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ABSTRACT 

 

Communication is the key to express one’s thoughts and ideas clearly. Amongst all forms of 

communication, speech is the most preferred and powerful form of communications in human. The era 

of the Internet of Things (IoT) is rapidly advancing in bringing more intelligent systems available for 

everyday use. These applications range from simple wearables and widgets to complex self-driving 

vehicles and automated systems employed in various fields. Intelligent applications are interactive and 

require minimum user effort to function, and mostly function on voice-based input.  This creates the 

necessity for these computer applications to completely comprehend human speech. A speech percept 

can reveal information about the speaker including gender, age, language, and emotion. Several existing 

speech recognition systems used in IoT applications are integrated with an emotion detection system in 

order to analyze the emotional state of the speaker. The performance of the emotion detection system 

can greatly influence the overall performance of the IoT application in many ways and can provide many 

advantages over the functionalities of these applications. This research presents a speech emotion 

detection system with improvements over an existing system in terms of data, feature selection, and 

methodology that aims at classifying speech percepts based on emotions, more accurately.  
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CHAPTER 1 

INTRODUCTION 

For several years now, the growth in the field of Artificial Intelligence (AI) has been accelerated. AI, 

which was once a subject understood by computer scientists only, has now reached the house of a 

common man in the form of intelligent systems. The advancements of AI have engendered to several 

technologies involving Human-Computer Interaction (HCI) [1]. Aiming to develop and improve HCI 

methods is of paramount importance because HCI is the front-end of AI which millions of users 

experience. Some of the existing HCI methods involve communication through touch, movement, hand 

gestures, voice and facial gestures [1]. Among the different methods, the voice-based intelligent devices 

are gaining popularity in a wide range of applications. In a voice-based system, a computer agent is 

required to completely comprehend the human’s speech percept in order to accurately pick up the 

commands given to it. This field of study is termed as Speech Processing and consists of three 

components: 

 Speaker Identification 

 Speech Recognition 

 Speech Emotion Detection 

Speech Emotion Detection is challenging to implement among the other components due to its 

complexity. Furthermore, the definition of an intelligent computer system requires the system to mimic 

human behavior. A striking nature unique to humans is the ability to alter conversations based on the 

emotional state of the speaker and the listener. Speech emotion detection can be built as a classification 

problem solved using several machine learning algorithms. This project discusses in detail the various 

methods and experiments carried out as part of implementing a Speech Emotion Detection system.  
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1.1 IMPORTANCE 

Communication is the key to express oneself. Humans use most part of their body and voice to 

effectively communicate. Hand gestures, body language, and the tone and temperament are all 

collectively used to express one’s feeling. Though the verbal part of the communication varies by 

languages practiced across the globe, the non-verbal part of communication is the expression of feeling 

which is most likely common among all. Therefore, any advanced technology developed to produce a 

social environment experience also covers understanding emotional context in speech. 

Improvements in the field of emotion detection positively impact a multitude of applications. 

Some of the research areas that benefit from automating the emotion detection technique include 

psychology, psychiatry, and neuroscience. These departments of cognitive sciences rely on human 

interaction, where the subject of study is put through a series of questions and situations, and based on 

their reactions and responses, several inferences are made. A potential drawback occurs as few people 

are classified introverts and hesitate to communicate.  Therefore, replacing the traditional procedures 

with a computer-based detection system can benefit the study. Similarly, the practical applications of the 

speech-based emotion detection are many. Smart home appliances and assistants (Examples: Amazon 

Alexa [2] and Google Home [3]) are ubiquitous these days. Additionally, customer care-based call centers 

often have an automated voice control which might not please most of their angry customers. Redirecting 

such calls to a human attendant will improve the service. Other applications include eLearning, online 

tutoring, investigation, personal assistant (Example: Apple Siri [4] and Samsung S Voice [5]) etc. A very 

recent application could be seen in self-driving cars. These vehicles heavily depend on voice-based 

controlling. An unlikely situation, such as anxiety, can cause the passenger to utter unclear sentences. In 

these situations, understanding the emotional content expressed becomes of prime importance.  
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1.2 MOTIVATION 

Identifying the emotion expressed in a speech percept has several use cases in the modern day 

applications.  Human-Computer Interaction (HCI) is a field of research that studies interactive applications 

between humans and computers [1]. For an effective HCI application, it is necessary for the computer 

system to understand more than just words. On the other hand, the field of Internet of Things (IoT) is 

rapidly growing. Many real word IoT applications that are used on a daily basis such as Amazon Alexa, 

Google Home and Mycroft function on voice-based inputs. The role of voice in IoT applications is pivotal. 

The study in a recent article foresees that by 2022, about 12% of all IoT applications would fully function 

based on voice commands only [6]. These voice interactions could be mono-directional or bi-directional, 

and in both cases, it is highly important to comprehend the speech signal. Further, there are Artificial 

Intelligence (AI) and Natural Language Processing (NLP) based applications that use functions of IoT and 

HCI to create complex systems. Self-driving cars are one such application that controls many of its 

functions using voice-based commands. Identifying the emotional state of the user comes with a great 

advantage in this application. Considering emergency situations in which the user may be unable to clearly 

provide a voice command, the emotion expressed through the user’s tone of voice can be used to turn on 

certain emergency features of the vehicle. A much simpler application of speech emotion detection can 

be seen in call centers, in which automated voice calls can be efficiently transferred to customer service 

agents for further discussion. Other applications of using a speech emotion detection system can be found 

in lie detecting systems, criminal department analysis, and in humanoids. 
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CHAPTER 2 

EXISTING SYSTEMS 

2.1 METHODOLOGY 

The speech emotion detection system is implemented as a Machine Learning (ML) model. The 

steps of implementation are comparable to any other ML project, with additional fine-tuning procedures 

to make the model function better. The flowchart represents a pictorial overview of the process (see 

Figure 1). The first step is data collection, which is of prime importance. The model being developed will 

learn from the data provided to it and all the decisions and results that a developed model will produce is 

guided by the data. The second step, called feature engineering, is a collection of several machine learning 

tasks that are executed over the collected data. These procedures address the several data representation 

and data quality issues. The third step is often considered the core of an ML project where an algorithmic 

based model is developed. This model uses an ML algorithm to learn about the data and train itself to 

respond to any new data it is exposed to. The final step is to evaluate the functioning of the built model. 

Very often, developers repeat the steps of developing a model and evaluating it to compare the 

performance of different algorithms. Comparison results help to choose the appropriate ML algorithm 

most relevant to the problem.  



