers, as well as researchers aiming to model potential climatic factors related to malaria and 

to delineate climate monitoring targets in SSA, some limitations should be noted. Firstly, 

relevant reports published in languages other than English and/or unpublished reports were 

excluded from this review. Secondly, studies that used only entomological data were also 

excluded. 

2.6 Conclusions 

The investigator conclude that RS technology is a vital tool in determining malaria risk 

predictors at regional, national and local scales in diverse regions of SSA. This review suggests 

that the utilization of RS in determining reliable malaria transmission predictors and developing 

environmental monitoring would require a tailored approach that takes into account the 

geographical and climatic setting, the stage of the malaria elimination continuum, the 

characteristics of the RS variables and the analytical approach, which in turn, would support the 

channelling of intervention resources sustainably. The improvement of this technology has 

encouraged the acquisition and evaluation of a wide array of historical climatic and 

environmental variables at different spatial and temporal resolutions depending on the setting 

and intended usage. This therefore makes RS a relevant tool for identifying reliable climate-

related malaria predictors that can be incorporated into an integrated malaria early-warning 
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system or prediction model. Previously unidentified remotely-sensed variables, such as ETa and 

DWP, were found to be malaria transmission predictors, and EVI was also noted to be a suitable 

substitute for NDVI in denser vegetation, which needs to be further explored extensively across 

relevant localities and regions of SSA. Furthermore, the assessment of different statistical 

methods and models for a particular location would be useful in identifying and evaluating 

prediction accuracy depending on the length of prediction. The application of this technology 

can be further harnessed in generating reliable prediction models by devising means by which 

relevant skills and training and the easy acquisition of relevant RS-derived variables can be 

achieved. Therefore, relevant multidisciplinary collaborations, symposiums and capacity 

development are encouraged.  
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CHAPTER 3: CLIMATIC AND ENVIRONMENTAL DETERMINANTS FOR 

MODELLING MALARIA DISEASE RISK IN A PROVINCE WITH LOW MALARIA 

TRANSMISSION USING BAYESIAN ZERO-INFLATED MODELS IN INLA 
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3.1 Abstract 

The malaria control and intervention strategy in KwaZulu-Natal (KZN), South Africa (SA) 

significantly reduced the malaria risk and resulted in zero malaria cases reported in some local 

municipalities. Therefore, to sustain this and meet the malaria elimination target for the entire 

province, an evaluation of the different climatic and environmental variables that influence the 

spatiotemporal malaria transmission is important. This study models the influence of climatic 

and environmental variables on the spatiotemporal malaria transmission in KZN, SA by 

assessing different Bayesian statistical models that can handle excess zeros. Considering 

spatiotemporal dependencies, the investigator employed different Bayesian zero-inflated 

models in INLA to clinically confirmed monthly malaria cases and the following remotely 

sensed climatic and environmental variables: precipitation, day and night land surface 

temperature, normalized difference vegetation index (NDVI), enhanced vegetation index and 

elevation from the malarious local municipalities in KZN during the period 2005-2014. The 

Bayesian spatiotemporal zero inflated Poisson (ZIP) was identified as the best model fit based 

on the deviance information criterion. The spatiotemporal ZIP analysis results indicate that at 

95% Bayesian credible interval (BCI) NDVI (0.91; 95% BCI = 0.71, -1.12), precipitation (0.11; 

95% BCI = 0.08, 0.14), elevation (0.05; 95% BCI = 0.03, 0.07) and night temperature (0.04; 

95% BCI = 0.03, 0.04) are significantly related to malaria transmission in KZN, SA. The area 

with the highest risk of malaria morbidity in KZN was identified as the north-eastern part of the 

province. The modelling approach employed in this study presents a valuable tool for 

understanding and monitoring the influence of climatic and environmental variables on the 

spatial heterogeneity of malaria in KZN. It will therefore equip the relevant policy makers with 

information required to channel malaria intervention resources sustainably to vulnerable 

receptive areas. Also, this study reveals the need to strengthen the already existing cross-border 

collaborations to fortify KZN’s malaria elimination goals. 

 

Keywords: Malaria transmission, climatic variables, environmental variables, KwaZulu-Natal, 

excess zeros, zero inflated Poisson. 
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3.2 Introduction 

Malaria is endemic to the northern part of KwaZulu-Natal (KZN) province, South Africa (SA) 

[1]. The malaria parasite responsible for over 90% of malaria cases in the province is 

Plasmodium falciparum, while Anopheles arabiensis of the Anopheles gambiae complex is the 

major malaria vector species [1]. Low number of malaria cases and excess zero malaria cases 

have been recorded in the malarious local municipalities arising from the influence of the 

efficient malaria control and intervention strategy currently in place in KZN [2-4]. Currently, 

malaria incidence in KZN is between 0.01 to 0.10 case per 1000 persons [1]. This, positions the 

province within the malaria elimination epidemiological trigger in the WHO elimination 

continuum [5], as such she strives to achieve malaria elimination by 2020 [1]. To actualise the 

elimination target, relevant measures and tools for malaria surveillance, prevention and control 

are necessary. In this regard, the spatiotemporal delineation and prediction of malaria 

transmission using relevant climatic and environmental variables is important to derive 

empirical maps of malaria risk and transmission. 

 

Climate is a very important determinant of the spatiotemporal heterogeneity of malaria risk and 

transmission [6-12]. Rainfall is the main climatic component that contributes to malaria 

although its effect on malaria vector proliferation and malaria transmission intensity notably 

varies with rainfall amount variations [12-14]. Temperature plays an integral rote via complex 

interactions on malaria vector population dynamics on one hand and for parasite development 

within the vector, on the other hand [15]. Other climatic and environmental variables that have 

been widely reported in literature for their influential role in malaria transmission include 

elevation/altitude, relative humidity, land use and land cover [12, 16-21]. Furthermore, 

urbanisation, human population movement, socio-economic and demographic variables, and 

malaria intervention have also been reported for their impacts on malaria transmission [2, 22-

26].  

 

The progress made in spatial technology and Bayesian geo-statistical modelling have opened 

new opportunities for exploring the climatic and environmental suitability of malaria using 

proxy variables from remote sensing, and formulation of spatiotemporal empirical malaria risk 

maps at different levels [2, 18, 27-30]. This, in turn, has presented a platform for sound 

inference, prediction and mapping of the variable(s) of interest. For instance, Clements et al. 
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[31] formulated a spatiotemporal malaria risk model in Yunnan province, China based on the 

relationship between monthly malaria cases and selected RS climatic variables (rainfall and 

temperature) obtained from WORLDCLIM database. The Bayesian spatiotemporal Poisson 

regression analysis based on the Plasmodium vivax model revealed that at 95% Bayesian 

credible interval (BCI) rainfall (1.045, 95% BCI = 1.044-1.046) and maximum temperature 

(1.047, 95% BCI = 1.045-1.050) are significant malaria predictor variables in the province. 

Also, the Plasmodium falciparum based model identified rainfall (1.037, 95% BCI = 1.034-

1.040) and maximum temperature (1.053, 95% BCI = 1.047, 1.060) as the significant malaria 

predictors.  

 

Across sub-Saharan Africa, diverse climatic and environmental variables have also been 

reported to influence the spatiotemporal heterogeneity of malaria disease markedly. At 

provincial level in Zambia, the influence of maximum and minimum land surface temperature 

(LST) derived from moderate resolution imaging spectroradiometer (MODIS) and CHIRPS 

obtained precipitation data on malaria occurrence was evaluated employing the Bayesian 

semiparametric Poisson regression analysis [32]. The analysis revealed all the variables studied 

(precipitation (40.24, 97.5% BCI = 13.70-97.86), minimum LST (1.06, 97.5% BCI = 0.31-2.46) 

and maximum LST (0.67, 97.5% BCI = 0.36-1.14)) have a significant relationship with malaria 

incidence. Furthermore, after considering the spatial dependencies, Luapula and North-western 

province were identified as areas with highest risk of malaria transmission as compared to 

Lusaka (95% lower) and Western Province (68% lower). In Angola, the malaria parasitaemia 

risk and prediction maps were delineated after considering the impact of climatic and 

environmental variables (altitude from United States Geological Service (USGS) EROS, 

rainfall from Africa data dissemination service (ADDS), rivers and lakes, MODIS derived day 

and night LST and normalized difference vegetation index (NDVI)), socio-economic status and 

malaria intervention [33]. The results from the Bayesian geostatistical models, suggested that 

NDVI value ≥ 0.60 (4.34, 95% BCI = 0.53 -36.74) and rainfall between 112-135mm (2.81, 95% 

BCI = 0.43- 18.57) were the most significant malaria predictors. Other significant climatic and 

environmental predictors are day and night LST, altitude and proximity to water bodies. The 

predicted malaria risk map delineated afterwards suggested that the northern and the central 

regions of Angola are the highest risk malaria areas. Contrarily, the south and south-east regions 

are the lowest risk malaria areas. In another study, the Bayesian geostatistical logistic regression 
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approach employed various climatic and environmental variables (such as Advanced Very High 

Resolution Radiometer (AVHRR) derived NDVI, land use, rainfall, temperature, soil water 

storage index and water bodies obtained from USGS) to identify malaria predictors and model 

the spatiotemporal variations of malaria vectors across Mali [34]. The analysis revealed that 

soil water storage index, NDVI, maximum temperature and the distance to water bodies have a 

significant positive relationship with the malaria vector dominant in the area (Anopheles 

arabiensis). While minimum temperature and rainfall were negatively associated. Finally, the 

Bayesian Kriging approach was used to develop a predictive map of the spatial distribution of 

the vectors. On a larger scale, important malaria predictors across ten West African countries 

were identified employing the Bayesian spatiotemporal Hierarchical modelling approach [27]. 

The modelling was done using malaria cases and various climatic variables (obtained from the 

National Oceanic and Atmospheric Administration's (NOAA) National Climate Data Centre 

(NCDC)). The outcome of the analysis revealed that across West Africa total annual 

precipitation (-0.1055, 97.5% BCI = -0.1808, -0.0325) and mean annual temperature (-0.2034, 

97.5% BCI = -0.2528, -0.1545) were the most important variables.  

 

The above studies reviewed highlight the relevance of employing the relevant Bayesian 

approach in modelling malaria incidence/occurrence and predicting the spatiotemporal 

distribution of the disease. They also indicate the relevant count data models and analyses were 

carefully selected in-line with the characteristics of malaria data distribution (which comprised 

of malaria count distributions without zero-value observations or infrequent zero-values). 

However, in settings where the number of zeros is greater than expected under a standard count 

distribution with a fixed mean, a flexible model that can handle the over dispersion resulting 

from the excess zeros values and still take account of the non-zero values in the model is 

valuable [35]. In a disease like malaria known for its spatiotemporal heterogeneity, and as more 

zero cases are observed in areas progressing in their malaria elimination campaign, it is 

important that the zero values are considered in the spatial and spatiotemporal modelling. They 

often present valuable information relating to the disease such as the detection rate of the 

disease, and the occurrence and knowledge of the disease by the population [36, 37]. Varieties 

of zero-adjusted mixed models are available in that regard. These include the zero-inflated 

negative binomial (ZINB) model, zero-inflated Poisson (ZIP) model, Poisson hurdle model, and 

the negative binomial hurdle model [35-40]. For instance, Alegana et al. [41] employed a 
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Bayesian ZIP approach to model the malaria incidence risk in Northern Namibia considering 

tropical rainfall measuring mission (TRMM) rainfall data, temperature suitability index and 

MODIS enhanced vegetation index (EVI) data. The multivariate analysis revealed that only 

EVI (14.29, 95% BCI = 9.24–19.42) was significant and the predicted malaria risk map 

suggested that areas boarding Angola and Zambia are at the highest risk of malaria transmission.  

A similar study was conducted in Afghanistan, in which the same Bayesian approach with 

climatic and environmental variables were used to model the incidence of Plasmodium vivax 

and Plasmodium falciparum at district level [42]. The multivariate analysis based on the 

Plasmodium vivax model revealed that only temperature suitability index (0.124, 95% BCI = 

0.048-0.202) was significant. But none of the climatic and environmental variables were 

significant based on the Plasmodium falciparum model. The predicted malaria risk map 

suggested that the eastern and south-eastern Afghanistan areas boarding Pakistan are at the 

highest risk of malaria incidence. In Senegal, Bayesian geostatistical zero-inflated binomial 

(ZIB) climatic model formulated by Giardina et al. [43] suggests a significant relationship with 

NDVI (1.48, 95% BCI = 0.88-2.48), night LST (1.16, 95% BCI = 0.66-1.86) and malaria. A 

study by Kasasa et al. [44], showed how two different zero-adjusted models were used to 

understand the malaria transmission patterns in a small area in Northern Ghana. The Bayesian 

geostatistical ZIB and ZINB approaches were used to evaluate the sporozoite rate and mosquito 

densities, respectively. The study revealed a significant spatiotemporal heterogeneity of 

entomological inoculation rate estimates and malaria transmission intensity existed in the small 

area. Other studies compared different zero-inflated models and the best-fit model was 

identified based on a relevant comparative measure(s). For instance, Neelon et al. [35] 

compared Poisson model, Poisson hurdle model, ZIP and Zero altered Poisson model. Based 

on the lowest deviance information criteria (DIC) and the negative cross-validatory log 

likelihood measures, the ZIP model produced the best fit model. While, Arab [37] compared 

the Poisson Hurdle model, ZIP, Poisson Hurdle with probability model, Negative binomial 

Hurdle model, ZINB model and Negative Binomial Hurdle with probability model. ZIP was 

also reported to have the lowest DIC value.   

 

Thus, in KZN, the investigator employed various Bayesian spatiotemporal models that can 

handle zero-inflated surveillance data of malaria cases by taking into account the effects of 
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significant climatic and environmental variables. They are the ZINB, ZIP, Poisson hurdle and 

negative binomial hurdle models. 

3.3 Methodology 

3.3.1 Study area 
 

 

Figure 3.1 Map of the study area showing the malaria endemic areas in KwaZulu-Natal, 

South Africa. 

The study area is located in the north-eastern part of KZN province (Figure 3.1) covering the 

local municipalities of uMkhanyakude, uThungulu and Zululand district municipalities. It is 

bordered internationally by The Kingdom of Swaziland and The People’s Republic of 

Mozambique to its north. It has a long shoreline along the Indian Ocean to its east and stretching 

down south-eastwards. The region possesses a sub-tropical climate with the majority of malaria 

incidents observed during October to May (the rainy months), with a seasonal peak usually in 

January and March [1, 45]. The average annual rainfall ranges from 500mm to 2000mm. Along 

the coastal areas, the summer temperatures is between 24°C to 32°C, and mean winter temperature 
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is about 20°C. The Midlands generally possesses a mild climate with relatively high summer rainfall 

and dry winters. The elevation measure of the region varies from sea level to over 3000m. The 

vegetation of the study area comprises of coastal forest and thornveld along the coast. Towards the 

inlands, lowveld, highland sourveld, Natal sour sandveld, valley bushveld and tall grassveld 

vegetation are found. Lowveld and thornveld characterises the low-lying hot and dry regions of 

Northern KZN [46]. 

