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Abstract

The spiking neural networks (SNNs), as the 3rd generation of Artificial Neural Networks

(ANNs), are a class of event-driven neuromorphic algorithms that potentially have a

wide range of application domains and are applicable to a variety of extremely low power

neuromorphic hardware. The work presented in this thesis addresses the challenges of

human gesture recognition using novel SNN algorithms. It discusses the design of these

algorithms for both visual and auditory domain human gesture recognition as well as

event-based pre-processing toolkits for audio signals.

From the visual gesture recognition aspect, a novel SNN-based event-driven hand

gesture recognition system is proposed. This system is shown to be effective in an

experiment on hand gesture recognition with its spiking recurrent convolutional neural

network (SCRNN) design, which combines both designed convolution operation and

recurrent connectivity to maintain spatial and temporal relations with address-event-

representation (AER) data. The proposed SCRNN architecture can achieve arbitrary

temporal resolution, which means it can exploit temporal correlations between event

collections. This design utilises a backpropagation-based training algorithm and does

not suffer from gradient vanishing/explosion problems.

From the audio perspective, a novel end-to-end spiking speech emotion recognition

system (SER) is proposed. This system employs the MFCC as its main speech fea-

ture extractor as well as a self-designed latency coding algorithm to efficiently convert

the raw signal to AER input that can be used for SNN. A two-layer spiking recurrent

architecture is proposed to address temporal correlations between spike trains. The

robustness of this system is supported by several open public datasets, which demon-

strate state of the arts recognition accuracy and a significant reduction in network size,
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Chapter 0. Abstract

computational costs, and training speed.

In addition to directly contributing to neuromorphic SER, this thesis proposes a

novel speech-coding algorithm based on the working mechanism of humans auditory

organ system. The algorithm mimics the functionality of the cochlea and success-

fully provides an alternative method of event-data acquisition for audio-based data.

The algorithm is then further simplified and extended into an application of speech en-

hancement which is jointly used in the proposed SER system. This speech-enhancement

method uses the lateral inhibition mechanism as a frequency coincidence detector to

remove uncorrelated noise in the time-frequency spectrum. The method is shown to be

effective by experiments for up to six types of noise.
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Chapter 1

Introduction

1.1 Preface

Over the past few years, artificial intelligence (AI) technologies have significantly af-

fected infrastructure development in modern smart cities. Human-computer interac-

tion (HCI) plays a vital role in bridging the machine and the user’s demand. Human

gesture recognition is an important area for development in an HCI system. The uni-

modal gesture recognition systems can be broadly categorized as three class regarding

their inputs, as shown in Figure 1.1. The first class is vision-based gesture recogni-

tion such as face emotion recognition [7–9], body movement tracking [10], and gaze

detection [11, 12]. The second category is the audio-based human gesture recognition,

these tasks for example are speech emotion recognition [13], auditory speaker identi-

fication [14] and speech recognition [15]. The third type is the recognition systems

that are based on other forms of sensors like electroencephalogram (EEG) signal [16]

or Electromyography(EMG) signal [17] based gesture recognition.

1
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Figure 1.1: Illustration of Human gesture recognition

In a non-verbal human to machine communication framework, gesture recognition

establishes a channel for acquiring intentions from human behaviour. The hand gesture

recognition forms a key part of such interface since controlling or communicating with

machines without physical contact particular has the advantages of convenience and

effectiveness. The vision-based hand gesture recognition has been shown significant

value in real-world HCI systems such as virtual reality [18, 19], robot control [20, 21]

and sign language recognition [22,23].

In the context of audio-based gesture recognition tasks, speech emotion recogni-

tion(SER) is one of the most natural and unaware ways of communication and ex-

changing in HCI. The SER is a challenging and active research area that uses gener-

ated speech signals to recognize speakers’ qualitative emotional state, which usually

has more information than spoken words [24]. The SER has a considerable potential to

be applied in many real-time applications, such as it can be used in the board systems

of a self-driving car to detect the mental conditions or emotional stability of drivers

to ensure the safety of passengers [25]. Besides, literature has shown the SER has a

significant achievement in the applications of automatic voice customer service [26],

crowds violent detection [27] and smart health care [28].

