16,782 research outputs found

    Fine-Grained Emotion Analysis Based on Mixed Model for Product Review

    Get PDF
    Nowadays, with the rapid development of B2C e-commerce and the popularity of online shopping, the Web storages huge number of product reviews comment by customers. A large number of reviews made it difficult for manufacturers or potential customers to track the comments and suggestions that customers made. This paper presents a method for extracting emotional elements containing emotional objects and emotional words and their tendencies from product reviews based on mixed model. First we constructed conditional random fields to extract emotional elements, lead-in semantic and word meaning as features to improve the robustness of feature template and used rules for hierarchical filtering errors. Then we constructed support vector machine to classify the emotional tendency of the fine-grained elements to achieve key information from product reviews. Deep semantic information imported based on neural network to improve the traditional bag of word model. Experimental results show that the proposed model with deep features efficiently improved the F-Measure

    Vicarious Liability in Torts: The Sex Exception

    Get PDF

    Chronic-Pain Protective Behavior Detection with Deep Learning

    Get PDF
    In chronic pain rehabilitation, physiotherapists adapt physical activity to patients' performance based on their expression of protective behavior, gradually exposing them to feared but harmless and essential everyday activities. As rehabilitation moves outside the clinic, technology should automatically detect such behavior to provide similar support. Previous works have shown the feasibility of automatic protective behavior detection (PBD) within a specific activity. In this paper, we investigate the use of deep learning for PBD across activity types, using wearable motion capture and surface electromyography data collected from healthy participants and people with chronic pain. We approach the problem by continuously detecting protective behavior within an activity rather than estimating its overall presence. The best performance reaches mean F1 score of 0.82 with leave-one-subject-out cross validation. When protective behavior is modelled per activity type, performance is mean F1 score of 0.77 for bend-down, 0.81 for one-leg-stand, 0.72 for sit-to-stand, 0.83 for stand-to-sit, and 0.67 for reach-forward. This performance reaches excellent level of agreement with the average experts' rating performance suggesting potential for personalized chronic pain management at home. We analyze various parameters characterizing our approach to understand how the results could generalize to other PBD datasets and different levels of ground truth granularity.Comment: 24 pages, 12 figures, 7 tables. Accepted by ACM Transactions on Computing for Healthcar

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149โ€“164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ยฑ1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Facial expression of pain: an evolutionary account.

    Get PDF
    This paper proposes that human expression of pain in the presence or absence of caregivers, and the detection of pain by observers, arises from evolved propensities. The function of pain is to demand attention and prioritise escape, recovery, and healing; where others can help achieve these goals, effective communication of pain is required. Evidence is reviewed of a distinct and specific facial expression of pain from infancy to old age, consistent across stimuli, and recognizable as pain by observers. Voluntary control over amplitude is incomplete, and observers can better detect pain that the individual attempts to suppress rather than amplify or simulate. In many clinical and experimental settings, the facial expression of pain is incorporated with verbal and nonverbal vocal activity, posture, and movement in an overall category of pain behaviour. This is assumed by clinicians to be under operant control of social contingencies such as sympathy, caregiving, and practical help; thus, strong facial expression is presumed to constitute and attempt to manipulate these contingencies by amplification of the normal expression. Operant formulations support skepticism about the presence or extent of pain, judgments of malingering, and sometimes the withholding of caregiving and help. To the extent that pain expression is influenced by environmental contingencies, however, "amplification" could equally plausibly constitute the release of suppression according to evolved contingent propensities that guide behaviour. Pain has been largely neglected in the evolutionary literature and the literature on expression of emotion, but an evolutionary account can generate improved assessment of pain and reactions to it

