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ABSTRACT

TEMPORAL CONTEXTUAL DESCRIPTORS AND APPLICATIONS TO

EMOTION ANALYSIS

Haythem Balti

December 2, 2014

The current trends in technology suggest that the next generation of services

and devices allows smarter customization and automatic context recognition. Com-

puters learn the behavior of the users and can offer them customized services depend-

ing on the context, location, and preferences.

One of the most important challenges in human-machine interaction is the proper

understanding of human emotions by machines and automated systems. In the re-

cent years, the progress made in machine learning and pattern recognition led to the

development of algorithms that are able to learn the detection and identification of

human emotions from experience. These algorithms use different modalities such as

image, speech, and physiological signals to analyze and learn human emotions. In

many settings, the vocal information might be more available than other modalities

due to widespread of voice sensors in phones, cars, and computer systems in general.

In emotion analysis from speech, an audio utterance is represented by an ordered (in

time) sequence of features or a multivariate time series. Typically, the sequence is fur-

ther mapped into a global descriptor representative of the entire utterance/sequence.

This descriptor is used for classification and analysis. In classic approaches, statistics
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are computed over the entire sequence and used as a global descriptor. This often

results in the loss of temporal ordering from the original sequence. Emotion is a

succession of acoustic events. By discarding the temporal ordering of these events in

the mapping, the classic approaches cannot detect acoustic patterns that lead to a

certain emotion.

In this dissertation, we propose a novel feature mapping framework. The proposed

framework maps temporally ordered sequence of acoustic features into data-driven

global descriptors that integrate the temporal information from the original sequence.

The framework contains three mapping algorithms. These algorithms integrate the

temporal information implicitly and explicitly in the descriptor’s representation.

In the first algorithm, the Temporal Averaging Algorithm, we average the data tempo-

rally using leaky integrators to produce a global descriptor that implicitly integrates

the temporal information from the original sequence.

In order to integrate the discrimination between classes in the mapping, we propose

the Temporal Response Averaging Algorithm which combines the temporal averag-

ing step of the previous algorithm and unsupervised learning to produce data driven

temporal contextual descriptors.

In the third algorithm, we use the topology preserving property of the Self-Organizing

Maps and the continuous nature of speech to map a temporal sequence into an or-

dered trajectory representing the behavior over time of the input utterance on a 2-D

map of emotions. The temporal information is integrated explicitly in the descriptor

which makes it easier to monitor emotions in long speeches.

The proposed mapping framework maps speech data of different length to the same

equivalent representation which alleviates the problem of dealing with variable length

temporal sequences. This is advantageous in real time setting where the size of the

analysis window can be variable.
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Using the proposed feature mapping framework, we build a novel data-driven speech

emotion detection and recognition system that indexes speech databases to facilitate

the classification and retrieval of emotions.

We test the proposed system using two datasets. The first corpus is acted. We

showed that the proposed mapping framework outperforms the classic approaches

while providing descriptors that are suitable for the analysis and visualization of hu-

mans emotions in speech data.

The second corpus is an authentic dataset. In this dissertation, we evaluate the per-

formances of our system using a collection of debates. For that purpose, we propose

a novel debate collection that is one of the first initiatives in the literature. We show

that the proposed system is able to learn human emotions from debates.
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CHAPTER 1

INTRODUCTION

Recently, human-machine interaction has received increasing attention from

various fields such as artificial intelligence, machine learning, and information re-

trieval. One of the most important challenges in human-machine interaction is the

proper understanding of human emotions by machines and automated systems. The

recognition of the internal emotional state of the user by a machine permits a deeper

interaction between both parties.

Emotions can be expressed in different modalities such as voice (the tone of a happy

person is different from the tone of a sad person), images (facial expressions), video

(actions), physiological signals (EEG, EKG signals). The progress made in ma-

chine learning and pattern recognition led to the development of algorithms that

are able to learn the detection and identification of human emotions from experience

[1, 2, 3, 4, 5, 6]. Image is the most used modality in emotion analysis [1]. The exten-

sive research in image processing and facial emotion analysis led to the development of

highly accurate systems for the detection and recognition of facial emotions [7, 8, 9].

These systems were tested on standard datasets with many subjects (individuals) and

classes (emotional states) [1].

Emotion analysis can be useful in numerous application such as customer service to

detect, frustrated users (which can be automatically forwarded to managers), con-

fused/confident speakers in debates, and truth/lies. In these settings, the vocal in-

formation might be more accessible than images. Therefore, the need to develop
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methods to detect and recognize emotion from speech becomes essential for such ap-

plications. In contrast to facial emotion, the analysis of emotional speech has not

met a wide success due to few challenges [5]. The challenges faced by researchers to

address speech emotion analysis can be categorized into three main challenges.

The first challenge is the choice of suitable acoustic features to capture emotion in

speech. Various features have been used in speech emotion analysis [1, 3, 10, 4]. These

features are typically categorized into three groups namely: Excitation Source, Vocal

Tract, and Prosodic Features. The main challenge is choosing the right set of features

to represent the different emotional states. Emotion is a complex notion that depends

on several factors such as pitch, speech rate, and tone and there is no acoustic feature

that can integrate all these factors. Consequently, researchers explored the selection

and combination of various acoustic features to improve the representation of human

emotions in speech [1, 3, 4, 10].

The second challenge is the design of an appropriate classifier/Learning Model that

is able to classify unforseen instances. As discussed above, various acoustic feature

extraction algorithms have been proposed in the literature. Those features have

different contexts, meanings, and configurations. The main challenge in building a

classifier/Learning Model scheme is handling and combining the heterogeneous struc-

ture of those acoustic features efficiently.

The third issue is the proper preparation of a corpus of emotional speech for the

evaluation of the system’s performances. Emotion has a range of meanings, and it

is important for the dataset to be clear where it stands in relation to the various

emotional states and qualities to which the term is applied. For instance, a person

who develops dataset A might have a different point of view about emotions than

a person who develops dataset B. Various datasets have been proposed in the lit-

erature such as LDC Emotional Prosody Speech and Transcript(English) [2], Berlin

2



Emotional Database (German) [11], and Danish Emotional Database (Danish) [12].

One of the main challenges in building a speech emotion detection and/or recognition

system is generalizing its performance for datasets with different configurations and

languages.

With those challenges in mind, we seek to address and propose novel solutions to

some of these issues. Although the work in this thesis is mainly focused on emotion

analysis from speech, some of the contributions are easily generalized to other type

of time series data as long as the same assumptions are met.

The main contribution of this thesis consists of the development of a novel feature

mapping framework that maps temporal speech data into global descriptors that inte-

grate the temporal information from the original sequence. In the classic approaches,

temporal speech data is mapped into a static global descriptor before analysis and

classification. This often results in the loss of temporal ordering from the original

sequence. Emotion is a succession of acoustic events. By discarding the temporal or-

dering of these events in the mapping, the classic approaches cannot detect acoustic

patterns that lead to a certain emotion.

The proposed framework includes three mapping algorithms. These algorithms inte-

grate the temporal information implicitly and explicitly in the descriptor’s represen-

tation.

In the first algorithm, the Temporal Averaging Algorithm, the data is averaged using

leaky integrators [13] to produce a global descriptor that implicitly integrates the

temporal information of the original sequence.

In order to integrate the discrimination between classes in the mapping, we propose

the Temporal Response Averaging Algorithm which combines the temporal averag-

ing step of the previous algorithm and unsupervised learning to produce data driven

temporal contextual descriptors.
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The third algorithm, the Temporal Contextual Trajectory Algorithm, maps a tem-

poral sequence into an ordered trajectory representing the behavior over time of the

input utterance on a 2-D map of emotions. The temporal information is integrated

explicitly in the descriptor which makes it easier to monitor emotions in long speeches.

The proposed mapping framework maps speech data of different length to the same

equivalent representation which alleviates the problem of dealing with variable length

temporal sequences. This is advantageous in real time setting where the size of the

analysis window can be variable.

Another contribution of this thesis is the development of a novel data-driven emo-

tion detection and recognition system that integrates the proposed framework. The

goal of such system is to index speech databases to facilitate the classification and

retrieval of emotions. The proposed system uses labelled emotional training data to

estimate a learning model that is able to categorize unforseen speech data into one of

the predefined emotions. The proposed system contains 4 main components. In the

first step, preprocessing, the speech data is normalized with respect to the training

data. In the feature extraction step, a set of acoustic features are extracted in order

to reduce the size of the data for the subsequent steps while capturing the relevant

emotional information. The proposed system works with any number of acoustic

features. In the third step, the temporal feature representations of the speech data

are mapped into global descriptors. The new descriptors are used in the subsequent

steps of the system. In this thesis, the proposed framework is used as the feature

mapping block of the system. In the final step, decision, the different descriptors of

the speech data are independently classified then combined using score level fusion

to produce a global decison/emotion for the input speech. In this thesis, we derive,

use, and compare two score level fusion schemes.

In this work, we test the performances of the proposed system using two datasets.
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The first, the Berlin Emotional Dataset, is an acted corpus. In this scenario, the

emotional speech is acted by subjects in a professional manner. The actor is asked to

speak a transcript with a predefined emotion.

The second dataset is an authentic dataset. In this scenario, the emotional speech

is naturally recorded from spontaneous people in real life situations. Such situations

include customer service calls, audio from video recordings in public places, and 911

calls. For that purpose, we have created and labelled a collection of debates. The

proposed corpus is one of the first initiatives in the emotion analysis from speech

literature.

The rest of this thesis is organized as follow. In the second chapter, we provide an ex-

tensive overview of the various steps and methodologies used in emotion analysis from

speech. In the third chapter, we introduce the proposed framework and the proposed

emotion detection and recognition system. In the fourth and fifth chapters, we evalu-

ate the performances of the proposed work using two datasets. Chapter 6 highlights

the contributions of this work and provides potential future research directions.
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CHAPTER 2

RELATED WORK

In this chapter, we provide an overview of the various steps and methodologies

used in emotion analysis from speech. After explaining definitions and modalities

of emotion expressions, We start by outlining commonly used emotional datasets

in the literature of emotion analysis from speech. Second, we review widely used

preprocessing methods. Third, we outline standard acoustic features. Next, we review

common feature mapping techniques used in speech analysis. Finally, we outline

commonly used classifiers in the literature and validation techniques.

2.1 Emotion

2.1.1 Defining Emotion

Various definitions of emotion have been proposed in many fields such as psy-

chology, psychiatry and, physiology. We researched definitions from various disci-

plines and we chose to adopt the following one:

In psychology, emotion is often defined as a complex state of feeling that results in

physical and psychological changes that influence thought and behavior. Emotionality

is associated with a range of psychological phenomena including temperament, per-

sonality, mood and motivation. About.com [14]. Last seen on 11/10/2014.

So how do we quantify these psychological changes? Emotions are personal. Research

shows that humans can classify other people’s emotions with an accuracy of 60% [15].

Emotions are expressed in different manners depending on factors such as sex, age,
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language, and culture. While yelling is a sign of anger and frustration in some cul-

tures, in other cases, being loud is part of the culture itself. Language also plays a

big role in emotions. For instance, the standard speech rate of Chinese language is

faster than English. Moreover, speaking fast in English is usually a sign of worry and

fear. People that aren’t fluent in a specific language typically have a harder time to

classify emotions. Consequently, teaching computers to detect emotion seems more

challenging.

Emotions can be expressed in different modalities/sensors:

• Voice (speech): Humans communicate with each other mainly through speech.

Typically, the speech conveys the intended message along with the emotional

state of the speaker. Parameters such as tone, pitch, energy, and speech rate are

strongly correlated with the emotional state of the speaker. In this modality, the

emotional information is extracted from the speech signal of the input utterance.

• Images (Facial expressions): Facial expressions are also used by humans along

with speech to convey, enrich, or emphasize any emotional state. Image is the

most used modality in emotion analysis [1]. That is due to the extensive research

in image processing and facial emotion analysis which led to the development of

highly accurate systems for the detection and recognition of facial emotions [7, 8,

9]. In this case, the facial expressions of the speaker are analyzed using image

processing and computer vision techniques in order to extract the emotional

state of the speaker.

• Video (actions): Humans also convey emotional information using body gestures

such as shaking head and/or hand. In this modality, the motion of the speaker

is analyzed from the input video in order to extract the emotional state of the

speaker.
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• Physiological signals (EEG, EKG signals): Research has showed that the emo-

tional state of humans is correlated with the EEG and EKG signals. In this

case, the two signals are recorded and the emotional information of the speaker

is extracted from the signals.

Choosing which modality to use to analyze emotions is a crucial decision. Due to

many practical limitations, these modalities are rarely available at the same time. The

choice of the appropriate modality depends mainly on the application and availability

of the sensors. In some applications, the different modalities (when available) are

combined in order to improve the analysis of emotions.

In other settings, the vocal information might be more accessible than images. In

fact, nowadays, voice sensors are present in any mobile device. However, in contrast

to facial emotions, the analysis of emotional speech has not met a wide success due

to few challenges [5]. In this this, we focus on emotion analysis from speech using

training computational models in order to tackle some of these challenges.

2.2 Emotion Analysis From Speech

A standard data driven speech emotion analysis system is decomposed into

five main steps: 1) speech preprocessing, 2) feature extraction and selection, 3) fea-

ture mapping, 4) learning and classification, and 5) validation. An illustrative block

diagram of a standard emotion analysis system is shown in figure 2.1. In this thesis,

we mostly adopt this architecture.

The input to the system is a collection of annotated speech segments expressing var-

ious emotions.

First, preprocessing is applied in order to decrease the influence of speaker variability,

background noise, and recording conditions on the subsequent steps of the system.

Second, a set of acoustic features is extracted from each audio segment. The goal
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of this step is to reduce the size of the data used for analysis. The chosen features

must be representative of the underlying emotion. After feature extraction, some of

the systems proposed in the literature go through a feature selection step [10]. The

goal is to identify irrelevant features and eliminate their contribution in the decision

making.

In the mapping step, the feature representation of each audio segment is mapped into

a global descriptor which is representative of the entire speech. The new descriptor

is used in the subsequent steps.

Next, the corpus is divided into training and testing sets. The training set is labeled

and used by the classification scheme to estimate the parameters of a learning func-

tion that identifies the emotion of any given speech segment.

In the validation step, the testing set is used to evaluate and rate the performance of

the classification scheme. In the next section, we review the literature of each step in

details.

Figure 2.1: Architecture of a Standard Emotion Detection and Recognition System
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2.2.1 Emotional Datasets

Emotion has a range of meanings, and it is crucial for the dataset to be clear

where it stands in relation to the various emotional states. For instance, a person

who develops dataset A might have a different point of view about emotions than a

person who develops dataset B. The choice of an appropriate dataset for training

computational models is fundamental. The data must be representative of the behav-

iors observed in the real application but also large enough, with sufficient variability

of emotional expressions, including complex, mixed and shaded emotions. Likewise,

expressions of emotions are best when collected as they occur in everyday actions and

interactions rather than acted situations. Spontaneous emotions are hard to collect,

to annotate, and to distribute due to privacy problems.

The proper preparation of an emotional speech database is a challenging task. There

are various factors to be considered when selecting the dataset.

• Real vs. Acted emotions

• Number of emotions used in the dataset

• The parameters and the configuration of subjects such as number, gender (male,

female, kids, seniors), and speech rate.