3.3.2 Data 

3.3.2.1 Malaria case data  

Malaria cases from January 2005 to December 2014 were obtained from the malaria control 

program of KZN, SA. In SA, when a suspected malaria case is presented, the blood smear of 

the suspected case is tested for Plasmodium using either microscopy or rapid diagnostic test by 

a certified health officer. If a positive result is obtained, patient details including patient 

demographics, the health facility the case was reported, symptoms, malaria test results, 

diagnosis and treatment administered are entered into a malaria case notification form and 

reported to the relevant provincial malaria control program. At the provincial malaria control 

program, the details of malaria case(s) are then captured into the malaria information system 

[1]. 

 

The distribution of malaria cases in KZN during the period of the study is characterised by 

excess zeros or zero-inflated (about 81%) (See Figure 3.2), suggesting the efficiency of the 

malaria control and intervention strategy currently in place across KZN. [2, 3]. This therefore 

suggests the appropriateness of employing a zero inflated model. 
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3.3.2.2 Climatic and environmental variables  

In this study, the investigator extracted precipitation data at 2.5 x 2.5 degree spatial resolution 

from the NOAA National Centres for Environmental Prediction (NCEP) CPC Merged Analysis 

of Precipitation (CMAP) database. The CMAP precipitation data is a combination of rain gauge 

observations, numerical model predictions and five different types of satellite estimates 

(GPI,OPI,SSM/I scattering, SSM/I emission and MSU) [47]. The precipitation data were 

downloaded as averages over monthly periods.  

 

MODIS derived NDVI, EVI, day and night LST data were downloaded from the USGS Land 

Processes Distributed Active Archive Centre (LP DAAC) database. Day and night LST data 

were obtained as averages over an 8-day period at 1km x 1km spatial resolution, while NDVI 

and EVI were extracted as averages over 16-days period at 250m x 250m spatial resolution. All 

the MODIS data were aggregated in the form of monthly averages [48].  

 

Elevation data gridded at 1km x 1km were downloaded from the NOAA global Digital 

Elevation Model (DEM) data from the Global Land One-km Base Elevation (GLOBE) Project 

[49].  

Figure 3.2 The distribution of malaria cases in uMkhanyakude, uThungulu and Zululand 

District, South Africa (2005-2014) 
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3.3.3 Model development 

3.3.3.1 Variable selection for spatiotemporal model  

A preliminary analysis (the cross correlation matrix) was carried out to identify the suitable 

predictor variables to be inputted in the spatiotemporal model to guide against multicollinearity 

in the models and improve the model fit. 

3.3.3.2 Zero-inflated models  

Due to the excess zeros or zero-inflated malarial data, the investigator fitted the following zero-

inflated models to identify the best model fit. 

1) ZINB model 

The ZINB model can be described as a mixture of a mass of p for the excess zeros and a mass 

of (1 - p) for the negative binomial distribution, where 0 ≤ p ≤ 1. Thus, the ZINB model is 

written as [38]: 

𝑃(𝑌 = 𝑘) =

{
 

 𝑝 + (1 − 𝑝) (
𝜏

𝜏 + 𝜆
)
𝜏

,    𝑘 = 0                                                                          

(1 − 𝑝)
Г(𝜏 + 𝑘)

𝑘! Г(𝜏)
(
𝜏

𝜏 + 𝜆
)
𝜏

(
𝜆

𝜆 + 𝜏
)
𝑘

    𝑘 = 1,2………….                  (3.1) 

 

The ZINB regression model links p and λ to predictors, i.e., 

 

𝑙𝑜𝑔(𝜆𝑖) = 𝑥𝑖𝛽                      (3.2)   

and 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑧𝑖𝛾                   (3.3)   

where i = 1, 2, . . . , n and xi and zi are d- and q- dimensional vectors of predictors linked to the 

ith subject, and with β and γ the corresponding vectors of regression parameters, respectively. 

 

2) ZIP model 

The ZIP model is a combination of a Poisson distribution part (non-zero component) and a point 

mass at zero (zero component). The zero data from an observation emerges from both the point 

mass at zero and the Poisson distribution. In ZIP model, the zero component assumes a 

probability pi and the Poisson distribution assumes a probability 1 - pi where i = 0, 1, 2, . . . ,n. 

Thus, the ZIP model can be written as [38]: 
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𝑃(𝑌𝑖 = 0) = 𝑝𝑖 + (1 − 𝑝𝑖)𝑒𝑥𝑝 (−𝜆𝑖)                       (3.4) 

𝑃(𝑌𝑖 = 𝑘) = (1 − 𝑝𝑖)𝑒𝑥𝑝(−𝜆𝑖) 𝜆𝑖
𝑘 𝑘!⁄ ,        𝑘 = 1,2,3, …………              (3.5) 

The effects of the predictors on the count distribution in a ZIP model can be evaluated by 

specifying pi and λi as a function of predictors. 

 

The probability of excess zeros should be modelled employing a logistic regression model as 

given below: 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑥𝑖𝛽                    (3.6)   

where xi is a vector of predictors and β a vector of parameters. On the contrary, the impact of 

predictors on count data without the excess zeros can be modelled using Poisson regression: 

 

𝑙𝑜𝑔(𝜆𝑖) = 𝑧𝑖𝛾                        (3.7)   
3) Poisson Hurdle model  

The Poisson Hurdle model is a two-part model. The hurdle or logistic regression part models 

the zero vs. non-zero counts to obtain the zero probabilities. The second part is the zero 

truncated Poisson or regression part that is used to model the non-zero counts. Thus, the Poisson 

Hurdle model can be written as [38]: 

  

𝑃(𝑌𝑖 = 0) = 𝑝𝑖                 (3.8) 

 

𝑃(𝑌𝑖 = 𝑘) = (1 − 𝑝𝑖) 
𝑒𝑥𝑝(−𝜆𝑖) (𝜆𝑖)𝑘 𝑘!⁄

1 −  𝑒𝑥𝑝(−𝜆𝑖) 
,        𝑘 = 1,2,3,…… ..               (3.9) 

pi models all zeros. For this model, the logistic regression should be employed in modeling the 

probability of zeros. 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑥𝑖𝛽                  (3.10)   
 

while the Poisson regression is the choice model to evaluate the impacts of predictors zi on 

positive count data: 

𝑙𝑜𝑔(𝜆𝑖) = 𝑧𝑖𝛾                       (3.11)   
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4) Negative Binomial Hurdle model 

The negative binomial hurdle model is similar to the Poisson Hurdle model, but in the second 

part of the Poisson Hurdle model, the zero truncated Poisson model is replaced with a negative 

binomial model [38]. 

 

𝑃(𝑌𝑖 = 0) = 𝑝𝑖                    (3.12) 

𝑃(𝑌𝑖 = 𝑘) = (1 − 𝑝𝑖) 
Г(𝑘 +  𝜏)

Г(𝑘 + 1)Г(𝜏) 
 ×  

(1 + 𝜏𝜆)−(𝑘+𝜏)𝜏𝑘𝜆𝑘

1 − (1 + 𝜏𝜆)𝜏 
   𝑘 = 1,2,3,…… ..           (3.13) 

  

 The logistic regression should be employed in modelling the probability of zeros: 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑥𝑖𝛽                         (3.14)   
 

While the negative binomial regression is the choice model to evaluate the effects of predictors 

on count data: 

𝑙𝑜𝑔(𝜆𝑖) = 𝑥𝑖𝛾                              (3. 15)   

3.3.3.3 Bayesian spatiotemporal model  

The Bayesian inference intuitively supports a hierarchical model approach. Implementing the 

Bayesian hierarchical model approach will allow suitable data sampling variability, parameter 

uncertainty, and likely spatial and temporal dependences. Therefore, the effects of spatial and 

temporal dependences were accounted for in the zero-inflated models developed. To this effect,  

the investigator formulated a hierarchical model for count data Yi ’s (for i 1,...,n ) and predictor 

variables  Xi,...,X p  following three modelling stages: (1) data model, (2) process model, and (3) 

parameters models [37].  

 

(1) The data model is written as: 

 

𝑌~𝑓(𝑦𝑖|𝜃𝑖 , 𝑝), = 𝑖 = 1,… . . , 𝑛                (3.16)   

Let 𝑓(𝑦𝑖|𝜃𝑖 , 𝑝) represent a zero-inflated or hurdle distribution with parameters 𝜃i ’s and mixture 

probability p. 

 

(2) The process model is written as: 
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𝑆(𝜃𝑖) =  𝛽0 + 𝛽1𝑋1𝑖+. . . +𝛽𝑝𝑋𝑝𝑖 + 𝛾𝑖 ,    𝑖 = 1,… . . , 𝑛               (3.17)   

S(.) represents a function specified based on the conditions on 𝜃𝑖’s. βi represents the spatial 

regression coefficients for the specified predictors Xi,...,X p. 𝛾i represents noise measurement. 

Parameters 𝛾 = (𝛾1, …., 𝛾n) represents the noise measurement based on the spatial dependence 

such that: 

𝛾 ~ 𝑁 (0, ∑)                   (3.18) 
 

∑ = 𝜎2 R(𝜑)                 (3.19) 
 

∑represents the covariance matrix that explains the measure of the relationship each 

observation has with its neighbours (i.e., the spatial dependence of the data). And the 

investigator defined  ∑ based on the geostatistical structure of the data. The spatial correlation 

is specified based on an exponential covariogram model such that: 

 

𝑅(𝜑) = exp(−𝜑𝑑)         (3.20) 

where a symmetric spatial correlation is assumed and is based on the Euclidean distance 

between data points (d) and a spatial range parameter, φ (which is a function of the strength of 

spatial relationship over spatial locations).  

 

(3) The parameter models 

 

The Bayesian approach regards parameter models as the prior distributions for the set of 

unknown parameters (e.g., βi’s, τ, and σ2). This prior distribution and the traditional likelihood 

are combined to obtain the posterior distribution of the parameter of interest based on the 

statistical inference using integrated nested Laplace approximation (INLA) via the Gaussian 

Markov Random Field (GMRF) [50-52]. In this model, a flat non-informative prior distribution 

with a small mean and large variances were specified to all the unknown parameters. Refer to 

Ntzoufras [53] and Gelman et al. [54] for more reviews on prior determination process.  

3.3.3.4 Bayesian spatiotemporal model in R-INLA 

INLA is an analytical platform that supports the evaluation of posterior margins in hierarchical 

models with latent random processes, thus reducing the computation time extensively [50-52]. 

The investigator, therefore, fitted different Bayesian spatial and spatiotemporal models using 

R-INLA and the stochastic partial differential equations (SPDE) methods. Based on the DIC 
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values obtained from the formulated models, the best model fit was selected [55]. Using the 

INLA/SPDE, the investigator built a mesh made up of triangles across the area of interest (study 

area) to evaluate the spatial fields (see Figure 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 INLA/SPDE mesh for the spatial fields  

3.4 Results 

The cross correlation matrix in Table 3.1 shows high correlation (threshold of correlation 

coefficient ≥ 0.6) between the following pairs of predictor variables. They are day 

LST/LogPrecip, day LST/night LST, NDVI/EVI and day LST/EVI. Thus, day LST and EVI 

were dropped, so that a parsimonious model can be achieved, while precipitation, night LST, 

NDVI and elevation were selected as the suitable predictor variables and they were 

subsequently employed in formulation of the spatiotemporal models.  

 

Table 3.1 Correlation matrix of the predictor variables  

 LogPrecip LogElev Night LST Day LST NDVI EVI 

LogPrecip 1.00 -0.03   0.49   0.69   0.50   0.54 

LogElev  1.00 -0.09 -0.32 -0.24 -0.29 

Night LST   1.00 0.64 -0.02 0.07 

Day LST    1.00 0.54   0.60 

NDVI      1.00 0.95 

EVI      1.00 
LogPrecip = Log precipitation; LogElev = Log elevation; LST = land surface temperature; NDVI = Normalised difference vegetation index; 

EVI= Enhanced vegetation Index. 
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3.4.1 Models comparison 

For comparison, the investigator formulated six models using the selected predictor variables 

(precipitation, night LST, NDVI and elevation) and the zero inflated malaria case dataset (see 

Table 3.2).  

 

Table 3.2 Comparison of spatiotemporal models based on their DIC values 

Spatiotemporal Model DIC 

ZINB 6819.40 

ZIP 4709.88 

Negative Binomial Hurdle 7004.70 

Poisson Hurdle 4978.05 
DIC= Deviance Information Criteria; ZINB = Zero inflated negative binomial; ZIP = Zero inflated Poisson 

 

Based on the smallest DIC values from the models, the zero-inflated Poisson (DIC = 4709.88) 

was the best fit to zero inflated malaria data compared to the other zero-inflated models. This 

was followed by the Poisson hurdle model (DIC = 4978.05). The Poisson model had the weakest 

performance (DIC = 5.990387e+35). The difference between the DIC value of the ZIP model 

and the Poisson Hurdle is less than 10%. While the DIC value of the ZIP model is substantially 

different (i.e. more than 10% difference) from that of the ZINB and the negative binomial hurdle 

models. 

 

Table 3.3 presents the results of different ZIP models. They are; (1) spatial and temporal ZIP 

model, (2) spatial ZIP model, (3) temporal ZIP model and (4) the ZIP model without spatial and 

temporal effects. From the results, applying both the spatial and temporal dependences to the 

ZIP model resulted in the best fit model based on the smallest DIC value. The DIC results of 

the models also revealed that the temporal effects (DIC = 4874.61) of the spatiotemporal ZIP 

model contributed substantially in improving the model fit as compared to the spatial aspect 

(DIC = 967167.90). The investigator, therefore, focused on the spatiotemporal ZIP model in 

subsequent parts of the results and discussion sections.  
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Table 3.3 Spatial and spatiotemporal ZIP models 

Model DIC 

Spatiotemporal 4709.88 

Spatial 967167.90 

Temporal 4874.61 

No spatial, No temporal 1443548 
DIC= Deviance Information Criteria 

3.4.2 Posterior inference 

The spatiotemporal ZIP analysis results in Table 3.4 indicates that that at 95% BCI all the 

regression parameters (precipitation, NDVI, night LST and elevation) are significant and they 

lie within positive values. This implies that all the regression parameters significantly increases 

the zero-inflation probability i.e. they are more likely to correspond to excess zeros. In other 

words, higher probability of observing a zero count is associated with higher elevation, 

precipitation, NDVI, night LST. NDVI (0.68; 95% BCI = 0.47, 0.89) exhibited the strongest 

relationship with malaria in KZN compared to the other significant variables. This was followed 

by precipitation (0.07; 95% BCI = 0.04, 0.11). 

 

Table 3.4 Posterior summary statistics for the spatial and temporal zero-inflated models 

for modelling malaria cases in KwaZulu-Natal, South Africa.  