    ์ฃผ์š” ์šฐ์šธ ์žฅ์• ์˜ ์Œ์„ฑ ๊ธฐ๋ฐ˜ ๋ถ„์„: ์—ฐ์†์ ์ธ ๋ฐœํ™”์˜ ์Œํ–ฅ์  ๋ณ€ํ™”๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(๋””์ง€ํ„ธ์ •๋ณด์œตํ•ฉ์ „๊ณต), 2023. 2. ์ด๊ต๊ตฌ.Major depressive disorder (commonly referred to as depression) is a common disorder that affects 3.8% of the world's population. Depression stems from various causes, such as genetics, aging, social factors, and abnormalities in the neurotransmitter system; thus, early detection and monitoring are essential. The human voice is considered a representative biomarker for observing depression; accordingly, several studies have developed an automatic depression diagnosis system based on speech. However, constructing a speech corpus is a challenge, studies focus on adults under 60 years of age, and there are insufficient medical hypotheses based on the clinical findings of psychiatrists, limiting the evolution of the medical diagnostic tool. Moreover, the effect of taking antipsychotic drugs on speech characteristics during the treatment phase is overlooked. Thus, this thesis studies a speech-based automatic depression diagnosis system at the semantic level (sentence). First, to analyze depression among the elderly whose emotional changes do not adequately reflect speech characteristics, it developed the mood-induced sentence to build the elderly depression speech corpus and designed an automatic depression diagnosis system for the elderly. Second, it constructed an extrapyramidal symptom speech corpus to investigate the extrapyramidal symptoms, a typical side effect that can appear from an antipsychotic drug overdose. Accordingly, there is a strong correlation between the antipsychotic dose and speech characteristics. The study paved the way for a comprehensive examination of the automatic diagnosis system for depression.์ฃผ์š” ์šฐ์šธ ์žฅ์•  ์ฆ‰ ํ”ํžˆ ์šฐ์šธ์ฆ์ด๋ผ๊ณ  ์ผ์ปฌ์–ด์ง€๋Š” ๊ธฐ๋ถ„ ์žฅ์• ๋Š” ์ „ ์„ธ๊ณ„์ธ ์ค‘ 3.8%์— ๋‹ฌํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์ด ๊ฒช์€๋ฐ” ์žˆ๋Š” ๋งค์šฐ ํ”ํ•œ ์งˆ๋ณ‘์ด๋‹ค. ์œ ์ „, ๋…ธํ™”, ์‚ฌํšŒ์  ์š”์ธ, ์‹ ๊ฒฝ์ „๋‹ฌ๋ฌผ์งˆ ์ฒด๊ณ„์˜ ์ด์ƒ๋“ฑ ๋‹ค์–‘ํ•œ ์›์ธ์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ์šฐ์šธ์ฆ์€ ์กฐ๊ธฐ ๋ฐœ๊ฒฌ ๋ฐ ์ผ์ƒ ์ƒํ™œ์—์„œ์˜ ๊ด€๋ฆฌ๊ฐ€ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ธ๊ฐ„์˜ ์Œ์„ฑ์€ ์šฐ์šธ์ฆ์„ ๊ด€์ฐฐํ•˜๊ธฐ์— ๋Œ€ํ‘œ์ ์ธ ๋ฐ”์ด์˜ค๋งˆ์ปค๋กœ ์—ฌ๊ฒจ์ ธ ์™”์œผ๋ฉฐ, ์Œ์„ฑ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ ์ž๋™ ์šฐ์šธ์ฆ ์ง„๋‹จ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ๋“ค์ด ์ง„ํ–‰๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์Œ์„ฑ ๋ง๋ญ‰์น˜ ๊ตฌ์ถ•์˜ ์–ด๋ ค์›€๊ณผ 60์„ธ ์ดํ•˜์˜ ์„ฑ์ธ๋“ค์—๊ฒŒ ์ดˆ์ ์ด ๋งž์ถ”์–ด์ง„ ์—ฐ๊ตฌ, ์ •์‹ ๊ณผ ์˜์‚ฌ๋“ค์˜ ์ž„์ƒ ์†Œ๊ฒฌ์„ ๋ฐ”ํƒ•์œผ๋กœํ•œ ์˜ํ•™์  ๊ฐ€์„ค ์„ค์ •์˜ ๋ฏธํก๋“ฑ์˜ ํ•œ๊ณ„์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์˜๋ฃŒ ์ง„๋‹จ ๊ธฐ๊ตฌ๋กœ ๋ฐœ์ „ํ•˜๋Š”๋ฐ ํ•œ๊ณ„์ ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ํ•ญ์ •์‹ ์„ฑ ์•ฝ๋ฌผ์˜ ๋ณต์šฉ์ด ์Œ์„ฑ ํŠน์ง•์— ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ์˜ํ–ฅ ๋˜ํ•œ ๊ฐ„๊ณผ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์œ„์˜ ํ•œ๊ณ„์ ๋“ค์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•œ ์˜๋ฏธ๋ก ์  ์ˆ˜์ค€ (๋ฌธ์žฅ ๋‹จ์œ„)์—์„œ์˜ ์Œ์„ฑ ๊ธฐ๋ฐ˜ ์ž๋™ ์šฐ์šธ์ฆ ์ง„๋‹จ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์‹œํ–‰ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์šฐ์„ ์ ์œผ๋กœ ๊ฐ์ •์˜ ๋ณ€ํ™”๊ฐ€ ์Œ์„ฑ ํŠน์ง•์„ ์ž˜ ๋ฐ˜์˜๋˜์ง€ ์•Š๋Š” ๋…ธ์ธ์ธต์˜ ์šฐ์šธ์ฆ ๋ถ„์„์„ ์œ„ํ•ด ๊ฐ์ • ๋ฐœํ™” ๋ฌธ์žฅ์„ ๊ฐœ๋ฐœํ•˜์—ฌ ๋…ธ์ธ ์šฐ์šธ์ฆ ์Œ์„ฑ ๋ง๋ญ‰์น˜๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ , ๋ฌธ์žฅ ๋‹จ์œ„์—์„œ์˜ ๊ด€์ฐฐ์„ ํ†ตํ•ด ๋…ธ์ธ ์šฐ์šธ์ฆ ๊ตฐ์—์„œ ๊ฐ์ • ๋ฌธ์žฅ ๋ฐœํ™”๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ๊ณผ ๊ฐ์ • ์ „์ด๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ๋…ธ์ธ์ธต์˜ ์ž๋™ ์šฐ์šธ์ฆ ์ง„๋‹จ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ํ•ญ์ •์‹ ๋ณ‘ ์•ฝ๋ฌผ์˜ ๊ณผ๋ณต์šฉ์œผ๋กœ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋Š” ๋Œ€ํ‘œ์ ์ธ ๋ถ€์ž‘์šฉ์ธ ์ถ”์ฒด์™ธ๋กœ ์ฆ์ƒ์„ ์กฐ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด ์ถ”์ฒด์™ธ๋กœ ์ฆ์ƒ ์Œ์„ฑ ๋ง๋ญ‰์น˜๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๊ณ , ํ•ญ์ •์‹ ๋ณ‘ ์•ฝ๋ฌผ์˜ ๋ณต์šฉ๋Ÿ‰๊ณผ ์Œ์„ฑ ํŠน์ง•๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์šฐ์šธ์ฆ์˜ ์น˜๋ฃŒ ๊ณผ์ •์—์„œ ํ•ญ์ •์‹ ๋ณ‘ ์•ฝ๋ฌผ์ด ์Œ์„ฑ์— ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด์„œ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ฃผ์š” ์šฐ์šธ ์žฅ์• ์˜ ์˜์—ญ์— ๋Œ€ํ•œ ํฌ๊ด„์ ์ธ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Research Motivations 3 1.1.1 Bridging the Gap Between Clinical View and Engineering 3 1.1.2 Limitations of Conventional Depressed Speech Corpora 4 1.1.3 Lack of Studies on Depression Among the Elderly 4 1.1.4 Depression Analysis on Semantic Level 6 1.1.5 How Antipsychotic Drug Affects the Human Voice? 7 1.2 Thesis objectives 9 1.3 Outline of the thesis 10 Chapter 2 Theoretical Background 13 2.1 Clinical View of Major Depressive Disorder 13 2.1.1 Types of Depression 14 2.1.2 Major Causes of Depression 15 2.1.3 Symptoms of Depression 17 2.1.4 Diagnosis of Depression 17 2.2 Objective Diagnostic Markers of Depression 19 2.3 Speech in Mental Disorder 19 2.4 Speech Production and Depression 21 2.5 Automatic Depression Diagnostic System 23 2.5.1 Acoustic Feature Representation 24 2.5.2 Classification / Prediction 27 Chapter 3 Developing Sentences for New Depressed Speech Corpus 31 3.1 Introduction 31 3.2 Building Depressed Speech Corpus 32 3.2.1 Elements of Speech Corpus Production 32 3.2.2 Conventional Depressed Speech Corpora 35 3.2.3 Factors Affecting Depressed Speech Characteristics 39 3.3 Motivations 40 3.3.1 Limitations of Conventional Depressed Speech Corpora 40 3.3.2 Attitude of Subjects to Depression: Masked Depression 43 3.3.3 Emotions in Reading 45 3.3.4 Objectives of this Chapter 45 3.4 Proposed Methods 46 3.4.1 Selection of Words 46 3.4.2 Structure of Sentence 47 3.5 Results 49 3.5.1 Mood-Inducing Sentences (MIS) 49 3.5.2 Neutral Sentences for Extrapyramidal Symptom Analysis 49 3.6 Summary 51 Chapter 4 Screening Depression in The Elderly 52 4.1 Introduction 52 4.2 Korean Elderly Depressive Speech Corpus 55 4.2.1 Participants 55 4.2.2 Recording Procedure 57 4.2.3 Recording Specification 58 4.3 Proposed Methods 59 4.3.1 Voice-based Screening Algorithm for Depression 59 4.3.2 Extraction of Acoustic Features 59 4.3.3 Feature Selection System and Distance Computation 62 4.3.4 Classification and Statistical Analyses 63 4.4 Results 65 4.5 Discussion 69 4.6 Summary 74 Chapter 5 Correlation Analysis of Antipsychotic Dose and Speech Characteristics 75 5.1 Introduction 75 5.2 Korean Extrapyramidal Symptoms Speech Corpus 78 5.2.1 Participants 78 5.2.2 Recording Process 79 5.2.3 Extrapyramidal Symptoms Annotation and Equivalent Dose Calculations 80 5.3 Proposed Methods 81 5.3.1 Acoustic Feature Extraction 81 5.3.2 Speech Characteristics Analysis recording to Eq.dose 83 5.4 Results 83 5.5 Discussion 87 5.6 Summary 90 Chapter 6 Conclusions and Future Work 91 6.1 Conclusions 91 6.2 Future work 95 Bibliography 97 ์ดˆ ๋ก 121๋ฐ•