• Balanced vs. Unbalanced samples

Various datasets have been used in the literature[3, 16, 17, 18, 19, 2, 12, 11]. Most of

the databases share the following emotions: anger, joy, sadness, surprise, boredom,

disgust, and neutral [20]. There are 3 categories of datasets used in speech emotion

analysis. These are acted, authentic or elicited emotional datasets.

• Acted Datasets: In this scenario, the emotional speech is acted by subjects in a

professional manner. The actor is asked to speak a transcript with a predefined

emotion. The Berlin Emotional Dataset [11] is an example of such corpus.
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• Authentic Datasets: In this scenario, the emotional speech is naturally recorded

from spontaneous people in real life situations. Such situations include customer

service calls, audio from video recordings in public places, and 911 calls. The

Vera-Am-Mittag (VAM) dataset [21] is an example of such corpus.

• Elicited Datasets: In this scenario, the emotional speech is induced with self-

report instead of labeling. The emotions are provoked and experts label the

utterances. The elicited speech is neither authentic nor acted. The Speech

Under Stimulated and Actual Stress (SUSAS) dataset is an example of such

corpus [3].

A good review of the three different types of datasets has been presented in [11].

Table 2.1 contains a list of commonly used datasets. At the early stages of emotion

analysis, acted emotional datasets were the standard used in the literature. Gradually,

the focus shifted towards more realistic datasets since acted ones simplify the problem

of speech emotion analysis. Unfortunately, authentic datasets are harder to obtain

due to privacy issues.

TABLE 2.1

A List of Common Datasets Used in Speech Emotion Analysis.

Name Type Number of Emotions Configuration
Berlin Emotional Database Acted 6 5 Males, 5 females

VAM Authentic 5 19 Males, 13 females
SUSAS Elicited 5 19 Males, 13 females

2.3 Notation

The starting point of any speech emotion analysis system is a collection of

speech utterances. Let M denotes the number of unique emotions in the collection.

Let x denotes the audio signal of any utterance in the corpus.
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Typically, audio analysis is performed at the frame level. That is, the audio signal x

is decomposed into overlapping frames where the frame size and overlap are fixed by

the system (Typically, 10 to 100 ms duration is used as a frame size).

Frame level processing has two advantages. First, it leads to a more efficient process

since the analysis is performed on short term audio signals. Second, the audio signal

of the entire utterance is typically a non-stationary time series whose statistical prop-

erties depend on time. By using frame level analysis, the audio signal within each

frame is stationary and the underlying information can be extracted more reliably.

Let xi denotes the ith frame extracted from x and N denotes the number of frames.

Each utterance in the corpus have a variable length. Thus, N is variable from one

utterance to another. For each frame xi, 1 ≤ i ≤ N , a set of acoustic features is

extracted. Let Xi, denotes the feature representation of xi of dimension d. Thus, x is

represented by a time series of feature row vectors X = (Xij, 1 ≤ i ≤ N, 1 ≤ j ≤ d).

Figure 2.2 depicts the process of window decomposition of an input audio signal.

Figure 2.2: Window Decomposition of an Audio Signal.
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2.4 Speech Preprocessing

Preprocessing is an important step in every speech analysis system.

First, corpses are typically biased by the variability of the different subjects and

the recording conditions. Techniques such as speaker normalization [22] are used to

decrease the influence of such factors.

Second, the audio signals are typically degraded by the background noise. Noise

corrupts the signal and consequently deteriorates the performance of the system in

the subsequent steps. Techniques such as spectral substraction [23] are used for noise

reduction.

Various speech preprocessing techniques have been proposed in the literature [24]. In

the next subsections, we present various preprocessing methods widely used in speech

analysis.

2.4.1 Speaker Normalization

Speaker normalization is an acoustic preprocessing technique that reduces the

influence of speaker variability. Ideally, emotion analysis systems should detect and

recognize emotions regardless of the identity and characteristics of the underlying

speaker.

In speaker normalization, the difference observed in the neutral subset of the dataset

(the utterances labeled as neutral) is estimated then removed across all the speakers.

The normalization parameters are then applied to the rest of the dataset (the utter-

ances labeled as emotional). Thus, the discrimination between the different emotions

is still preserved. This normalization is applied for each speaker separately. Two

normalization techniques are widely used in speaker normalization.

Energy Normalization: The speech signals are scaled such that the average mean

square energy of the neutral reference database across all speakers and the neutral
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subset in the emotional database are the same for each speaker [22]. Let Eref and

Es
ref denote respectively the average root mean square energy of the neutral reference

database across all speakers, and the average RMS energy of the neutral subset in the

emotional database for speaker s. The scaling factor Ss
energy for the normalization is

defined as

Ss
energy =

Eref

Es
ref

(1)

The scaling factor Ss
energy in equation (1) is applied to each speaker s in the corpus.

After normalization, the neutral samples of each speaker in the databases will have

equal RMS value.

Given an audio signal x in the corpus, the new normalized signal xnew is computed

as follow

xnew(n) = x(n)× Ss
energy (2)

The goal of this normalization is to reduce the influence of the different recording

settings.

Pitch Normalization: Pitch is a widely used feature in emotion analysis [25, 26, 27].

The pitch is defined as the quality of a sound governed by the rate of vibrations pro-

ducing it [28]. In other words, the degree of highness or lowness of a tone. Typically,

pitch values have a high variability between different speakers. Consequently, the

analysis in the subsequent steps are typically influenced by the pitch/identity of the

underlying speaker. To overcome this issue, a pitch normalization can be applied [22].

That is, the pitch contour of each speaker in the database is normalized. Similarly to

the previous normalization method, the average pitch across speakers in the neutral

reference database (F0ref ) and the average pitch for each speaker (F0s
ref ) are esti-

mated. We discuss and review various methods for pitch extraction in section 4.2.3.
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Then, we compute and apply the scaling factor Ss
pitch defined as

Ss
pitch =

F0ref

F0s
ref

(3)

Ss
pitch (In equation (3)) is used to scale the pitch contour of each speaker. After nor-

malization, the neutral samples of each speaker in the databases will have equal pitch

mean value. The goal of this normalization is to reduce the influence of the speaker

identity.

By applying both normalization methods, we assume that the identities of the speak-

ers in the dataset are known and the neural speech is available for each speaker.

For real-case applications, this assumption is reasonable when either the speakers are

known or a few seconds of their neutral speech can be prerecorded.

2.4.2 Signal Rectification

The Rectification of a signal consists in removing negative components. Two

types of signal rectification are widely used namely full wave rectification and half

wave rectification. Equations (4) and (5) represent respectively the full wave and half

wave rectifications applied on an input signal x.

xfullwave[n] = abs(x[n]) (4)

xhalfwave[n] =


abs(x[n]), if x[n] ≥ 0

0, elsewhere

(5)

Rectification is an essential step in many audio analysis tasks and feature extraction

algorithms. Removing negative components is a crucial step in many feature extrac-

tion and speech analysis algorithms as it reduces the noise energy in the audio signal

[29].
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2.4.3 Spectral Substraction

The background noise is the most common factor degrading the quality and

intelligibility of speech in recordings. Noise reduction techniques intend to lower the

noise level without affecting the quality of the speech signal. Spectral substraction is

a widely used method for noise reduction in speech analysis[23]. In this method, an

average signal spectrum and an average noise spectrum are estimated from the audio

signals and subtracted from each other, so that average signal-to-noise ratio (SNR) is

improved. The mathematical equations and details of implementation of the spectral

substraction algorithm are provided in appendix A.

2.5 Feature Extraction and Selection

After preprocessing, a set of acoustic features are extracted in order to reduce

the size of the data for the subsequent steps. The chosen features must capture the

different semantics of emotions. Choosing the right set of features to represent the

different emotions is a crucial step for the success of the whole system. Typically, a

set of acoustic features is used and combined in emotion analysis.

Different taxonomies exist for the categorization of acoustic features in the literature

of emotion analysis. In [5], the authors classified audio features into three different

categories namely: source features, vocal tract features, and prosodic features. In this

thesis, we adopt this taxonomy. In the next subsections, we review these different

categories of acoustic features.

2.5.1 Excitation Source Features

Source features are acoustic features extracted from excitation source signal

[5]. The excitation source signal is extracted from speech by removing the vocal tract

(VT) characteristics. The vocal tract is defined as the cavity in human beings and
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animals that is responsible for filtering sounds produced at the sound source (larynx

in mammals; syrinx in birds). In order to remove the VT characteristics, first, linear

prediction coefficients (LPCs) are used to estimate the VT information. Second, in-

verse filtering is used to remove the estimated VT information from the input signal.

The resulting signal is the linear prediction (LP residual, and it contains mostly the

information about the excitation source) [3, 30]. The details of computation of the LP

residual signal are provided in appendix A. Features extracted from the LP residual

are known as source features.

Various studies have been conducted on the use of excitation source features for

speech analysis which showed that those features contains information such as mes-

sage, speaker, language, and emotion information. In [6], the authors investigated the

use of source features for emotion analysis. First, they ran a linear prediction analysis

to estimate the LP residual which is also used to compute the Glottal volume velocity

signal (GVV). The GVV contains important information about the excitation source.

In the next step, they identified epochs which are defined as the instants of glottal

closure where the signal to noise ratio of the signal is high. They proposed a set of

features such as the sequence of LP residual samples and their phase information, pa-

rameters of epochs and their dynamics at syllable and utterance levels, and samples

of GVV signal and its parameters. The authors used auto-associative neural networks

(AANN) [31] and support vector machines (SVM) [32, 33] as classification scheme.

Using two datasets namely the Telugu [34] and Berlin [3, 11, 12, 5, 35] emotion speech

corpora, they showed that the combination of the different excitation sources features

achieves competitive performances with other types of acoustic features used in the

literature.

In [36], the authors showed that pitch information extracted from LP residual is ef-

ficient for speaker recognition. In [37], the authors used energy features extracted
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from LP residual for vowel and speaker recognition. Cepstral features derived from

LP residual signal are used in [38] for speaker analysis.

Despite their good performances and wide use in different speech analysis tasks, ex-

citation sources features are not widely used in the literature of emotion analysis via

speech [6]. This is due to various reasons. First, it is due to the popularity of spec-

tral features (Explained in the section 2.5.2). Second, emotion is present in the LP

residual signal in the form of higher order relations and capturing those relations is

still unsolved [6].

2.5.2 Vocal Tract Features

The extraction of vocal tract features is different from excitation source fea-

tures. Vocal tract information are well defined in the frequency domain. Conse-

quently, most of the VT features are computed based on fourier transform [39] and

spectral analysis [40].

The extraction of vocal tract features follows these standard steps.

Framing: As discussed in the previous sections, the input audio signal is decomposed

into overlapping small audio signals of length in the order of milliseconds. Short

time segments are considered as stationary. Thus, standard signal processing

techniques can be applied to capture the underlying information.

Spectral Analysis: For each frame in the input audio signal, spectral analysis tech-

niques are applied to transform the signal from time to frequency domain.

Statistics from the power spectrum are used as acoustic features. Examples

include the spectral centroid, spectral roll-off, and spectral flux [29].

Sub-band Analysis: In order to extract more complex features, a sub-band analysis

is performed by decomposing the power spectrum into sub-bands and applying
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feature extraction to each sub-band. Examples include the Mel Frequency Cep-

strum Coefficients [35, 41, 42, 43].

Vocal tract features are widely used in emotion analysis. Mel Frequency Cepstrum

Coefficients (MFCCs), Linear Predictive Cepstral Coefficients (LPCCs), Perceptual

Linear Prediction Coefficients (PLPCs), and formant features are the most used vocal

tract features [35].

In [41], the authors proposed an emotion recognition system based on MFCCs,

LPCCs, RASTA PLP coefficients and LFPCs. They tested their approach using

a Mandarin emotional dataset and showed that vocal tract features are efficient for

emotion analysis. In [42], the authors used log frequency power coefficients and a four

stage ergodic hidden markov model (HMM) to classify emotions into six classes. In

[43], the authors reported that MFCC outperform pitch features in emotion recogni-

tion.

2.5.3 Prosodic Features

Prosody is responsible for structuring the flow of speech. Duration, tone, and

intensity are important characteristics in the production of speech and makes human

speech more natural. The prosody is represented acoustically by the patterns of

duration, tone, and energy. Consequently, prosodic features represent the perceptual

speech properties. Human emotional expressiveness (i.e. emotionally excited behavior

of articulators) can be captured through prosodic features. The prosody is manifested

at four different levels namely: Linguistic intention, articulatory, acoustic realization,

and perceptual level.

• Linguistic level: Prosody is the rhythm, stress, and intonation of speech. For

example, a question usually have a different tone than a statement.

• Articulatory level: Prosody is manifested as a series of articulatory movements.
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• Acoustic level: Prosody can be quantified using analysis of acoustic parameters

such as fundamental frequency (F0), intensity, and duration. For instance, a

stressed speaker will have higher fundamental frequency, greater amplitude, and

longer duration than an unstressed speaker.

• Perceptual level: Prosody is quantified through perceptual processing from the

listener via subjective experience such as pauses, length, melody and loudness

of the perceived speech.

Pitch, energy, duration, and their derivatives are the most used prosodic features in

emotion analysis[3]. Statistics computed from these features are used to discriminate

between emotion states [16, 17]. In particular, pitch and intensity seem to be corre-

lated to the amount of energy required to express a certain emotion [20]. In [19], the

authors proposed an approach for emotion recognition. Initially, they started with

86 prosodic features. After feature selection, they chose the top 6 features. They

reported 92% accuracy on a basque emotional database. Energy, pitch and duration

based features are used in [18] to classify 6 emotions in Mandarin language. The

authors reported 88% accuracy using SVM and genetic algorithms.

2.6 Feature Mapping

After feature extraction, the feature representation of each utterance is mapped

into a global descriptor which is representative of the entire utterance. The new de-

scriptor is used in the subsequent steps of the system. The most used mapping

approach in emotion analysis computes statistics over the entire sequence and use

it as a global descriptor [10, 20, 15, 3, 4]. The resulting descriptor is used for anal-

ysis, learning, and classification. We refer to this approach by the Statistics Based

Mapping Algorithm (SBMA). As discussed in the previous section, acoustic features

are extracted from short term analysis windows. Thus, an audio utterance is repre-
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sented by a multivariate time series. The SBMA works as follow: Given a sequence

of features X = (Xij, 1 ≤ i ≤ N, 1 ≤ j ≤ d) of N rows of temporal data with d

columns. For each feature j where {1 ≤ j ≤ d}, S statistics such as min, max, mean,

median, and standard deviation are computed over the whole sequence resulting in a

S×d representation. A global feature vector is formed by concatenating the statistics

matrix into a vector resulting into a 1× (S× d) representation. Figure 2.3 represents

the different steps of the Statistics Based Mapping Algorithm.

Figure 2.3: Architecture of the Statistics Based Mapping Algorithm (SBMA) .

2.7 Classification and Learning

After feature extraction and mapping, the corpus is split into training and

testing sets. The training set is used by a classifier to learn a set of classification

rules. A classifier is a function f that maps an input feature representation X to

a predefined emotion. In our case, the classification function take as an input the

descriptor of a speech segment and it returns the predicted emotion of the speaker.