Regression 

parameter 

SD 2.5% 

BCI 

Mean 97.5% 

BCI 

Intercept 0.06 0.38 0.50 0.63 

LogPrecip 0.02 0.08 0.11 0.14 

NDVI 0.11 0.71 0.91 1.12 

Night LST 0.00 0.03 0.04 0.04 

LogElev 0.01 0.03 0.05 0.07 
LogPrecip = Log precipitation; LogElev = Log elevation; LST = land surface temperature; NDVI = Normalised difference vegetation index; 

SD = Standard deviation; BCI = Bayesian credible interval 
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Figure 3.4 Posterior mean (left) and posterior standard deviation (right) of malaria cases 

in KwaZulu-Natal, South Africa. 

The posterior mean map (Figure 3.4) indicates the region with the highest risk of malaria 

morbidity in KZN province is the Northern Eastern part, and there is a notable declining trend 

of malaria risk centrally and southwards. The lowest risk area cuts across the south and central 

parts of the study area with the model showing a slight variation in the south eastern part. The 

posterior standard deviation map (Figure 3.4) indicate the varying level of uncertainty across 

the province. The highest posterior errors across the province are at the periphery or borders 

of the local municipalities. 

3.5 Discussion 

In this study, the ZIP model was identified as the best model for the over-dispersed, excess 

zeros and the spatiotemporal dependencies of the malaria case data in the malarious areas of 

KZN after considering the influence of climatic variables. The results of the posterior statistics 

from the ZIP model indicates a significant relationship between NDVI, precipitation, elevation, 

night LST and malaria cases. In addition, the malaria risk map developed from this study 

showed that the tip of the north-eastern part of KZN province possesses the highest risk of 

malaria morbidity over the years 2005 to 2014. This is some worth consistent with malaria risk 

maps developed by the SA department of health in 2007 and 2013 using the geographical 

distribution of confirmed malaria cases [56]. Thus, improved health management strategies and 

targeted additional interventions is required to attain significant malaria risk reduction amongst 

the most vulnerable areas and populations. 
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To adequately address the issue of over dispersion arising from the excess zero or zero-inflated 

spatiotemporal malaria data, the spatiotemporal ZIP model is suggested to be a relevant model. 

This can be attributed to the fact that the ZIP model is a log link linear predictor model and as 

such, it is more reliable than the other models that employ a logit link function when spatial 

dependencies are considered [35, 57, 58]. It is worthy to note that some studies with a similar 

data structure conforms to this assertion. For example, the ZIP model was a suitable model for 

mapping the malaria incidence data with excess zeros in Afghanistan [42] and Northern 

Namibia [41]. Similarly, the ZIP model was considered the desirable model for developing a 

spatiotemporal HIV/TB model in North East SA [57], and an HIV model in New York, USA 

[40] using mortality data with excess zeros. 

 

A good number of studies have attempted to show the relationship of malaria transmission and 

diverse climatic variables across different regions. This study indicates that NDVI is a 

significant variable for malaria transmission in KZN and it is the strongest predictor of malaria 

disease. The relevance of NDVI in malaria transmission modelling cannot be overemphasised. 

It is a vegetation index that can be used to assess the level of greenness of a vegetation in 

question [59, 60], and it can serve as a proxy for precipitation, near-surface humidity and surface 

water [59, 60]. Also, it was identified as the most important predictor in malaria transmission 

modelling across SSA [61]. Some studies conducted across SSA have shown that increase in 

vegetation indices can be used to predict increase in malaria risk [33, 34, 62]. Contrarily, this 

study shows that increase in NDVI is associated with low malaria risk, and it is consistent with 

a previous study conducted in Senegal [43]. The relationship between NDVI and malaria in this 

study can be explained by the fact that NDVI has constantly been reported to be associated with 

precipitation, near-surface humidity and surface water [59, 60]. However, the strength or form 

of the relationship is dependent on the structure of the ecosystem. For this reason, the effect 

high amounts of rainfall have on vector as discussed previously can also be related to high 

values of NDVI. Although, NDVI can provide information on vegetation intensity, it loses 

sensitivity over denser vegetation. In light of this characteristic, EVI is suggested to be a reliable 

substitute [63-65]. However, in this study, EVI was dropped in the preliminary phase of the 

analysis to guide against multicollinearity. 
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Another important predictor of malaria in KZN is precipitation. The posterior inference from 

this study suggests that higher precipitation reduces the risk of malaria transmission in KZN. 

This type of relationship between rainfall and malaria can be explained by the effect of 

excessive rainfall flushing the ground, which destroys malaria vector breeding sites and the 

vector at different aquatic developmental stages [12, 66-68]. Similar suggestions were reported 

in surveys conducted in Mali [34]. Contrarily, surveys conducted in Angola [33], Zambia [32] 

and China [31] reported that higher amounts of precipitation increase the risk of malaria 

transmission. While in some other studies no significant relationship between precipitation and 

malaria were reported [41, 42].  

 

Several previous studies have reported the relationship between LST and malaria parasitemia 

risk. For example, in Angola [33] and Tanzania [69] increase in night LST were suggested to 

be a predictor variable for increased malaria risk. But in this present study, increase in night 

LST in KZN is related to reducing the risk of malaria. A similar outcome was reported in 

Senegal [43] and in Ghana [44]. Satellite derived measure of LST takes account of the thermal 

feature of the land surface, the intervening atmospheric radiation and emissions from a 

combination of different matters within a location. As an implication, the temporal 

characteristics or variations of LST may not be closely related to the near surface air temperature 

[70]. In spite of these limitations, the results show that night LST can be used to capture relative 

values of temperature spatiotemporally and as a potential pointer of malaria transmission in the 

malarious region of KZN. 

 

Lowland areas (low elevation) are characterised by favourable temperature for the different 

developmental stages of malaria vectors and parasites, unlike highland areas that may not favour 

parasitic and vector development [17, 33, 44, 67]. This study conforms to this assertion. The 

North-Eastern part of KZN is characterised by a lower elevation of about 107m above sea level 

compared to the rest of KZN at 3000m above sea level [49], and malaria transmission risk is 

highest in the North-Eastern part of the province. Thus, the observation about the relationship 

between elevation and malaria cases is consistent with the study conducted by Gosoniu et al. 

[33] in Angola.   
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The uncertainties attributed to using climatic and environmental determinants to predict malaria 

disease makes it challenging for malaria surveillance and interventional purposes [71]. For this 

reason, in addition to the climatic and environmental inference provided by the spatiotemporal 

Bayesian ZIP modelling in this study, a map which can further guide the malarial interventional 

programmes in KZN was produced. The malaria risk map showed that there is a hotspot north-

easterly in KZN bordering Swaziland and Mozambique between the years 2005–2014. This 

map supports similar patterns obtained from previously developed malaria risk maps [72, 73]. 

Jozini and uMhlabuyalingana local municipalities are the areas with the highest malaria 

transmission risk. The notable transmission risk in these areas can be explained to some extent 

by the population movement between neighbouring countries. This type of movement presents 

the greatest threat to zero local transmission, because their movement patterns are usually from 

regions of high transmission to regions of low transmission. Thus, this study provides evidence 

to support the renewed cross-border collaborative efforts, the MOSASWA (Mozambique, South 

Africa and Swaziland) malaria initiative instituted in 2015 [4]. The initiative aims to boost the 

progress made by the participating nations towards achieving zero local transmission by further 

strengthening collaboration between relevant academic institutions, sharing expertise, 

channelling intervention resources to vulnerable populations in the region (especially the 

mobile population and border populations) and sourcing for long-term financial support [4].  

 

In addition to the MOSASWA initiative proposed to facilitate KZN’s and SA’s malaria program 

transition from pre-elimination to elimination, a modelling approach which takes account of the 

effects of population movement between the MOSASWA countries and from other malaria 

endemic countries is important. It will help understand the spatial and temporal implications of 

mobile population in high transmission areas. It will also serve as a guide for adequate 

dissemination of chemoprophylaxis message to mobile populations and travellers in malarious 

and non-malarious areas, and for setting up a quick response strategy to imported cases. 

Ultimately, it will result in timely channelling of malaria intervention resources to handle the 

threats that may arise from potential imported cases. Also, the KZN malaria program should be 

further strengthened and expanded by conducting routine genotyping of vectors, improved 

insecticide resistance monitoring, close monitoring of intervention resources to ensure adequate 

implementation, and formulation of malaria elimination commissions to provide technical and 

managerial guidance to malaria programmes at all levels (district, provincial and national). 
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3.6 Conclusions 

The aim of the malaria programme in KZN is to develop elimination strategies and afterwards 

eradication strategies. The low and excess zero prevalence recorded in the malarious local 

municipalities revealed that the Bayesian spatiotemporal zero-inflated models can serve as a 

suitable tool for the relevant policy makers. Thus, spatiotemporal ZIP Bayesian modelling and 

the map produced in this study presents a valuable tool for understanding and monitoring the 

influence of climate variability on the spatial heterogeneity of malaria in KZN. They can play 

a significant role in the management, prioritising and allocation of intervention resources 

according to transmission variabilities. Also, this study reveals the importance to strengthen 

already existing cross-border collaborations for the fortification of KZN’s malaria elimination 

target. 
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4.1 Abstract 

Socio-economic status (SES) has been suggested to sustain malaria transmission, which in turn 

can propel the cycle of poverty. Thus, a deep understanding of the SES that influences malaria 

risk is vital because it will guide towards creating polices and strategies that will concurrently 

help combat malaria transmission, improve socio-economic conditions and strengthen the 

malaria elimination campaign in KwaZulu-Natal (KZN), South Africa (SA). The main purpose 

of this study is to investigate the existed relationship between SES and malaria incidence in 

KZN, SA, using the Bayesian approach. Database of demography and socio-economic 

information, and clinically confirmed malaria case data aggregated at the local municipality 

level for 2011 were obtained from Statistics SA (Census 2011 Municipal report- KZN, SA) and 

the malaria control program of KZN, SA respectively. The investigator used the 2011 dataset 

(SES and malaria incidence) because it completely covered the study area and census was 

conducted in 2011 in SA. The association between SES and malaria incidence was evaluated 

by employing the Bayesian multiple regression model to obtain the posterior samples via a 

Markov chain Monte Carlo (MCMC) methodology. The obtained posterior samples shows that, 

all the SES variables employed are significant and positive determinants of malaria disease at 

95% Bayesian credible interval (BCI). From the variables that represent low SES used in this 

study population, lack of toilet facilities (OR =12.54; 95% BCI = 0.63, 24.38) exhibited the 

strongest association with malaria and highest risk of malaria disease. This was followed by no 

education (OR =11.83; 95% BCI = 0.54, 24.27) and lack of electricity supply (OR =10.56; 95% 

BCI = 0.43, 23.92), respectively. Low SES can potentially sustains malaria transmission and 

burden. As an implication, poverty alleviation and malaria intervention resources should be 

incorporated side by side into the socio-economic framework to attain zero malaria 

transmission. Therefore, the relevant policy makers and departments should stimulate additional 

sustainable developmental approaches that combines both improved malaria intervention 

resources and socio-economic conditions, which in turn, will help strengthen the malaria 

elimination goals in KZN, SA. 

 

Keywords: Malaria, Socio-economic status, Bayesian, KwaZulu-Natal, South Africa. 
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4.2 Introduction 

Malaria is endemic in the north eastern part of KwaZulu-Natal (KZN) province, South Africa 

(SA). The malaria control strategy in the province focuses more on indoor residual spraying, 

insecticide treated bed nets and case detection alongside treatment with antimalarials [1-5]. A 

number of studies have focused on the implications of above mentioned interventions on 

malaria disease transmission and also have suggested ways that they can be utilised optimally 

[2, 6-9]. Less attention has been paid to understand the influence socio-economic status (SES) 

and factors have on malaria transmission. Although, the KZN malaria control and intervention 

strategy has led to commendable malaria control transmission and zero transmission mainly in 

urban areas [3, 5], transmission is still prevalent in semi urban and rural areas [5]. At a time 

when the KZN health department is putting  more effort to eliminate malaria, it is important to 

investigate and identify relevant factors of malaria transmission in the province [5]. Literature 

revealed that the spatial and temporal heterogeneity of malaria transmission is influenced by 

ecological/environmental and climatic factors such as rainfall, temperature, humidity, altitude 

and human dwelling close to water bodies [10], human factors such as migration and 

urbanisation [11], water and environmental management strategies such as drains, dams, water 

reservoirs and irrigations constructed proximal to human habitation [12], access to quality 

health care [13] and SES [14]. Thus, the focus of this chapter is to evaluate the implications of 

SES on malaria transmission in KZN. Addressing SES for malaria control will equip the 

relevant authorities and policy makers with the necessary information to improve socio-

economic conditions on one hand. On the other hand, adopt appropriate malaria intervention 

strategies in addition to the already existing ones.  

 

For a region where most of these factors are under control and malaria transmission is greatly 

reduced and control efforts are at elimination stage, it is necessary to focus on factors that 

remain unexhausted such as SES. An understanding of the SES of a population is important, 

because it can quantify the small population susceptible to malaria which are normally difficult 

to identity, favourable conditions for mosquito proliferation and malaria transmission. Socio-

economic factors associated with rural settings predispose the rural people to a higher risk of 

contracting malaria as compared to those in the urban areas. This is because they possess 

characteristics, and reside in environs with features that support malaria transmission [15]. For 

instance, literacy level which is generally lower in rural and semi urban settings compared to 
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urban settings, can affect the knowledge of malaria prevention and control, thus sustaining 

malaria endemicity. In Bihar and Jharkhand rural areas in India, majority of the people 

possessed low educational qualification, and they showed inferior knowledge and low 

acceptance for intervention resources as compared to those with higher education [16]. This 

outcome is supported by previous cross sectional studies in Manipur, India [17] and in Zambia 

[18] in which the rural people exhibited  low level of knowledge of malaria parasitaemia and 

epidemiology [19, 20].  

 

Poor housing and socio-economic conditions like lack of sanitary facilities and electricity have 

implications for malaria transmission and epidemiology. In a cross-sectional study in three high 

malaria transmission regions in Ethiopia, Ayele et al. [21] reported that households without 

toilet facilities were more likely to contract malaria disease by fitting the generalised linear 

regression model. However, Monteiro et al. [22] found that in a low malaria transmission area 

in the Brazilian Amazon, malaria had no relationship with basic sanitation. Lack of electricity 

may result in heightened risk of malaria, because it prevents households from using air 

conditioners or electric fan which wards off mosquito as suggested by Hewitt et al. [23]. 

However, in a case-control study conducted in a low endemicity urban area of Peru, Rosas-

Aguirre et al. [24] argued that electricity was not a significant determinant of malaria 

parasitaemia in the univariate and multivariate analysis. 