SPEECH EMOTION DETECTION   17 
 

 

Fig.1 Flow of implementation 

2.2 RANKING SVM APPROACH 

Cao et al. [7] proposed a system that considered that the emotion expressed by humans are 

mostly a result of mixed feeling. Therefore, they suggested an improvement over the SVM algorithm that 

would consider mixed signals and choose the most dominant one. For this purpose, a ranking SVM 

algorithm was chosen. The ranking SVM takes all predictions from individual binary classification SVM 

classifiers also called as rankers, and applies it to the final multi-class problem. Using the ranking SVM 

algorithm, an accuracy of 44.40% was achieved in their system. 
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2.3 DIMENSIONALITY REDUCTION METHOD 

Chen et al. [8] developed a system that had improvements in the pre-processing stage. Two pre-

processing techniques, namely Fisher and Principle Component Analysis (PCA), were used in combination 

with two classifier algorithms, namely SVM and ANN. They carried out four experiments, each with a 

different combination of pre-processing and the classifier algorithm. The first experiment used Fisher 

method to select features for a multi-level SVM classifier (Fisher + SVM). The second experiment was to 

reduce feature dimensionality using Principle Component Analysis (PCA) for the SVM classifier (PCA + 

SVM). The third experiment used the Fisher technique over the ANN model (Fisher + ANN). Finally, PCA 

was applied before classification using ANN (PCA + ANN). From these experiments, two important 

conclusions were made. Firstly, dimensionality reduction improves the performance of the system. 

Secondly, SVM classifier algorithm classifies better than the ANN algorithm in the case of emotion 

detection. The winning experiment had an accuracy of 86.50% using Fisher for dimensionality reduction 

and SVM for classification.  

2.4 LPC COEFFICIENT APPROACH 

In the Nwe et al. [9] system, a subset of features, similar to the Mel Frequency Cepstral 

Coefficients (MFCC), was used. They used the Log Frequency Power Coefficients (LFPC) over a Hidden 

Markov Model (HMM) to classify emotions in speech. Their work is not publically available, as they used 

a dataset privately available to them. However, they claim that using the LFPC coefficients over the MFFCC 

coefficients shows a significant improvement in terms of the accuracy of the model. The average 

classification accuracy in their model is 78% and the best accuracy is even higher 96%. 
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2.5 EXTENDING THE FEATURE SPACE 

Rong et al. [10] proposed an innovative way to improve the accuracy of existing models. 

Traditionally, computer scientists were using various pre-processing techniques to reduce the number of 

features. Contrastingly, this new system increased the number of features used for classification.  They 

claimed to have performed classification over a small dataset containing audio percepts in the Chinese 

language, but do not disclose the features that they used.  However, they also mentioned that none of 

their features are language-dependent. Using a high number of features over an ensemble random forest 

algorithm (ERFTrees), they achieved an accuracy of 82.54%. 

2.6 DOMAIN SPECIFIC CLASSIFICATION 

Narayanan [11], in his work, proposes a system that uses a more real-world dataset. For his work, 

data was collected from a call center and he performed a binary classification with only two distinct 

emotions, namely happy and angry. The research used numerous features including acoustic, lexical and 

other language-based features over the KNN algorithm. Moreover, this research was conducted 

specifically for the call center domain and was evaluated across male and female customers. The accuracy 

values showed improvements of 40.70% and 36.40% in male and female customers, respectively. 
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CHAPTER 3 

DATASET 

Two datasets created in the English language, namely the Toronto Emotional Speech Set (TESS) 

and the emotional dataset from Knowledge Extraction based on Evolutionary Learning (KEEL), contain a 

more diverse and realistic audio. The descriptions of the dataset are as follows. 

3.1 TORONTO EMOTIONAL SPEECH SET (TESS) 

The researchers from the Department of Psychology at the University of Toronto have created a 

speech emotion based dataset in 2010, in the English language [12]. The database contains 2800 sound 

files of speech utterances in seven basic emotional categories, namely: Happy, Sad, Angry, Surprise, Fear, 

Disgust and Neutral. It is an acted recording, where actors from two age groups of Old (64-year-old) and 

Young (26-year-old) had performed the dictation.  

A few qualities of this dataset which makes it good for this project are: 

 The size of the dataset is large enough for the model to be trained effectively. The more 

exposure to data given to a model helps it to perform better. 

 All basic emotional categories of data are present. A combination of these emotions can be 

used for further research like Sarcasm and Depression detection. 

 Data is collected from two different age groups which will improve the classification. 

 The audio files are mono signals, which ensures an error-free conversion with most of the 

programming libraries. 
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3.2 KNOWLEDGE EXTRACTION BASED ON EVOLUTIONARY LEARNING (KEEL)  

KEEL is an online dataset repository contributed by machine learning researchers worldwide [13]. 

The emotion for speech dataset contains 72 features extracted for each of the 593 sound files. The data 

are labeled across six emotions, namely: Happy, Sad, Angry, Surprise, Fear and Neutral. The repository 

also offers data to be downloaded in 10 or 5 folds for the purpose of training and testing.  

A few qualities of this dataset which makes it good for this project are: 

 Data is represented as features directly, which saves conversion time and procedures. 

 All basic emotional categories of data are present. A combination of these emotions can be 

used for further research like Sarcasm and Depression detection. 
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CHAPTER 4 

FEATURE EXTRACTION 

4.1 THE PROCESS 

Speech is a varying sound signal. Humans are capable of making modifications to the sound 

signal using their vocal tract, tongue, and teeth to pronounce the phoneme. The features are a way to 

quantify data. A better representation of the speech signals to get the most information from the 

speech is through extracting features common among speech signals.  Some characteristics of good 

features include [14]: 

 The features should be independent of each other. Most features in the feature vector are 

correlated to each other. Therefore it is crucial to select a subset of features that are individual 

and independent of each other. 

 The features should be informative to the context. Only those features that are more 

descriptive about the emotional content are to be selected for further analysis. 

 The features should be consistent across all data samples. Features that are unique and 

specific to certain data samples should be avoided.  

 The values of the features should be processed. The initial feature selection process can result 

in a raw feature vector that is unmanageable. The process of Feature Engineering will remove 

any outliers, missing values, and null values.  
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The features in a speech percept that is relevant to the emotional content can be grouped into 

two main categories: 

1. Prosodic features  

2. Phonetic features.  

The prosodic features are the energy, pitch, tempo, loudness, formant, and intensity.  The 

phonetic features are mostly related to the pronunciation of the words based on the language. Therefore 

for the purpose of emotion detection, the analysis is performed on the prosodic features or a combination 

of them.  Mostly the pitch and loudness are the features that are very relevant to the emotional content.  

4.2 LIST OF FEATURES 

See Table 1 for the features that were extracted for each frame of the audio signal, along with their 

definitions [15].  
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Table.1 List of features present in an audio signal 

Feature 

ID 

Feature 

Name 

Description 

1 Zero Crossing 
Rate 

“The rate at which the signal changes its sign.”  

2 Energy “The sum of the signal values squared and normalized using frame 
length.” 

3 Entropy of 
Energy 

“The value of the change in energy.” 

4 Spectral 
Centroid 

“The value at the center of the spectrum.” 

5 Spectral 
Spread 

“The value of the bandwidth in the spectrum.” 