Classifiers can be categorized into linear and non-linear. In the next sections, we will

review the literature of both categories.
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2.7.1 Linear Classifiers

A linear classifier bases its classification decision on a linear combination of

input features. Let Y = {Yi, 1 ≤ i ≤ N} denotes an input feature vector of dimension

d. The output score of the classifier is given by

y = f(w.Y ) = f(
d∑

j=1

wj.Yj) (6)

In (6), w denotes the weight vector which is estimated from the training data. f

denotes the classification function, Yj denotes the jth value of Y . Linear classifiers

compute a linear separator between classes in the feature space.

Various linear classifiers have been proposed in the literature [44, 45]. Examples of

linear classifiers are the Naive Bayes Classifier [46], Perceptron classifiers [47].

Linear classifiers are usually governed by few parameters. These parameters can be

estimated using 2 different approaches namely generative and discriminative. The first

approach uses probability density functions. Examples of such classifiers are the Naive

Bayes classifier, linear discriminant analysis, Fischer’s linear discriminant analysis

[48]. On the other hand, the second types of classifiers adopt a non probabilistic

approach but instead works on discriminative properties of the features. Examples of

such classifiers are Perceptron classifiers [47], linear support vector machines [32, 33].

2.7.2 Non-Linear Classifiers

Linear classifiers are straight-forward however they are not efficient in real cases

since data usually discontinue the class borders. To overcome this issue, a non-linear

transformation is first applied to the input feature vectors. The goal of this step is

to project the data into a new feature space where the problem is linearly separable.

The second step is to compute the linear boundaries in the new feature space.

These two steps constitute the main idea of non-linear classifiers. Non-linear classifiers
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are defined as follow

y = f(w.h(Y )) = f(
d∑

j=1

wj.h(Yj)) (7)

In (7), w denotes the weight vector which is estimated from the training data. f

denotes the classification function. Yj denotes the jth value of Y . h is the transfor-

mation function.

Various non-linear classifiers have been proposed in the literature [45]. Examples of

non-linear classifiers are Hidden Markov model [49, 50], Gaussian mixture models

(GMM) [51, 52], non-linear support vector machines [32, 33], neural networks [31],

and decision trees [53].

Non-linear classifiers are more complex to implement which results into a higher com-

putational complexity. Despite that, they are more used in emotion analysis literature

than linear classifiers due to the non-linear property of speech data.

2.8 Fusion

The fusion of different features or classifiers improves the overall performances

of any system. This is due to two main reasons.

As discussed in section 2.5, despite the large number of proposed features in the liter-

ature, emotion is still a complex notion that depends on several factors and there is no

feature that represent all the aspects of emotion. Consequently, most of the proposed

methods in the literature combine features from the three categories to improve the

representation, detection, and recognition of human emotions [35, 20, 19, 18, 43, 16].

This is also the case for other disciplines such as character recognition, speech recog-

nition, etc.

As discussed in section 2.7, many classifiers have been proposed in the literature.

These classifiers are based on different theories and it was shown that their perfor-

mances overlap. Thus, the fusion of classifiers with different structures and configu-
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rations improves the overall performance of the system.

Different taxonomies exist for Fusion techniques [54]. Typically, these fusion tech-

niques are divided into four different categories namely: data level, feature level, score

or soft level, and decision or hard level fusion. These levels are closely related to the

abstraction level of the data throughout the system. Data level fusion is rarely used

in emotion and speech analysis. Thus, we do not discuss it further in this thesis.

In the next subsections, we review the other three categories.

2.8.1 Feature Level Fusion

In feature level fusion, the different acoustic features are typically combined to

form a global feature vector by applying appropriate feature normalization, transfor-

mation, and concatenation.

The resulting global feature vector is fed to a classifier for learning and classifica-

tion. The advantage of applying feature level fusion is the decrease of computational

complexity. Instead of using F classifiers, the F acoustic features are first combined

into one feature set and one single classifier is used for learning. A simple and widely

used feature level fusion approach is to concatenate the different acoustic features into

one single feature vector[55, 56]. In [55], the authors applied simple concatenation

to combine acoustic features and improve the overall classification performance. The

disadvantage of feature level fusion is that the system do not profit from the strengths

of the individual features.

In [57], the authors performed a comparison between feature level and decision level

fusion. The authors extracted acoustic and linguistic features. The authors applied

decision level fusion by combining the decision of the acoustic and linguistic classifiers

using decision trees. Then, they applied feature-level fusion by concatenating both

sets of features before learning. They showed that the results achieved by the clas-
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sifiers using the parameters merged at feature level outperformed the classification

results of the decision-level fusion scheme.

2.8.2 Score Level Fusion

In score level fusion, each classifier computes a score vector for each data sam-

ple. The score vector of length M represents the confidence degree that the input

sample belong to each of the M classes. The score vectors output by the different

classifiers are combined in order to compute a global score vector.

Typically, statistics such as max, mean, or median computed from the score vectors

of the different classifiers are used as the global vector. Score level fusion is the most

common category due to the ease of accessing scores output by classifiers. Moreover,

score level fusion can applied to classifiers that are density, neighborhood or distance

based such as K-NN [54]. Typically, a transformation is first applied on these classi-

fiers to transform their outputs into a score representation. Then, score level fusion is

applied. An example of score level fusion methods is the Bayesian Fusion. In [58, 59],

the authors introduced two statistical frameworks for score level fusion of classifiers

based on the Bayesian theorem. The first framework proposed a fusion method for

classifiers that use distinct representation in the input layer. In the second frame-

work, they proposed a fusion scheme for classifiers that have a shared representation.

Finally, they showed that the two frameworks can also be used for the fusion of clas-

sifiers that have a subset of the input representation as distinct and the other subset

of the input as shared between the classifiers.

In [54], the authors introduced an approach for the fusion of Bayes classifiers that

could be also extended to other types of classifiers such as K-NN and Neural Networks.
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2.8.3 Decision Level Fusion

Decision level fusion can be considered as a higher abstraction of score level

fusion. In score level fusion, the classifier outputs a score vector for each input sample.

In decision level fusion, the score vector of an input sample is mapped to a final label.

Thus, each classifier attributes a final label or decision for the input utterance. Then,

the decision of the different classifiers are combined in order to compute a final decision

label. A simple and widely used approach is to choose the majority class among the

different classifiers [54, 57, 60]. Other involved approaches the Borda Count [61] or

simply use the different decisions by the classifiers to form a new feature vector that

is fed to a classifier for learning and final decision. A detailed review of decision level

fusion techniques can be found in [62].

2.9 Validation

2.9.1 Performance Metrics

As discussed in the previous sections, various classification schemes and datasets

have been proposed in the emotion analysis literature. First, we need a set of ap-

propriate measures of performance that permit easy analysis of the performance of

the proposed system and how it compares across datasets and other state of the art

techniques.

Measures of performance must satisfy several criteria in order to make the analysis

logical. These criteria are

• Coherence: The performance measures need to capture the aspect of perfor-

mance of interest.

• Maturity: The performance measures need to be widely used by the community

so it provides a way to analyze and compare the proposed system against state

26



of the art methods from the literature.

• Computational complexity: The performance measures must be computation-

ally inexpensive so they can be applied on big datasets.

Various studies have been conducted on performance measures for supervised learn-

ing algorithms [63]. In the next subsections, we review commonly used performance

measures in the literature.

2.9.1.1 Misclassification Counts

It is the standard performance measure of a classifier. The predicted labels

of the validation or testing data are compared its true label. Two statistics namely

false negative (FN) and false positive (FP) can be derived. The FN and FP and their

complements, namely true positive (TP) and true negative (TN), can be used to form

the confusion matrix and error rate (ER = FN+FP
FN+FP+TP+TN

) defined also as the trace

of the confusion matrix divided by the number of examples.

2.9.1.2 ROC Curves

Classifiers can trade-off one type of misclassification for another. This trade-

off is typically represented by the receiver operation characteristic (ROC) curve. In

the ROC curve, the true positive rate (Sensitivity) is plotted in function of the false

positive rate (100-Specificity) for different cut-off points of a parameter. Thus, it

provides the tradeoff between sensitivity and specificity (any increase in sensitivity will

be accompanied by a decrease in specificity). Each point on the ROC curve represents

a sensitivity/specificity pair corresponding to a particular decision threshold. The

area under the ROC curve (AUC) is a measure of how well a parameter can distinguish

between classes. Figure 2.4 represents the comparison of the ROC curves of two
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classifiers. From the figure, we can conclude that the TCT and TRAA classifiers

outperform the TAA classier. Moreover, the performances of the TRAA and TCT

are correlated.

Figure 2.4: Comparison of the ROC curves of three classifiers
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CHAPTER 3

EMOTION ANALYSIS USING TEMPORAL CONTEXTUAL

DESCRIPTORS

In this chapter, we introduce our feature mapping framework. First, we discuss

the motivation behind our approach. Second, we outline the proposed framework.

Finally, we use the proposed feature mapping framework to build a speech emotion

detection and recognition system that is able to index and classify human emotions

from speech.

3.1 Motivations

The current trends in technology suggest that the next generation of services

and devices allows smarter customization and automatic context recognition. Com-

puters learn the behavior of the users and can offer them customized services depend-

ing on the context, location, and preferences.

Emotion analysis systems must be practical for real time services which will enable

them to be used in many contextual applications such as SIRI where an emotion

recognition system will be able to provide a deeper connection between the human

and the phone based on the emotional state of the user. It can also be used in call

centers where calls are logged and emotion analysis can be used to detect and mon-

itor negative emotions from clients. Emotion analysis can also be used to monitor

emotions in debates in order to detect confident/confused speakers.

Ideally, emotion detection and recognition systems should work simultaneously with
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speech recognition systems to recognize speech and emotion at the same time. That

will lead to develop smart speech recognizers that are emotion dependent.

Most of the methods proposed in the literature are focused on accuracy rather than

practicality. One of the long-standing criticisms of academic research is that the ideas

and techniques developed are simply not practical for real services which can be em-

bedded in tiny devices and works in real time. There are few criteria that must be con-

sidered before developing emotion detection and recognition systems. These criteria

are computational complexity, simplicity of the solution, and efficiency. As discussed

in the previous chapter, acoustic features are extracted from short term analysis win-

dows. Thus, an audio segment is represented by an ordered (in time) sequence of

features or a multivariate time series. Typically, the sequence is further processed to

compute a global descriptor representative of the entire utterance/sequence. In the

previous chapter, we introduced the Statistics Based Mapping Algorithm (SBMA), a

widely used mapping algorithms in the literature of speech emotion analysis.

The Statistics Based Mapping Algorithm has various limitations.

First, the mapping of X to a global descriptor results in the loss of temporal ordering

of the original sequence. Emotion is considered as a gradual acoustic process or a

succession of acoustic events. By discarding the temporal ordering in the mapping,

the Statistics Based Mapping Algorithm cannot detect acoustic patterns that lead to

a certain emotion. Feature mapping algorithms must integrate the temporal order-

ing of sequential data in order to improve the representation of emotion descriptors.

Preserving the temporal ordering proved to be efficient in other speech analysis tasks

such as speech recognition and emotion analysis [64, 13, 65, 56, 66]. This also the case

for other types of time series data. For instance, the temporal ordering in financial

time series data is important in the prediction of the future prices. In fact, the price

fluctuations in the stock market are strongly correlated with the temporal activity of
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the prices.

Second, the Statistics Based Mapping Algorithm is not practical for real time emotion

analysis. In real time settings, segments are rather a continuous stream of speech and

emotion should be analyzed continuously. The Statistics Based Mapping Algorithm

assumes that the input sequence contains only one emotion. The main challenge of

using The Statistics Based Mapping Algorithm in real time settings is the choice of

the segment’s length. If the segment is too short, we risk not having enough informa-

tion to analyze. If the segment is too long, we risk having two or more emotions in

the same segment. In other words, the Statistics Based Mapping Algorithm cannot

detect changes in emotion in long utterances.

Third, the Statistics Based Mapping Algorithm derives each utterance independently.

In [56, 66, 13, 65], the authors showed that data driven feature mapping algorithms

are more efficient in the discrimination between classes.

Motivated by these issues, we introduce a feature mapping framework. The proposed

framework maps sequential data into global descriptors that integrate the temporal

ordering of the original sequence. The proposed framework uses unsupervised learn-

ing to compute data driven descriptors that can be adapted to real time emotion

analysis. We use the proposed feature mapping framework to build a speech emotion

detection and recognition system. In the next sections, we provide an overview of the

proposed framework and emotion detection and recognition system.

3.2 Overview of The Proposed Feature Mapping Framework

The proposed framework maps a temporal sequence of information into tempo-

ral contextual descriptors. In fact, it can be generalized to any other type of ordering

such as spatial or frequency ordering. It can also be used with other types of time

series data as long as the assumptions of the proposed framework are met. The
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proposed framework decreases the computational complexity by mapping a temporal

sequence of information into a reduced representation while preserving the temporal

information from the original features. In this thesis, we propose three algorithms for

integrating the temporal ordering in the mapping.

In the first algorithm, the Temporal Averaging Algorithm, the data is averaged using

leaky integrators [13] to produce a global descriptor that implicitly integrates the

temporal information of the original sequence.

In order to integrate the discrimination between classes in the mapping, we propose

the Temporal Response Averaging Algorithm which combines the temporal averag-

ing step of the previous algorithm and unsupervised learning to produce data driven

temporal contextual descriptors.

The third algorithm, the Temporal Contextual Trajectory Algorithm, maps a tem-

poral sequence into an ordered trajectory representing the behavior over time of the

input utterance on a 2-D map of emotions. The temporal information is integrated

explicitly in the descriptor which makes it easier to monitor emotions in long speeches.

3.2.1 Notations

Recalling the notations used in section 2.3, an utterance x is represented by

its feature representation X = (Xij, 1 ≤ i ≤ N, 1 ≤ j ≤ d). X represents a sequence

of features ordered in time. In this work, our goal is to integrate the temporal

ordering in the feature representation and map features into temporal contextual

global descriptors and investigate their performances.

The mapping of X into a temporal contextual descriptor can be considered as a
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function MAP defined as follow

<N×d → <E (8)

MAP (X) → Y (9)

In (9), Y denotes the output of mapping X using function MAP . In the next sections,

we introduce three different mapping algorithms.

3.2.2 Temporal Averaging Algorithm

The Temporal Averaging Algorithm consists of a simple averaging of the input

sequence over time. In order to average the sequence, we use leaky integrators [13].

A leaky integrator is a differential equation that is used to describe a system that

takes the integral of an input and gradually leaks a small amount of information over

time. The concept of leaky integrators is inspired from electrical circuit theory where

the voltage of a capacitor would be the integral of the current if the capacitor did not

leak electrons.

In our case, the leaky integrator is used to average the sequence overtime while leaking

some information from the past samples in the computation of newer samples. We

researched leaky integrator functions [67, 13, 68] and we decided to use the function

introduced in [13]. The averaging is a straightforward step and can be performed

using the following equation:

Yi+1 = w.Xi + (1− w).Yi (10)

In (10), Xi denotes the ith feature vector in X. Yi is the ith output vector. w denotes

the rate of leakage or the weighting parameter which controls the size of the memory

associated with past samples. The greater the value of w, the lesser the previous

patterns will contribute in the averaging computation.

After averaging the entire sequence, the vector YN+1 contains temporal information
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about the entire sequence since all data samples contributed to its computation.