    Profile of investigative capacities that determine factors to investigate in the universities of Peru

    Get PDF
    The need to develop research in the Peruvian university context is urgently needed. That is why, in order to develop the research processes, it is required to have a profile of the research capacity of the students. For this reason, the purpose was to determine the profile of investigative capacities that derive from factors to investigate in universities. It corresponds to the quantitative approach, of a transversal type; a sample made up of 303 university students was used. Two instruments were used: investigative skills scale and the questionnaire of factors that influence investigative skills with construct validity by the KMO test (0.623 and 0.706,respectively). The results referring to the profiles showed that 32.3% of the respondents identified themselves with the reflective inquiry investigative capacity profile, followed by 26.7% with the generic conceptualization investigative capacity profile; while 27.7% were related to the specific cognitive investigative abilities profile and, finally, 13.2% ofthose evaluated were identified in the active cognitive construction investigative abilities profile. It is concluded that students have investigative skills at different progressive levels, with different characteristics depending on the influence of factors in the training process.Campus Huancay

    Interpretation in Social Anxiety: Measurement, Modification, Mechanism and Mood.

    Get PDF
    Cotemporary cognitive models of emotion, in particular social anxiety, emphasise the role of biases in in information processing. Interpretive bias is central to this biased cognition, however research concerning it currently features a number of deficits. In particular, methods of measuring and modifying interpretations are currently of limited scope. The mechanism of action of interpretation modification and its interface with affective processing is also currently not directly evidenced. The current thesis begins by considering methods of improving cognitive bias modification for interpretation (CBM-I) by including explicit instructions and participant generated content. An innovative measure of interpretation is integrated and applied alongside conventional outcome measures for these tasks. The thesis moves on to consider the role of mood manipulation in interfering with or accentuating the outcomes gained in CBM-I work, and the roles of state and trait anxiety in interpretation in general. The primary findings were an absence of evidence for a training effect from both the conventional and newly-applied CBM-I techniques used across the experiments (making mood investigation inconclusive), but varied state and trait associations for the different measures of bias applied. Taken together, these results suggest a more conservative impression of the effects of CBM-I than that found in prior literature and imply caution with its application and assumptions regarding its mechanism of effect. Furthermore, they suggest that a conventional closed-resolution measure is responsive to state and trait variation in social anxiety, and that there is a trait associated bias in likelihood approximation but not generation or evaluation of negative material by socially anxious individuals. Implications of these results for theory and further empirical practice are discussed
    • โ€ฆ
    corecore