1.2 Motivation

Recent developments in machine learning and deep learning techniques have demon-

strated significant achievements in the field of HCI. Significantly, Artificial Neural Net-

2
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works(ANNs) have pushed forward the state-of-the-art performance of various gesture

recognition tasks. The current gesture recognition algorithms are mostly developed

using statistical machine learning and neural network methods [21]. For example,

Neverova et al. [29] successfully build a Convolutional Neural Network (CNN) based

visual sign language gesture recognition system with 20 Italian upper-body skeletal

motion data. Molchanov et al. [30] utilize the fused input feature successfully jointly

developed a visual-based hand gesture recognition system for the in-car board system.

With the increasingly SWaP (Size, Weight, Power) demand, the mobile units, Inter-

net of Things (IoTs) and embedded systems will consume the most AI techniques [31].

Applying statistical approaches like ANNs to large-scale HCI gesture recognition prob-

lems is still a challenging task in edge AI applications due to their limitations in com-

putation capacity and power such as drones and robots. Compared to ANNs, the next

generation of ANN spiking neural networks (SNNs) utilize event-based computation by

employing a simplified bio-inspired neuron model as the fundamental processing unit

and the event-based spike train as the information carrier [32]. SNNs, since their bio-

logically plausible model and the nature of processing mechanism, has shown significant

potential in terms of both power efficiency and computation speed.

Along with the development of SNN, another advancement in the field has come

from in terms of SNN specialized hardware. These involve extremely low power neu-

romorphic (NM) chips (SNN computing processors) and neuromorphic sensors. One

of the NM chip milestones is the IBM TrueNorth system [33] which consists of 5.4

billion transistors with only 70mW power density consumption, this only accounts for

1/10000 of traditional processing units. As for the sensor side, event-based vision and

audio sensors mimic the biological retina and cochlear to provide sparse, asynchronous

events to represents the input stimulus [34]. For example, the Dynamic Vision Sensor

(DVS) [35] is a visual sensor for acquiring asynchronous events whenever a single pixel

detects a change in terms of light intensity. The benefits of using a DVS involve high

temporal resolution, ultra-low power consumption and high dynamic range.

Real-time vision-based hand gesture recognition is an HCI problem that is well

suited to NM computing. Traditional systems suffer from various motion-related in-
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terferences (such as motion blur, light conditions, shutter) from the camera and the

system challenged by power hungry and high latency problems. The related recent

works [36–39], are either difficult to be applied into the real neuromorphic hardware

or overemphasis the spatial feature but ignores temporal relations in such dynamic

scenes problem. Therefore, developing a high performance, efficient, event-based, NM

hardware applicable SNN is needed. A well designed hand gesture recognition SNN

should be able to not only extensively take the advantages of event-based data from

the NM sensors to achieve state-of-art recognition accuracy but also can be applied to

developed neuromorphic hardware.

Another identified research gap is the field of applying NM technology into the

recognition of auditory gesture tasks. Although researches have demonstrated many

1.3 Aims and Objectives

The aim of this research is to investigate the-state-of-art NM technologies and identify

the applications of SNN in the field of NM human gesture recognition, which pro-

vides a biological plausible, energy efficient, reduced complexity solution compared to

conventional statistical-based machine learning and ANN approaches.

The objectives of this study are identified as follows.

• To identify and design appropriate SNN models and training algorithms that

match the engineering application requirements(high performance, energy/computing

efficient, can be used on NM hardwares)

• To investigated and design novel SNN for the application of visual hand gesture

recognition, which can utilize the benefits of event-based data.

• To evaluate and analyse the performance of designed SNN on a real DVS dataset.

• To develop an end-to-end spiking speech SER system.

• To develop spike coding and noise reduction algorithms that can improve the

performance of speech emotion recognition system.
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• To analyse the performance of the SER system by experiments on public datasets.