6 Spectral 
Entropy 

“The value of the change in the spectral energy.” 

7 Spectral Flux “The square of the difference between the spectral energies of 
consecutive frames.” 

8 Spectral 
Rolloff 

“The value of the frequency under which 90% of the spectral distribution 
occurs.” 

9-21 MFCCs “Mel Frequency Cepstral Coefficient values of the frequency bands 
distributed in the Mel-scale.” 

22-33 Chroma 
Vector 

“The 12 values representing the energy belonging to each pitch class.” 

34 Chroma 
Deviation 

“The value of the standard deviation of the Chroma vectors.” 
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4.3 Mel Frequency Cepstrum Coefficients (MFCC) FEATURES 

A subset of features that are used for speech emotion detection is grouped under a category 

called the Mel Frequency Cepstrum Coefficients (MFCC) [16].  It can be explained as follows: 

 The word Mel represents the scale used in Frequency vs Pitch measurement (see Figure 2) 

[16]. The  value measured in frequency scale can be converted into Mel scale using the 

formula m = 2595 log10 (1 + (f/700)) 

 The word Cepstrum represents the Fourier Transform of the log spectrum of the speech 

signal.  

 

Fig.2 The Mel scale 

Image Source: Practicalcryptography.com. (2018). Practical Cryptography. [online] Available at: 

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-

mfccs/. 

4.3.1 COEFFICIENT COMPUTATION 

Below is the mathematical approach to compute the MFCC features from a speech signal [16]: 

1. The first step is to frame the audio signal. The method of frame blocking discussed earlier is used to 

split the audio signals into frames of an optimal length of 20ms to 30ms, with 50% overlap. 

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/


SPEECH EMOTION DETECTION   26 
 

2. The next step is mathematical. In this step, for each frame of the signal, the power spectrum is 

computed. The power spectrum, also known as Periodogram, identifies the frequencies present in 

each frame (see Figure 3) [16]. In order to select a particular band of frequencies, the value at each 

frame is multiplied by a Hamming window value. Mathematically, the periodogram is the squared 

value of the modulus of the Discrete Fourier Transform (DFT).    

 
Fig.3 Periodogram 

Image Source: Practicalcryptography.com. (2018). Practical Cryptography. [online] Available at: 

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-

mfccs/. 

 

3. Next, the power spectra obtained can contain many closely spaced frequencies. These variations in 

the frequencies make it difficult to obtain the energy values present in the signal. Thus, to scale the 

values, a filter named Mel Filterbank is applied to the power spectrum. The Mel Filterbank is a 

collection of triangular filters in the frequency domain. Nearing 0Hz, the frequencies are narrow to 

each other; further higher, the frequencies become wider (see Figure 4) [16]. The product of the 

power spectrum values and the Mel Filterbank values provides the energy in each frame. However, 

since overlapping frames are used in the analysis, the energy values obtained for the individual frames 

would be correlating with each other. 
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Fig.4 The Mel filterbank 

Image Source: Practicalcryptography.com. (2018). Practical Cryptography. [online] Available at: 

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-

mfccs/. 

 

4. The final step is to de-correlate the energies. For this purpose, the Discrete Cosine Transform (DCT) 

function is used. DCT outputs a list of coefficient values corresponding to the pitch and energy values 

obtained so far. The lower level coefficients (the first 12 to 13 coefficients) of each frame represents 

steady changes in the pitch and energy values, and therefore they are better for analysis. These lower 

level coefficients are called the Mel Frequency cepstral coefficients.  

4.4 FRAME BLOCKING 

The frame blocking method is used to analyze sound signals. It is the process of dividing the sound 

signal into blocks known as frames and performing analysis over each block, rather than the signal at large. 

It is preferred to analyze individual frames because audio signals are stable within short time intervals. 

Several acoustic features can be interpreted from a single frame. In order to ensure the time-varying 

characteristics of the signal are measured accurately, some part of the neighboring frames is also analyzed 

at every step to identify any subtle changes in the sound signal. This value is often termed as frame 

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
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overlap, indicating the amount of overlap to include from the neighboring frames. The steps of frame 

blocking are as follows [17]: 

1. Set frame size value to an appropriate number.  

Each frame should not be too small or too large, as this would mislead the time-varying 

characteristics of the features. Standard framing window size is 20ms to 30ms for audio signal 

processing. 

2. Set frame overlap value. 

If the overlap value is too large, more duration from the neighboring frames will need to be 

analyzed at each analysis step. This will increase the computation and hence is not recommended. 

Ideally, ½ or 1/3 of frame overlap is suggested.   

3. Perform analysis on each frame 

Each frame is a unit of computation of the sound signal. Feature extraction of frames will quantify 

the acoustic features of the audio signal.  

4.5 SILENCE REMOVAL 

An audio signal at the time of recording can accommodate silent regions where no utterances had 

been made. Such silent regions of the audio signal do not provide any useful information regarding the 

emotion expressed, and can be removed. A semi-supervised learning approach is used for silence 

detection in audio signals. In this approach, a model is initially trained with sample audio signals in order 

to be able to distinguish between high and low energy features [15]. Later, a percentage of high and low 

energy frames are used as endpoints to detect the regions of actual audio in the signal. Finally, applying 

the trained model over the entire signal will provide silence-free audio segments [15]. Threshold values 

such as frame size, frame step, and sampling frequency are tunable in order to smooth the output signals. 
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CHAPTER 5 

DATA PREPARATION 

5.1 DATA QUALITY ISSUES 

Data must be cleaned to perform any meaningful analysis.  As a next step, the dataset thus collected 

had to be inspected for its quality. Some of the data quality issues addressed for this experimentation 

includes: 

1. Missing value analysis 

2. Outlier identification 

3. Null value handling   

4. Invalid data 

5. Duplicate data 

5.1.1 MISSING VALUE ANALYSIS 

Due to several influencing factors, a few or more data rows can contain no values for specific 

features. These values are termed ‘missing’ from the dataset. A large number of missing values can 

provide insights into the data. For example, if a particular feature has most of its values missing for all 

data rows, then it can be inferred that the feature is likely uncommon and can be removed from the 

dataset.  Contrastingly, a small number of missing values can represent data entry error. Analyzing and 

amending individual features over missing values will improve and fix the quality of the dataset. Some of 

the methods to handle missing values include; if the number of missing values is large then the 

corresponding data rows or features can be removed, whereas if very few values are missing for a feature 

it can be imputed which means replacing with the mean or most frequent value of the feature. 
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5.1.2 OUTLIER IDENTIFICATION 

Outlier values are also considered as data modifiers because often the prediction algorithm used 

will be misled by the outlier values. Outliers also alter the statistics of the overall data such as mean, 

variance and standard deviation. The proportion of the outliers amongst the whole dataset can be used 

to made decisions on how to handle them.  If the outliers lie within a small range of difference and 

contribute to a very small proportion, then no fixes will be required. Some methods to handle large 

proportions of outliers include, replacing outlier values with boundary, or mean, or median, or mode 

values.  