Thus, the mapping of X using the Temporal Averaging Algorithm is defined as follows

<N×d → <d (11)

MAP (X) → YN+1 (12)

In (12), YN+1 denotes the temporal average of the entire sequence computed using

equation 10. In the rest of this dissertation, we refer to the mapping of X using the

Temporal Averaging Algorithm by TAA(X). Figure 3.5 represents the different steps

of this approach.

Figure 3.6 represents the comparison of the Temporal Averaging Algorithm Descrip-

tors of a speech utterance spoken in neutral and affective states respectively. The

audio signals of the two utterances are decomposed into overlapping frames. The

frame size is fixed to 40 milliseconds with 50% overlap (That is 20 ms for the hop

size). For each frame, we extract 13 MFCC coefficients. Thus, each utterance is

represented by a sequence of MFCC features. Next, we map the sequences of the

two utterances using the Temporal Averaging Algorithm as described in the previous

paragraph. The memory parameter is set to w = 0.05. After mapping using the

Temporal Averaging Algorithm, the utterance is mapped to a 1 × 13 descriptor. As

it can be seen, the Temporal Averaging Descriptors have a different behavior for each

emotion. We can notice that the neutral and affective segments have similar values

at some MFCC coefficients such as coefficient 1,2,3 and 10 while they have different

values at some other MFCC coefficients 4 to 8. This suggests that the emotional infor-

mation is contained in coefficients 4 to 8. In fact, the MFCC coefficients represent the

power of short term spectrum computed on the mel-scale frequency. In our case, we

computed 13 MFCC coefficients. That means that each MFCC coefficient represent

the power spectrum at a specific frequency range. Different emotions are manifested

at different frequency ranges which explains the different in MFCC coefficients 4 to
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8 in the two segments.

The Temporal Averaging Algorithm maps sequences of different length to the same

equivalent representation which alleviates the problem of dealing with variable length

temporal sequences. It also makes the fusion at the feature level easier since each

feature set is mapped to one feature vector. One possible scenario for fusion is the

concatenation of the different feature sets after mapping. The Temporal Averaging

Algorithm is also computationally efficient since the subsequent steps of the systems

will be performed on YN+1 instead of the sequence X.

The Temporal Averaging Algorithm integrates the temporal ordering implicitly. How-

ever, despite its simplicity, the Temporal Averaging Algorithm does not take into

account the discrimination between emotions. That is, the Temporal Averaging De-

scriptors are not data driven. It is also ambiguous for real time emotion analysis since

it integrates the temporal information implicitly.

Figure 3.5: Architecture of The Temporal Averaging Algorithm.
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Figure 3.6: Comparison of the Temporal Averaging Algorithm Descriptors of a Speech
Utterance Expressed in Neutral and Affective (Anger) State Using the MFCC Fea-
tures.

3.2.3 Temporal Response Averaging Algorithm

The Temporal Response Averaging Algorithm is an extension of the Temporal

Averaging Algorithm. In the latter approach, we averaged the sequence over time to

produce a temporal contextual descriptor using leaky integrators. In the Temporal

Response Averaging Algorithm, each vector in the sequence is mapped using SOMs

then their responses are averaged overtime using leaky integrators [13]. The basic

SOMs algorithm is provided in appendix A. Let Xi denotes the ith feature vector in

X. Let Yi denotes the activity distribution of Xi on a trained SOMs. In this case,

the training data can be used to train the SOMs. After mapping, the sequence X

is represented by Y = (Yi, 1 ≤ i ≤ N). Y is a sequence representing the response

of X on the SOMs. Y is averaged over time to produce a new output Z using leaky

integrators:

Zi+1 = w.Yi + (1− w).Zi (13)
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In (13), Zi denotes the ith output vector. w denotes the rate of the leak or the weight-

ing parameter which controls the size of the memory associated with past samples.

The greater w, the more previous patterns will be forgotten in the averaging compu-

tation.

The vector ZN+1 contains temporal information about the entire sequence since all

data samples contributed to its computation.

Thus, the mapping of X using the Temporal Response Averaging Algorithm is de-

fined as follow:

<N×d → <s2 (14)

MAP (X) → ZN+1 (15)

In (15), Z(N+1) is computed using equation (13). s denotes the size of the SOMs. In

the rest of the thesis, we refer to the mapping of X using the Temporal Response

Averaging Algorithm by TRAA(X). Figure 3.7 displays the different steps of the

Temporal Response Averaging Algorithm.

The computation in equation (15) is thus not only based on the current data sample,

but also on the time average of the responses of previous patterns induced from the

map. The purpose of applying SOMs is to distinguish between different areas in the

feature space which are represented in the output space by different dimensions (Best

Matching Units Activity). The response of each feature vector on the map provides

insights on which region of the map the input vector belongs to. Although the re-

sponses are averaged over time, the dimensionality (which captures the different areas

in the feature space) is saved. Thus, the Temporal Response Averaging Algorithm

is expected to integrate more efficiently the temporal information and achieve better

discrimination power than the Temporal Averaging Algorithm.

Figure 3.8 represents the comparison of the Temporal Response Averaging Algorithm
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Descriptors of the same example in figure 3.6. We used the MFCC features with 13

coefficients. The frame size is set to 40 milliseconds with 50% overlap. The memory

parameter is set to w = 0.05. We used a 7 × 7 map size for the SOMs. Thus, the

Temporal Response Averaging Algorithm maps the sequence of MFCC features into

one feature vector of dimension 49. The response on the SOMS can be computed in

three different ways namely crisp, fuzzy, and kernel. In this example, we used a crisp

response.

As it can be seen, the Temporal Response Averaging Descriptors of the two utterances

have different distributions on the map units. For instance, the neutral utterance have

a high response to other map units where the affective utterance do not have any ac-

tivity and vice versa. Since the Temporal Response Averaging Algorithm is data

driven, it is expected to achieve better discrimination between the different emotions

than the Temporal Averaging Algorithm.

The Temporal Response Averaging Algorithm integrates the temporal ordering im-

plicitly and takes into account the discrimination between classes. However, the

algorithm is still ambiguous since it integrates the temporal information implicitly.

Figure 3.7: Architecture of The Temporal Response Averaging Algorithm.
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Figure 3.8: Comparison of the Temporal Response Averaging Algorithm Descriptors
of a Speech Utterance Expressed in Neutral and Affective (Anger) State Using the
MFCC Features.

3.2.4 Temporal Contextual Trajectory Algorithm

As we pointed out in the previous sections, the Temporal Averaging Algorithm

and the Temporal Response Averaging Algorithm integrates the temporal informa-

tion implicitly. Ideally, the temporal ordering should be integrated explicitly in the

representation. In this section, we introduce the Temporal Contextual Trajectory

Algorithm which uses the topology preserving of SOMs and the continuous nature of

speech to derive data driven descriptors that integrate the temporal ordering explic-

itly and suitable for real time emotion analysis.

Due to topology preserving properties of SOMs, two adjacent vectors on the map are

physically alike [69]. On the other hand, due to the continuous nature of speech, two

consecutive frames are also physically alike. Consequently, their feature representa-
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tions are also similar. During clustering by SOMs, these consecutive feature vectors

are mapped to similar best matching map units on the SOMs. Thus, the sequence

of feature vectors is mapped to an ordered trajectory on the map by SOMs. Each

point in the trajectory represents the coordinates of the best matching unit of the

corresponding feature vector.

Let X denotes the input feature sequence to the SOMs. Let Yi denotes the best

matching unit of the ith feature vector Xi. The feature sequence X = (Xi, 1 ≤ i ≤ N)

is represented by a trajectory of length N . Let Y = ((yi1, yi2), 1 ≤ i ≤ N) denotes

the 2-D trajectory of X on the map.

Figure 3.9 represents the trajectory of a speech segment spoken in neutral state on

a 2-D SOMs. The audio signal is decomposed into overlapping frames. The frame

size is fixed to 40 milliseconds with 50% overlap (That is 20 ms for the hop size).

For each frame, we extract 13 MFCC coefficients. Thus, each segment is represented

by a sequence of MFCC features. Next, we map the sequences of the two utterances

into Y as described in this paragraph. We used a map size of 7 × 7 for the SOMs.

Since the trajectory is ordered in time, we refer to each position i in the trajectory by

epoch i. As it can be seen, the trajectory in figure 3.9 is often long, redundant, and

noisy. In fact, an audio segment of 2 seconds is represented by more than 100 frames

if the frame and hop size are set to 40ms and 20ms respectively. Thus, the length of

its trajectory on the SOMs is 100. On a 7× 7 map size, a trajectory of length 100 is

ambiguous for analysis.

The redundancy is due to the topology preserving property of the SOMs. Since con-

secutive frames are mapped into similar map units and often on the same map unit,

the trajectory suffers from redundancy.

The noise is due to noisy frames which are mapped on random parts of the map and

thus increase the variability of the trajectory.
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Figure 3.9: The Temporal Contextual Trajectory Descriptors of a Speech Utterance
Using the MFCC Features Before Summarization.

To overcome these issues, we propose a novel method to summarize the trajectory,

decrease redundancy, and reduce the contribution of noisy frames. The proposed

method summarizes the trajectory by first decomposing the trajectory into T con-

secutive sub-trajectories. For each sub-trajectory, we compute its center of mass.

In this case, the center of mass is defined as the most frequent position. Since the

sub-trajectories inherent the redundancy, the most frequent position provides a sta-

ble measure for the center of mass and can be used to summarize the sub-trajectory

and capture its dominant local behavior. A summarization of the trajectory is con-
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structed by concatenating the center of mass of the consecutive sub-trajectories. The

temporal ordering is still preserved in the new features since the sub trajectories are

consecutive and ordered in time. Let TCT = ((ti1, ti2), 1 ≤ i ≤ T ) denotes the new

temporal contextual descriptor.

The mapping of X using the Temporal Contextual Trajectory Algorithm is defined

as follow

<N×d → <T×2 (16)

MAP (X) → ((ti1, ti2), 1 ≤ i ≤ T ) (17)

In the rest of this thesis, we refer to the mapping of X using the Temporal Contex-

tual Trajectory Algorithm by TCT (X). Figure 3.10 represents the different steps of

the approach. Figure 3.11 represents the example in figure 3.9 after summarization.

Figure 3.10: Architecture of The Temporal Contextual Trajectory Algorithm.

We used the same parameter settings and we set T = 8 resulting into a summarized

trajectory with 8 epochs. As it can be seen, the summarized trajectory reproduces

the behavior of the original trajectory while decreasing the length and the contribu-

42



tion of noise and redundancy. Figure 3.12 represents the comparison of the Temporal

Figure 3.11: The Trajectory of a Speech Utterance mapped using the Temporal Con-
textual Trajectory Mapping Algorithm After Summarization.

Contextual Trajectory Descriptor of the same example in figure 3.6. We used the

MFCC features with 13 coefficients. The frame size is set to 40 milliseconds with

50% overlap. The memory parameter is set to w = 0.05. We used a 7 × 7 map

size for the SOMs and T = 8. Thus, the Temporal Contextual Trajectory Algorithm

maps the sequence of MFCC features into one feature vector of dimension 8 (16 if we

consider 2-D coordinates). As it can be seen, the Temporal Contextual Trajectory

Descriptor of the two segments have different paths on the Map. In fact, the two
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Figure 3.12: Comparison of the Temporal Contextual Trajectory Algorithm Descrip-
tors of a Speech Utterance Expressed in Affective (a) and Neutral (b) States Using
the MFCC Features.

trajectories occupy different regions of the map. In the case of the affective segment,

the trajectory is mainly located in the upper area of the map. On the other hand,

the neutral trajectory occupy the lower part of the map. Due to topology preserving

of the SOMs, nearby map units are similar. Thus, map units labelled as affective are

grouped together occupying specific regions of the map. Similarly, the neutral map

units are located on different sides of the map. Typically, the class borders are located

in the middle of the map. Thus, map units in the middle of the map are typically

highly mixed and represent the similarity between the two classes. The difference

in the trajectories represent the difference in the underlying emotion activity of the
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two utterances. Since the Temporal Contextual Descriptors are data-driven, we ex-

pect similar emotions to have similar trajectory behavior on the map while dissimilar

emotions will have different trajectory behavior.

The Temporal Contextual Trajectory Descriptors preserves the temporal ordering of

the original features by explicitly integrating it in the mapping.

The Temporal Contextual Trajectory Descriptors are also data driven and thus can

be extended to learn from multiple emotional datasets for cross corpus and cross lan-

guage emotion analysis.

The Temporal Contextual Trajectory Descriptors can also be used in real time emo-

tion analysis. In that case, the input to the mapping algorithm is a sub-trajectory

representing a texture window on which the analysis is applied on (in the order of 100

ms). Each sub-trajectory is processed and mapped on the SOMs. Then, the center of

mass of the sub-trajectory is computed and appended it to a global trajectory. The

global trajectory represents the Temporal Contextual Trajectory of the entire real

time speech stream. Thus, it can be used to monitor and detect emotions in real time

settings.

In order to improve the representation of emotions on the map, first, we can label

the map units of the SOMs using the training data to reflect a certain emotion. The

resulting map can be thought of as a 2-D map of emotions. Second, techniques such

as Learning Vector Quantization[70] can be used to rearrange and reorder the map

units of the SOMs to maximize the discrimination between emotions.

3.3 Overview of the Proposed Speech Emotion Recognition and Detec-

tion System

The proposed framework maps temporal data into a new descriptor as de-

scribed in the previous section. Our goal is to show that the new descriptors are effi-
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cient for representation, analysis, and classification of emotions. In order to achieve

this goal, we incorporated the proposed framework into a speech emotion detection

and recognition system. The goal of such system is to index emotional databases to

facilitate the classification and retrieval of emotions. An illustrative block diagram of

the proposed system is shown in figure 3.13.

Figure 3.13: Architecture of The Proposed Speech Emotion Detection and Recogni-
tion System.

3.3.1 Preprocessing

Typically, the audio signals of utterances are usually noisy due the background

and hiss of the recording machine. Noise corrupts the signal and consequently dete-

riorates the performance of the subsequent steps.

3.3.1.1 Power Substraction Filtering

The emotional corpus is preprocessed in order to reduce the contribution of

background noise. We used the power substraction algorithm described in Appendix

A to filter the audio signals. Figure 3.14 represents a speech utterance and its filtered

version using the power substraction algorithm. We used the first 100ms of the

signal to estimate the noise power spectrum which represent mostly background and
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recording conditions noise. Then, we subtracted the noise from the input signal as

described in appendix A.

Figure 3.14: Comparison between an audio signal (a) and its filtered version computed
using the Power Substraction Algorithm (b).

3.3.2 Feature Extraction

After audio preprocessing, acoustic features are extracted from each utterance

in the corpus. Recalling the notation in section 2.3, each utterance in the corpus is

divided into overlapping frames. For each frame, we extract F acoustic features. Let

x denotes the input utterance. Let X(f) = (X
(f)
ij , 1 ≤ i ≤ N, 1 ≤ j ≤ df ) denotes the

feature representation of x using acoustic feature f of dimension df where 1 ≤ f ≤ F .

The acoustic features can be of any configuration or dimension as long as they are
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temporal.