1.4 Original Contributions

The work conducted in this research has led to a number of contributions in the field

of NM engineering which includes:

(i) Design a novel Spiking Convolutional Recurrent Neural Network (SCRNN) that

takes advantage of both convolution operation and recurrent connectivity to main-

tain the spatial and temporal relations from event-based data. The use of recur-

rent architecture enables the network to have an arbitrary length of sampling

window allowing the network to exploit temporal correlations between event col-

lections(Chapter 4).

(ii) Applying the SCRNN architecture to the visual-based hand gesture recognition

problem with an evaluation and analysis on an event-based gesture recognition

dataset(Chapter 4).

(iii) Develop a software simulation tool that can efficiently convert the digitized audio

signal to address event representation (AER) data. This work is inspired by the

operating mechanism of the biological cochlear and the dynamic audio sensor

(DAS), which can act as an NM audio sensor equivalent function in an NM

system(Chapter 5.2).

(iv) Design a novel noise reduction algorithm that is based on neuron rate coding and

bio-inspired SNN architecture. The excitatory-inhibitory topology in the network

acts as the temporal characteristic synchrony and coincidence detector that re-

moves uncorrelated noisy spikes. LIF source encoder is introduced along with

the network. The network uses generated binary Short-Time Fourier Transform

(STFT) masks according to the rate of processed spike train, which is used to

reconstruct the denoised speech signal(Chapter 5.3).

(v) Design a novel end-to-end speech emotion recognition SNN system that takes the

advantages of proposed speech processing algorithms(Chapter 5.2 and Chapter

5.3). The system directly takes the speech signal fed by microphone as the input
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with a cascaded SNN to perform pre-processing, spiking coding, denoising and

recognition tasks(Chapter 6).

1.5 Thesis Outline

The thesis consists of 7 chapters. The first chapter contains the background, introduc-

tion, motivation and identified aims and objectives of this research.

Chapter 2 and Chapter 3 are two review chapters that consist of the literature

review that covers relevant techniques and previous researches related to this study.

Chapter 2 covers the review of conventional neural network structures that inspired

the development of SNNs and the related ANN techniques for the gesture recognition

tasks. This chapter provides the basic concepts of ANN with different architectures

that popular with human gesture recognition. Chapter 3 introduces the principles

of SNN along with the current developments of NM technologies such as Hardware,

Software and corresponded implementations. The concept of SNN is explained and

discussed in this chapter, which contains the introduction for spiking neurons, neural

coding algorithms and various spiking learning strategies. The chapter builds up the

knowledge foundation for the novel contributions that proposed in the novel chapters.

Chapters 4 to 6 present novel contributions of this research. Chapter 4 presents

a novel Spiking Convolutional Recurrent Neural Network(SCRNN) structure that de-

signed for recognising the event-based hand gesture data. The structure has the ability

to maintain both spatial and temporal correlations that coded in the address event rep-

resentation(AER) data, which potentially provides a neuromorphic solution to visual

based hand gesture recognition challenge. Chapter 5 presents two novel event-driven

speech processing algorithms that contributes to the preprocessing stage of the audio

based gesture recognition problems. The first algorithm is designed for speech neural

coding which offers an alternative routine to bridge the outside auditory stimulus to

SNNs. The second contribution in this chapter is a speech enhancement algorithm

which employs the modified version of the speech coding algorithm and neural lateral

inhibition mechanism. The developed method is able to improve the speech quality
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in the time domain with the adaptability of 6 types of noise. A novel speech emotion

gesture recognition system is presented in Chapter 6. The system consists of a novel

preprocessing algorithm and a spiking recurrent neural network. The method is vali-

dated to be effective with three different open public datasets. In addition, the speech

enhancement algorithms that developed in Chapter 5 is embedded into the system to

enables an anti-noise ability of the system. Finally, the conclusion of the contributions

in this research as well as the relevant future works are provided in Chapter 7.

1.6 Publications

Some aspects of the research work in this thesis have been published or submitted for

publication.
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Neural Network (SCRNN) with applications to Event-based Hand Gesture Recognition.