5.1.3 NULL VALUE HANDLING 

A common error that can occur in a dataset is the null value error. It is when the words ‘null’ or 

‘NA’ is used in place of missing values as fillers. Null values are mostly treated and handled in a fashion 

similar to missing values. 

5.1.4 INVALID DATA  

A dataset can have values irrelevant to the data type, such as symbols and special characters. 

These values, despite being meaningless, can cause errors during processing. Depending on the amount 

of invalid data present, it can either be removed or imputed. 

5.1.5 DUPLICATE DATA 

Few features might be a duplicate of each other, with different names or units of measurement. 

Such features increase the dimensionality of the data with no further significance. Removal of duplicate 

features is highly recommended.  
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5.2 NORMALIZATION AND STANDARDIZATION 

Different characteristics of the audio signal, represented by its features, are computed on 

different units or scales. Rescaling the values to a uniform range will ensure accurate calculations are 

made. Many algorithms use distance metrics for their computation. Therefore it is necessary that all the 

values in the dataset are normalized. Two approaches are commonly used for the purpose of rescaling, 

namely Normalization and Standardization. Normalization alters all numeric values to lie in the range 0 to 

1. For this purpose, all outliers in the data must be eliminated prior to normalizing the data. The formula 

for normalization is given as  

x new = (x -x min) / (x max - x min) 

In the formula, x represents the data [18].  

Standardization transforms the data to have a mean value of zero and a variance of one.  

However, standardizing the data provides more insights into the data than normalization. The formula for 

normalization is given as  

x new = (x - µ) / σ 

In the formula, x represents the data [18].  

5.3 PEARSON CORRELATION COEFFICIENT 

Correlation is the liner association that exists between each pair of features in the dataset and is 

used to identify the features that are highly associated or correlated with the decision attribute [19].  The 

Pearson correlation coefficient, r is a value that denotes the strength of the correlation. The value of r 

ranges between -1 to +1 through 0, where the negative values denote a lesser correlation between 
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variables and the positive values denote greater correlation. A value of 0 denotes that there is no 

correlation between the variables (see Figure 5) [19].  

 

Fig.5 Pearson correlation coefficient 

Image Source: Statistics.laerd.com. (2018). Pearson Product-Moment Correlation - When you should run this test, 

the range of values the coefficient can take and how to measure strength of association.. [online] Available at: 

https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php. 

 

The strength of the association can be determined using the value of the Pearson coefficient r. 

However, the strength of the association also depends on the type of variables under measurement.  The 

Person method of correlation computation can be used on all numeric data irrespective of whether they 

have been scaled or not. Additionally, this approach treats all variables equally and does not consider any 

proposed dependence between the variables. The following guidelines have been proposed to determine 

the strength of correlation (see Figure 6) [19].  

https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
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Fig.6 Pearson correlation coefficient guidelines 

Image Source: Statistics.laerd.com. (2018). Pearson Product-Moment Correlation - When you should run this test, 

the range of values the coefficient can take and how to measure strength of association.. [online] Available at: 

https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php. 

 

5.4 CLUSTERING 

5.4.1 K MEANS CLUSTERING ALGORITHM 

K-Means is an unsupervised clustering algorithm that will form ‘k’ groups within the data based 

on feature similarity. It is an iterative process by which data are iteratively grouped based on the similarity 

between their features. Clustering the data into groups provides more insights on the distribution of the 

training data available, and also easily helps classify any unknown (new) data. The algorithm is a two-step 

iterative process in which, based on distance metrics between the data points and centroids of the cluster, 

groups of similar data are created. The steps of the algorithm are [20]: 

Initially, random values of the centroid(s) are assumed. 

1. Data Assignment 

Based on the value of a distance metric (For example, Euclidean distance and Manhattan 

distance), data points are assigned to the closest neighboring centroids. 

 

https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
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2. Centroid re-computation 

Centroids or mean value of all data points are calculated and updated at each step following the 

data assignment step. 

Steps 1 and 2 are iteratively performed until the groups are distinctively classified. There are two 

conditions that ensure accuracy in clustering, namely: the inter-cluster distance and intra-cluster 

difference. The distance between the centroids of each cluster should be larger, ensuring that each group 

is well-separated from each other showing distinct differences. Additionally, the distance between each 

point within the cluster should be smaller, ensuring the similarity between data points within the group. 

By analyzing the final value of each centroid, the characteristics of the data belonging to the cluster can 

be quantitatively explained.  

5.4.1.1 THE ELBOW METHOD - CHOOSING K-VALUE 

The ‘k’ in k-means denote the number of clusters the data needed to be grouped into. 

Traditionally, the algorithm is repeated over different values of k and the results are compared by the 

average within cluster distance to the centroid. Alternatively, the elbow method can be used to depict an 

optimal value of k [20].  In the elbow method, the average within cluster distance to the centroid value is 

plotted against different values of k and the point of the curve where the distance sharply bends is the 

optimal value of k (see Figure 7) [20].  
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Fig.7 Elbow method for K means clustering 

Image Source: Trevino, A. (2018). Introduction to K-means Clustering. [online] Datascience.com. Available at: 

https://www.datascience.com/blog/k-means-clustering. 

 

5.5 PRINCIPAL COMPONENT ANALYSIS 

In some cases, most or all of the features might have an impact on the decision making. However, 

a high dimensional dataset with a large feature space could potentially slow the performance of the 

system in terms of space and time complexity. Choosing the right set of features for analysis can be 

challenging, as it requires high-level domain knowledge. A solution to this problem is the Principle 

Component Analysis (PCA) technique for dimensionality reduction. PCA is an approach to bring out the 

principal components or the important aspects of the data. By using this method, the original feature 

space of the data is transformed into a new set of features while retaining the variation present in the 

data [21].  

The technique of PCA analyses the variance of the data by measuring the covariance between the 

features. This is done mathematically using the concept of eigenvalues and eigenvectors. Eigenvalues are 

https://www.datascience.com/blog/k-means-clustering
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numbers denoting the value of variance in each dimension of the data, and the eigenvector is the 

dimension with the highest eigenvalue. This eigenvector is the principal component of the dataset [22]. 

Given below are the implementation steps of PCA [21]. 

5.5.1 DATA NORMALIZATION 

PCA works with the numerical values of the dataset to compute the variance, hence it is necessary 

that the values are scaled and normalized. All normalized data variables will have a mean value of 

0. 

5.5.2 COVARIANCE MATRIX COMPUTATION 

An NxN covariance matrix is computed, where N is the number of features in the dataset. The 

elements of the covariance matrix represent the variance between each of the features in the 

dataset. 

5.5.3 EIGENVALUES AND EIGENVECTOR COMPUTATION 

Eigenvalues and eigenvectors are computed using the covariance matrix. This computation is 

purely mathematical and many programming libraries have built-in functions for this calculation. 

