3,045 research outputs found

    Wavelet-Based Kernel Construction for Heart Disease Classification

    Get PDF
    Ā© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERINGHeart disease classification plays an important role in clinical diagnoses. The performance improvement of an Electrocardiogram classifier is therefore of great relevance, but it is a challenging task too. This paper proposes a novel classification algorithm using the kernel method. A kernel is constructed based on wavelet coefficients of heartbeat signals for a classifier with high performance. In particular, a wavelet packet decomposition algorithm is applied to heartbeat signals to obtain the Approximation and Detail coefficients, which are used to calculate the parameters of the kernel. A principal component analysis algorithm with the wavelet-based kernel is employed to choose the main features of the heartbeat signals for the input of the classifier. In addition, a neural network with three hidden layers in the classifier is utilized for classifying five types of heart disease. The electrocardiogram signals in nine patients obtained from the MIT-BIH database are used to test the proposed classifier. In order to evaluate the performance of the classifier, a multi-class confusion matrix is applied to produce the performance indexes, including the Accuracy, Recall, Precision, and F1 score. The experimental results show that the proposed method gives good results for the classification of the five mentioned types of heart disease.Peer reviewedFinal Published versio

    Investigating multisensory integration in emotion recognition through bio-inspired computational models

    Get PDF
    Emotion understanding represents a core aspect of human communication. Our social behaviours are closely linked to expressing our emotions and understanding others emotional and mental states through social signals. The majority of the existing work proceeds by extracting meaningful features from each modality and applying fusion techniques either at a feature level or decision level. However, these techniques are incapable of translating the constant talk and feedback between different modalities. Such constant talk is particularly important in continuous emotion recognition, where one modality can predict, enhance and complement the other. This paper proposes three multisensory integration models, based on different pathways of multisensory integration in the brain; that is, integration by convergence, early cross-modal enhancement, and integration through neural synchrony. The proposed models are designed and implemented using third-generation neural networks, Spiking Neural Networks (SNN). The models are evaluated using widely adopted, third-party datasets and compared to state-of-the-art multimodal fusion techniques, such as early, late and deep learning fusion. Evaluation results show that the three proposed models have achieved comparable results to the state-of-the-art supervised learning techniques. More importantly, this paper demonstrates plausible ways to translate constant talk between modalities during the training phase, which also brings advantages in generalisation and robustness to noise.PostprintPeer reviewe

    Classification of Human Emotions from EEG Signals using Statistical Features and Neural Network

    Get PDF
    A statistical based system for human emotions classification by using electroencephalogram (EEG) is proposed in this paper. The data used in this study is acquired using EEG and the emotions are elicited from six human subjects under the effect of emotion stimuli. This paper also proposed an emotion stimulation experiment using visual stimuli. From the EEG data, a total of six statistical features are computed and back-propagation neural network is applied for the classification of human emotions. In the experiment of classifying five types of emotions: Anger, Sad, Surprise, Happy, and Neutral. As result the overall classification rate as high as 95% is achieved

    Synch-Graph : multisensory emotion recognition through neural synchrony via graph convolutional networks

    Get PDF
    Human emotions are essentially multisensory, where emotional states are conveyed through multiple modalities such as facial expression, body language, and non-verbal and verbal signals. Therefore having multimodal or multisensory learning is crucial for recognising emotions and interpreting social signals. Existing multisensory emotion recognition approaches focus on extracting features on each modality, while ignoring the importance of constant interaction and co- learning between modalities. In this paper, we present a novel bio-inspired approach based on neural synchrony in audio- visual multisensory integration in the brain, named Synch-Graph. We model multisensory interaction using spiking neural networks (SNN) and explore the use of Graph Convolutional Networks (GCN) to represent and learn neural synchrony patterns. We hypothesise that modelling interactions between modalities will improve the accuracy of emotion recognition. We have evaluated Synch-Graph on two state- of-the-art datasets and achieved an overall accuracy of 98.3% and 96.82%, which are significantly higher than the existing techniques.Postprin

    A Survey on Emotion Recognition for Human Robot Interaction

    Get PDF
    With the recent developments of technology and the advances in artificial intelligent and machine learning techniques, it becomes possible for the robot to acquire and show the emotions as a part of Human-Robot Interaction (HRI). An emotional robot can recognize the emotional states of humans so that it will be able to interact more naturally with its human counterpart in different environments. In this article, a survey on emotion recognition for HRI systems has been presented. The survey aims to achieve two objectives. Firstly, it aims to discuss the main challenges that face researchers when building emotional HRI systems. Secondly, it seeks to identify sensing channels that can be used to detect emotions and provides a literature review about recent researches published within each channel, along with the used methodologies and achieved results. Finally, some of the existing emotion recognition issues and recommendations for future works have been outlined