 

Although being in employment can facilitate means of transportation to health facility and 

purchase of medicines, the influence of employment on malaria depends mainly on the type of 

employment. As such, field labourers are at higher risk of contracting malaria because they are 

predominantly exposed to malaria vectors in the fields, and this in turn, predisposes their 

households to higher risk of malaria disease [25, 26]. For example, in the rural areas of central 

India, labourers showed higher risk of contracting malaria as compared to office 

workers/businessmen, but lack of employment had no significant impact on malaria occurrence 

in households in the multivariate analysis [27]. Also, unemployment was not a significant 

determinant of malaria in Panama after employing the multivariate analysis in a case-control 

study [28]. While in a case-control study in a low transmission urban area of Peru, employment 

was not a significant risk factor of malaria in the univariate and multivariate logistic regression 

analysis [24]. 
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Various reports indicate that the gender at greater risk of malaria varies in different settings, 

due to occupation. Mosha et al. [29] and Yadav et al. [30] suggested that males are at higher 

risk of malaria infection in Tanzania and India, respectively. Although, in Ethiopia [21] and 

Panama [28] females are more susceptible to malaria. Even though malaria affects males and 

females of all age groups, children and elderly are more susceptible to malaria, due to low 

immunity and social factors [31, 32]. Gosoniu et al. [33] suggested that children below 5 years 

old in Tanzania exhibited a significant association with malaria transmission after employing 

the Bayesian geostatistical models. Furthermore, Abe et al. [34] reported that children between 

3-5 years in Vietnam were associated with malaria in the univariate and multivariate analysis, 

while Fayehun et al. [31] suggested that people aged 60 years and above are vulnerable to 

malaria transmission in Nigeria. This is supported by a previous report, which suggests that 

malaria transmission and mortality is highest amongst people above 65 years [35]. 

 

The above studies conducted in different malaria endemic settings suggested that low SES, 

socio-economic deprivation and poverty sustains and exacerbates malaria transmission at 

different levels. Most of the studies employed models based on the classical theory to identify 

relevant socio-economic determinants of malaria transmission. However, the Bayesian 

modelling approach has been applied by different authors in diverse settings [33, 36-39], and 

suggested that the approach is a good alternative to classical models [10, 40, 41]. The Bayesian 

approach regards parameter(s) as random variables that are specified by a prior distribution or 

information. This prior distribution or information is incorporated with the traditional likelihood 

to derive the posterior distribution of the parameter(s) of interest on which the statistical 

inference is based using the Markov chain Monte Carlo (MCMC) methods such as the 

Metropolis-Hastings algorithm and Gibbs sampler [40]. Accordingly, this chapter aims to 

provide knowledge on the SES risk factors for malaria transmission in KZN, SA, employing 

the Bayesian method. 

4.3 Methodology 

A Bayesian multiple regression approach was employed to assess the association between 

selected determinants of SES (no education, no electricity, unemployment, no toilet facilities) 

and demography (gender and vulnerable groups at great risk of contracting malaria- that is, 

children aged less than 5 years and elderly aged older than 65 years) with malaria incidence in 
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the local municipalities endemic to malaria in KZN. This would identify important SES that 

can influence malaria transmission in the endemic areas. In addition, a Bayesian analysis of the 

posterior distribution of the parameters is specified. 

4.3.1 Study area 

 

 

 

 

 

 

 

 

Figure 4.1 The study area and malaria incidence in uMkhanyakude, Zululand and 

uThungulu District in KwaZulu-Natal, South Africa (2011) 

The study area is located in the north-eastern part of KZN province (Figure 4.1) covering the 

local municipalities of uMkhanyakude, uThungulu and Zululand district municipalities. It is 

bordered internationally by The Kingdom of Swaziland and The People’s Republic of 

Mozambique to its north. It has a long shoreline along the Indian Ocean to its east and stretching 

down south-eastwards. The region possesses a sub-tropical climate with the majority of malaria 

incidents observed during October to May (the rainy months), with a seasonal peak usually in 

January and March [4, 5]. The average annual rainfall ranges from 500mm to 2000mm. Along the 

coastal areas, the summer temperatures is between 24°C to 32°C, and mean winter temperature is 

about 20°C. The Midlands generally possesses a mild climate with relatively high summer rainfall 

and dry winters. The elevation measure of the region varies from sea level to over 3000m. The 

vegetation of the study area comprises of coastal forest and thornveld along the coast. Towards the 

inlands, lowveld, highland sourveld, Natal sour sandveld, valley bushveld and tall grassveld 
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vegetation are found. Lowveld and thornveld characterises the low-lying hot and dry regions of 

Northern KZN [42]. 

4.3.2 Data 

The investigator obtained and used data from two separate sources. The database of daily 

records of clinically confirmed malaria cases for 2011 were obtained from the malaria control 

program of KZN, SA and aggregated at the local municipality level for uMkhanyakude, 

uThungulu and Zululand district municipalities. Figure 4.1 shows the distribution of malaria 

incidence in the respective local municipalities in 2011. The investigator obtained the database 

of socio-economic and demographic information for the study area from Statistics SA (Census 

2011 Municipal report – KZN, SA) [43]. This database is freely available to the general public 

although, it is protected by scientific and ethical clearance and authorisation. The demographic 

and socio-economic variables used were: gender, children (less than 5 years old), elderly (above 

65 years old), no education, no electricity, no toilet facilities, unemployment.  

4.3.3 Model development 

To evaluate the association between the predictor variables (demographic and socio-economic 

variables) with the dependent variable (malaria incidence by year) at the local municipality 

level, a Bayesian multiple regression of the specified study variables was conducted using the 

WinBUGS software.  

4.3.3.1 Bayesian multiple regression model formulation 

A regression model comprise of: (1) dependent variable(s), which represents the stochastic part 

whose effect is uncertain before the analysis. (2) The predictor variable(s), which represents the 

non-stochastic or fixed parts and (3) a parameter that links the two set of variables. The model 

can be expressed as [40]  

 

Y|X1,X2,………, Xp~ α(𝜽)                                                 (4.1) 

where Y is the dependent variable, X1,X2,………, Xp are the predictor variables and α(𝜽) is a 

distribution with parameter vector 𝜽.  
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The simplest and commonly used distribution for the regression model is a normal distribution 

and it can be written as 

 

Y|X1,X2,………, Xp~ normal(,σ2)                                            (4.2) 

where Normal(,σ2) is the normal distribution,  is mean and σ2 is variance.  

 

While a multiple regression model with a single dependent variable (univariate), having a 

normal distribution with mean and variance can be summarised and rewritten as [40] 

 

Y|X1,X2,………, Xp ~ normal (,(β, X1,X2,………, Xp)σ
2)                        (4.3) 

with 

 (β, X1,X2,………, Xp) = β
0
 + β

1
X

1
 + .……. + β

p
Xp = β

0
+∑ β

i
Xi

p

i=1

                (4.4) 

where σ2 and β = (β
0
,β

1
,………, β

p
)
T
 are the set of regression parameters under estimation. 

To specify the model in WinBUGS, the likelihood function for the observed sample and the 

prior information (or prior distribution) for the parameters are required. Thus, the likelihood 

function (extracted from equations (4.3) and (4.4)) is expressed as [40, 44]. 

 

Yi~ normal (
i
,σ2)                                                          (4.5) 


i
 = β

0
 + β

1
x

i1
 + .……. + β

p
xip   for i = 1, …….., n                                  (4.6) 

While the prior distribution for all the parameters are assumed to have the structure 

S(β,τ) = ∏S(β
i
) S(τ)

p

j=0

,                                                     (4.7) 

β
i
 ~ normal (β

i
, 𝑅j

2) for j = 0,1, 2……….,p  and 
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τ ~ gamma (a,b)                                                          (4.8) 

From the above, the normal distribution is selected to exhibit the prior information for 𝛽 and 

the gamma distribution for the precision parameter, τ = σ-2.  

However, because the investigator considered 𝜽 to be a continuous parameter, a uniform prior 

distribution for the regression model was set up. Therefore, the formulated uniform prior 

distribution employed in this analysis is given as 

 

β
i
 ~ uniform (0.0, 25) for j = 0,1, 2……….,p  and 

τ ~ gamma (0.001,0.001)                                                   (4.9) 

The likelihood coupled with the priors were used to obtain the posterior distributions and results 

of the model parameters via the MCMC approach known as the Gibbs sampling technique. The 

MCMC approach adopted in this chapter is described in details elsewhere [40]. 

4.3.3.2 MCMC implementation and convergence 

The WinBUGS software was used to obtain the posterior samples of model parameters for the 

multiple regression model via the MCMC approach known as the Gibbs sampling. The 

investigator assumed flat but proper priors as expressed in equation (4.8) for the model. The 

investigator ran three parallel chains (with different starting points) for 500,000 iterations of the 

MCMC with a burn-in period of 200,000 iterations and a thinning interval of 5. Thus, to 

ascertain if convergence was reached in the model, four different diagnostic tests were 

employed. These are the Monte Carlo (MC) errors calculation of all the regression and precision 

parameters, assessing the autocorrelation plot, the trace plot and the Gelman-Rubin 

convergence diagnostic test. The Gelman- Rubin convergence diagnostic test was employed, 

because more than one chain (three parallel chains) were generated simultaneously. 

 

For notational and modelling convenience in WinBUGS, the Greek symbols β and τ were 

written as beta and tau, respectively. In the model developed, beta1 was used for male, beta2 

for female, beta3 for children aged less than 5 years, beta4 for adult aged greater than 65 years, 

beta5 for no education, beta6 for no electricity, beta7 for no toilet facilities, beta8 for 

unemployment, and tau for the precision parameter. 
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4.4 Results 

4.4.1 Spatial distribution of malaria incidence 

The spatial distribution of malaria data of all the local municipalities obtained from the malaria 

control program of KZN, SA showed that malaria incidence ranged from 0 to 57.40 during 2011 

(Figure 4.1).  About 72% of the total malaria incidence were reported from uPhongolo, Jozini 

and uMhlabuyalingana local municaplities reported in 2011 were observed to be clustered in 

the areas neighbouring Mozambique and Swaziland. uPhongolo local municipality which 

recorded the highest incidence of malaria (about 37%) shared boarders with Swaziland and 

Mpumalanga province northwards (Figure 4.1).  

4.4.2 Posterior distribution of determinates associated with increased risk of malaria disease. 

In interpreting the posterior statistics, it is vital to note that a regression parameter with a 

positive posterior mean, exhibited a significant positive relationship with malaria incidence at 

95% Bayesian credible interval (BCI) if the interval does not include zero (0) (Table 4.1). While 

a regression parameter with negative posterior mean and interval containing zero (0), suggested 

an inverse relationship. But, from the results in Table 4.1 regression parameters with negative 

posterior mean were not observed. 

 

The posterior summary statistics (Table 4.1) obtained from the Bayesian multiple regression 

model analysis suggests that all the variables employed in the model are significant and positive 

determinants of malaria at 95% BCI. However, in terms of gender, males (odds ratio (OR) 

=8.78; 95% BCI =0.29, 23.18) were slightly at a higher risk of contracting malaria disease as 

compared to females (OR =8.36; 95% BCI = 0.28, 22.83) in the study population. Considering 

the population groups vulnerable to malaria parasitaemia, children less than 5 years old (OR 

=11.43; 95% BCI = 0.50, 24.18) are less likely to contract malaria disease compared to adults 

over 65 years old (OR =12.17; 95% BCI = 0.58, 24.33).  

  

From the variables or determinants that represents low SES used in this study population, lack 

of toilet facilities (OR =12.54; 95% BCI = 0.63, 24.38) exhibited the strongest association with 

malaria and highest risk of malaria disease. This was followed by no education (OR =11.83; 

95% BCI = 0.54, 24.27) and lack of electricity supply (OR =10.56; 95% BCI = 0.43, 23.92) 
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respectively, while unemployment was identified as the weakest significant variable as 

compared to the other variables that represent low SES.  

 

Table 4.1 Posterior summary statistics for the multiple regression model. 

Regression 

parameter 

SD 2.5% BCI Estimate 97.5% 

BCI 

MC 

error 

beta1 6.55 0.29 8.78 23.18 0.0158 

beta2 6.39 0.28 8.36 22.83 0.0148 

beta3 7.16 0.50 11.43 24.18 0.0174 

beta4 7.21 0.58 12.17 24.33 0.0170 

beta5 7.19 0.54 11.83 24.27 0.0172 

beta6 6.99 0.43 10.56 23.92 0.0166 

beta7 7.22 0.63 12.54 24.38 0.0165 

beta8 6.81 0.35 9.67 23.59 0.0162 

Precision  

parameter 

     

tau 0.001026 4.11E-04 0.001807 0.004326 2.35E-06 
SD= Standard deviation; MC error= Monte Carlo error; BCI = Bayesian credible interval beta1=Male; beta2=Female; beta3=Children (< 5 

years); beta4=Adult (>65 years); beta5=no education; beta6= no electricity; beta7= no toilet facilities; beta8 = Unemployment. 

4.4.3 MCMC output and convergence diagnostics 

The MCMC output results indicated that in obtaining the posterior samples of all the monitored 

parameters (regression coefficients and precision parameter), no convergence issue was 

experienced. The visual inspection of the trace plots or simulation plot for selected regression 

parameters presented in Figure 4.2 reveals that all the generated values were within a parallel 

zone and notable patterns were not observed. Thus, the simulation is uniform throughout the 

plot.  
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Figure 4.2 Trace plots for some selected predictor parameters 

The autocorrelations functions for all the monitored parameters decayed sharply and were low 

(Figure 4.3). This indicates quick mixing of the chains and fast convergence to the posterior 

distributions. At this point, it was assumed convergence was reached. However, the investigator 

continued with the diagnostics and observed that the value of the MC errors calculated for the 

regression and precision parameters are very small compared to their corresponding estimated 

posterior standard deviations (SD).  In other words, the MC error is less than 5% of the 

corresponding estimated posterior SD (See Table 4.1). This indicates the posterior mean was 
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estimated with high precision and convergence was also assumed. Finally, a formal 

convergence diagnostic was implemented by using the Gelman and Rubin plots and the shrink 

factor (also known as the scale reduction point estimate) by using three different chains with 

three different initial points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Autocorrelation function plot for the regression and precision parameters 

From the Gelman and Rubin shrink factor plots illustrated in Figure 4.4, the shrink factor for 

all the monitored parameter got to 1 abruptly as the number of iterations increases. At this point, 
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the investigator can confidently say convergence was reached and also sampling is from the 

right posterior means.  
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Figure 4.4 Gelman and Rubin shrink factor plots for the regression and precision 

parameters 

4.5 Discussion 

This chapter evaluates the relationship between selected SES with malaria incidence risk in 

north eastern part of KZN employing a Bayesian inference approach. The investigator 

formulated a Bayesian regression model after adequate burn-ins and successful convergence.  

 

It is a well-known fact that malaria disease does not thrive on its own [14, 21, 22, 28, 45].  

Considering the nature of SES on malaria and its dual influence, deprived communities and 

households maybe faced with a lingering and reinforcing cycle of malaria disease. Population 

characterised by low SES possesses elements that exposes and sustains high malaria 

transmission. On the contrary, high SES communities or households possesses measures to 

sustain low or none malaria transmission, that may support their high SES. Hence, the 

investigator suggests that the following determinants of low SES are associated with malaria 

risk at the local municipalities endemic to malaria in KZN in order of highest malaria risk 

transmission. They are lack of toilet facilities, lack of education, lack of electricity, and 

unemployment. The contributory mechanism between these low SES and malaria transmission 

runs side by side, which in turn, can result in a vicious cycle of poverty. The findings 

corresponds with some previous studies conducted in India, South America and sub-Saharan 

Africa in which households without toilet facilities, unemployment, illiteracy and lack of 

electricity were at higher risk of contracting malaria compared to those exposed to medium and 

high SES [21, 27, 28, 46]. However, these findings are contrary to the study conducted by Somi 

et al. [47] in Tanzania who found no relationship between malaria and SES. Also, in the study 
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conducted by Obaldia [28], lack of electricity and unemployed did not exhibit an association 

with malaria disease.  