At the end of the computation, N eigenvalues for an N-dimensional dataset is obtained. The 

eigenvalues thus obtained are the components of PCA [22]. 

5.5.4 CHOOSING COMPONENTS  

The eigenvector component with the largest eigenvalue is the 1st Principal component, containing 

the most information about the dataset. Sorting the eigenvalues in decreasing order can give the 

list of principal components with the amount of variance needed. Depending on how much 
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information is needed, programmers can choose the top P number of components needed for 

further analysis. 

5.5.5 FORMING PRINCIPLE COMPONENTS 

A new dataset is created using the principal components selected for analysis. Mathematically, 

left multiplication of the transposed feature vector with the scaled original dataset will produce 

the new dataset. 

New Dataset = (Feature Vector)T  X (Scaled Data)T  

5.5.6 SCREE PLOT 

Scree plot is a way to select the optimal number of components to be selected such that enough 

information is being retained form the raw dataset. It is a curve plot having the information 

maintained and the number of components on the different axis. The elbow point of the curve 

indicates the optimal value of components to be used for further analysis.  
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CHAPTER 6 

ALGORITHMS 

6.1 LOGISTIC REGRESSION 

Logistic Regression is a supervised classification algorithm which produces probability values of 

data belonging to different classes [23]. There are three types of Logistic Regression algorithms, namely 

Binary class, Multi-class and Ordinal class logistic algorithms depending on the type of target class. The 

Wikipedia definition states that “Logistic regression computes the relationship between the target 

(dependent) variable and one or more independent variables using the estimated probability values 

through a logistic function” [24]. The logistic function, also known as a sigmoid function, maps predicted 

values to probability values. The procedure of a multiclass logistic regression algorithm is as follows: 

1. For an N class problem, divide into N pairs of binary class problems. 

2. For each binary class problem 

2.1 For each observation of a binary class problem 

2.1.1 Compute probability values of the observation belonging to a class  

3. Make the final prediction by computing the maximum probability value amongst all classes 

The time complexity of the algorithm is in the order of the number of data samples, represented as  

O (n samples). 

6.2 NAÏVE BAYES 

Naïve Bayes classifier is based on Bayes theorem, which determines the probability of an event 

based on a prior probability of events [26]. Bayes theorem is used to compute prior probability values. 

https://en.wikipedia.org/wiki/Logistic_function
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This classifier algorithm assumes feature independence. No correlation between the features is 

considered. The algorithm is said to be Naïve because it treats all the features to independently contribute 

to deciding the target class. The steps of a simple Naïve Bayes algorithm is as follows [25]: 

1. Create a frequency table for all features individually. Tag the frequency of each entry 

against the target class. 

2. Create a likelihood table by computing probability values for each entry in the frequency 

table. 

3. Calculate posterior probability for each target class using the Bayes theorem.  

4. Declare the target class with the highest posterior probability value as the predicted 

outcome.  

The time complexity of the algorithm is in the order of the number of data samples, represented as                 

O (n samples). There are three types of Naïve Bayes algorithm, namely: the Gaussian Naïve Bayes (GNB) 

which is applicable with features following a normal distribution, the Multinomial Naïve Bayes (MNB) 

which is most suited to use when the number of times the outcome occurs is to be computed, and the 

Bernoulli Naïve Bayes (BNB) for a dataset with binary features.  

6.3 SUPPORT VECTOR MACHINES 

Support Vector Machines (SVM) are a supervised algorithm that works for both classification and 

regression problems. Support vectors are coordinate points in space, formed using the attributes of a data 

point. Briefly, for an N-dimensional dataset, each data point is plotted on an N-dimensional space using 

all its feature vector values as a coordinate point [27]. Classification between the classes is performed by 

finding a hyperplane in space that clearly separates the distinct classes. SVM works best for high 
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dimensional data. The important aspect of implementing SVM algorithm is finding the hyperplane. Two 

conditions are to be met in the order given while choosing the right hyperplane. 

1. The hyperplane should classify the classes most accurately 

2. The margin distance from the hyperplane to the nearest data point must be maximized. 

For a low dimensional dataset, the method of kernel trick in SVM introduces additional features to 

transform the dataset to a high dimensional space and thereby make identifying the hyperplane 

achievable. 

The linear solver based SVM is a better implementation of SVM in terms of time complexity. The 

complexity scales between O(n samples X n2 samples) and O(n samples X n3 samples).  

6.4 K-NEAREST NEIGHBOR  

K-Nearest Neighbor (KNN) is the simplest classification algorithm. The approach is to plot all data 

points on space, and with any new sample, observe its k nearest points on space and make a decision 

based on majority voting.  Thus, KNN algorithm involves no training and it takes the least calculation time 

when implemented with an optimal value of k. The steps of KNN algorithm is as follows [28]: 

1. For a given instance, find its distance from all other data points. Use an appropriate distance 

metric based on the problem instance.  

2. Sort the computed distances in increasing order. Depending on the value of k, observe the nearest 

k points.  

3. Identify the majority class amongst the k points, and declare it as the predicted class.  
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Choosing an optimal value of k is a challenge in this approach. Most often, the process is repeated for 

a number of different trials of k. The evaluation scores are then observed using a graph to find the optimal 

value of k.  

There is no training in the model of KNN and hence there is no training time complexity value. While 

testing, the number of nearest samples to be looked up for decides the complexity of the algorithm and 

is controlled by the value of k. 

6.5 DECISION TREE 

The Decision tree is an approach where the entire dataset is visualized as a tree, as the 

classification problem is loosely translated as finding the path from the root to leaf based on several 

decision conditions at each sub-tree level. Each feature in the dataset is treated as a decision node at its 

sub-tree level. The initial tree is designed using the values of the training sample. For a new data point, its 

values are tracked on the built tree from root to leaf where the leaf node represents the target or 

predicted class. There are two types of decision trees based on the type of the target class, namely [29]: 

1. Binary variable decision tree – for binary class problems 

2. Continuous variable decision tree – for continuous value problem 

The Decision tree is a very simple algorithm to implement, as it requires less data preparation. It is 

also widely used in data exploration. However, decision trees are very susceptible to noises in the dataset. 

This might lead to the problem of overfitting.   

The time complexity of decision tree depends on the height of the tree controlled by the number of data 

samples, and by the number of features used for the split. It can be represented as                                                   

O(n samples n features log(n samples)). 
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6.6 RANDOM FOREST 

Random forest is a supervised classification similar to decision trees. While the root node and 

splitting features in the decision tree are based on the Gini and Information gain values, the random forest 

algorithm does it in a random fashion. The random forest is a collection of decision trees; therefore, a 

large number of trees gives better results.  Overfitting is a potential drawback of random forests, but 

increasing the number of trees can reduce overfitting. Random forest also has several advantages like its 

capability to handle missing values and classify multi-class categorical variables. The steps of building a 

random forest classifier are as follows [30]: 

1. Select a subset of features from the dataset.  

2. From the selected subset of features, using the best split method, pick a node. 

3. Continue the best split method to form child nodes from the subset of features. 

4. Repeat the steps until all nodes are used as split. 

5. Iteratively create n number of trees using steps 1 -4 to form a forest. 

The time complexity of Random Forest is higher by the factor of the number of trees used for building the 

forest.  