In frontiers of Neuroscience. (Submitted for publication)

Xing, Y.,Di Caterina, G.,& Soraghan, J. A novel spiking neural network based
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Chapter 2

Review of Conventional DNN

Techniques with Applications to

Human Gesture Recognition

2.1 Introduction

In this chapter, a review of conventional DNN techniques in terms of different statistical

neural models and how they are used in the gesture recognition tasks is discussed. The

ANN/DNN techniques will be described while highlighting three outstanding structures

which inspires the novel designs in chapter 4 and chapter 6.

In recent years, DNNs with a range of different remarkable neural processing designs

have been successfully applied to a range of human gesture recognition applications.

For example, the development of convolutional neural network (CNN) [40] and its vari-

ants significantly improved the performance of many visual-based gesture recognition

tasks due to the use of convolution and pooling operation to extract the spatial feature.

Another example is the recurrent neural network (RNN) [41], which employs the mech-

anism of cyclical information propagation, which provides an effective computational

model especially for 1D signal based gesture recognition.

The critical literature review of a range of DNN based human gesture recognition
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is provided in section 2.2. Section 2.3 provides a detailed explanation of the funda-

mentals of ANNs, which covers the knowledge of artificial neurons, multi-layer percep-

tron, activation function and training method. Then three outstanding human gesture

recognition DNN architectures are described, which includes convolutional neural net-

work(CNN) in section 2.4, the recurrent neural network in section 2.5 and convolutional

recurrent neural network in section 2.6 respectively.

2.2 Previous Works on Human Gesture Recognition with

DNNs

The previous researches on DNN based human gesture recognition can generally be

categorized into 3 classes regard to the different formats of the input signal which have

been described in section 1.1. The noticeable works in the field are shown in Table 2.1.

Table 2.1: The summary of recent ANN works for human gesture recognition

Vision Based Gesture Recognition

Method Application Dataset Accuracy
3D CNN [42] Hand gesture recognition VIVA 77.5%
CNN with 3D receptive field [43] Dynamic hand gesture recognition self-collected 80% -97.5%
Multi-channel CNN [44] Face expression recognition JAFFE 93.8%
CNN [45] Body movement detection self-collected N/A
Attention CNN [46] Human activities recognition UCI HAR 91.58%
Attention CNN [47] Facial expression recognition FER2013,CK+ 99.3%, 98%
Temporal CNN [48] Human action recognition NTU-RGBD 83.1%
CNN [22] Sign language recognition N/A 91.7%
BLSTM-3D residual network [49] Dynamic sign language recognition DEVISIGN D 89.8%
Deep GRU [50] Human action recognition UT-kinect 100%
3D CNN [51] Facial Palsy Grading SLR Dataset. 86.9%

Audio Based Gesture Recognition

BLSTM [52] Phoneme Recognition TIMIT 77.4%
LSTM [53] Speaker identification LIEPA 94.46%
Attention LSTM [54] Speech emotion recognition eNTERFACE 85.7%
TDS CNN [55] Speech recognition LibriSpeech N/A
Deep Self attention [56] Speech recognition Switchboard N/A

Other sensor Based Gesture Recognition

Radar signal + LSTM encoder [57] Hand gesture recognition self-collected 98.48%
IMU sensor + RCE neural network [58] Hand gesture recognition self-collected 98.6%
EMG signal + CNN [59] Hand gesture recognition self-collected 75%+
sEMG + feedforward [60] Hand gesture recognition self-collected 98.7%

CNN is the one technique that prevalent in a variety of gesture recognition works.
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CNN and its variants are especially effective in terms of accuracy and computational

cost to visual based gesture recognition tasks. Compared to traditional machine learning-

based algorithms like support vector machine(SVM) [61] or k-Nearest neighbors (k-