 

Taking into account the epidemiological nature of malaria, and its inclination with the 

environment, it should not be surprising that lack of toilet facilities has the highest risk of being 

exposed to malaria as compared to other determinants that represent low SES of malaria 

assessed in this chapter. This demonstrates the heightened risk and exposure to malaria disease 

in households without decent and safe toilet facilities, and as such, open defecation is practised. 

Consequently, increased malaria transmission risk is certain due to numerous and daily 

exposure to exophagic mosquito vectors from outdoor defecation. This is consistent with the 

findings by Ayele et al. [21] and Ayele et al. [46], who suggested that households without toilet 

facilities in Amhara, Oromiya and Southern Nation Nationalities and People regions of Ethiopia 

were more likely to test positive for malaria disease. On the contrary, no association was 

reported in Panama [28] and in the Brazilian Amazon [22].  

 

Another important determinant of malaria identified in this chapter is education. Notable risks 

of malaria transmission risk among those without education can be attributed to weak 

knowledge and understanding of malaria transmission and prevention [45, 48]. They may also 

not understand the resting behaviour and breeding of mosquitoes. Thus, the provision of quality 

education and setting up communication activities to equip the uneducated people and also those 

with low level of education in KZN about malaria may result in better application of 

intervention resources, and reduce the risk of malaria transmission.   

 

The investigator found out that lack of electricity was another risk factor that can support 

malaria transmission. Lack of electricity may result in households sleeping outdoors in malaria 

transmission seasons, due to lack of power to operate electric fan or air conditioner that can 

serve as a form of malaria intervention to ward off mosquitoes. This was revealed in a cohort 

study conducted in Pakistan aimed at assessing various malaria vector intervention techniques. 

It was reported that electric fan significantly reduced the total number of Anopheles stephensi 

and culicine mosquitoes entering the huts, and the amount of blood-fed mosquitoes caught [23]. 
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Unemployment was identified as a significant factor of malaria transmission, but not as strong 

as the other socio economic variables evaluated in this chapter. This can be explained by the 

fact that health care is free in SA [49], thus eliminating the financial burden among those that 

are unemployed and in pursuance of medical attention. In addition, free routine indoor residual 

spraying is carried out in endemic areas by the KZN malaria program [50]. Nevertheless, its 

significance can be attributed to the direct relationship between unemployment and the other 

variables that represent low SES, and in turn, they present a complex interrelationship with 

malaria disease.  

 

Apart from socio-economic factors, other demographic factors exhibited significant effects on 

the risk of malaria in KZN. Regarding gender, both male and female exhibited significant 

effects on the risk of malaria, but males showed a higher risk of contracting malaria disease in 

the study area. This corresponds to a previous study conducted in Tanzania and India that 

suggests that males are at higher risk of malaria [29, 30].  Contrarily, females were discovered 

to be more susceptible to malaria in Ethiopia [21] and Panama [28]. Female susceptibility can 

be linked to domestic activities and endophagic mosquitoes, while males susceptibility can be 

attributed to exophagic mosquitoes and outdoor activities like fishing, agriculture and hunting 

activities [28]. In terms of age group susceptible to malaria in KZN, the findings suggest elderly 

are more vulnerable to malaria compared to children less than 5 years old. This complements 

previous surveys that suggested elderly people are more prone to contracting malaria disease 

[35, 51]. Even though the mechanism is not clear, it is assumed that waning immunity with age 

or low immunity among elderly people may be responsible. It is worthy of note that the 

susceptibility and disparity in malaria transmission pertaining to gender and age can be 

attributed to behavioural/ life style and level of immunity respectively. 

 

Considering the links between low SES and malaria transmission, conceptualizing interventions 

aimed at improving the living conditions by SA’s department of social development, and the 

investment of malaria intervention resources (prevention and treatment) by both SA department 

of health and social development is vital for sustained poverty alleviation in malaria-endemic 

communities. This means the provision of malaria intervention resources should be considered 

as a means of both health intervention and poverty alleviation. This proposed double barrelled 

approach and collaborations between both departments can possibly result in sustained malaria 
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elimination. Countries like Greece, Italy, Spain and USA proved that the double barrelled 

approach lead to sustained malaria elimination [14, 52, 53]. They incorporated rigorous anti-

malaria intervention, socio-economic improvement and adequate environmental management 

strategies. In other words, they modified human dwellings or behaviour to limit human-vector 

interaction-e.g., improved housing conditions, mosquito proofing of houses, usage of 

dichlorodiphenyltrichloroethane (DDT) in their indoor residual spaying regime, installation and 

maintenance of drains and draining of swampy areas to permanently destroy breeding sites [14, 

52, 53]. In the same vein, a randomised controlled trial conducted by Kirby et al. [54] in The 

Gambia revealed that better housing conditions can significantly reduce malaria burden. In the 

randomised controlled trial, house screening (full screening of windows, doors and closing of 

eaves) revealed that the risk of children contracting malaria disease reduced by 50%.  

 

In summary, this chapter suggests that the risk of malaria disease exhibits a significant effect in 

areas or population in a lower socio-economic bracket. As an implication, poverty alleviation 

and malaria intervention resources should be incorporated side by side into the socio-economic 

framework to attain zero malaria transmission. Therefore, the relevant policy makers and 

departments should invest more in sustainable developmental approaches that combine both 

improved malaria intervention resources and socio-economic conditions. This can ultimately 

help strengthen the malaria elimination goals in KZN. 

4.6 Conclusions 

Malaria can potentially sustain poverty in areas of low SES. The low malaria transmission and 

burden of malaria in KZN presents an avenue to study the relationship between determinants of 

low SES and malaria at the local municipality level to help guide provision of relevant 

intervention resources, policy and legislation. This chapter suggests that the following 

determinants of low SES play a significant role in malaria transmission and burden:  illiteracy, 

lack of electricity, lack of toilet facilities and unemployment. Other factors that had an effect 

on the risk of malaria are gender, children less than 5 years old and adult above 65 years old. 

This means low SES, socio-economic deprivation and poverty can sustain and exacerbate 

malaria transmission in KZN. Eradicating and paying close attention to these risk factors, can 

contribute and accelerate the attainment of malaria elimination status alongside poverty 

alleviation. These outcomes suggest that a collaborative venture between SA’s department of 
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social development and the department of health can provide improved and sustainable socio-

economic conditions and, allocation of malaria intervention resources, and in turn, result in 

control and elimination of malaria in KZN, SA.  
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CHAPTER 5: MODELLING MALARIA CONTROL INTERVENTION 

EFFECT IN KWAZULU-NATAL, SOUTH AFRICA USING INTERVENTION 
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5.1 Abstract  

The change of the malaria control intervention policy in South Africa (SA), re-introduction of 

dichlorodiphenyltrichloroethane (DDT), may be responsible for the low and sustained malaria 

transmission in KwaZulu-Natal (KZN). The investigator evaluated the effect of the re-

introduction of DDT on malaria in KZN and suggested practical ways the province can 

strengthen their already existing malaria control and elimination efforts, to achieve zero malaria 

transmission. The investigator obtained confirmed monthly malaria cases in KZN from the 

malaria control program of KZN from 1998 to 2014. The seasonal autoregressive integrated 

moving average (SARIMA) intervention time series analysis (ITSA) was employed to model 

the effect of the re-introduction of DDT on confirmed monthly malaria cases. The result is an 

abrupt and permanent decline of monthly malaria cases (𝑤0= -1174.781, p-value = 0.003) 

following the implementation of the intervention policy. The sustained low malaria cases 

observed over a long period suggests that the continued usage of DDT did not result in 

insecticide resistance as earlier anticipated. It may be due to exophagic malaria vectors, which 

renders the indoor residual spraying not totally effective. Therefore, the feasibility of reducing 

malaria transmission to zero in KZN requires other reliable and complementary intervention 

resources to optimise the existing ones. 

 

Keywords: Intervention Time Series Analysis (ITSA), Malaria, 

Dichlorodiphenyltrichloroethane (DDT), Seasonal Autoregressive Integrated Moving Average 

(SARIMA). 
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5.2 Introduction 

South Africa (SA)’s malaria vector control (i.e., intervention) depends mainly on indoor 

residual spraying with dichlorodiphenyltrichloroethane (DDT). As an implication, SA in 

general and KwaZulu-Natal (KZN) in particular have made significant progress over the past 

two decades in reducing malaria disease caused by Plasmodium falciparum [1, 2]. This decline 

can be associated with the change of SA’s malaria vector control policy during the peak of the 

1999/2000 malaria epidemic. In March 2000, DDT was re-introduced for malaria vector control 

purposes after it was discontinued in 1995. The re-introduction and continued use of DDT have 

been possible because the national government, with the help from international scientists and 

an independent advocacy group successfully obtained an exemption in the Stockholm 

Convention on Persistent Organic Pollutants in 2000 [1]. After DDT was introduced in March 

2000, an abrupt decline in malaria cases was observed in the time series data [3]. While the 

level of malaria control achieved in KZN is encouraging, local transmission has not reached 

zero [1, 2], thus, it remains a cause for concern for SA as she targets malaria elimination in 2020 

[2]. 

 

The impact of the re-introduction of DDT (the known intervention) in KZN is assumed to be 

associated with the notable alteration of the malaria time series or change of the mean function 

[3] and can be evaluated employing an intervention time series analysis (ITSA) [4, 5]. The ITSA 

is a thorough and reliable analytical method that allows the effect of an intervention to be 

separated from the general trends and serial dependencies in time, thereby allowing sound 

statistical inference to be made if the intervention had an effect on the time series[4, 5]. This 

method gives analysts the opportunity to draw inferences from the impact assessment and 

confirms the substantive notion of a particular area or region. In otherwords, the ITSA model 

can be the best form of impact assessment from a statistical point of view as long as the 

inference(s) and conclusion(s) drawn from the analysis is/are reconciled with the prevailing 

theory in a substantive sense [4]. Substantial ITSA studies applied the univariate approach due 

to its simplistic application in modeling and data availability [6-10]. Similarly, the impact of 

the re-introduction of DDT in KZN can be reliably evaluated employing the same approach.  

 

This paper thus attempts to determine if the long-term use of DDT significantly lead to the 

decline and ultimately will lead to zero malaria transmission in KZN. The outcome of this 
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chapter will serve as a validation of the substantive significance of DDT on malaria in KZN. 

This is vital to the province’s malaria control and elimination efforts, because it will bring to 

light the necessity of identifying other practical ways that can be used to upscale the existing 

malaria vector control strategies to achieve zero malaria transmission. Thus, this chapter also 

seeks to suggest other reliable and complementary intervention resources that can support and 

optimise the already existing interventions. It is for these reasons that the historical series of 

malarial cases in KZN will be utilised as the dependent series, in the univariate seasonal 

autoregressive integrated moving average (SARIMA) model with known intervention, and its 

characteristics will allow the behaviour of malaria over time, to be evaluated.  

5.3 Methodology 

5.3.1 Study area 

The three district municipalities (uMkhanyakude, uThungulu, and Zululand) in KZN province 

endemic to malaria were included in this chapter (Figure 5.1). uMkhanyakude is situated in the 

northern region of KZN province with a population of 625,846 [11]. uThungulu and Zululand 

district municipalities are located in the north-eastern part of KZN province with a population 

of 907,519 and 803,575 respectively [11]. The study areas are bordered by Swaziland and 

Mozambique to the north and the Indian Ocean stretching from the east down to the southeast. 

The province is characterised by the sub-tropical climate with most of the malaria cases 

occurring during the rainy months (October to May), with a seasonal peak usually in January 

and March [2, 12]. The average annual rainfall ranges from 500mm to 2000mm. Along the coastal 

areas, the summer temperatures is between 24°C to 32°C, and mean winter temperature is about 

20°C. The Midlands generally possesses a mild climate with relatively high summer rainfall and 

dry winters. The elevation measure of the region varies from sea level to over 3000m. The 

vegetation of the study area comprises of coastal forest and thornveld along the coast. Towards the 

inlands, lowveld, highland sourveld, Natal sour sandveld, valley bushveld and tall grassveld 

vegetation are found. Lowveld and thornveld characterises the low-lying hot and dry regions of 

Northern KZN [13]. 
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Figure 5.1 Map of the study area 

5.3.2 Data source  

Monthly aggregates of clinically confirmed malaria cases from January 1998 to December 2014 

were collected from the malaria control program of KZN, SA. A malaria case is a person whose 

blood smear tested positive to Plasmodium after undergoing a rapid diagnostic test or slide 

microscopy at a health facility [14]. Since 1956, it became a legal requirement to notify malaria 

cases to the relevant health authorities in SA [15]. Confirmed malaria cases at health facilities 

are reported to the relevant district health office which is subsequently reported to the provincial 

malaria control program. At the provincial malaria control program, the malaria control worker 

collects and inputs information relating to the malaria case into the malaria information system. 

The information includes patient’s personal details, the health facility the case was reported, 

symptoms, malaria test results, diagnosis and type of treatment administered [2, 16]. 
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5.3.3 Analytical method 

The Box and Tiao approach of the ITSA [17] was employed to examine the effect of the malaria 

intervention. It involved a two-step analytical process. The first step is the identification of the 

most suitable SARIMA model, referred to as the noise component of the model, using the 

dataset not impacted by the intervention or before the intervention. This part of the ITSA is 

bounded by Box and Jenkin’s SARIMA model approach [18], and it involves the following 

steps: model identification, parameter estimation, and diagnostic checking. Exhaustive 

presentations of these procedures are found elsewhere [4, 18, 19]. The second step involves re-

estimating the identified model using the full dataset to test the effects of the intervention on 

the behaviour of the time series, and it is known as the intervention component. Hence, by 

comparing the level of pre-intervention and post-intervention time series, the statistical 

significance of the intervention was evaluated.  

The ITSA model is written as [17]: 

 

𝑌𝑡 = 𝑓(𝐼𝑡) + 𝑁𝑡     (5.1) 

 

Where 𝑌𝑡 denotes the dependent variable for a certain time or is an observed time-series, the 

function 𝑓(𝐼𝑡) denotes a “function of the variable 𝐼𝑡”, the intervention component (also referred 

to a transfer function), 𝑁𝑡 denotes the noise component determined by an univariate SARIMA 

(p,d,q)(P,D,Q) structure and t denotes the discrete time. 