6.7 GRADIENT BOOSTING TREE 

Gradient boosting is a class of algorithms which is used over other regular algorithms (for example 

Gradient boosting over decision trees algorithm) in order to improve the performance of the regular 

algorithm. The improvement is created over three steps [31]: 
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1. Optimizing the loss function 

It is a mathematical function representing errors occurring in a model. The logarithmic loss 

function is best suited for classification problems. However, one may define their own loss 

function. 

2. Using a weak learner for the predictions 

A learning algorithm such as decision tree is a greedy approach, as it decides its splitting attribute 

at each step using the best split method. Hence this algorithm is usually a good choice to be used 

with gradient boosting. 

3. An additive model that minimizes the loss function by adding more weak learner 

Gradient descent algorithmic models use weak learner algorithms as a sub-model, in this case, it 

is a Decision Tree algorithm. Conventionally, the gradient descent procedure is used to reduce 

the weights of the parameters used in the weak learner. After calculating the loss induced by the 

model, at each step more trees are added to the model to reduce the loss or errors. 
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CHAPTER 7 

EVALUATION  

7.1 EVALUATION METRICS 

The most important characteristic of machine learning models is its ability to improve. Once the 

model is built, even before testing the model on real data, machine learning experts evaluate the 

performance of the model. Evaluation metrics reveal important model parameters and provides numeric 

scores that will help judge the functioning of the model. The most important metric needed to evaluate 

the model is the confusion matrix (see Figure 8) [32].  

The structure of a confusion matrix is against the actual and predicted positive and negative 

classes, and contains four values which are used to compute other metrics. The true positive represents 

the correct predictions made in the positive class, and the true negatives represent the correct predictions 

made in the negative class. The false positives and false negatives are the observations wrongly predicted 

for their respective classes.  

 

Fig.8 Confusion Matrix 

Image Source: Exsilio Blog. (2018). Accuracy, Precision, Recall & F1 Score: Interpretation of Performance Measures - 

Exsilio Blog. [online] Available at: http://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-

performance-measures/. 
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Four important metrics can be derived using the values in the confusion matrix, namely [31]: 

7.1.1 ACCURACY 

It is the ratio of the observations predicted correctly to the total number of observations. Accuracy 

works best for datasets with an equal class distribution, and hence it is not always a good measure to 

evaluate the model. Accuracy can be computed as 

Accuracy = (True Positives + True Negatives) / (True Positives + False positives+True Negatives + 

False Negatives) 

7.1.2 PRECISION 

It is the ratio of the positive observations predicted correctly to the total positive observations 

predicted. Higher the value of precision, better and more accurate the model actually is. Precision can 

also work with an uneven class distribution. It can be computed as 

Precision = True Positives / (True positives + False positives) 

7.1.3 RECALL OR SENSITIVITY 

It is the ratio of the positive observations predicted correctly to the total positive observations. A 

recall score of 50% and more reveals a good performing model. Recall can also work with an uneven class 

distribution. It can be computed as 

Recall = True positives / (True positives + False negatives) 

7.1.4 F1 score 

It is the weighted average value of precision and recall. The F1 score is the best metric for uneven 

class distribution. F1 can be computed as 

F1= 2 * (Recall * Precision) / (Recall + Precision) 
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CHAPTER 8 

IMPLEMENTATION 

8.1 DATA COLLECTION 

The first step in implementing the Speech Emotion Recognition system is to collect audio samples 

under different emotional categories which can be used to train the model. The audio samples are usually 

wav or mp3 files and publically available for download. The following steps are explained relative to the 

experiments performed on the TESS dataset.  

8.2 PYTHON LIBRARY 

The next step after data collection was to represent these audio files numerically, in order to 

perform further analysis on them. This step is called feature extraction, where quantitative values for 

different features of the audio is obtained. The pyAudioAnalysis library was used for this purpose [15]. 

This python library provides functions for short-term feature extraction, with tunable windowing 

parameters such as frame size and frame step. At the end of this step, each audio file was represented as 

a row in a CSV file with 34 columns representing the different features. Each feature will have a range of 

values for one audio file obtained over the various frames in that audio signal. The python library 

pyAudioAnalysis is an open Python library that provides a wide range of audio-related functionalities 

focusing on feature extraction, classification, segmentation, and visualization issues. The library depends 

on several other libraries which are: 

 Numpy 

 Matplotlib 

 Scipy 
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 Sklearn 

 Hmmlearn 

 Simplejson 

 eyeD3 

 pydub 

8.3 DATA VISUALIZATION 

Visualizing the data gives more understanding of the problem and the type of solution to be built. 

The distribution of classes, the number of instances under each category, the spread of the data, the 

correlation between the features and clustering are a few methods to visualize the data. Python and R 

provide statistical functions for data visualization.  

8.3.1 FEATURE ANALYSIS 

Primarily, the number of rows and columns and a preview of the data is viewed (see Figure 9.A). 

 

Fig.9.A. An overview of data 
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Next, the number of examples under each category are counted (see Figure 9.B).  

 

Fig.9.B. Overview of data grouped by categories 

Distribution of the data on each of its feature can be visualized using box plots and violin plots or using 

pair plots. The Seaborn package in Python provides methods to draw such plots. Shown here is the data 

distribution of the feature ‘Energy’ among the different categories (see Figure 10.A and Figure 10.B). 

 

Fig.10.A. Box plot analysis of feature values 
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Fig.10.B. Violin plot analysis of feature values 

 

The statistical language R provides several functions to effectively understand the statistics of the data. 

For each feature, the statistical values were visualized and it was observed that the raw data was not 

standardized (see Figure 11).  
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Fig.11 Summary of data-before standardization 

 

8.3.2 CORRELATION 

The pearson correlation coefficient values were analyzed which provided insights about the 

features that correlate positively and negatively with the target class. In this observation, no features had 

a negative correlation with the target class (see Figure 12).  
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Fig.12 Correlation values of data 

8.3.3 CLUSTERING 

Clustering the data provided a deeper understanding of the features. The k-means clustering was 

performed iteratively for various values of k and evaluated against the sum of squares metric. For k values 

less than 7, the cluster grouping was imbalanced, and for values greater than 10, the clusters were 

becoming too spread out. The elbow method of plotting reveals a sharp turn at k=7 which produces 

balanced clusters (see Figure 13). Interestingly there are 7 categories of emotions tagged in the dataset, 

hence making 7 distinct cluster groups of the data shows a clear separation with the feature values among 

the groups. 
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Fig.13 K-Means clustering of data and the elbow method 

8.4 DATA PREPARATION 

After analyzing the data through various visualizations, the next step is to prepare the data for 

processing. The steps of data preparation include fixing quality issues, standardization, and normalization. 

