2,095 research outputs found

    Temporal contextual descriptors and applications to emotion analysis.

    Get PDF
    The current trends in technology suggest that the next generation of services and devices allows smarter customization and automatic context recognition. Computers learn the behavior of the users and can offer them customized services depending on the context, location, and preferences. One of the most important challenges in human-machine interaction is the proper understanding of human emotions by machines and automated systems. In the recent years, the progress made in machine learning and pattern recognition led to the development of algorithms that are able to learn the detection and identification of human emotions from experience. These algorithms use different modalities such as image, speech, and physiological signals to analyze and learn human emotions. In many settings, the vocal information might be more available than other modalities due to widespread of voice sensors in phones, cars, and computer systems in general. In emotion analysis from speech, an audio utterance is represented by an ordered (in time) sequence of features or a multivariate time series. Typically, the sequence is further mapped into a global descriptor representative of the entire utterance/sequence. This descriptor is used for classification and analysis. In classic approaches, statistics are computed over the entire sequence and used as a global descriptor. This often results in the loss of temporal ordering from the original sequence. Emotion is a succession of acoustic events. By discarding the temporal ordering of these events in the mapping, the classic approaches cannot detect acoustic patterns that lead to a certain emotion. In this dissertation, we propose a novel feature mapping framework. The proposed framework maps temporally ordered sequence of acoustic features into data-driven global descriptors that integrate the temporal information from the original sequence. The framework contains three mapping algorithms. These algorithms integrate the temporal information implicitly and explicitly in the descriptor\u27s representation. In the rst algorithm, the Temporal Averaging Algorithm, we average the data temporally using leaky integrators to produce a global descriptor that implicitly integrates the temporal information from the original sequence. In order to integrate the discrimination between classes in the mapping, we propose the Temporal Response Averaging Algorithm which combines the temporal averaging step of the previous algorithm and unsupervised learning to produce data driven temporal contextual descriptors. In the third algorithm, we use the topology preserving property of the Self-Organizing Maps and the continuous nature of speech to map a temporal sequence into an ordered trajectory representing the behavior over time of the input utterance on a 2-D map of emotions. The temporal information is integrated explicitly in the descriptor which makes it easier to monitor emotions in long speeches. The proposed mapping framework maps speech data of different length to the same equivalent representation which alleviates the problem of dealing with variable length temporal sequences. This is advantageous in real time setting where the size of the analysis window can be variable. Using the proposed feature mapping framework, we build a novel data-driven speech emotion detection and recognition system that indexes speech databases to facilitate the classification and retrieval of emotions. We test the proposed system using two datasets. The first corpus is acted. We showed that the proposed mapping framework outperforms the classic approaches while providing descriptors that are suitable for the analysis and visualization of humans’ emotions in speech data. The second corpus is an authentic dataset. In this dissertation, we evaluate the performances of our system using a collection of debates. For that purpose, we propose a novel debate collection that is one of the first initiatives in the literature. We show that the proposed system is able to learn human emotions from debates

    SPEECH EMOTION DETECTION USING MACHINE LEARNING TECHNIQUES

    Get PDF
    Communication is the key to express one’s thoughts and ideas clearly. Amongst all forms of communication, speech is the most preferred and powerful form of communications in human. The era of the Internet of Things (IoT) is rapidly advancing in bringing more intelligent systems available for everyday use. These applications range from simple wearables and widgets to complex self-driving vehicles and automated systems employed in various fields. Intelligent applications are interactive and require minimum user effort to function, and mostly function on voice-based input. This creates the necessity for these computer applications to completely comprehend human speech. A speech percept can reveal information about the speaker including gender, age, language, and emotion. Several existing speech recognition systems used in IoT applications are integrated with an emotion detection system in order to analyze the emotional state of the speaker. The performance of the emotion detection system can greatly influence the overall performance of the IoT application in many ways and can provide many advantages over the functionalities of these applications. This research presents a speech emotion detection system with improvements over an existing system in terms of data, feature selection, and methodology that aims at classifying speech percepts based on emotions, more accurately

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Non-acted multi-view audio-visual dyadic interactions. Project non-verbal emotion recognition in dyadic scenarios and speaker segmentation

    Get PDF
    Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Sergio Escalera Guerrero i Cristina Palmero[en] In particular, this Master Thesis is focused on the development of baseline Emotion Recognition System in a dyadic environment using raw and handcraft audio features and cropped faces from the videos. This system is analyzed at frame and utterance level without temporal information. As well, a baseline Speaker Segmenta- tion System has been developed to facilitate the annotation task. For this reason, an exhaustive study of the state-of-the-art on emotion recognition and speaker segmentation techniques has been conducted, paying particular attention on Deep Learning techniques for emotion recognition and clustering for speaker aegmentation. While studying the state-of-the-art from the theoretical point of view, a dataset consisting of videos of sessions of dyadic interactions between individuals in different scenarios has been recorded. Different attributes were captured and labelled from these videos: body pose, hand pose, emotion, age, gender, etc. Once the ar- chitectures for emotion recognition have been trained with other dataset, a proof of concept is done with this new database in order to extract conclusions. In addition, this database can help future systems to achieve better results. A large number of experiments with audio and video are performed to create the emotion recognition system. The IEMOCAP database is used to perform the training and evaluation experiments of the emotion recognition system. Once the audio and video are trained separately with two different architectures, a fusion of both methods is done. In this work, the importance of preprocessing data (face detection, windows analysis length, handcrafted features, etc.) and choosing the correct parameters for the architectures (network depth, fusion, etc.) has been demonstrated and studied. On the other hand, the experiments for the speaker segmentation system are performed with a piece of audio from IEMOCAP database. In this work, the prerprocessing steps, the problems of an unsupervised system such as clustering and the feature representation are studied and discussed. Finally, the conclusions drawn throughout this work are exposed, as well as the possible lines of future work including new systems for emotion recognition and the experiments with the database recorded in this work
    corecore