3.3.3 Mapping

After feature extraction, the corpus is mapped to temporal contextual de-

scriptors using the proposed framework introduced in the previous section. For each

acoustic feature f , the feature representation of each audio segment is mapped into

three new descriptors using the three proposed mapping algorithms. We refer to the

global descriptor computed by the Temporal Averaging Algorithm for input utterance

x using acoustic feature f by TAA(X(f)). We refer to the global descriptor computed

by the Temporal Response Averaging Algorithm for input utterance x using acoustic

feature f by TRAA(X(f)). We refer to the global descriptor computed by the Tem-

poral Contextual Trajectory Algorithm for input utterance x using acoustic feature f

by TCT(X(f)). For simplicity, we refer to MAP(X(f)) by the mapping of X(f) by any

of the three algorithm mentioned in this paragraph. That is MAP refer to TEMP,

RIM, or TCT. Figure 3.15 represents the architecture of the feature extraction and

mapping for an input audio signal x.

Figure 3.15: Architecture of Feature Extraction and Mapping.
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3.3.4 Classification and Learning

After mapping, the descriptors are presented to a classifier for learning and

classification. In this thesis, we use a standard feed-forward network with two hidden

layers [71]. The mapped features are split into training, testing, and validation sets.

The training set is used by the system for learning the parameters of mapping and

learning. We used the scaled gradient back-propagation algorithm [72] to train the

classifier. The validation set is used to measure network generalization, and to halt

training when generalization stops improving. The testing set is used to measure

the performances of the system after training. A different classifier is used for each

mapping algorithm and each acoustic feature.

3.3.5 Fusion

As discussed in the previous paragraph, a different classifier is used for each

mapping algorithm and each acoustic feature. After classification, for each mapping

algorithm, the decisions of the different classifiers are combined to compute a global

decision about the underlying emotion of the input audio segment.

In this thesis, we derive, use, and compare two score level fusion methods. Our choice

of using score level fusion is motivated by two reasons.

First, Neural Networks output a score vector for each input sample. Thus, it is more

intuitive to apply score level fusion.

Second, score level fusion is widely used in emotion analysis. Thus, it provides a good

baseline to compare the performance of our system against existing methods in the

literature. In the next subsections, we introduce the two score level fusion methods.

Recalling that F denotes the number of acoustic feature sets used in the system, each

mapping algorithm is represented by F classifiers. The output of each classifier is a

1×M score vector where M denotes the number of emotions or classes.
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Let x denotes an input utterance. Let X(f) = (X
(f)
ij , 1 ≤ i ≤ N, 1 ≤ j ≤ df )

denotes the feature representation of x using acoustic feature f of dimension df where

1 ≤ f ≤ F . Let {MAP (X(f)), 1 ≤ f ≤ F} represents the set of F feature vectors

of utterance x after feature mapping. MAP denotes one of the mapping algorithms

proposed in this thesis. That is, MAP refers to TAA, TRAA, or TCT. For simplicity,

we replace MAP(X(f)) by yf . That is, {MAP (X(f)), 1 ≤ f ≤ F} is now referred to

by {yf , 1 ≤ f ≤ F}.

Let Sj(yf ) denotes the score assigned by classifier f to the feature representation yf

of x for class j where
∑M

j=1 Sj(yf ) = 1. Since the score vector computed by each

classifier sums to one, the score assigned by each classifier to an input vector can be

considered as a posterior probability. That is, Sj(yf ) = P (Cj/yf ) where Cj denotes

class or emotion j. The combination of the F classifiers must maximize the overall

posteriori probability P (Cj/y1,y2, ..,yF ) where {1 ≤ j ≤M}.

3.3.5.1 Summation Rule Score Fusion

In the first approach, we formulate the fusion as a summation rule score fusion.

The most used approach computes a global score for each class. In this case, the

average of the score vectors of the F classifiers is computed and the input feature

vector is assigned to the class with the highest average. That is

Assign x → Ck if (18)

P (Ck/y1,y2, ..,yF ) =
M

max
j=1

1

F

F∑
i=1

Sij(x) (19)

Other statistics such as max, median, and min can also be used to compute the global

score for each class.
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3.3.5.2 Product Rule Score Fusion

In the second approach, we formulate the score level fusion as a product rule.

The input audio segment x is assigned to the class with the highest posteriori prob-

ability. That is

Assign x → Ck if (20)

P (Ck/y1,y2, ..,yF ) =
M

max
j=1

P (Cj/y1,y2, ..,yF ) (21)

Using Bayes theorem

P (Cj/y1,y2, ..,yF ) =
P (y1,y2, ..,yF/Cj)P (Cj)

P (y1,y2, ..,yF )
(22)

The F classifiers are independent. Thus,

P (y1,y2, ..,yF/Cj) =
F∏

f=1

P (yf/Cj) (23)

We replace P (y1,y2, ..,yF/Cj) in equation 22 by its formula in 23

P (Cj/y1,y2, ..,yF ) =
P (Cj)

∏F
f=1 P (yf/Cj)

P (y1,y2, ..,yF )
(24)

Applying Bayes Theorem again, we obtain

P (yf/Cj) =
P (Cj/yf )P (yf )

P (Cj)
(25)

We replace P (yi/Cj) in equation (24) by its formula in (25). We get

P (Cj/y1,y2, ..,yF ) =
P (Cj)

∏F
f=1

P (Cj/yf )P (yf )

P (Cj)

P (y1,y2, ..,yF )
(26)

That is

P (Cj/y1,y2, ..,yF ) =
P−(F−1)(Cj)

∏F
f=1 P (Cj/yf )P (yf )

P (y1,y2, ..,yF )
(27)

Equation (27) represents the computational form of the overall posteriori probability

in function of the posteriori probability of the individual F classifiers. For each input
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utterance x, we assign it to the class with the highest overall posteriori probability.

That is

Assign x → Ck if (28)

P (Ck/y1,y2, ..,yF ) =
M

max
j=1

P (Cj/y1,y2, ..,yF ) (29)

=
M

max
j=1

P−(F−1)(Cj)
∏F

i=1 P (Cj/yi)P (yi)

P (y1,y2, ..,yF )
(30)

Since P (y1,y2, ..,yF ) is independent of the classifiers used, we focus only on the

numerator of equation (30). That is

Assign x → Ck if (31)

P (Ck/y1,y2, ..,yF ) =
M

max
j=1

P−(F−1)(Cj)
F∏

f=1

P (Cj/yf )P (yf ) (32)

In terms of score, equation (32) can be rewritten as

Assign x → Ck if (33)

P (Ck/y1,y2, ..,yF ) =
M

max
j=1

P−(F−1)(Cj)
F∏

f=1

Sfj(x)P (yf ) (34)

As it can be seen in equation (34), the overall score is the product of the individual

posteriori probability. The fusion is a ”severe” score level fusion. That is, the function

form in equation (34) is highly sensitive to the individual scores of the classifiers. In

fact, if one of the classifier assign a low score to the input vector then the overall

product will also be low or close to zero. In the next two chapters, we evaluate and

compare the performances of the two fusion techniques.
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CHAPTER 4

EXPERIMENTAL RESULTS: BERLIN DATASET

In the previous chapter, we introduced our feature mapping framework. We

also integrated the framework into a speech emotion detection and recognition system.

In this chapter, we evaluate the performances of the proposed work using an acted

dataset, namely, the Berlin Emotional Dataset (BED). As previously mentioned, in

this scenario, the emotional speech is acted by subjects in a professional manner.

Such corpus provides a good baseline to evaluate the performances of our feature

mapping framework against the Statistics Based Mapping Algorithm. The chapter is

organized as follow:

First, we introduce the data collection and the parameters settings used for the exper-

iments. Second, we compare and analyze the performances of the proposed framework

on the BED against the Statistics Based Mapping Algorithm. Third, we analyze and

report the classification performances of the proposed emotion detection and recog-

nition system.

4.1 Corpus and Parameters Settings

4.1.1 Corpus

In this chapter, we use the Berlin Emotional Dataset to evaluate the perfor-

mances of our system. The corpus is widely used in emotion analysis [3, 11, 12, 5, 35].

The database consists of ten utterances produced by 5 males and 5 females (10 sub-

jects) in German. The transcripts of the different utterances in German and English
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are displayed in table 4.2. We refer to each utterance in the corpus by its code

TABLE 4.2

The Transcript of The Utterances in The Berlin Emotional Dataset.

Code Text
a01 Der Lappen liegt auf dem Eisschrank.

The tablecloth is lying on the fridge.
a02 Das will sie am Mittwoch abgeben.

She will hand it in on Wednesday.
a04 Heute abend knnte ich es ihm sagen.

Tonight I could tell him.
a05 Das schwarze Stck Papier befindet sich da oben neben dem Holzstck.

The black sheet of paper is located up there besides the piece of timber.
a07 In sieben Stunden wird es soweit sein.

In seven hours it will be.
b01 Was sind denn das fr Tten, die da unter dem Tisch stehen?

What about the bags standing there under the table?
b02 Sie haben es gerade hochgetragen und jetzt gehen sie wieder runter.

They just carried it upstairs and now they are going down again.
b03 An den Wochenenden bin ich jetzt immer nach Hause gefahren und habe Agnes besucht.

Currently at the weekends I always went home and saw Agnes.
b09 Ich will das eben wegbringen und dann mit Karl was trinken gehen.

I will just discard this and then go for a drink with Karl.
b10 Die wird auf dem Platz sein, wo wir sie immer hinlegen.

It will be in the place where we always store it.

throughout this chapter (For instance, the first utterance is referred by a01). The

details of the subjects (speakers) is provided in table 4.3. We refer to each subject in

the corpus by his/her code throughout this chapter (For instance, the first speaker

is referred by 03). The subjects acted 7 different emotions namely (hot) anger, hap-

piness, fear (panic), sadness (sorrow), boredom, disgust, and neutral. The sentences

were taken from everyday communication and could be interpreted in all emotional

contexts without semantic inconsistency. The number of utterances for each class is

displayed in table 4.4.

The recordings were carried out in separate sessions in an anechoic chamber using a

Sennheiser MKH 40 P 48 microphone and a Tascam DA P1 portable DAT-recorder.

The emotional content of the speech material and its naturalness were evaluated by
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TABLE 4.3

Details of The Subjects in The Berlin Emotional Dataset.

Code Gender Age
03 male 31 years
08 female 34 years
09 female 21 years
10 male 32 years
11 male 26 years
12 male 30 years
13 female 32 years
14 female 35 years
15 male 25 years
16 female 31 years

TABLE 4.4

The Number of Utterances per Emotion in The Berlin Emotional Dataset.

Anger Boredom Disgust Anxiety/Fear Happiness Sadness Neutral
Number of Samples 127 81 46 69 71 62 79

20 naive listeners and each utterance is given a score representing its authenticity to

reproduce the emotion. The given score can be used as a ground truth in the analysis.

Table 4.5 illustrates the details of the Berlin emotional collection.

Our motivation to use the Berlin dataset is due to its public availability and wide use

in speech emotion analysis [3, 11, 12, 5, 35].

TABLE 4.5

The Details of the Berlin Emotional Dataset.

Number of Classes Number Of Subjects Sampling Rate (kHZ) Corpus Type
7 10 (5 male and 5 female) 22050 Acted

4.1.2 Taxonomy

In this thesis, we propose 3 different taxonomies for the Berlin emotional

dataset. Figure 4.16 represents the proposed taxonomies of the Berlin emotional
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dataset. The three different taxonomies are the following:

Figure 4.16: The Different Taxonomies of The Berlin Emotional Dataset

Neutral Vs. Affective Emotions: The corpus can be organized into two differ-

ent classes namely: Neutral and Affective states. The affective class contains all the

classes except neutral which is represented by its own class. The goal of this scenario

is the detection of emotions in speech. This scenario can be used to detect confident

speakers in debates, detect truth/lie, etc.

Positive Vs. Negative Emotions: We organized the corpus into three different

classes namely: positive, negative, and neutral. The positive class contains happiness.

The negative class contains anger, fear, sadness, boredom, and disgust.

This scenario can be used in call centers to detect and recognize negative emotions

from callers/customers. The negative class contains 5 subclasses. The positive class

contain 1 subclass.
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7 Emotions: We also used the corpus in its default taxonomy. The goal of this

scenario is the recognition of emotions from speech.

4.1.3 Parameters Settings

There are different parameters that govern the conducted experiments. In this

subsection, we discuss these different parameters and their influence on the proposed

system and experiments.

4.1.3.1 Frame and Hop Size

The acoustic features used in our system are extracted at the frame level.

Another parameter that needs to be chosen a priori is the length of the frame and

its hop-size. These parameters affect the time and the frequency resolution of the

analysis and there is no universal rule to choose them. Typically, the frame and hop

size are in the order of milliseconds (10 ms -100 ms) [20, 15]. We have conducted

several experiments with different frame and hop size. We found out that the results

did not vary vastly when a window size between 20 ms and 60 ms. Thus, the choice

of the frame and hop size is mainly based on computational efficiency. In our case,

we concluded that a window size of 40 ms with 50% overlap (that is 20 ms as the hop

size) provides a good balance between computational complexity and efficiency. The

same window and hop size are used throughout this chapter.

4.1.3.2 Training and Learning

The Berlin Emotional Corpus is divided into training, testing, and validation

sets. The training set is used to estimate the parameters of the mapping and the

learning model. The testing set is used to evaluate the performances of the system.

The validation set is used by the neural network to validate the learning model of the
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classifier. In all experiments, 70%, 15%, and 15% are used for training, testing, and

validation respectively.

4.2 Feature Extraction

Various features have been proposed in the literature of speech emotion detec-

tion and recognition. The choice of the feature sets in the system must be based on

discrimination between emotions.

Our feature mapping framework works on any short term-based acoustic features.

In this thesis, we use common acoustic features to demonstrate the performances of

our framework. In our experiments, we used 5 feature extraction algorithms namely:

MFCC, ∆MFCC, Pitch (F0), Perceptual linear predictive (PLP) Rasta , and Low

Level Spectral and Temporal Features. In the next few subsections, we discuss these

5 acoustic features used in the experiments.

4.2.1 MFCC

The performance of the MFCC feature extraction algorithm depends on var-

ious parameters such as the number, the shape, the spacing of the filters used in

the mel filter bank analysis, and the warping of the power spectrum. In [73], the

authors conducted a comparative study of 4 different implementations of the MFCC

features. The 4 algorithms differ in the approximation of the nonlinear pitch per-

ception, the filter bank design, and the compression of the filter bank output. They

used text-independent speaker verification to compare the performance of the differ-

ent implementations in the literature. They found out that the performance of the

4 algorithms did not vary vastly when different approximations of the parameters

discussed above are used. They concluded that regardless of the filter design, a large

number of filters increases the performance of speaker detection. They also found out
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that the spacing between the filters proved to be a sensitive parameter (increasing or

decreasing the overlap of the filters beyond a given range increases the error rate).

In our system, we use the MFCC FB-40 feature extractor explained in [74] with the

same parameters in [73].

Various methods proposed in the literature use the MFCC for emotion analysis

[9, 20, 15]. In [75], the authors conducted a study about the use of MFCC for emo-

tion recognition. The authors concluded that statistics computed from MFCCs carry

emotional information. Our choice of the MFCC features is motivated by its wide

use in the literature. We conducted various experiments to investigate the optimal

number of MFC coefficients. We concluded that 13 provides a good balance between

computational complexity and performance. Thus, the number of MFC coefficients

is set to 13.