NN) [62], CNNs do not need to identify and pre-extract visual features manually but

can learn high quality features automatically by their own [63]. Molchanov et al. [42]

introduced a visual-based hand gesture recognition system that takes advantage of

multiple intensity channels with a 3D CNN. Kim et al. [43] presented a weighted fuzzy

min-max(WFMM) combined CNN that significantly increases the efficiency for spatio-

temporal pattern extraction for video-based hand gesture recognition task. Hamester et

al. [44] proposed a multi-channel convolutional neural network architecture that uses

less computational resources for the application of facial expression recognition. In

addition to these, CNNs have been used in gesture recognition tasks such as human

body-movement identification [45], human activities recognition [46, 64], action recog-

nition [48,65,66], sign language recognition [22,67]. In addition, It is clear in the table

that CNNs are not only efficient for visual-based gesture recognition tasks but also can

be applied to auditory and other sensor-based problems. For instance, researchers from

Facebook [55] developed a Time-Depth-Separable(TDS) convolution operation and per-

formed experiments on the 960 hour speech corpus for the speech recognition problem,

which gives superior results to the strong RNN baseline. Asif et al. [59] successfully

employed CNN into an Electromyographic (EMG) signal based hand gesture recogni-

tion application and demonstrates a state-of-art recognition accuracy on a self-collected

dataset.

Due to the advantages of long-term sequence processing of RNNs, they have been

found to be very efficient in sequential information processing. In the domain of human

gesture recognition, RNNs are particularly powerful in audio-based gesture recognition

which can be regarded as a many-to-one problem. Graves et al. [52] proposed a hybrid

approach that successfully applied a bidirectional LSTM to a phoneme classification and

recognition task. A speaker identification LSTM is built by Dovydaitis el al. [68], which

demonstrates superior results using an LSTM than the conventional Hidden Markov

Model (HMM) and DNN. Xie et al. [54] proposed an attention gate processing unit that
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enables LSTM to accept the arbitrary size of the input and simultaneously reduces the

computational complexity of LSTM, which significantly raises the recognition accuracy

of LSTM in the SER task. The work in [53] shows the possibility of using RNNs for

speaker identifications.

2.3 Artificial Neural Networks

Despite the fact that ANN is not a new concept that has been used since 1950s [69], the

actual development wave of ANNs and DNNs started since around 2006 [70]. ANNs

are commonly known as non-linear statistical data processing models that can easily

model complex tasks [71]. A common feature of the various ANN/DNNs is that these

networks have many stacked layers of hidden neurons combined with gradient descent

based backpropagation [72] based training algorithms.

ANNs are initially biologically inspired by using approximated activation values and

a series of weighted inputs. The neurons employ non-linear, differentiable activation

functions that enable the network to achieve arbitrary computational complexity by

stacking the neuron layers topologically [73]. The existence of neuron derivatives values

allows several gradient-based optimization algorithms to be applied to reduce the error

between the network input and output. With recent development in the acquiring

of large scale labeled datasets and the computation capacity of Graphical Processing

Unit(GPU), ANNs have become an effective solution to many big data-driven based

tasks.

A DNN typically means an ANN that has more than 3 layers of hidden neurons,

which modeled as a multilayer perceptron [74] that is trained to learn a statistical

representation from a dataset without any manual feature extraction. As the name of

Deep Neural Network suggests, it is using a higher number of hidden layers to repre-

sent data with multiple levels of abstraction [75]. In recent years, DNN based models

have been successfully applied in many human gesture recognition tasks. For instance,

Zhang et al. [76] build a cascaded video-based hand gesture recognition network using

3DCNN and ConvLSTM network, which efficiently learn the global temporal corre-
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lation information completely. Fayek et al. [77] evaluated multi-layered feedforward

and DNNs/RNNs on the SER tasks with different configuration settings and yields

state-of-the-art results on the specific dataset.

Figure 2.1: Schematic diagram an artificial neuron

2.3.1 Artificial Neurons

”Neurons” in ANNs are the basic statical computing units connected to other neurons

via weight connectors. Artificial neurons sometimes named perceptron [69] calculate

the weighted sum of the incoming information and then apply an activation function

and bias value to generate the output. Figure 2.1 illustrates a single artificial neuron

k receives an input signal xi{i = 1, 2, 3...m} and produce a output of yk. There are

three basic elements that can be identified in this neuron model. The first element

is the synaptic weight between the inputs and neuron k, which is the value that will

be multiplied to the corresponding input. The second element is an integrated which

sums all the weighted input. The third element is an activation function ϕ(·) that

introduces the nonlinearity into the computation and produces the output of a neuron.