First, the data is checked for quality issues such as missing values (see Figure 14), outliers (see Figure 15), 

invalid data and duplicate data.  There were no missing values, invalid or duplicate values in the dataset. 

 

Fig.14 Missing value analysis 
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With the outlier analysis, for each feature, the proportion of the outliers are viewed along with 

the changes in the mean value of the feature with and without the outliers (see Figure 17). This insight 

will help decide if the outliers are actual outliers or if they contribute to decision making.  

 

 

Fig.15 Outlier analysis 

Next, normalization was performed on the data as the raw data was recorded on a different scale. 

After standardization, all feature values now are in the range 0 to 1 (see Figure 16). 
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Fig.16 Summary of data-after standardization 

8.5 FEATURE ENGINEERING 

Feature engineering is the process of transforming, reducing or constructing features for the 

dataset. As mentioned earlier in the raw data, each feature has multiple values for each frame of the audio 

signal. By the frame blocking and windowing techniques, the frame size and frame overlap values can be 

tuned to obtain accurate values of the audio signal. Further, using the averaging technique, average values 

of different features for the audio signals are obtained. Now the transformed data contains 34 discrete 

values representing each audio signal (see Figure 17).  
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Fig.17 Extracted features and their data types 

Reducing the number of features is a crucial decision to take. Considering features to be removed 

is generally based on subject knowledge and hence can affect the performance of the system. Next, a 

series of experiments are performed with this prepared dataset in order to analyze the important 

features.  
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CHAPTER 9 

EXPERIMENTS 

9.1 APPROACH 1 – WITH ALL EXTRACTED FEATURES 

For this experiment, all the 34 features were considered. The data represented 2399 audio files. The 

steps of implementation are listed briefly (see Figure 18). 

1. Using K-fold cross-validation method, the dataset is split into training and validation sets for the 

purpose of testing the model.  

2. A classifier model is built using one of the classification algorithms and its parameters are 

observed. At this stage, tuning the values of parameters is optional.  

3. The model is trained using the training data.  

4. The trained model is evaluated using the validation set and the accuracy score is computed.  

5. The model is tested and evaluation metrics such as precision, recall, and F1 scores are computed.  
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Fig.18 Implementation 

 

The same experiment was repeated with various classification algorithms and the results were compared 

(see Table 2). The results had higher accuracy scores than expected. There was an average performance 

score of 75%.  Besides the accuracy, the F1 score is the arithmetic mean of Precision and Recall, thereby 

making it a good metric for comparing the models. SVM has a good F1 score of 83%, making it a winning 

algorithm for this approach. It can also be observed that the tree-based algorithms have an improved 

performance with enhancements. The decision tree classifier has a score of 70%+, improved with the 

Random forest classifier with a score of 75%+, and further improved using the Gradient Decent classifier 

with a score of 77%+. The accuracy score of Logistic regression is around 80%. However, the other metrics 
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have an average score of 70%. The Naïve Bayes classifier has a score of 74%+ and KNN classifier has a 

score of 80%+. 

Table.2 Results of approach-1 implementation 

ALGORITHM ACCURACY PRECISION RECALL F1 SCORE 

SVM 84% (+/- 0.03) 83% 84% 83% 

Decision Tree 74% (+/- 0.03) 71% 72% 71% 

KNN 82% (+/- 0.05) 80% 80% 80% 

Logistic 

Regression 

80% (+/- 0.03) 72% 69% 70% 

Random Forest 78% (+/- 0.04) 77% 75% 76% 

Gaussian Naïve 

Bayes 

76% (+/- 0.05) 74% 74% 74% 

Gradient Boosting 

Trees 

80% (+/- 0.03) 77% 77% 77% 

 

9.2 APPROACH 2 – WITH MFCC COEFFICIENTS  

Among all the features retrieved from the audio signal, several researchers suggest that the MFCC 

values alone closely relate to the emotional tone of the audio. Studies suggest that using the MFCC 

features can reduce the dimensionality of the training set, and thereby take less computation time. This 

experiment repeats the same procedure as the previous but using only the MFCC values which are 13 

dimensional. 
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Experiments similar to the first approach were carried out and the results are tabulated (see Table 3).  The 

results of the second approach had scores lower than the first approach. The average accuracy of the 

models built using the second approach is 72%. KNN is the winning algorithm for this approach with a 

leading score of 80%+.  Similar to the previous approach, there were improvements in the Decision Tree 

classifier with enhancements, with scores improving from 65% to 70%.  

Table.3 Results of approach-2 implementation 

ALGORITHM ACCURACY PRECISION RECALL F1 SCORE 

SVM 79% (+/- 0.03) 78% 77% 77% 

Decision Tree 68% (+/- 0.03) 65% 65% 65% 

KNN 84% (+/- 0.05) 80% 80% 80% 

Logistic 

Regression 

80% (+/- 0.03) 78% 77% 77% 

Random Forest 71% (+/- 0.04) 70% 69% 70% 

Gaussian Naïve 

Bayes 

75% (+/- 0.05) 73% 73% 72% 

Gradient Boosting 

Trees 

73% (+/- 0.03) 72% 69% 70% 

 

9.3 APPROACH 3 – USING PCA FOR DECOMPOSITION 

From the previous experiments, it can be learned that reducing the dimensions by cutting off 

the features, will reduce the performance of the model. This is because by cutting off features most of 

the information from the original dataset is not retained. Principal Component Analysis (PCA) is a 
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dimensionality reduction methodology in which the variation from the raw dataset can be specified to 

be retained. PCA has a pre-requisite that the data should be standardized before performing PCA on it. 

For this experiment, a scree plot was plotted (see Figure 19) to determine the optimal number of 

components to be retained. The elbow point was at 25 component with 95% information being 

retained. The data now is 25 dimensional. The steps of model building and evaluation was carried out 

next (see Figure 20). 

1. The data is split into training and validation sets. 

2. All the numeric values of the data are standardized in order to maintain a uniform distribution. 

3. PCA is performed on the data with 95% information retain value, and the respective number of 

components are observed. 