4.2.2 ∆MFCC

Typically, the MFCC features are further processed to compute another acous-

tic feature named ∆MFCC. The ∆MFCC is defined as the first derivative of the

MFCC. The Delta coefficients are computed via a linear regression formula defined

as:

∆c[m] =

∑N
i=1 i.(c[m+ i]− c[m− i])

2
∑N

i=1 i
2

(35)

In (35), N is the size of the regression window. c[j] denotes the jth MFCC coefficient.

In our experiments, we tested various values of the regression window size N ranging

between 2 and 9 (typical values for N). We found out that increasing N actually

decreases their discrimination power. In fact, by increasing N , the number of MFCC

coefficients involved in the computation in equation 35 increases and the ∆MFC

coefficients tend to be more uniform. We conclude that N = 2 provides the best

discrimination power and computational efficiency.
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4.2.3 Pitch

Pitch detection is an important task in many audio analysis such as speaker

recognition, emotion analysis, speech analysis synthesis (vocoder), and music anal-

ysis. Because of its importance, various algorithms for pitch detection have been

proposed in the literature [25, 26, 27]. These methods can be categorized into three

groups namely: time domain, frequency domain, and hybrid (combination of both).

The first category uses the time domain properties of the speech signal to estimate

the pitch. The second uses the frequency domain properties of the speech signal. The

third group is a combination of the time and frequency domain. Many studies were

conducted to compare the performances of the pitch detection algorithms proposed

in the literature [25, 26, 27]. In [25], the authors extensively reviewed 7 different al-

gorithms for the extraction of pitch information. They reviewed 4 time-domain, one

frequency domain, and two hybrid pitch detectors. They used a series of experiments

to compare the performances of the 7 pitch detectors based on various performance

criteria such as accuracy in estimating the pitch period, robustness, computational

complexity. For that purpose, they proposed 5 different error measures to estimate

the performances of each algorithm. They concluded that no single pitch detector was

uniformly ranked the top across all experiments. Instead, each algorithm has advan-

tages and weaknesses. They concluded that time domain and hybrid pitch detectors

are not efficient for detecting low pitch values due to the use of short analysis frame

size. They concluded also that spectral pitch detector are not efficient for detecting

high pitch values due to the small number of harmonics which are present in their

spectra.

In [26], the authors conducted another study on 6 modern pitch detector algorithms.

They used a large dataset of singing sounds to investigate the performances of each

algorithm. They proposed 4 different error metrics introduced in [76] for the perfor-
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mances criteria. They concluded that there is no single pitch detector that outperform

the other ones and that each algorithm has advantages and drawbacks depending on

the error metric used. Comparing the different pitch detector algorithms proposed in

the literature is out of the scope of this thesis. We use the auto-correlation method

[26] to estimate the pitch information.

4.2.4 Low Level Features

The low level features used in our experiments are energy entropy, short time

energy, zero cross rate, spectral roll off , spectral flux, and spectral centroid [29]. The

low level features represent various statistics computed from the audio signal and its

spectrum representation. The details of the feature extraction algorithms of the six

low level features are provided in appendix A. The dimension of low level features is

6.

4.2.5 PLP-Rasta

The Relative Spectral Transform (RASTA)- Perceptual Linear Prediction (PLP)

is a widely used speech feature representation [77]. Originally, the PLP was introduced

in [77]. Perceptual linear prediction, similar to linear predictive analysis discussed in

section 2.5.1 , is based on the short-term spectrum of speech. However, perceptual

linear prediction(PLP) modifies the short-term spectrum of the speech by several

psychophysically based transformations. The PLP features are sensitive to spectral

distortions. These are due to the noise added by the communication channel. On

other hand, RASTA is a smoothing technique that applies a band-pass filter to the

energy in each frequency sub-band in order to smooth over short-term noise varia-

tions and to remove any constant offset resulting from static spectral coloration in

the speech channel e.g. from a telephone line [78]. The combination of RASTA and

61



PLP provides a feature representation robust to linear spectral distortions caused

by communication channels. A detailed implementation of the RASTA-PLP features

can be found in [79]. In our experiments, we used 12 as the order of prediction. Thus,

the dimension of RASTA-PLP features is 13.

4.3 Feature Mapping

In this section, we compare the performances of the proposed framework against

the Statistics Based Mapping Algorithm (SBMA).

Many statistics measures have been investigated and used in the Statistics Based

Mapping Algorithm. The most common are max, min, mean, standard deviation,

and median [20, 15]. In this thesis, we use max, min, mean, standard deviation,

median, and max divided by min. We refer to such descriptors throughout this chap-

ter as SBMA Descriptors. Recalling the notation in the previous chapter, we refer

to the global descriptor computed by the Temporal Averaging Algorithm by TAA

Descriptors. We refer to the global descriptor computed by the Temporal Response

Averaging Algorithm by TRAA descriptors. We refer to the global descriptor com-

puted by the Temporal Contextual Trajectory Algorithm by TCT descriptors.

For simplicity, the experiments conducted in this section are conducted on the MFCC

features only. The same experiments can be conducted using the other acoustic fea-

tures. Figures 4.17 and 4.18 represent an utterance a01 spoken by subject 03 in

neutral and affective state respectively and their TAA, TRAA, TCT, and SBMA

descriptors. The memory parameter w is set to 0.05 for the TAA and TRAA de-

scriptors. The SOMs map size is set to 7 × 7 for the TRAA and TCT descriptors.

The response for the TRAA descriptors is computed in a crisp fashion. For each

utterance, we compute the TAA (1 × 13), TRAA (1 × 49), TCT (8 × 2) (In this

example, we use the 2-D coordinate for display), and the SBMA (1× 78) descriptors.
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Figure 4.17: Comparison of the TAA (c), TRAA (d), and SBMA (e) descriptors
using the MFCC features for the utterance a01 spoken by subject 03 in neutral (a)
and affective (happiness) (b) states.

The different parameters of the experiment are summarized in table 4.6. The same

settings are used throughout this section unless we mention it. The two utterances

represent the same sentence a01 and spoken in neutral and affective (Happiness) by

the same subject 03. Thus, we expect strong similarity in their representation except

where emotion is produced. As it can be seen, the TAA descriptors for both utter-

ances are strongly correlated in some coefficients and dissimilar in other coefficients

such as coefficient 1, 5, and 9. This dissimilarity suggests that the emotional activity

is captured in those specific coefficients. The TRAA descriptors also have different

distributions on the map units. In fact, the distributions are correlated expect for
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Figure 4.18: Comparison of the TCT descriptors using the MFCC features for the
utterance a01 spoken by subject 03 in neutral and affective (happiness) states.

TABLE 4.6

Parameter Settings for the Experiments

Parameter Value
Acoustic Feature MFCC

Number of MFC coefficients 13
SOMs Map Size 7× 7

Number of Classes 2
Frame Size 40 ms.
Hop Size 20 ms.

Memory w 0.05
Response Computation Crisp

Dimension of RIM Features 1× 49
Dimension of TEMP Features 1× 13
Dimension of TCT Features 8× 2
Dimension of STD Features 1× 78

few map units such as map unit 7. The map units of the SOMs are clusters that are

labeled and represent specific emotions. High responses to affective clusters suggest

that there is emotional activity. In the TCT descriptors, the trajectory of both utter-

ances share common positions. The TCT descriptors are ordered in time. Thus, we

can notice that the two trajectories started around the same location. The beginning

of the trajectories are usually silence segments before speaking the utterance. More-

over, the affective trajectory is more variable on the map than the neutral utterance.
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The two trajectories ended in different areas of the map.

In the SBMA descriptors, the statistics are highly correlated for all the MFCC co-

efficients except for coefficient 1, 5, and 9 (same as the TAA descriptors). However,

since the descriptors are static in time, they don’t convey any information about the

acoustic activity leading to the emotion or the time when the affective utterance is

different from the neutral version. Moreover the SBMA descriptors are ambiguous

for display.

The true label of the affective utterance used in the previous example is happy. The

same conclusions can be concluded for any other affective state. Figures 4.19 and

4.20 represent the same example used in the previous paragraph but this time we

replaced the affective utterance with the angry version.

As it can be seen, the same conclusions can be derived about the three proposed

descriptors. The TRAA and TCT descriptors outperform the SBMA descriptors in

discriminating between the two utterances. The TCT descriptors are similar in the

beginning and end of the trajectory for the two utterances. That is due to the easy

noticeable voice inactivity at the end of the audio signal of the two utterances. The

affective utterance is highly variable compared to the neutral version. That is due to

the emotional arousal due to anger. In fact the MFC coefficients represent the energy

computed on the Mel filter. Emotions such as anger are characterized by sudden

changes in tone, voice which are reflected by changes in energy which explains the

variability. The TRAA descriptors have different distributions for both utterances.

Each utterance has a high response to map units where the other utterance have

insignificant response. Similarly, the different between the affective and neutral TAA

descriptors is noticeable. Moreover, the three proposed descriptors are more suitable

for display and visualization which improve the analysis of emotions.
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Figure 4.19: Comparison of the TAA (c), TRAA (d), and SBMA (e) descriptors
using the MFCC features for the utterance a01 spoken by subject 03 in neutral (a)
and affective (anger) (b) states.

4.4 Classification Results and Analysis

In this section, we present the classification results and analysis of our proposed

emotion detection and recognition system introduced in chapter 3. We conducted var-

ious experiments to investigate the optimal number of hidden neurons in the network.

We concluded that a good rule of thumb is to choose the number of hidden neurons

equal to half of the number of input neurons. For each experiment, the system is

tested using the 5 acoustic features described in the feature extraction section. The

results of the different classifiers are combined using the two fusion techniques. The

process is repeated three times for cross-validation and the results are averaged.
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Figure 4.20: Comparison of the TCT descriptors using the MFCC features for the
utterance a01 spoken by subject 03 in neutral (a) and anger (b) states.

Table 4.7 represent the classification results of the five feature sets for the three

experiments. As it can be seen, in the first scenario, our proposed feature mapping

framework outperformed consistently the SBMA descriptors. For instance, using the

MFCC, the TRAA and TCT descriptors outperformed the SBMA descriptors.

For the individual features, the best accuracy rate (95.14%) is achieved by the Tem-

poral Response Averaging Algorithm using the MFCC features. In fact, the MFCC

features are efficient for detecting affective states independently of the feature map-

ping algorithm used.

Figure 4.21 represent the ROC curve of the TAA, TRAA, TCT, and SBMA descrip-

tors using MFCC features and the first scenario. As it can be seen in the ROC curves,

the TRAA and TCT descriptors outperform the two other algorithms namely TAA

and SBMA. In fact, the Response Averaging Algorithm and Temporal Contextual

Trajectory Algorithm map the input temporal sequence into a global representation

while considering the discrimination between classes. On the other hand, the Tem-

poral Averaging Algorithm and the Statistics Based Mapping Algorithm map each

sequence of features (utterance) into a global representation independently of other

utterances. As it can be seen, the TRAA features slightly outperform the TCT de-
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Figure 4.21: Comparison Between ROC curves of the TAA, TRAA, TCT, and SBMA
descriptors using the MFCC features for the affective class.

scriptors. The same conclusions can be found using other acoustic features such as

low level and PLP-RASTA.

As discussed in section 3.3.5, we use two score level fusion techniques. The first

method is based on the simple averaging of the different scores. The second tech-

nique is a product based rule fusion. As it can be seen in table 4.7, the fusion of

the different acoustic features improved the accuracy of the detection of the affec-

tive states independently of the method. The product rule based fusion is a severe

rule. Thus, its performance is strongly correlated with the performance of the indi-

vidual classifiers. As it can be seen, the performances of the product rule fusion are

strongly correlated with the performances of the individual classifiers. For instance,
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the product fusion of the SBMA descriptors is correlated with Pitch-SBMA. On the

other hand, the sum rule based fusion is more stable and less sensitive to noise and

the performance of the individual classifiers. As it can be seen, the sum rule fusion

improved the performances of all mapping algorithms.

In the second scenario, the proposed framework outperformed consistently the Statis-

tics Based Mapping Algorithm. For instance, using the MFCC, the TRAA descriptors

outperformed the SBMA descriptors. The same conclusions can be made using other

acoustic features such as low level and PLP-RASTA. The best classification accuracy

(83.72%) is achieved using the TRAA with the MFCC features. Similarly to the

first scenario, the MFCC are the most efficient features for the detection of positive

and negative states independently of the mapping algorithm used. The fusion of the

different acoustic features improved the detection of the negative and positive states

by more than than 2%. However, the sum rule based fusion provided better perfor-

mances than the product rule fusion for the four different mapping algorithms.

Figure 4.22 represents the comparison between the ROC curves of the two fusion

methods using the MFCC features and the Temporal Contextual Trajectory Algo-

rithm in the detection of negative and neutral states respectively.

As it can be seen, the Sum rule score fusion outperforms the product rule score

fusion in the detection of negative and neutral states. In fact, as the number of fea-

tures increases, the sensitivity of the decision to the different features increases. As

we increase the number of features used in the experiment, the sum rule score fusion

becomes more robust to noise than the product rule and consequently more efficient.

In the third scenario, the TRAA descriptors outperformed the three other mapping

algorithms. The best classification accuracy was achieved by the TRAA descriptors

using the MFCC features. We conclude that the MFCC features are efficient for

the detection of affective, negative, and positive emotional states. In fact the MFCC
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Figure 4.22: Comparison Between ROC curves of the two fusion methods using the
MFCC features and the Temporal Contextual Trajectory Algorithm in the detection
of negative (a) and neutral (b) states

features proved to be effective in almost all speech analysis tasks such as speech recog-

nition, speaker segmentation and clustering, and voice activity detection. The fusion

of the different acoustic features further improved the performances of our system in

the recognition of human emotions such as anger and happiness. Figure 4.23 repre-

sents the ROC curve of the TRAA descriptors using the MFCC, PLP, Low Level and

their Product Rule Based Fusion for the anger class (scenario 3). As it can be seen,

the fusion of the different acoustic features increased the performances of our system.

The curves of the MFCC and PLP are highly correlated.

From table 4.7, we can also conclude that as we increase the number of classes and the

complexity of the experiments, the performances of the TRAA and TCT descriptors

becomes more similar. In the first scenario, the TRAA descriptors outperformed the

TCT descriptors significantly. However, in the second and the third scenario, the

performances of the two descriptors became more similar.
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Figure 4.23: Comparison Between ROC curves of the TRAA descriptors using the
MFCC, PLP, Low Level, and their Product Rule Based Fusion in the recognition of
the anger emotional state
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TABLE 4.7

Classification Results (%).