    Deep spiking neural networks with applications to human gesture recognition

    Get PDF
    The spiking neural networks (SNNs), as the 3rd generation of Artificial Neural Networks (ANNs), are a class of event-driven neuromorphic algorithms that potentially have a wide range of application domains and are applicable to a variety of extremely low power neuromorphic hardware. The work presented in this thesis addresses the challenges of human gesture recognition using novel SNN algorithms. It discusses the design of these algorithms for both visual and auditory domain human gesture recognition as well as event-based pre-processing toolkits for audio signals. From the visual gesture recognition aspect, a novel SNN-based event-driven hand gesture recognition system is proposed. This system is shown to be effective in an experiment on hand gesture recognition with its spiking recurrent convolutional neural network (SCRNN) design, which combines both designed convolution operation and recurrent connectivity to maintain spatial and temporal relations with address-event-representation (AER) data. The proposed SCRNN architecture can achieve arbitrary temporal resolution, which means it can exploit temporal correlations between event collections. This design utilises a backpropagation-based training algorithm and does not suffer from gradient vanishing/explosion problems. From the audio perspective, a novel end-to-end spiking speech emotion recognition system (SER) is proposed. This system employs the MFCC as its main speech feature extractor as well as a self-designed latency coding algorithm to effciently convert the raw signal to AER input that can be used for SNN. A two-layer spiking recurrent architecture is proposed to address temporal correlations between spike trains. The robustness of this system is supported by several open public datasets, which demonstrate state of the arts recognition accuracy and a significant reduction in network size, computational costs, and training speed. In addition to directly contributing to neuromorphic SER, this thesis proposes a novel speech-coding algorithm based on the working mechanism of humans auditory organ system. The algorithm mimics the functionality of the cochlea and successfully provides an alternative method of event-data acquisition for audio-based data. The algorithm is then further simplified and extended into an application of speech enhancement which is jointly used in the proposed SER system. This speech-enhancement method uses the lateral inhibition mechanism as a frequency coincidence detector to remove uncorrelated noise in the time-frequency spectrum. The method is shown to be effective by experiments for up to six types of noise.The spiking neural networks (SNNs), as the 3rd generation of Artificial Neural Networks (ANNs), are a class of event-driven neuromorphic algorithms that potentially have a wide range of application domains and are applicable to a variety of extremely low power neuromorphic hardware. The work presented in this thesis addresses the challenges of human gesture recognition using novel SNN algorithms. It discusses the design of these algorithms for both visual and auditory domain human gesture recognition as well as event-based pre-processing toolkits for audio signals. From the visual gesture recognition aspect, a novel SNN-based event-driven hand gesture recognition system is proposed. This system is shown to be effective in an experiment on hand gesture recognition with its spiking recurrent convolutional neural network (SCRNN) design, which combines both designed convolution operation and recurrent connectivity to maintain spatial and temporal relations with address-event-representation (AER) data. The proposed SCRNN architecture can achieve arbitrary temporal resolution, which means it can exploit temporal correlations between event collections. This design utilises a backpropagation-based training algorithm and does not suffer from gradient vanishing/explosion problems. From the audio perspective, a novel end-to-end spiking speech emotion recognition system (SER) is proposed. This system employs the MFCC as its main speech feature extractor as well as a self-designed latency coding algorithm to effciently convert the raw signal to AER input that can be used for SNN. A two-layer spiking recurrent architecture is proposed to address temporal correlations between spike trains. The robustness of this system is supported by several open public datasets, which demonstrate state of the arts recognition accuracy and a significant reduction in network size, computational costs, and training speed. In addition to directly contributing to neuromorphic SER, this thesis proposes a novel speech-coding algorithm based on the working mechanism of humans auditory organ system. The algorithm mimics the functionality of the cochlea and successfully provides an alternative method of event-data acquisition for audio-based data. The algorithm is then further simplified and extended into an application of speech enhancement which is jointly used in the proposed SER system. This speech-enhancement method uses the lateral inhibition mechanism as a frequency coincidence detector to remove uncorrelated noise in the time-frequency spectrum. The method is shown to be effective by experiments for up to six types of noise

    Affective Man-Machine Interface: Unveiling human emotions through biosignals

    Get PDF
    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals

    Non-invasive algorithm for bowel motility estimation using a back-propagation neural network model of bowel sounds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiological scoring methods such as colon transit time (CTT) have been widely used for the assessment of bowel motility. However, these radiograph-based methods need cumbersome radiological instruments and their frequent exposure to radiation. Therefore, a non-invasive estimation algorithm of bowel motility, based on a back-propagation neural network (BPNN) model of bowel sounds (BS) obtained by an auscultation, was devised.</p> <p>Methods</p> <p>Twelve healthy males (age: 24.8 Ā± 2.7 years) and 6 patients with spinal cord injury (6 males, age: 55.3 Ā± 7.1 years) were examined. BS signals generated during the digestive process were recorded from 3 colonic segments (ascending, descending and sigmoid colon), and then, the acoustical features (jitter and shimmer) of the individual BS segment were obtained. Only 6 features (<it>J<sub>1, 3</sub>, J<sub>3, 3</sub>, S<sub>1, 2</sub>, S<sub>2, 1</sub>, S<sub>2, 2</sub>, S<sub>3, 2</sub></it>), which are highly correlated to the CTTs measured by the conventional method, were used as the features of the input vector for the BPNN.</p> <p>Results</p> <p>As a results, both the jitters and shimmers of the normal subjects were relatively higher than those of the patients, whereas the CTTs of the normal subjects were relatively lower than those of the patients (<it>p </it>< 0.01). Also, through <it>k</it>-fold cross validation, the correlation coefficient and mean average error between the CTTs measured by a conventional radiograph and the values estimated by our algorithm were 0.89 and 10.6 hours, respectively.</p> <p>Conclusions</p> <p>The jitter and shimmer of the BS signals generated during the peristalsis could be clinically useful for the discriminative parameters of bowel motility. Also, the devised algorithm showed good potential for the continuous monitoring and estimation of bowel motility, instead of conventional radiography, and thus, it could be used as a complementary tool for the non-invasive measurement of bowel motility.</p

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods
    • ā€¦
    corecore