The activation function [78] sometimes also names as a ”squashing function” that limits

the output range to a finite value. Also, a bias value bk is commonly used in a neuron

model to shifting the neuron output to the desired range. Thus, the overall computation

model of the neuron k can be written as:

yk = ϕ(
m∑
i=1

xiwki + bk) (2.1)
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2.3.2 Multi-Layer Perceptron and Neural Networks

In 1986, Rumelhart et al. [79] introduced the concept of backpropagation and hidden

layers, which creates a new era of ANNs. The backpropagation is a procedure to itera-

tively adjust the network parameter to reduce the difference between target and actual

output. More advancements of the backpropagation technique will be reviewed in sec-

tion 2.3.4 of this chapter. The hidden layer transforms the previous single-layer network

to a multilayer perceptron(MLP) as is shown in Figure 2.2. This means introducing

more layers of neurons between the input and output layers. A neuron in a hidden layer

receives all the input signal from the previous layer and produce a processed output

using (2.1) and send it to the neurons connected to it in the next layer. This process

will iterate over all the hidden layers neurons, and then the final output is generated

by applying a dot product for the last hidden layer outputs and weights.

Figure 2.2: Schematic diagram of multiplayer perceptrons
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2.3.3 Activation Functions

Activation functions are mathematical models attached to each neuron in a network

and determine whether a neuron should be activated regarding the relevance between

the input and network prediction. It also normalizes the entire network output in a

range depends on the types of the activation function.

An important factor of an activation function selected for a big network is that it

has to be computationally efficient since it is used across each neuron in a network for

each data. Especially for a deep neural network, an inefficient activation function can

waste numerous computation resources.

Recent works in ANN/DNNs employ gradient-based back-propagation training al-

gorithms to reduce the loss between the network output and predictions, which highly

rely on the derivatives of the activation functions [80, 81]. Thus, the nonlinearity of

the activation functions is crucial. It enables multilayer networks to create complex

mappings and allows the gradients to flow smoothly within the network.

Table 2.2 shows the recent popular activation functions commonly used in ANNs

with their pros and cons. The Rectified linear unit(ReLU) [82] is one of the land-

mark activation functions in modern neural nets due to its simplicity of derivative and

computationally efficient. It does not suffer from the problems in terms of gradient

saturating like the sigmoid and the tanh function since its linear behaviour for positive

input and it also makes the network converge faster than previous activation functions.

The negative input to ReLU will lead to its derivative becomes zeros, which prevents

the network from training. This is known as the dead ReLU problem, and many works

have been done to addressing this problem such as Leaky ReLU [83] and ELU [84].

However, there is no perfect activation function that can satisfy all the requirements

regarding different computational efficiency, performance and network training, the

selection of activation for a neural network is still objective dependent.

2.3.4 Training Method

Training an ANN is not an easy task since the initial weights and biases in a network

are totally random and weights in layers are highly interreliant. Thus a change in any
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Table 2.2: Summary of development of activation functions

connection will result in not only on the corresponding neuron but the effect to all the

neurons in subsequent layers. Therefore, it is impossible to get the finest weights of the

entire network by a single step optimizing operation. The optimum result is attained

by iteratively evaluating the datasets until the overall weight sets converge to desired

results. [85].

The modern neural network training algorithm can be classified into two categories:

supervised learning and unsupervised learning. The supervised learning is a learning

model that network both input X and an output/target variable Y . The goal is to

approximate a function of f(·) that can map the input to output (i.e. Y = f(X)). This

learning process from pre-known labels which can be regarded as a teacher supervis-

ing the learning process. The algorithm repeatedly predicts the output according to

the training input samples and the output is corrected by the teacher. Unsupervised

learning is commonly used when the label of the input data is not available. Unsuper-

vised learning differently from supervised learning is more emphasis on modeling the

underlying distributions or patterns of input data rather than specifically outputs a
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prediction value. In the deep learning domain, supervised learning is suitable for clas-

sification and regression based tasks and Unsupervised learning is applied to clustering

and association tasks.