Scenario 1 Scenario 2 Scenario 3

MFCC-TAA 82.24 72.34 62.80

MFCC-TRAA 95.14 83.72 75.31

MFCC-TCT 85.84 82.06 70.33

MFCC-SBMA 81.04 76.17 71.14

PLP-TAA 86.15 72.52 65.05

PLP-TRAA 90.09 81.50 71.93

PLP-TCT 86.92 77.38 64.74

PLP-SBMA 82.05 69.96 65.42

Low Level-TAA 86.17 71.59 51.40

Low Level-TRAA 94.58 78.13 68.04

Low Level-TCT 86.54 81.12 54.99

Low Level-SBMA 82.80 72.15 42.92

Pitch-TAA 81.23 71.96 47.85

Pitch-TRAA 88.22 65.05 59.63

Pitch-TCT 85.98 76.64 55.70

Pitch-SBMA 83.74 71.4 53.46

δMFCC-TAA 81.47 74.21 60.07

δMFCC-TRAA 88.22 80.56 70.94

δMFCC-TCT 86.31 79.54 68.41

δMFCC-SBMA 81.23 79.16 66.26

Fusion Product-TAA 84.61 73.08 64.21

Fusion Product-TRAA 95.70 85.35 78.51

Fusion Product-TCT 87.85 83.93 77.45

Fusion Product-SBMA 83.74 72.15 67.23

Fusion Sum-TAA 85.23 81.96 74.13

Fusion Sum-TRAA 96.11 85.91 79.50

Fusion Sum-TCT 88.04 84.67 78.99

Fusion Sum-SBMA 85.08 82.15 75.23
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CHAPTER 5

EXPERIMENTAL RESULTS: EMOTION ANALYSIS FROM

DEBATES

In the previous chapter, we used the proposed framework to detect and rec-

ognize emotions from speech using an acted dataset namely, the Berlin Emotional

Dataset (BED). We showed that the proposed mapping algorithms outperform the

widely used Statistics Based Mapping Algorithm while providing a better and more

intuitive representation that can be used for the analysis, classification, and visual-

ization of emotions.

In the effort to extend our work, in this chapter, we apply, report, and analyze the

results of the proposed system using an authentic dataset. In this scenario, the emo-

tional speech is naturally recorded from spontaneous people in real life situations.

Such situations include customer service calls, debates, audio from video recordings

in public places, and 911 calls. In this chapter, we use the proposed system to analyze

and categorize human emotions from debates.

First, we outline the motivations behind the use of debates. Second, we introduce

the data collection and the parameters settings used for the experiments. Third, we

provide and analyze the performances of the proposed system.

5.1 Motivations

Our choice of using debates is due to various reasons.

First, debates contain typically various and complex emotions. The detection and
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recognition of such emotions will enable us to automatically index debates to detect

emotions and confidence levels. Such scenario is useful for news channels.

Second, debates are easy to obtain through web sites such as YouTube and DailyMo-

tion. Thus, web crawlers can be set up to download several debates that can be used

in the analysis.

Third, debates are authentic. That will enable us to test our system on a real world

dataset. Due to the nature of debating, the underlying emotions are usually split into

affective and neutral which simplifies the learning problem for our system. Affective

states in debates are usually a mixture of emotional arousals characterized by a raised

tone and pitch, change in voice and speech rate, and increase in energy. We seek to

detect and recognize these emotional arousals in debates.

To our knowledge, debates did not get much attention in emotion analysis from

speech. In fact, there are no easily available annotated debates in the literature of

emotion analysis from speech. Hence, the motivation and need to create our own

corpus for the experiments.

5.2 Corpus and Parameters Settings

5.2.1 Corpus

In this chapter, we use a collection of debates to evaluate the performances

of our system on a real world dataset. For that purpose, we download a collection

of debates from the video platform YouTube. To ensure that the chosen debates

are effective for the experiments, we search for debates using the keywords ”heated

debates”.

The collection consists of 7 political debates downloaded from the video platform

YouTube using the software youtube-dl [80].

The audio information used in our experiments was extracted form the video using
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Audio Online Converter [81]. The political debates have variable length, emotions,

number and gender of speakers in order to maximize the different scenarios in the

experiments. There are 3 nationalities namely British, American, and Indian and 3

different accents in the used debates.

For each debate, we manually divided the debate into segments to include only one

speaker and one emotion per segment. For a more automatic process, speaker seg-

mentation and clustering can be used to divide the audio recordings prior emotion

analysis. In our experiments, we used the software Audacity [82] to divide the debates

into segments. All the mentioned tools are freely available on the internet. The seg-

ments have variable length ranging from 2 seconds to 6 seconds. As discussed in the

third chapter, our proposed framework maps any temporal sequence into the same

representation which alleviates the issue with dealing with variable length time series

data. As mentioned previously, emotions in debates are rather neutral or affective

due to the nature of debating. Hence, we adopt the first scenario of the previous

chapter in which the goal is to detect affective emotions from neutral.

After dividing the debates, we manually labelled all the segments with the underlying

emotion of the speaker. The details of the collection is displayed in table 5.8

TABLE 5.8

Details of The Collection of Political Debates.

Number Name YouTube ID Number of Speakers Number of Segments
1 Gun Laws Debate RC4JJWUtzkc 2 19
2 Michael Moore on CNN 2JMCryfTtTI 3 14
3 Republicans 2012 Debate c37VcgHUFVk 3 35
4 Debate on ESPN j6x-O3kb1sI 3 18
5 Obama and Romney 2012 Debate NXkLYIZabWE 3 18
6 British Immigration Debate 6ZdQ0kA3ksg 3 11
7 Indian News Debate(English) bAQq2mENhR4 2 37

Total 19 152
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5.2.2 Parameters Settings

5.2.2.1 Frame and Hop Size

Similarly to the previous experiments in chapter 4, we use the hope and frame

size. That is, a window size of 40 ms with 50% overlap (that is 20 ms as the hop

size). The same window and hop size are used throughout this chapter. Our goal is

to generalize the same parameters settings for different datasets and applications.

5.2.2.2 Training and Learning

The collections of segments from the different debates are all combined then

divided into training, testing, and validation sets. The training set is used to estimate

the parameters of the mapping and the learning model. The testing set is used to test

the system. The validation set is used by the neural network to validate the learning

model of the classifier. The different segments from all debates are combined into one

collection and divided into 70%, 15%, and 15% for training, testing, and validation

respectively. The process is repeated three times for cross-validation.

5.3 Feature Extraction

In our experiments, we use the same features from the previous chapter. These

features are MFCC, ∆MFCC, Pitch (F0), Perceptual linear predictive (PLP) Rasta

, and Low Level Spectral and Temporal Features. For a detailed description of the

acoustic features used in this experiment, please refer to section 4.2 and Appendix A.

5.4 Feature Mapping

In this section, we analyze the performances of the proposed framework using

the collection of political debates. Recalling the same methodology from the previous
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chapter, each audio segment is mapped into descriptors using the proposed feature

mapping framework. We refer to the global descriptor computed by the Temporal Av-

eraging Algorithm by TAA Descriptors. We refer to the global descriptor computed

by the Temporal Response Averaging Algorithm by TRAA descriptors. We refer to

the global descriptor computed by the Temporal Contextual Trajectory Algorithm

by TCT descriptors.

Figure 5.24 and 5.25 represent respectively the comparison of the TAA and TRAA

descriptors of two segments expressing affective and neutral states using the MFCC

features. The segments are spoken by the same speaker and taken from debate 1.

The memory parameter w is set to 0.05 for the TAA and TRAA descriptors. The

SOMs map size is set to 7×7 for the TRAA descriptors. The response for the TRAA

descriptors is computed in a crisp fashion. For each segment, we compute the TAA

(1× 13), TRAA (1× 49) descriptors as described in the third chapter.

As it can be seen, both the TAA and TRAA descriptors were able to capture the

difference in emotions between the two segments. Using the TAA descriptors, we can

notice the difference in coefficients 5 to 8. In fact, the MFCC coefficients represent

the power of short term spectrum computed on the mel-scale frequency. In our case,

we computed 13 MFCC coefficients. In the case of affective states, we expect those

value to vary in specific frequency ranges due to activity such as increase in the tone

or yelling which are captured in specific frequencies. In the case of neutral states, we

expect the values to vary in other frequency ranges.

In the TRAA descriptors, the two segments have different distributions on the code-

book of the SOMs. In fact, the map units of the SOMs are clusters that are labeled

and represent specific emotions. High responses to map units that are labelled as

affective suggest emotional activity. Similarly, high responses to map units that are

labelled as neutral suggest no emotional activity. Highly mixed clusters typically rep-
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Figure 5.24: Comparison of the TAA descriptors using the MFCC features for two
segments expressing affective and neutral states spoken by the same speaker. (Debate
1)

resent the overlap between the two classes. Such correlations are learned by Neural

Network during training and evaluation.

Figure 5.26 displays the comparison of the TCT descriptors of the two segments from

the previous example. As it can be seen, the two trajectory occupy different regions

of the map. In the case of the neutral segment, the trajectory is mainly located in

the upper area of the map. On the other hand, the affective trajectory occupy the
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Figure 5.25: Comparison of the TRAA descriptors using the MFCC features for two
segments expressing affective and neutral states. (Debate 1)

lower part of the map. Due to topology preserving of the SOMs, nearby map units

are similar. Thus, map units labelled as affective are grouped together occupying

specific regions of the map. Similarly, the neutral map units are located on different

sides of the map. Typically, the class borders are located in the middle of the map.

Thus, map units in the middle of the map are typically highly mixed.

The two segments in the previous example are spoken by the same speaker. Figure
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Figure 5.26: Comparison of the TCT descriptors using the MFCC features for two
segments expressing affective and neutral states spoken by the same speaker. (Debate
1)

5.27 and 5.28 represent respectively the comparison of the TAA and TRAA descrip-

tors of two segments expressing affective and neutral states respectively using the

MFCC features spoken by two different speakers. The segments are taken from De-

bate 1 and 2 respectively. The same parameters from the previous example are used

to compute the TAA and TRAA descriptors.

In figure 5.27, the TAA descriptors of the two segments are correlated for some

coefficients such as 5,9, and 12 and dissimilar in other coefficients such as 10 and 11.

Similarly, in figure 5.28, the TRAA descriptors of the two segments have different

distributions on the codebook.

We compute the pairwise distance of the TCT descriptors of all segments in the col-

lection using a simple Euclidean distance. Then, we identify the closest neighbors

of each segment in the collection. Figure 5.29 represents the TCT descriptors of an

affective segment and its closest neighbor using the Euclidean distance. The two seg-
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Figure 5.27: Comparison of the TAA descriptors using the MFCC features for two
segments expressing affective and neutral states spoken by two different speakers.
(Debate 1 and 2)

ments are spoken by two different speakers from two different debates (Debate 1 and

7 respectively). The true label of the closest segment is also affective. In fact, the

first segment is spoken by a male and its closest is spoken by a female. Moreover, the

two segments are spoken in Indian English and British English respectively. As it can

be seen, the two trajectories exert the same behavior on the map. Despite being from

different debates, the TCT descriptors are able to capture the similarity in emotional

activity between the two audio segments. Since we are using the MFCC, the units

represent energy clusters. The TCT descriptors tracks the fluctuations of the energy
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Figure 5.28: Comparison of the TRAA descriptors using the MFCC features for two
segments expressing affective and neutral states spoken by two different speakers.
(Debate 1 and 2)

level over time.

5.5 Classification Results and Analysis

In this section, we present the classification results and analysis of our pro-

posed emotion detection and recognition system applied on the collection of debates

introduced in section 5.2.1. After mapping, the descriptors are divided into training,

testing, and validation. For each experiment, the system is tested using the 5 acoustic
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Figure 5.29: Comparison of the TCT descriptors using the MFCC features for two
segments expressing affective (a) and its closest neighbor(b). (Debate 1 and 7)

features described in the feature extraction section. We use a different classifier for

each acoustic feature, resulting into 5 neutral networks. We use half of the input size

as the number of hidden neurons. The scores of the different classifiers are combined

using the two proposed fusion techniques. The first one is a product rule fusion. The

second approach is based on summation. This process is repeated three times and

the classification results are averaged. Table 5.9 represent the classification results of

the five feature sets for the three experiments.

As it can be seen, the discrimination power of the proposed system decreased signif-

icantly compared to the performances on the acted corpus in the previous chapter.

This is due to many reasons. First, the debate collection contains different audio

qualities. On the other hand, the Berlin Emotional Dataset has the same quality for

all utterances. Second, the number of speakers in the debate collection is higher than

the Berlin Emotional Dataset. In fact, there are 19 speakers in the debate collections
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TABLE 5.9

Classification Results (%).

Debates BED (scenario 1)

MFCC-TAA 50.78 82.24

MFCC-TRAA 69.57 95.14

MFCC-TCT 73.91 85.84

PLP-TAA 56.52 86.15

PLP-TRAA 60.87 90.09

PLP-TCT 69.57 86.92

Low Level-TAA 52.17 86.17

Low Level-TRAA 56.52 94.58

Low Level-TCT 62.17 86.54

Pitch-TAA 60.87 81.23

Pitch-TRAA 55.22 88.22

Pitch-TCT 56.52 85.98

δMFCC-TAA 56.14 81.47

δMFCC-TRAA 60.87 88.22

δMFCC-TCT 69.57 86.31

Fusion Product-TAA 65.22 84.61

Fusion Product-TRAA 78.26 95.70

Fusion Product-TCT 75.22 87.85

Fusion Sum-TAA 73.91 85.23

Fusion Sum-TRAA 78.26 96.11

Fusion Sum-TCT 78.94 88.04

compared to 10 subjects in the BED dataset. The Berlin Emotional Dataset is also

repetitive since the same sentences are used throughout the corpus where the debates

are very versatile in vocabulary. Third, there are 3 nationalities and 3 accents in the

debate collection compared to one language and one accent in the Berlin Emotional

Dataset. Moreover, the emotions in debates are typically mixed and more complex

compared to acted emotions. Thus, the training data must be big enough to capture
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these variations. Larger training can be used in these experiments, however, it is time

and effort consuming to manually label a large collection of debates. All these limi-

tations and challenges contribute in the deterioration of the system’s performances.

Despite these limitations, the proposed system is still able to provide competitive

results. For instance, using the TCT descriptors and the MFCC features, the system

was able to average 73.91% accuracy rate. Using the other acoustic features, the TCT

descriptors are able to average around 70% accuracy rate. In these experiments, we

used only 7 debates. In order to improve the accuracy rate, the size of the data and

the number of debates must increase.

Figure 5.30 represents the ROC curve the TAA, TRAA, and TCT descriptors using

the MFCC features. As it can be seen, the TCT and TRAA both outperformed the

Figure 5.30: Comparison of the ROC curves of the TAA, TRAA, and the TCT
descriptors using the MFCC features for the affective class.

TAA descriptors due to their data driven nature. Both the TCT and TRAA descrip-

tors provide similar and competitive results using the MFCC features. However, the
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TCT slightly outperformed the TRAA descriptors. This suggests that the TCT de-

scriptors are more robust to noise and the configuration of the corpus. In the previous

chapter, the TRAA descriptors outperformed the TCT descriptors in the first scenario

but in the second and third scenario the performances of the two descriptors became

similar. In fact, the summarization method proposed for the Temporal Contextual

Trajectory is more robust to noise than the Temporal Response Averaging Algorithm.

As pointed out in the third chapter, the center of mass is stable and robust to noise.

In the Temporal Response Averaging Algorithm, each map unit is mapped to its best

match unit with a certain response. In the case of real world datasets, noise is very

common and equally contributes in the computation of the response on the map and

deteriorates its performances. In order to improve the performances of the TRAA

descriptors, we must use a response computation that is robust to noise.