 

The impact of an intervention on the time series can be either abrupt or gradual in onset and 

either permanent or temporary in duration. Therefore, the shape of the time series after the onset 

of an intervention determines which transfer function (i.e., zero order transfer function, first 

order transfer function or pulse function) will be used to model the impact [4]. The time series 

data for this study shows that the response of the malaria cases after the onset of the known 

intervention (i.e. re-introduction of DDT) had an abrupt and permanent shift in the process. The 

investigator, therefore, used a “zero order transfer function” to determine the effect of the re-

introduction of DDT in KZN. 

The zero order transfer function is written as [4]: 

 

𝑓(𝐼𝑡) = 𝑤0𝐼𝑡      (5.2) 
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Where 𝑤0 denotes the parameter estimate of a transfer function. The variable 𝐼𝑡 is defined as a 

step variable or step variable such that, 

𝐼𝑡= 0 before the intervention 

and 𝐼𝑡= 1 at and after the intervention. 

 

Therefore the impact assessment model is: 

 

𝑌𝑡 = 𝑤0𝐼𝑡 + 𝑁𝑡      (5.3) 

From the time series, 𝐼𝑡
03/2000

= {
0  𝑖𝑓 𝑡 < 03/2000 (𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛) 
 1  𝑖𝑓 𝑡 ≥ 03/2000 (𝑎𝑡 𝑎𝑛𝑑 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛)

  

The modeling and analysis were performed using the R statistical software version 3.2.3. The 

map showing the study area was developed using the ArcGIS 10.2 software (ESRI, Redlands, 

CA, USA). 

5.4 Results 

5.4.1 Exploratory data analysis 

The time series of confirmed monthly malaria cases from January 1998 to December 2014 in 

KZN is shown in Figure 5.2. Before the re-introduction of DDT, the time series shows markedly 

increase in malaria cases. The re-introduction of DDT into the SA malaria control  program in 

March 2000, coincided with the beginning of the abrupt decline of malaria cases in KZN, which 

continued until June 2001. Afterward, relatively low and sustained cases were recorded with a 

noticeable spike between December 2003 to November 2004. The quick decline in malaria 

cases after November 2004 and sustained low malaria cases onwards can be attributed to the 

continous application of the intervention. Overall, this is a good example of a time series that 

the impact of the known intervention is abrupt in onset and permanent in duration. Thus, an 

empirical assessment of the impact of the known intervention which combines a noise and 

intervention models is conducted. 
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Figure 5.2 Time series plot of confirmed monthly malaria cases in KZN from 1998-2014 

5.4.2 SARIMA or noise model 

After the SARIMA model was fitted to the time series data that was not impacted by the 

intervention (January 1998 to February 2000), the autocorrelation functions (ACF) and partial 

autocorrelation functions (PACF) of the non-seasonal and seasonal differenced series lead to 

the identification of two plausible models. They are SARIMA (0,1,0) (4,1,1)12 and SARIMA 

(0,1,0) (0,1,1)12. Details of how the plausible models were identified are found elsewhere [4, 

18, 19].  Based on the goodness of fit statistics (Table 5.1) and parameter estimation (Table 

5.2), the investigator selected the SARIMA (0,1,0) (0,1,1)12 model as the most suitable model, 

and it was subsequently used to develop the intervention model. The SARIMA (0,1,0) (0,1,1)12 

model was selected as the best model fit because it possesses a lower Bayesian information 

criterion (BIC) value (which is based on the likelihood function and the Akaike information 

criterion (AIC), and a p-value less than 0.05 . Also, all its parameter estimates are significant. 
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Table 5.1 Goodness of fit statistics of the plausible SARIMA models  

 

Statistic 

SARIMA 

(0,1,0)(4,1,1)12 

SARIMA 

(0,1,0)(0,1,1)12 

AIC 2860.88 2864.85 

BIC 2880.39 2871.36 

LL -1424.44 -1430.43 
AIC=Akaike information criterion; BIC=Bayesian information criterion; LL=Log likelihood 

 

Table 5.2 Parameter estimation of the plausible SARIMA models 

                SARIMA (0,1,0)(4,1,1)12   SARIMA (0,1,0)(0,1,1)12 

    Type Coef. S.E. of Coef. p-values  Coef. S.E. of Coef. p-

values 

SAR1 -0.5272 0.5238 0.16033   - - - 

SAR2 -0.2297 0.5516 0.33994  - - - 

SAR3 -0.1002 0.4133 0.40508  - - - 

SAR4 0.0351 0.2427 0.44291  - - - 

SMA1 -0.5398 0.5159 0.15127  -0.8999 0.0693 < 0.001 
SAR= Seasonal autoregressive; SMA = Seasonal moving average; Coef.= coefficient; S.E. = Standard error.  

5.4.3 Intervention model 

Table 5.3 presents the results of zero-order transfer model assessment, while Table 5.4 presents 

the diagnostic test for the full intervention model. The parameter estimate for SMA1 and the 

intervention event (𝑤0) presented in Table 5.3 are statistically significant. This means the 

intervention model for malaria cases showed that the re-introduction of DDT resulted in an 

abrupt and permanent decline in monthly cases in KZN (𝑤0= -1174.781,  p-value = 0.003).  

The final diagnostics indicates the estimated model is statistically adequate as given in Table 

5.4. The Ljung-Box test of randomness of the residuals from the intervention model revealed 

that there is no autocorrelation at the 0.05 level (X2 = 58.386; p-value = 0.145). This implies 

that the full intervention model for the malaria cases in KZN is adequate.  
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Table 5.3 Impact of DDT on malaria cases in KZN province/Parameter estimates for the 

tentative intervention model 

Parameter Coef. S.E. of Coef. p-value 

SMA1 -0.729 0.068 < 0.001 

T1-MA0 (𝑤0)  -1174.781 401.897 0.003 
SMA = Seasonal moving average; 𝑤0= parameter estimate of a transfer function; Coef.= coefficient; S.E. = Standard error 

 

Table 5.4 Ljung-Box test for the intervention model 

X2 df p-value 

58.386 48 0.145 

5.5 Discussion 

The reliability of the analysis lies in the fact that the analysis was conducted in line with the 

recommendations specified by Gilmour et al. [8] to ensure issues associated with ITSA were 

avoided. The investigator choose the right indicator data (i.e., malaria case data) linked to the 

intervention to avoid biased outcomes and erroneous inferences. The investigator also correctly 

specified the onset of the known intervention (re-introduction of DDT) through reliable reports 

[1, 3]. Nevertheless, in instances where the onset of the known intervention(s) is/are not clear, 

several onset dates from the time series may be modelled by obtaining the onset dates from 

related studies, experts and directly from individuals who witnessed the event. Furthermore, the 

nature of the dataset clearly portrayed the long term change that occurred from the onset of the 

intervention. As such, the investigator choose the right transfer function for the model, the zero-

order transfer function because it fits an intervention that is abrupt in onset and permanent in 

duration. Other transfer functions are first-order transfer function and pulse function, and they 

are explained in details elsewhere [4, 6]. It is worthy of note that the flexibility of determining 

and using transfer functions peculiar to a time series makes the ITSA preferable over linear 

models [4].  

 

The ITSA model developed presents a reliable confirmation of the importance the malaria 

intervention DDT has on the malaria cases in KZN, by estimating the impact of its robust use 

over a long period. The findings strongly suggest that the re-introduction of DDT in March 2000 
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led to an immediate and permanent drop in malaria in KZN. Afterward, low and sustained cases 

were recorded, but malaria transmission did not reach zero. In addition to the outcome of this 

chapter, there are strong reasons to agree that the substantive significance of DDT in combating 

malaria exists. Firstly, marked increase in malaria cases were noted when the use of DDT was 

abandoned in the late 1970s in Madagascar [20], and in 1995 in South Africa [1]. Secondly, 

cross-sectional studies reveal an association between indoor DDT and low malaria cases in the 

highlands [21] and Western Foothill area [22] of Madagascar, and in KZN, South Africa [3]. 

The outcome of this chapter is very similar in scope to the previous study by Maharaj et al. [3], 

who revealed that the re-introduction of DDT led to significant decline in malaria cases. 

However, their study used a shorter post-intervention data to assess the impact of DDT (from 

2000 to 2002) by employing inferential statistics. Other studies [21, 22]  also suggested an 

association between the use of indoor DDT and low malaria cases. It suggests that the prolonged 

and continuous usage of DDT did not result in malaria vector resistance as anticipated earlier 

by Hargreaves et al. [23]. But the lingering low malaria transmission can be attributed to the 

exophagic and resting behavior of the malaria vectors, which makes them not susceptible to be 

the insecticide-treated surfaces indoors. Thus, the feasibility of eliminating malaria in KZN 

would require up-scaled and re-energised technical and operational resources, to reduce local 

transmission to zero and sustain the elimination in the face of repeated reintroduction from the 

seasonal transmission and imported cases.  

 

The re-introduction of DDT bolstered the malaria control efforts and campaigns in KZN 

markedly. Other reliable and complementary interventions resources will be needed to further 

strengthen and optimise the already existing malaria vector control resources in KZN in 

particular and SA at large to achieve malaria elimination in 2020. Such as (1) the introduction 

of pre-erythrocytic malaria vaccines, RTS,S/AS01 for residence living in malaria endemic areas 

and visitors, (2) the introduction of genetically modified sterile male Anopheles arabiensis 

mosquitoes and (3) the practical application of reactive case detection to determine the optimal 

screening radius peculiar to each of the malaria transmission settings or the focal screening and 

treatment depending on the level of malaria endemicity. Furthermore, renewed attention and 

campaigns on malaria disease are essential. Malaria disease has suffered limited attention in the 

last 5 years due to more focus on other diseases like HIV/AIDS, tuberculosis and diabetes. This 

is reflected in the limited number of malaria-related studies in the region geared towards malaria 



 

 

111 
 

elimination. For example, studies on the imported cases of malaria, studies aimed at identifying 

reliable climatic, vegetative and socio-economic determinants of malaria in KZN, studies on 

the hot spot of malaria transmission are lacking. Such studies can serve as invaluable tools for 

monitoring the progress made in the province towards the malaria elimination efforts, and can 

help identify areas that need reinforcement of intervention resources. Furthermore, such studies 

can also serve as a guide for the preparation against malaria re-introduction once zero 

transmission is achieved.  

5.6 Conclusions 

The ITSA is a well-suited approach that provides a rigorous test of the association between the 

effect of an intervention policy and a public health issue at a population level. The intervention 

time series analysis modelled the effect of known intervention (re-introduction of DDT in 

March 2000) on data of counts of events (malaria cases) regularly collected in time (from 1998 

to 2014). It resulted in an abrupt and permanent decline of confirmed malaria cases in KZN, 

which confirms that DDT played a significant role in the low and sustained malaria case in the 

province. The sustained low malaria cases recorded over the last two decades suggests that the 

continued usage of DDT did not result in insecticide resistance as earlier anticipated. However, 

for the province to achieve zero malaria transmission, renewed attention should be given to 

malaria in KZN in terms of more financial commitment and multidisciplinary research efforts. 

This should comprise of location specific studies and the introduction of other reliable and 

complementary intervention resources to support and optimise the already existing malaria 

intervention.  
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6.1 Abstract 

South Africa in general and KwaZulu-Natal (KZN) province in particular, stepped up its effort 

to eliminate malaria such that it has been reporting consistently low cases since 2000. To 

strengthen the malaria control that leads to elimination efforts in KZN, this chapter is aimed at 

developing a forecasting model of malaria cases in KZN by using Seasonal Autoregressive 

Integrate Moving Average (SARIMA) time series model. This was carried out retrospectively 

using the monthly reported malaria case data from January 2005 to December 2014. The dataset 

was acquired from the Malaria control programme of KZN and it was split into two. The first 

dataset from January 2005 to December 2013 was used to construct a SARIMA model by 

adopting the approach propounded by Box-Jenkins as follows: model identification, parameter 

estimation, diagnostic checking, and forecasting after performing the Yeo-Johnson 

transformation to manage the zeros and close to zero values. The second dataset from January 

to December 2014 was used to validate the forecast generated from the best fit model. Three 

plausible models were identified, and based on the goodness of fit statistics and parameter 

estimation, the SARIMA (0,1,1)(0,1,1)12 model was selected as the best fit model. The 

SARIMA (0,1,1)(0,1,1)12 model was used to forecast malaria cases during 2014, and it was 

observed to fit closely with the reported malaria cases during January to December 2014. The 

outcome of this chapter suggests that the SARIMA (0,1,1)(0,1,1)12 model can serve as a vital 

tool for modelling and forecasting monthly malaria cases in KZN, SA. It can, therefore, play a 

key role in shaping the KZN malaria control and elimination effort so that intervention resources 

can be channelled sustainably and efficiently. 

 

Keywords: SARIMA, Time series, Malaria, Elimination, Forecast, KwaZulu-Natal, South 

Africa 
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6.2 Introduction 

Malaria transmission in South Africa (SA) is restricted to the north-eastern parts of KwaZulu-

Natal (KZN), Limpopo and Mpumalanga provinces. Across these malaria endemic provinces, 

satisfactory progress in malaria disease burden have been recorded and currently malaria 

incidence is low. Limpopo presents the highest burden of malaria in SA, where malaria 

incidence ranges from 1.7 to 2.4 cases per 1000 persons at risk, while KZN has the lowest 

burden of malaria disease (0.01 to 0.10 cases per 1000 persons at risk) [1-3] . Accordingly, SA 

aims to eliminate malaria by 2020 and prevent the resurgence of malaria transmission in 

subsequent years [2]. On this endeavour, there is a pressing need to develop robust and reliable 

predictive models which can strengthen the public health service in decision making for 

effective targeted malaria transmission combating and elimination strategies.  

 

The development of predictive models is a vital part of malaria surveillance essential to policy 

makers and public health workers to project the future occurrence of the disease and act 

proactively [4]. One approach to develop a malaria predictive model is to use historical malaria 

case data and employ analytical predictive models such as mathematical modelling, machine-

learning approach (artificial neural networks) and statistical methods (generalised linear models 

and seasonal autoregressive intergrated moving average (SARIMA) models). An understanding 

of the assumptions underlying a predictive model, the advantage(s) and the disadvantage(s) are 

vital when developing a forecast model [5]. The SARIMA approach can exhibit temporal trends 

like seasonality and autocorrelation (which is a correlation of a time series with its own past 

and future values)  [6] that is actualised by eliminating high-frequency noise in the data. 

Furthermore, due to the model’s ability to perform automated model determination over a time 

series, predictions can be said to be reliable if longer time series data are employed. The 

formulated models are easy to interpret in a retrospective study [5]. Nevertheless, the 

formulation of the models requires general mathematics and statistics skills, and an 

understanding of a relevant statistical package/software for the execution of analysis. The 

required mathematical and statistical skills are not limited to trigonometry, complex numbers, 

calculus, linear regression (multiple regression and weighted least square) and basic probability 

[7], while the analysis can be implemented using either an open source (free) statistical packages 

such as R statistics or python, or a licensed package (STATA, MATLAB, SAS, MiniTab or 

SPSS). 
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Based on the need for KZN to enhance their malaria control and elimination efforts, and the 

epidemiological potential of the SARIMA time series model to that effect, this chapter was 

designed to develop a SARIMA temporal model using long-term historical malaria case data 

from KZN. Modelling and predicting malaria cases can potentially assist the KZN malaria 

control programme and other relevant authorities in making an informed decision about future 

malaria cases, and provide a basis for malaria prevention and control. It will help optimise the 

allocation of intervention resources. It can also allow some time to prepare health facilities 

(procure and re-distribute anti-malarials and diagnostics equipment), engage in targeted and or 

scaled up vector control activities, and raise awareness amongst locals and visitors/travellers. 