4. The data is transformed to contain the principal components. 

5. The model is built and evaluated with the new data. 

 

Fig.19 Scree plot 
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Fig.20 PCA implementation 

 
The implementation results of the third approach are tabulated (see Table 4) and the performance of the 

different classifiers are compared. The average score of this approach is 77%, which is an improvement 

over the other two approaches. The winning algorithm, similar to the first approach is SVM with a high 

score of 90%+. KNN classifier had scores closer to the winning algorithm of 87%. The Decision tree 

classifier improved from 68% to 71% using the Random Forest classifier, and to 75% with Gradient 

boosting trees.  The logistic regression has an average score of 87%. Naïve Bayes has a score of 75%.  
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Table.4 Results of approach-3 implementation 

ALGORITHM ACCURACY PRECISION RECALL F1 SCORE 

SVM 92% (+/- 0.03) 90% 90% 90% 

Decision Tree 72% (+/- 0.03) 69% 68% 68% 

KNN 89% (+/- 0.05) 88% 87% 87% 

Logistic 

Regression 

87% (+/- 0.04) 87% 86% 86% 

Random Forest 74% (+/- 0.04) 74% 71% 72% 

Gaussian Naïve 

Bayes 

77% (+/- 0.05) 75% 75% 75% 

Gradient Boosting 

Trees 

81% (+/- 0.03) 76% 75% 75% 

 

9.4 COMPARISION OF THE RESULTS 

 The various algorithms performed differently with each approach of the implementation. Since 

accuracy is not always a good measure for evaluating the model, the F1 scores can be used for 

comparison. On comparing the F1 scores from the results of each approach (see Table 5 and Figure 21), 

led to useful conclusions. SVM, KNN, and Logistic Regression classifiers have a low performance in the 

second approach and an improved performance in the third approach, as compared to the first 

approach. The tree-based classifiers, such as Decision Tree, Random Forest, and Gradient Boosted trees 

performed the best for the first approach and has a low performance with the other approaches. The 

KNN classifier had a constant performance score for all the three approaches.  
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Table.5 Comparison of the results 

ALGORITHM APPROACH 1 APPROACH 2 APPROACH 3 

SVM 83% 77% 90% 

Decision Tree 71% 65% 68% 

KNN 80% 80% 87% 

Logistic 

Regression 

70% 77% 86% 

Random Forest 76% 69% 72% 

Gaussian Naïve 

Bayes 

74% 73% 75% 

Gradient Boosting 

Trees 

77% 69% 75% 

 

 

Fig.21 Summary of the experiments 
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9.5 IMPLEMENTATION ON THE KEEL DATASET 

The third approach was found performing better than the other two approaches. Therefore the 

same implementation procedure was run on the KEEL dataset and the results are tabulated (see Table 

6). The performance scores are lower than the TESS dataset, due to the smaller size of the training data 

in KEEL. The highest score of the KEEL dataset is by the SVM classifier with an average value of 65%, 

making it the winning algorithm.  The performance of the different models is similar to the results of the 

TESS dataset.  

 Table.6 Results of KEEL dataset 
 

ALGORITHM ACCURACY PRECISION RECALL F1 SCORE 

SVM 67% (+/- 0.03) 65% 66% 65% 

Decision Tree 49% (+/- 0.03) 48% 49% 49% 

KNN 55% (+/- 0.05) 55% 56% 55% 

Logistic 

Regression 

48% (+/- 0.04) 48% 48% 48% 

Random Forest 51% (+/- 0.04) 50% 50% 50% 

Gaussian Naïve 

Bayes 

43% (+/- 0.05) 43% 42% 43% 

Gradient Boosting 

Trees 

51% (+/- 0.03) 50% 51% 50% 
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CHAPTER 10 

RESULTS 

Several observations and conclusions can be derived from the results of the implementation. There is 

an overall improvement in the performance scores between the different approaches. The 

implementation following the first approach has a fair performance with a high score of 83% using the 

SVM algorithm, and the second approach worked well using the KNN algorithm for a high score of 80%, 

and the third approach had a 90% score using the SVM algorithm, which is the highest among all three 

approaches. The following observations can be made from the results: 

Observation 1: Upon comparing of the results of the first and third approach, the SVM and KNN algorithm 

had improvements in the different performance metric scores. However, the Decision Tree, Random 

Forest and, Gradient Boosting Trees had diminishing scores. The Bayesian algorithm performed constantly 

between these approaches.  

The improved scores of the SVM and KNN algorithm can be attributed to the dimensionality reduction 

used in the third approach. Reducing the dimensionality of the data increases the ratio of the size of the 

dataset to the number of dimensions, which reduces the bias of the classifier towards any particular class. 

Contrastingly, the performance of the tree-based algorithms improves with a larger feature set. This is 

because, the depth of the decision tree increases with adding more features, and thereby help making 

more accurate decisions. The Bayesian principle of the Naïve Bayes algorithm works on the prior 

probability value calculated for each data in the training set, which remains unchanged among the two 

approaches, and hence the scores remain unchanged. 
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Observation 2: The overall performance of the second approach was lower than the other two 

approaches.   

This is because of the selective feature approach fails to contain most of the information from the speech 

signal, and can be concluded that using only the MFCC values alone cannot be a good measure to classify 

the emotional content of speech.  

Observation 3: The classification report of the first approach (see Figure 22) shows that the 

misclassification is higher for the emotions Happy and Surprise.  

This bias is due to the common properties of the features in these two categories. The dimensionality 

reduction step used in the third approach has greatly minimized this bias (see Figure 23).   

On comparison to the baseline system by Chen et al. [8], the proposed system has improvements in the 

accuracy score (see Figure 24). The third experiment is the winning approach for the proposed 

methodology. 
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Fig.22 Classification report for approach-1 results 

 

 

Fig.23 Classification report for approach-3 results 
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Fig.24 Evaluation against the baseline 
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CHAPTER 11 

CONCLUSION AND FUTURE WORK 

The emerging growth and development in the field of AI and machine learning have led to the new era of 

automation. Most of these automated devices work based on voice commands from the user. Many 

advantages can be built over the existing systems if besides recognizing the words, the machines could 

comprehend the emotion of the speaker (user). Some applications of a speech emotion detection system 

are computer-based tutorial applications, automated call center conversations, a diagnostic tool used for 

therapy and automatic translation system. 

In this thesis, the steps of building a speech emotion detection system were discussed in detail and some 

experiments were carried out to understand the impact of each step. Initially, the limited number of 

publically available speech database made it challenging to implement a well-trained model. Next, several 

novel approaches to feature extraction had been proposed in the earlier works, and selecting the best 

approach included performing many experiments. Finally, the classifier selection involved learning about 

the strength and weakness of each classifying algorithm with respect to emotion recognition. At the end 

of the experimentation, it can be concluded that an integrated feature space will produce a better 

recognition rate when compared to a single feature.  

For future advancements, the proposed project can be further modeled in terms of efficiency, accuracy, 

and usability. Additional to the emotions, the model can be extended to recognize feelings such as 

depression and mood changes. Such systems can be used by therapists to monitor the mood swings of 

the patients. A challenging product of creating machines with emotion is to incorporate a sarcasm 

detection system. Sarcasm detection is a more complex problem of emotion detection since sarcasm 

cannot be easily identified using only the words or tone of the speaker. A sentiment detection using 
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vocabulary, can be integrated with speech emotion detection to identify a possible sarcasm. Therefore, 

in the future, there would emerge many applications of a speech-based emotion recognition system.  
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