The summation rule fusion provided better results than the product rule fusion. In

fact, the sum based rule improved the classification accuracy of the system indepen-

dently of the mapping algorithm used. For instance, using the TCT features, the sum

rule fusion improved the performances of the system by 5%. On the other hand, the

product based rule increased the performances of the system in the case of the TCT

descriptors by only less than 2%. As pointed out in the previous chapter, product

fusion is a severe rule fusion and as the number of features and the complexity of the

emotions increase, the fusion score becomes correlated with the score of the individ-

ual classifiers. Similarly to the previous chapter, the pitch features perform the worst

out of the 5 acoustic features. Figure 5.31 displays the comparison between the ROC

curves of the two fusion techniques using the 5 different acoustic features and the

TCT descriptors. As it can be seen, the sum fusion outperforms the product fusion

in the detection of neutral states. For the affective class, the results of the two fusion

techniques are highly correlated.

86



In order to test further the generalization power of our system in cross-corpus emo-

Figure 5.31: Comparison of the ROC curves of the two fusion techniques using the 5
different acoustic features and the TCT descriptors for the neutral (a) and affective
(b) class.

tion detection and recognition, we conduct the following experiment. First, we train

the proposed system using the collection of debates. Then, we download a new debate

and use it to test our system. Thus, the training data do not contain any occurrence

of the test debate. Similarly, to the collections of debates, the debate is preprocessed

and segmented into speaker and emotion homogenous segments. Next, 5 acoustic

features are extracted and their representation is mapped using the mapping param-

eters from the training data. Finally, the resulting descriptors are fed to the Neural

Network. The classification step is repeated three times and the classification results

are averaged. Table 5.10 represents the details of the test debate. We divide the

debate into 69 segments of three speakers. The accents of the three speakers is quiet

different also from the ones in training data.

Table 5.11 displays comparison of the performances of the proposed system on the
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TABLE 5.10

Details of The Test Debate.

Number Name YouTube ID Number of Speakers Number of Segments
1 NFL Debate RC4JJWUtzkc 3 69

Berlin Emotional Dataset, The debate collection, and the test debate. For simplicity,

we display only the final fusion results. As it can be seen, despite the deterioration

TABLE 5.11

Classification Results (%).

Test Debate Debates BED

Fusion Product-TAA 53.48 65.22 84.61

Fusion Product-TRAA 62.32 78.26 95.70

Fusion Product-TCT 66.67 75.22 87.85

Fusion Sum-TAA 54.93 73.91 85.23

Fusion Sum-TRAA 60.87 78.26 96.11

Fusion Sum-TCT 71.01 78.91 88.04

in the performances, our system is still able to average 70% accuracy on an unforseen

debate. Similarly, the Temporal Contextual Trajectory Algorithm outperformed the

TAA and TRAA. This suggests, that the TCT descriptors integrates the discrimi-

nation between emotions more efficiently and have better generalization power. The

TCT descriptors are also more robust to noise than the TRAA and TAA descriptors.

The performances of the TRAA and TAA also suggest that the temporal averaging

step is not robust to noise.

Figure 5.32 represents the comparison of the ROC curves of the TCT algorithms us-

ing the Berlin Emotional Dataset, the Debate Collection, and the test debate. As it

can be seen, the TCT descriptors are still able to generalize to unforseen data with

competitive performances.
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Emotion analysis from debates can be further improved in many ways. First, the

Figure 5.32: Comparison of the ROC curves of the proposed system TCT descriptors
for the the detection of neutral states using sum fusion and the three experiments.

training debate data can be increased to include more situations, emotions, and con-

figurations. As the size of the training data increases, the mapping increases its ability

to discriminate between emotions in mapping and classification.

Second, in the case of emotion detection and recognition from debates, speaker seg-

mentation and clustering can be used prior to emotion analysis to detect and recognize

speakers in the analysis. Combining emotion analysis and speaker segmentation and

clustering will enable us to fully index political debates to detect and recognize auto-

matically the number of speakers involved in the conversation, then, categorize their

emotions in debates. Such systems can be further improved by using speech recog-
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nition to transcript the entire debate. Combining the proposed descriptors with text

descriptors will further improve the overall performances of our system.

Due to the nature of debating, at the feature level, we can improve the system by

creating features that are specific to measure emotions in debates. Such features can

measure changes in the tone, pitch, and energy.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, we have presented a novel framework for mapping emotional

speech data into global descriptors that integrates the temporal information from the

original sequence and the discrimination between emotions.

In most classic approaches, temporal speech data is mapped into a static global de-

scriptor before analysis and classification. This often results in the loss of temporal

ordering from the original sequence. Emotion is the result of a succession of acoustic

events. By discarding the temporal ordering of these events in the mapping, the clas-

sic approaches cannot detect acoustic patterns that lead to a certain emotion. The

proposed framework overcomes these limitations by integrating the temporal infor-

mation in the mapping implicitly and explicitly. Moreover, the proposed framework

is data driven since it integrates the discrimination between emotions in the mapping

using unsupervised learning.

The proposed framework includes three mapping algorithms. In the first algorithm,

the Temporal Averaging Algorithm, the data is averaged using leaky integrators to

produce a global descriptor that preserve some of the temporal information in the

original sequence. The temporal information is integrated implicitly in the descriptor.

In order to integrate the discrimination between classes in the mapping, we proposed

the Temporal Response Averaging Algorithm which combines the temporal averag-

ing step of the previous algorithm and unsupervised learning to produce data driven
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temporal contextual descriptors.

The third algorithm, the Temporal Contextual Trajectory Algorithm, maps a tem-

poral sequence into an ordered trajectory representing the behavior over time of the

input utterance on a 2-D map of emotions. This was achieved using the topology pre-

serving property of the Self Organizing Maps and the continuous nature of speech.

The temporal information is integrated explicitly in the decriptor which makes it

easier to monitor emotions in long speeches.

The proposed mapping framework map speech data of different length to the same

equivalent representation which alleviates the problem of dealing with variable length

temporal sequences. This is advantageous in real time setting where the size of the

analysis window is variable.

In order to test the framework’s performances, we proposed a novel emotion detec-

tion and recognition system that adopts our mapping framework. The goal of such

system is to index emotional databases to facilitate the classification and retrieval of

emotions. The proposed system was applied on two emotional datasets.

The first dataset is an acted dataset. We have shown that the proposed framework

outpeforms the widely used Statistics Based Mapping Algorithm while provinidng a

better and more intuitive representation that can be used for the analysis, classifica-

tion, and visualization of emotions.

The second dataset is an authentic dataset. In this thesis, we used the proposed sys-

tem to index debates in order to detect and monitor human emotions in long debate

conversations. For that purpose, we have created and labelled a collection of debates

that can be used in emotion analysis. Such initiative is one of the first in the emotion

analysis from speech literature. We showed that the proposed emotion detection and

recognition system provides competetive results on the debate dataset with different

speakers, accents, and configurations.

92



The performance of the different mapping algorithms depends mainly on the acoustic

features and the dataset. According to our experiments, the Temporal Response Aver-

aging Algorithm and the Temporal Contextual Trajectory Algorithm outpeforms the

Temporal Averaging Algorithm due to their data driven nature. We also concluded

that the Temporal Contextual Trajectory Algorithm achieves better generalization in

cross-corpus settings than the Temporal Response Averaging Algorithm. This is due

to the fact that the proposed summarization method for the TCT descriptors is more

robust to noice than the temporal repsonse averaging.

The performances of the different features and algorithms is further improved using

socre level fusion. In this thesis, we derived, used and compared two score level fusion

techniques. The first one is a product based rule. The second technique is based on

summation. We showed the fusion of the individual classifiers improves the overall

performances of the system on the two different datasets. We also showed that the

sum based fusion is more robust in noisy enviroments than the product rule fusion.

6.2 Future Work

Although the proposed framework have shown comptetive results, there is still

room for improvement.

For instance, in the first two porposed mapping algorithms (TAA and TRAA), the

temporal averaging step was performed using leaky integrators. Future research may

include investigating other temporal averaging techniques that more robust to noise.

The discrimnation between emotions was integrated in the mapping using the Self

Organizing Maps. In this thesis, we used the classic version of the SOMs. Another

possible approach is to use other variants of the SOMs. One option is the Growing

Self Organizing Maps [83, 84]. The GSOM aims to overcome the issue of fixing apriori

the size of the map by automatically identifying from the data. This will. enable us
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to reduce the number of parameters governing our system.

In the Temporal Contextual Trajectory Algorithm, the sub trajectories are chosen as

consecutive non overlapping windows. Future research may include using other dy-

namic window decomposition techniques. One possible approach is to decompose the

trajectory into variable length subtrajectories where the behavior is uniform. Another

approach is to use overlapping subtrajectories in order to eliminate discontinuities in

the summarized trajectories.

The proposed debate corpus contains currently 8 debates. Future work may include

adding new debates to increase the size of the training data.

The proposed framework maps any sequential data into temporal contextual descip-

tors that integrate the order of the original data.

Future work may include investigating the use of the proposed framework in other

applications that use other type of sequential data such as financial data (stock mar-

ket).
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APPENDIX A

In this appendix, we provide mathematical equations and details of implemen-

tation of various acoustic feature extraction, signal processing algorithms, and the

Self Organizing maps.

A.1 LP Residual Estimation Algorithm

All the computations performed in this section are performed at the frame

level. Our goal is to compute the LP residual e of an audio frame x of length N .

The redundancy in the speech signal is exploited in the LP analysis. That is, the

current sample is a linear combination of past p samples where p denotes the order

of prediction.

Thus, the predicted sample x̂ is defined as follow

ˆx(n) = −
p∑

k=1

ak.x(n− k) (36)

In (36), {ak, 1 ≤ k ≤ p} are the linear prediction coefficients.

The prediction error (LP residual) e is defined as the difference between x and x̂,

that is

e(n) = x− x̂ = x(n) +

p∑
k=1

ak.x(n− k) (37)

The primary goal of LP analysis is to compute the LP coefficients {ak, 1 ≤ k ≤ p}

which minimized the prediction error e. Various methods have been proposed in

the literature to compute the LP coefficients such as the covariance method and

the autocorrelation method[38, 6]. In this proposal, we use the least squares auto

102



correlation method which seeks to minimize the total predication error defined as

E =
+∞∑

n=−∞

e2(n) (38)

We replace e by its expression in equation (37),

E =
+∞∑

n=−∞

{x(n) +

p∑
k=1

ak.x(n− k)}2 (39)

The LP coefficients {ak, 1 ≤ k ≤ p} which minimize the total prediction error E are

the solution of the following equation

dE

dak
= 0, 1 ≤ k ≤ p (40)

dE

dak
=

d

dak
{

+∞∑
n=−∞

{x(n) +

p∑
k=1

ak.x(n− k)}2} = 0, 1 ≤ k ≤ p (41)

Since
+∞∑

n=−∞

{x(n− j).x(n)} =

p∑
k=1

ak

+∞∑
n=−∞

{x(n− j).x(n− k)} (42)

Equation (42) can be rewritten in terms of an autocorrelation sequence R as follow

p∑
k=1

ak.R(j − k) = R(j) (43)

Where the autocorrelation function R of length N is defined as follow

R(j) =
N−1∑
n=j

x(n).x(n− j) (44)

Equation (44) can be written in the matrix form as follow

R.A = −r (45)

In (45), R is a pxp symmetric matrix of elements R(i, k) = R(|i − k|), 1 ≤ i, k ≤ p,

r = {R(1), R(2), ..., R(p)} is a column vector. A = {a1, a2, .., ap} is the column vector

of LP coefficients. R is toeplitz matrix and thus invertible. Thus, A is defined as

follow

A = −R.r (46)

103



A.2 Feature Extraction Algorithm of Low Level Features

All the computations in this section are performed at the frame level. Let x

denotes an input audio frame of size N .

A.2.1 Spectral Centroid

The spectral centroid is defined as the center of gravity of the magnitude

spectrum of the short term fourier transform (STFT). The Spectral Centroid of frame

x is computed as follow:

C =

∑J
j=1 P (j)× j∑J

j=1 P (j)
(47)

In (47), P (j) denotes the power spectrum of x (equation ??)at frequency bin j. The

centroid is a measure of spectral shape and higher centroid values correspond to

brighter textures with more high frequencies.

A.2.2 Spectral Roll-Off

The spectral roll-off is defined as the frequency R below which 85% of the

magnitude distribution is concentrated. The Spectral roll-off of frame x is computed

as follow:
R∑

j=1

P (j) = 0.85×
J∑

j=1

P (j) (48)

In (48), P (j) denotes the power spectrum of x (equation ??)at frequency bin j. The

spectral roll-off is another measure of spectral shape.

A.2.3 Spectral Flux

The spectral flux is defined as the squared difference between the normalized

magnitudes of successive spectral distributions. The Spectral flux of frame x is com-
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puted as follow:

F =
J∑

j=1

(Ni[j]−Ni−1[j])
2 (49)

In (49), Ni and Ni−1 denotes the normalized power spectrum at the current frame i,

and the previous frame i− 1, respectively.

The spectral flux is a measure of the amount of local spectral change.

A.2.4 Zero Cross Rate

The zero cross rate is defined as the rate of sign-changes along a signal. The

zero cross rate of frame x is computed as follow:

Z =
1

2

N∑
n=1

|sign(x[n])− sign(x[n− 1])| (50)

Time domain zero crossings provide a measure of the noisiness of the signal.

A.2.5 Short Time Energy

The Short time energy of frame x is computed as follow:

E =
1

N

N∑
j=1

|x(j)|2 (51)

A.3 Self Organizing Feature Maps

Self-organizing maps (SOMs)[85, 86, 87, 69] is a class of artificial neural network

based on competitive learning. It is widely used for data clustering and visualization.

The SOMs maps in the input data samples on a map of usually 1 or 2 dimensions

which plot the similarities of the data by grouping similar data items together. Thus,

SOMs accomplish two things, it reduces the dimension of the input data and displays

similarities between data on a 2-D map (clustering). During mapping, the topology of

the input space is preserved on the map by using a topological neighborhood function.

The 2-D map is defined by its map units. Each map unit is defined by its location
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on the map and a prototype vector.

The SOMs can be trained in batch or sequential mode. In this section, we outline

the sequential version of the SOMs.

Let X = {Xi, 1 ≤ i ≤ N} denotes the input data to the SOMs. Let ui denotes the ith

map unit of the SOMs of size M ×M and let Ci denotes its corresponding prototype

vector of dimension d.

The sequential SOMs have five steps.

1. Initialization: Initialize the prototype vectors C. Various initialization methods

have been proposed in the literature such as random, and linear. In the random

initialization, a set of M2 data samples are chosen randomly from the input data.

2. Sampling: A data sample Xj is chosen randomly from X.

3. Matching: The distance between Xj and all map units is computed. The best

matching unit of Xj is defined as

||Xj − Cbmu|| = min
i
{||Xj − Ci||} (52)

4. Updating: The prototype of the best matching unit Cbmu and its topological

neighbors are moved closer to the input vector in the input space. The update rule

for the prototype vector of unit i is defined as

C
(t+1)
i = C

(t)
i + α(t)hbi(t)[Xj −Ci(t)] (53)

In (53), t denotes the tth iteration, α(t) is an adaptation coefficient, and hbi(t) is a

neighborhood kernel centered on the winner unit typically defined as follow

h
(t)
bi = exp(− ||rb − ri||

||2(σ(t))2||
) (54)

In (54), rb and ri are positions of neurons b and i on the SOM grid. Both α(t) and

σ(t) decrease monotonically with time.

5. Convergence: Repeat steps 2-5 until α reaches 0.
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