Furthermore, to the best of the investigator’s knowledge, no study has attempted to model and 

forecast malaria cases in KZN by employing the SARIMA time series analysis. Therefore in 

this chapter, the investigator seeks to address this gap, by fitting SARIMA models and predict 

malaria cases in KZN.  

6.3 Methodology 

6.3.1 Study area 

Three district municipalities namely uMkhanyakude, uThungulu and Zululand are malarious 

areas in KZN province, SA, and were included in this chapter. The study areas are bordered 

internationally by Swaziland and Mozambique to the north, and the Indian Ocean stretching 

from the east down to the southeast (Fig. 6.1). The province is characterised by the sub-tropical 

climate with most of the malaria cases occurring during the rainy months from October to May, 

with a seasonal peak usually in January and March [8, 9]. The average annual rainfall ranges from 

500mm to 2000mm. Along the coastal areas, the summer temperatures is between 24°C to 32°C, 

and mean winter temperature is about 20°C. The Midlands generally possesses a mild climate with 

relatively high summer rainfall and dry winters. The elevation measure of the region varies from 

sea level to over 3000m. The vegetation of the study area comprises of coastal forest and thornveld 

along the coast. Towards the inlands, lowveld, highland sourveld, Natal sour sandveld, valley 

bushveld and tall grassveld vegetation are found. Lowveld and thornveld characterises the low-lying 

hot and dry regions of Northern KZN [10]. 
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Figure 6.1 Map of the study area 

6.3.2. Malaria data 

The investigator used confirmed monthly malaria cases including all age groups from January 

2005 to December 2014 obtained from the Malaria Control Programme KZN. A malaria case 

is a person whose blood smear tested positive to Plasmodium after undergoing a rapid 

diagnostic test or slide microscopy at a health facility [11]. Since 1956, it became a legal 

requirement to notify malaria cases to the relevant health authorities in SA [12]. Confirmed 

malaria cases at health facilities across the malarious provinces in SA are reported by telephone 

to the relevant district health office and are subsequently reported to the provincial malaria 

control programme. At the provincial malaria control programme, the malaria control worker 

collects and inputs information relating to the malaria case data into the malaria information 

system. The information includes patient demographics, the health facility the case was 

reported, symptoms, malaria test results, diagnosis and treatment administered [8, 13].  
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6.3.3 Statistical analysis 

The analytical approach to this chapter is bounded by the Box-Jerkin’s SARIMA model. The 

SARIMA model combines a non-seasonal and seasonal components, and can be specified as 

SARIMA (p, d, q) x (P,D,Q)s where, p, d, and q refers to the orders of the non-seasonal 

autoregressive (AR), non-seasonal differencing, and non-seasonal moving average (MA) parts 

of the model. P, D, and Q refers to the orders of the seasonal AR, seasonal differencing, and 

seasonal MA parts of the model and s is the length of the seasonal period. The AR, process 

accounts for previously observed value up to a specified maximum lag, plus an error term. The 

process of differencing is referred to as the integration part that accounts for stabilisation of the 

data by removing seasonality or trend. While the MA process accounts for previous error terms 

making forecasting easier. The algebraic form of the SARIMA model is given as [14]: 
 

𝛷 (𝐵𝑆) 𝜙 (𝐵) ∆𝑑  ∆𝑆
𝐷 𝑋𝑡 = 𝜃0 + 𝛩 (𝐵

𝑆) 𝜃 (𝐵) 𝑎𝑡   (6.1)    

The non-seasonal factors are given as: 

AR:  𝜙(𝐵) = 1 − 𝜙1 𝐵−. . . − 𝜙𝑝𝐵
𝑝                 (6.2) 

MA:  𝜃(𝐵) = 1 + 𝜃1 𝐵+. . . + 𝜃𝑞𝐵
𝑞      (6.3) 

The seasonal factors are given as: 

Seasonal AR:  𝛷(𝐵𝑆) = 1 − 𝛷1 𝐵
𝑆−. . . − 𝛷𝑃𝐵

𝑃𝑆    (6.4) 

Seasonal MA:  𝛩(𝐵𝑆) = 1 + 𝛩1 𝐵
𝑆+. . . + 𝛩𝑄𝐵

𝑄𝑆    (6.5) 

where, Xt : data series, 𝑎𝑡: random error (with mean zero and variance 𝜎2), B: backward shift 

operator,  𝜙: coefficient non-seasonal autoregressive, 𝜃: coefficient non-seasonal moving 

average, 𝛷: coefficient seasonal autoregressive, 𝛩: coefficient seasonal moving average, ∆𝑑: 

difference operator and d is order of differencing, ∆𝑠
𝐷: seasonal difference operator and D is 

seasonal order of differencing, s: length of the seasonal period.  

 

Therefore, a SARIMA (p,d,q)(P,D,Q)12 model was constructed using monthly malaria case data 

from January 2005 to December 2013 and a forecast of malaria cases from January 2014 to 

December 2014 following the steps below:  
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Step 1: Transformation of time series data and model identification.  

The power transformation known as the Yeo-Johnson transformation was employed on the time 

series to stabilise the variance. While the SARIMA non-seasonal and seasonal differencing 

were conducted to achieve stationarity of the time series by eliminating the trend and 

seasonality. From the non-seasonal and seasonal differenced data, the non-seasonal and 

seasonal components of the model were formulated by examining their autocorrelation function 

(ACF) and partial autocorrelation function (PACF). The ACF and PACF were used to determine 

the degree of differencing and appropriate autoregressive and moving average terms.  

 

Step 2: Parameter estimation. 

Parameters of the model in step 1 were estimated to verify if all the parameters in the plausible 

model were significant.  

 

Step 3: Model validation. 

To test for the adequacy of the selected SARIMA model, he investigator used the residuals of 

the fitted model to find ACF plot of the residuals and the Box-Ljung test. Q-Q plot and Shapiro-

Wilk test were used to test for normality of the residuals. If all the diagnostics tests are well 

meant, then the SARIMA model in step 2 is appropriate. 

 

Step 4: Forecasting   

The selected SARIMA model in step 3 was used to forecast malaria cases from January 2014-

December 2014. The reported malaria cases for 2014 were used to validate the forecast. 

6.4 Results  

6.4.1 Model identification 

The time series data covers 120 months, starting from January 2005 to December 2015 and it 

depicts notable seasonality and downward trend of malaria cases as shown in Figure 6.2. The 

Yeo-Johnson transformation method and differencing were employed to stabilise the variance 

and eliminate the seasonal trend respectively. The Yeo-Johnson transformation suppressed the 

fluctuations, which in turn, enhanced the normality of the data (Figure 6.3). This type of 

transformation suited the dataset because it contains zero values and values close to zero. 
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Figure 6.2 Time series plot of monthly malaria cases in KwaZulu-Natal, 2005-2014 

 

 

Figure 6.3 Yeo-Johnson’s transformation of time series plot of monthly malaria cases in 

KwaZulu-Natal, 2005-2014 

The ACF plot of the transformed malaria case data in Figure 6.4 depicts seasonality, which dies 

down slightly. While the PACF plot of the malaria case data in Figure 6.5 tails off after lag 1, 

and decays in sine wave fashion. In an initial attempt to remedy the non-stationarity of the time 
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series (depicted in Figure 6.3), and eliminate the trend and seasonality (indicated in the ACF 

plot in Figure 6.4), the non-seasonal differencing was employed. 

 

 

 Figure 6.4 ACF plot of the transformed monthly malaria case data 

 

 

Figure 6.5 PACF plot of the transformed monthly malaria case data 

 

Figures 6.6, 6.7 and 6.8 presents the output of the non-seasonal differenced malaria cases. ACF 

plot (Figure 6.7) indicates seasonality is still evident (lags 7, 19 and 31). Therefore, the 

investigator differenced the data a second time (seasonal differencing) to eliminate the effect of 

seasonality in the model and to seek for a better model fit.  
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The non-seasonal component of the model was identified by examining the ACF plot (Figure 

6.7) and the PACF plot (Figure 6.8) of the non-seasonal differenced malaria cases. The ACF 

values in Figure 6.7 declines steadily after 1 lag and the PACF (Figure 6.8) decays exponentially 

in a sine wave fashion. This suggests a moving average of order 1, resulting in an autoregressive 

moving average (0,1,1)12 model (i.e. p = 0, d = 1 and q = 1).  

 

 

Figure 6.6 Time series plot of the transformed non-seasonal differenced monthly malaria 

cases exhibiting stationarity 

 

 

Figure 6.7 ACF plot of the transformed non-seasonal differenced monthly malaria cases 
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Figure 6.8 PACF plot of the transformed non-seasonal differenced monthly malaria cases 

Figures 6.9 and 6.10 shows the ACF and PACF plots of seasonal differenced malaria cases. The 

ACF of the seasonal differenced malaria cases cuts off after 1 lag which suggest a seasonal 

moving average MA (1) model, while the PACF plot declines after 3 lags which suggests a 

seasonal autoregressive AR (3) model. Therefore, based on the non-seasonal differencing and 

seasonal differencing, seasonality was eliminated from the time series data and, a stationary 

mean (i.e. D=0) was achieved. This resulted in the identification of three plausible SARIMA 

models. They are SARIMA (0,1,1)(3,1,1)12, SARIMA (0,1,1)(0,1,1)12, and SARIMA 

(0,1,1)(3,1,0)12. The investigator, therefore, proceed to the next phase of the Box-Jenkins 

SARIMA analytical approach, known as parameter estimation or fitting stage of the suggested 

models. 

 

 

Figure 6.9 ACF plot of the transformed seasonal differenced monthly malaria cases 
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Figure 6.10 PACF plot of the transformed seasonal differenced monthly malaria cases 

6.4.2 Model testing and parameter estimation 

The goodness of fit statistics employed were the Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), log-likelihood and the standard error. The model with the lowest 

BIC value and with a p-value less than 0.05 was selected as the best model fit. The BIC values 

are based on the likelihood function and the AIC. The SARIMA (0,1,1)(0,1,1)12 model has the 

smallest BIC (Table 6.1) and all the estimates provided in Table 2 are significant. Therefore, 

based on the goodness of fit statistics (Table 6.1) and parameter estimation (Table 6.2), the 

investigator identified the SARIMA (0,1,1)(0,1,1)12 model as the most suitable model for 

forecasting. To further evaluate the suitability of the forecast model, the investigator proceed to 

the next phase of the Box-Jenkins methodology, which is the validation of the model. 

 

Table 6.1 Goodness of fit statistics of the plausible SARIMA models 

 

Statistic 

SARIMA 

(0,1,1)(3,1,1)12 

SARIMA 

(0,1,1)(0,1,1)12 

SARIMA 

(0,1,1)(3,1,0)12 

AIC 202.77 199.6 208.28 

BIC 218.10 207.26 221.02 

LL -95.39 -96.80 -99.12 

AIC=Akaike information criterion; BIC=Bayesian information criterion; LL=Log likelihood 
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Table 6.2 Parameter estimation of the plausible SARIMA models 

                SARIMA (0,1,1)(3,1,1)12   SARIMA (0,1,1)(0,1,1)12  SARIMA(0,1,1)(3,1,0)12 

    

Type 

Coef S.E of 

coef 

P-

values 

 Coef S.E of 

coef. 

P-

values 

 Coef S.E of 

coef 

P-

values 

MA1 -0.7029 0.0803 0.0000  -0.7156 0.0785 0.0000  -0.7274 0.0767 0.0000 

SAR1 0.2003 0.1189 0.0460  - - -  -0.5261 0.1083 0.0000 

SAR2 -0.0002 0.1197 0.4995  - - -  -0.3182 0.1186 0.0037 

SAR3 -0.0862 0.1328 0.2582  - - -  -0.1561 0.1265 0.1087 

SMA1 -1.0000 0.3738 0.0037  -0.7272 0.1316 0.0000  - - - 

MA=Non-seasonal moving average; SAR= Seasonal autoregressive; SMA = Seasonal moving average S.E = Standard error; Coef.= coefficient 

6.4.3 Model validation 

Even though the choosen SARIMA (0,1,1)(0,1,1)12  model seems most suitable, validation of 

the model is vital to ascertain if the model possesses systematic patterns that can be removed to 

enhance the functionality of the model and, this is done by examining the residuals of the model. 

The model verification was tested by verifying (1) the ACF of the residuals to check for 

autocorrelation, and (2) the normal probability plot of the residuals. 

 

  

Figure 6.11 ACF plot of residual for SARIMA (0,1,1)(0,1,1)12 model 

The ACF plot of residuals (Figure 6.11) suggests that the residuals have a constant variance, 

and the autocorrelations were modelled out leaving only one significant value as indicated by 

the spike in lag 19. Also, the Box-Ljung test results (x-squared = 60.499, df=48, p-value = 

0.1064) revealed that the p-value exceeded 5% and this implies the model is adequate (i.e. there 
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is no autocorrelation). The Shapiro-Wilk test results for normality possesses a test statistic of 

W=0.98811 and p-value =0.4595 and, the Q-Q plot (Figure 6.12) depicts some outliers on the 

tails which suggests that the normality of the residuals is not rejected. Therefore, the investigator 

proceed to use the SARIMA (0,1,1)(0,1,1)12 model for forcasting since it provides a reasonable 

fit to the highly seasonal and non-seasonal time series data. 

 

 

 

 

 

 

 

 

 

Figure 6.12 The Q-Q plot of residuals of the selected SARIMA (0,1,1)(0,1,1)12 model 

6.4.4 Forecasting 

The selected SARIMA (0,1,1)(0,1,1)12 model was used to forecast monthly malaria cases from 

January 2014 to December 2014 as shown in figure 6.13. The predicted estimates of monthly 

malaria cases are represented by the blue line in the figure, while the 95% and 85% confidence 

bounds are shaded in ligher and darker grey respectively. 
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Figure 6.13 Observed monthly malaria cases from January 2005-December 2013 and 

predicted monthly malaria cases from January 2014 to December 2014 

Table 6.3 presents the values of predicted malaria cases at 95% confidence level and, the model 

overpredicted malaria cases by 8%.  

 

Table 6.3 Predicted monthly malaria cases for KwaZulu-Natal, South Africa from 

January 2014 to December 2014 using the SARIMA (0,1,1)(0,1,1)12 model 

Month Predicted case 95% CL (Lower) 95% CL (Upper) 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

3.805152  2.5555447  5.054760 

3.407794  2.1086728  4.706916 

3.525228 2.1784115 4.872044 

3.420779  2.0279002  4.813658 

3.065883  1.6284168  4.503349 

2.470701  0.9899892  3.951412 

2.435048  0.9123190  3.957777 

1.825197  0.2615790  3.388815 

2.209246  0.6057816  3.812710 

3.086150  1.4438058  4.728495 

2.951564  1.2712388  4.631889 

2.926445  1.2089793  4.643912 

 CL=confidence level 
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The plot of the observed monthly malaria cases and predicted cases for 2014 (Figure 6.14) 

shows that the values for monthly predicted cases tends to follow the reported values quite 

closely except in August, November and December where pronounced differences were 

observed. 

 

 

Figure 6.14 Observed and predicted monthly malaria cases from January 2014 to 

December 2014 

6.5 Discussion 

Time series predictions are generated by models based on changes over time in previously 

observed values or historical datasets [15]. The SARIMA forecast model can serve as a vital 

tool for public health workers and epidemiologists. It can be applied as a malaria early warning 

system and, can provide vital information for the relevant authority to act proactively [15, 16]. 

This chapter presents an example how the SARIMA model which is particularly relevant for a 

disease that exhibits seasonality [6] was employed in modelling and predicting malaria cases in 

a relatively low malaria-transmission region, where targeted interventions are extremely vital 

to strengthen KZN malaria control and elimination efforts. The model can provide information 

to support policy makers and public health efforts so that intervention resources can be provided 

and chanelled in a sustainable and effective way. It can also serve as a tool for providing relevant 

information to locals and visitors prior to high malaria transmission months. This, in turn, will 

be pivotal in transforming SA’s current malaria programme to elimination in 2020. 

 

0
1

2
3

4

Jan 14 Feb 14 Mar 14 Apr 14 May 14 Jun 14 Jul 14 Aug 14 Sep 14 Oct 14 Nov 14 Dec 14

M
al

ar
ia

 c
as

es

Observed Predicted



 

 

131 
 

The epidemiological potential and functionality (epidemiological studies, disease surveillance, 

and forecasting) of the SARIMA time series, have also been explored by different authors in 

different capacities [17-21]. These authors ensured the time series processes attained 

stationarity in the homogenous sense (stationary in its level) and variance, which are 

indispensable conditions of a SARIMA model. This was done by carrying out the first 

differencing, and the seasonal differencing, which results in a stationary time series by removing 

trends and seasonal effects. However, in instances where the variance of a time series trends 

downwards (or increases) as the level of the series decreases (or increases), the time series must 

be transformed before the analysis or differencing [15]. This will lead to a time series stationary 

in the homogenous sense and variance, and in turn, improves and leads to the formulation of a 

better model fit [15]. Some studies employed the log-transformation to achieve a stationary 

variance [22-24], and it is the most commonly used transformation approach. Other studies 

employed the Box-Cox power transformation [25, 26] which is valid for datasets containing 

positive variables. In this chapter, the investigator employed a seldom-used power 

transformation known as the Yeo-Johnson transformation because the time series systematically 

trended downwards and, had zero values and values close to zero [27]. 

 

Even though malaria transmission in KZN is limited as a result of effective malaria control 

measures [9, 28-30], the SA National Department of Health still regards malaria a significance 

disease due to its propensity to cause an epidemic [8, 11]. In SA, specific population groups are 

at higher risk of contracting malaria. They are infants and children below five years old living 

in localities of stable malaria transmission, elderly (above 65 years old), people living with 

HIV/AIDS, non-immune pregnant women, semi-immune pregnant women living in high 

malaria transmission localities, semi-immune HIV-infected pregnant women living in localities 

of stable transmission, non-immune travellers and migrants [11]. Nevertheless, the entire 

population is vulnerable to malaria epidemic due to little or no immunity [11]. To avert an 

epidemic, SA has in place an outbreak threshold of confirmed cases at districts and provinces 

endemic to malaria, and health facilities located in these areas. When the threshold is reached 

or exceeded, reactive measures are taken by the relevant malaria divisions [8] The malaria 

control and elimination efforts needed will, therefore, require scaling up and revising of the 

epidemic preparedness and response strategy.  



 

 

132 
 

In addition to the SARIMA model, further studies should be conducted utilising either 

epidemiological or entomological data or a combination of both with environmental and socio-

economic malaria triggers at a fine scale to delineate the needed intervention resources. 

Furthermore, conducting epidemiological research, and studies in a particular setting employing 

different parameters, mechanisms or possible confounder can inform on the deficiencies in the 

knowledge of the malaria disease about that study area. This could result in identifying 

unanswered questions and loopholes crucial to model reliability, which can be bridged by either 

incorporating more variables or eliminating certain variables. Nevertheless, without practical 

applications of developed models, we will not be informed about the reliability of the models 

and how they can be improved. It is also important that relevant stakeholders (researchers, 

statistical analyst, the South African Weather Services, physicians, public health workers, 

epidemiologist, entomologists and policy makers) are brought together to reshape the malaria 

elimination strategy so that reliable and operational malaria case predictions models can be 

generated. Other importance of such multi-disciplinary collaboration are the identification of 

reliable malaria predictors and accurate hotspots of malaria transmission [31]. In addition, a 

reliable and direct means of accessing and sharing information among the relevant stakeholders 

is of utmost necessity. 

 

The weakness of this chapter is that it attempted to develop a single model for the entire malaria 

area of KZN. Separate models for each of the district municipalities might provide an in-depth  

assessment of the malaria trends across the municipality district, which in turn may help identify 

possible differences in the implementation of prevention measures,  patients’ seeking 

behaviours and migration of people. The structuring of the data, and the mode of the forecasting 

using monthly data and forecasting maybe responsible for the overestimated and 

underestimated monthly forecast observed. Conducting daily data analysis could result in 

improved model fit and daily forecasts, which can then be aggregated into weekly and monthly 

forecasts. The univariate analysis approach employed in this chapter could also be another 

reason for the overestimated and underestimated forecasts. The incorporation of predictors into 

the SARIMA model (multivariate SARIMA model) over a longer time frame could improve 

the model fit and the forecast if the exogenous factors responsible for trend, seasonality and 

outliers are incorporated into the model.  
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6.6 Conclusions 

The SARIMA forecast model is a vital tool that has the potential for malaria early warning, and 

can provide information to the relevant authority to act proactively. In this chapter, time series 

SARIMA models guided by the Box-Jenkins approach were constructed using historical 

monthly malaria case data of KZN from 2005 to 2014. The best fit SARIMA (0,1,1)(0,1,1)12 

model was used to predict 2014 monthly malaria cases.  The predicted values were validated 

with the reported cases and, it was observed to fit closely with the actual malaria cases having 

tolerable error values. The outcome of the validation indicates that the model could be used for 

predicting malaria cases in KZN, SA. The practical application of the generated model is 

encouraged. Furthermore, studies that employ daily data and incorporate possible malaria 

transmission risk factors, and confounders in multivariate time-series models are recommended. 
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CHAPTER 7: GENERAL CONCLUSIONS AND RECOMMENTATIONS 

The aim of this study was to contribute to malaria epidemiology by exploring the factors that 

influence malaria transmission in the malarious regions of KZN, SA by employing different 

spatial and temporal models. To achieve this aim, the specific objectives were: 1) To 

systematically appraise the existing body of literature on RS-derived climatic and 

environmental determinants of malaria transmission in SSA by identifying determinants 

peculiar to regions in SSA, appraise modelling approaches, and current research shortfalls; 2) 

to identify the climatic and environmental determinants of malaria transmission in the malarious 

regions in KZN, SA, and develop a malaria risk map; 3) to determine the socio-economic factors 

that influence malaria transmission at local municipality level in the malarious regions in KZN, 

SA; 4) to evaluate the malaria control intervention (the use of DDT) on malaria transmission in 

the malarious regions in KZN, SA; and 5) to develop a forecasting model to predict malaria in 

the malarious regions in KZN, SA. 

 

In the second chapter of this study titled “Remote sensing-derived climatic/environmental 

variables for modelling malaria transmission in sub-Saharan Africa”, the investigator presented 

a systematic collation and summary of relevant studies that utilised RS-derived climatic and 

environmental variables for modelling malaria transmission in SSA. The investigator identified 

thirty-five peer-reviewed articles that met the final selection criteria. Across the SSA sub-

region, NDVI was the most frequently returned as a statistically-significant variable to model 

both spatial and temporal malaria transmission. In terms of analytical approaches, linear models 

were widely used across SSA. Based on the finding, the investigator suggested the following: 

1) the utilization of RS in determining reliable malaria transmission predictors and developing 

environmental monitoring, a tailored approach is required that takes into account the 

geographical/climatic setting, the stage of the malaria elimination continuum, the characteristics 

of the RS variables and the analytical approach; 2) Bayesian modelling approach can be used 

as reliable substitute for linear models. They provide extensions of generalised linear models 

and are formulated to overcome some of the setbacks of linear models. 

 

The third chapter titled, “Modelling of malaria transmission using climatic and environmental 

variables in KwaZulu-Natal province with low malaria transmission via Bayesian zero-inflated 
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models in INLA”, identifies different climatic and environmental variables that influence 

malaria transmission and develop malaria risk map for the malarious regions of KZN. The 

results of the posterior statistics from the ZIP model revealed that malaria cases are significantly 

related to NDVI, precipitation, elevation and night temperature. Also, the malaria risk map 

developed showed that the North Eastern part of KZN province possesses the highest risk of 

malaria morbidity. The modelling approach employed in this chapter presents a valuable tool 

for understanding and monitoring the influence of climatic and environmental variables on the 

spatial heterogeneity of malaria in KZN. It will therefore equip the relevant policy makers with 

information required to channel malaria intervention resources sustainably to vulnerable 

receptive areas. Also, this chapter reveals the need to strengthen the already existing cross-

border initiatives to boost KZN’s malaria elimination goals. However, a modelling approach 

which takes account of the effects of population movement between the E8, MOSASWA 

countries and from other malaria endemic countries was recommended. 

 

The fourth chapter titled, “Socio-economic determinants of malaria transmission risk in 

KwaZulu-Natal, South Africa: a Bayesian approach”, identified relevant SES that influenced 

malaria transmission. This chapter suggests that the following determinants of low SES play a 

significant role in malaria transmission and burden:  illiteracy, lack of electricity, lack of toilet 

facilities and unemployment. Other factors that had an effect on the risk of malaria are gender, 

children less than 5 years old and adult above 65 years old. This means low SES, socio-

economic deprivation and poverty can maintain and exacerbate malaria transmission in KZN. 

As an implication, poverty alleviation and malaria intervention resources should be 

incorporated side by side into the socio-economic framework. Therefore, the relevant policy 

makers and departments should invest more on sustainable developmental approach that 

combines both improved malaria intervention resources and socio-economic conditions. This 

can ultimately help strengthen the malaria elimination goals in KZN. 

 

The fifth chapter titled, “Modelling malaria control intervention effect in KwaZulu-Natal, South 

Africa using intervention time series analysis”, evaluated the effect of the re-introduction of 

DDT to combat malaria transmission in KZN and suggested practical ways the province can 

strengthen the already existing malaria control and elimination efforts, to achieve zero malaria 

transmission. The ITSA revealed an abrupt and permanent decline of confirmed malaria cases 
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in KZN. This confirms that DDT contributed significantly to the low and sustained malaria case 

in the province. The sustained low malaria cases recorded over the last two decades suggests 

that the continued usage of DDT did not result in insecticide resistance as earlier anticipated. 

Thus, for the province to eliminate malaria transmission completely, renewed attention should 

be given to malaria in KZN in terms of more financial commitment and multidisciplinary 

research efforts. This should comprise of location specific studies and the introduction of other 

reliable and complementary intervention resources to support and optimise the already existing 

malaria intervention. Such as (1) the introduction of pre-erythrocytic malaria vaccines, 

RTS,S/AS01 for residence living in malaria endemic areas and visitors, (2) the introduction of 

genetically modified sterile male Anopheles arabiensis mosquitoes and (3) the practical 

application of reactive case detection to determine the optimal screening radius peculiar to each 

of the malaria transmission settings or the focal screening and treatment depending on the level 

of malaria endemicity. 

 

The sixth chapter titled, “A Seasonal autoregressive integrated moving average (SARIMA) 

forecasting model to predict monthly malaria cases in KwaZulu-Natal, South Africa”, develops 

a forecast model of monthly malaria cases in KZN by using the Seasonal Autoregressive 

Integrate Moving Average (SARIMA) time series approach. Three plausible models were 

identified, and the SARIMA (0,1,1)(0,1,1)12 model was selected as the best fit model. The 

SARIMA (0,1,1)(0,1,1)12 model was used to forecast malaria cases during 2014, and it was 

observed to fit closely with malaria cases reported in 2014. The outcome of this chapter suggests 

that the SARIMA (0,1,1)(0,1,1)12 model can serve as a vital tool for modelling and forecasting 

monthly malaria cases in KZN, SA. Nevertheless, the practical application of the generated 

model is suggested. Furthermore, studies that employ daily data and incorporate possible 

malaria transmission risk factors, and confounders in multivariate time-series models were 

recommended.  

 

The different modelling or analytical approaches employed in this study illustrates the 

importance of conduction various spatial and temporal studies in a setting with low malaria 

endemicity seeking to achieve malaria elimination. It also presents a road map for malaria 

elimination in KZN. It was able to identify the high malaria risk areas in KZN that requires re-

enforcement of malaria intervention resources and the contributory factors (SES, climatic and 
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environmental predictors) of malaria transmission, evaluate to relevance of applying DDT for 

malaria intervention purposes, and predict malaria case. These information can serve as a vital 

tool for the KZN malaria control program, policy makers, relevant research institutions, 

statisticians, the community health workers, SA’s DOH, SA’s department of social 

development, the E8 and the MOSASWA communities towards a holistic and integrated 

approach to achieve malaria elimination in the province in 2020 and in SA at large. Considering 

the multifaceted nature and interrelated links of the various elements that play significant roles 

in the proliferation of malaria, a solid cooperation with the relevant stakeholders cannot be 

overemphasised. This approach will provide measures for sustainable poverty alleviation in the 

malarious communities, and provide intervention resources that can be implemented 

sustainably. Thus, the recommendations that emerged from the various studies should be 

practically applied by the relevant authorities and more studies should be conducted in 

accordance with the identified research gap. In addition to the specified research gap, relevant 

entomological studies should be conducted and the suggested epidemiological studies should 

be conducted at much smaller scale. Due to that dynamic nature of malaria in KZN, the 

recommendations provided in this study should be treated as a road map for malaria elimination 

in KZN. As the KZN epidemiological environment evolves, elimination approaches should also 

evolve through adaptive and innovative approaches, and constant reviews and evaluation of the 

approaches until elimination is finally attained.  

 

The models generated from the various studies demonstrated the need for the KZN malaria 

program, relevant policy makers and stakeholders to further strengthen the KZN malaria 

elimination efforts. The required malaria elimination fortification are not limited to the 

implementation of additional sustainable developmental approach that combines both improved 

malaria intervention resources and socio-economic conditions, strengthening of existing 

community health workers, strengthening the relationship with the relevant stakeholders and 

strengthening of the already existing cross-border collaborations. 

 

 

 

 