It is worth mentioning the gradient descent method [86] that is one of the most

powerful supervised algorithms to optimize complex function by repeatedly calculating

the current state of gradient and then takes step proportional to the negative direction

of the gradient to find a local minimum(optimized value) of the loss function. The

result modifications made to network parameters tend to reduce the error between the

network outputs and labels. This process is then repeated until the network outputs a

satisfactory result.

The gradient descent is a straightforward method that can automatically choose the

learning rate (the level of changes in each weight modification) for the neural network

training. Many works have been done in order to balance the network training perfor-

mance and speed. Table 2.3 demonstrates an overview of recent advanced developments

in DNN training algorithms. The gradient descent [86] is the most basic optimization

algorithm used in a variety of works. It approximates the routine that the weights

should be modified so that the loss function can reach the minima. The traditional

gradient descent, however, was found many disadvantages. First, the learning process

is found to be easily trapped in a local minima due to the lack of proper adjustment

of learning rate. The learning rate of a training algorithm affects the stability and

convergence speech of the process [87]. If a learning rate is chosen too small, it leads to

an expensive computational cost. In contrast, a big learning rate will results in violent

oscillation during the training process and completely miss the global minimum point.

In addition, weights are modified after the gradient calculated on the entire training

dataset.

Kiefer et al. [88] proposed a stochastic gradient descent algorithm to enables fewer

memory requirements based on the theory of traditional gradient descent. Later,

Rumelhart et al. [79] introduced momentum, which overcame the disadvantages of

noisy weight updates and accelerates the convergence speed of the network by apply-

ing an exponential weighting average term. Adagrad proposed in [89] firstly applied
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an adaptive learning rate for each weight updating process. The learning rate is then

decreasing along with the number of training iterations. Recently, many advanced

versions of Adagrad such as AdaDelta [90] and Adam [91] are presented to further im-

prove the training performance in terms of training stability, computational cost and

convergence speed.

Table 2.3: A summary of gradient decent training algorithm families

Method Description Advantages Disadvantages

Gradient Decent [86]
1.First-order derivative dependent
2. Used heavily in linear regression
and classification tasks

1. computational efficient
2. Easy to implement
3. Easy to understand

1. May stuck at local minima
2. weights changed after gradient
computation(long training time)
3. Require large memory

Stochastic Gradient
Descent

[88]

1.A variant of Gradient Descent
algorithm
2.Weights updated after computation
loss on each iteration

1.Frequently weight update
(faster convergence)
2. Less memory requirement
without storage of loss function
3.Probably get new minima

1. High variance in
model parameters
2. May shifting after getting
global minima
3. Need of small learning
rate to get high performance

Momentum [79]

1.Invented for reducing high variance
2. Accelerate convergence towards
relevant direction
3. Reduce fluctuation to irrelevant
direction

1. Reduce oscillation and
high variance
2. Converges faster than
gradient descent

1. One more hyper-parameter is
introduced and need to be selected
manually

Adagrad [89]
1. Solve the constant learning rate
problem.
2. Dynamic weight update strategy

1. Learning rate changes along
with training
2. Do not need manually learning
rate modifications
3. Able to be applied on sparse data

1.Computationally expensive as it need
to calculate second order derivative
2. The learning rate always decreasing

AdaDelta [90]
1. An extension of Adagrad that tends
to remove decay learning rate problem

1.The learning rate does not
always decay and training does not stop

1. The higher requirements of
computation resources

Adam [91]

1. Works with momentums of first and
second order.
2. Keeps an exponentially decaying
of average past gradient

1. Very fast and converges rapidly
2. Rectifies vanishing learning rate
and high variance

1.Computationally expensive

2.4 Convolutional Neural Network

The convolutional neural network(CNN) [40] is one of the key landmarks that con-

tributes to the success and development of deep learning [92]. It has been applied

in various domains due to the utilization of outstanding convolution operation which

decomposes the high-level visual objects into low-level features. As is shown in Figure

2.3, typical CNN consists of an input layer, an output layer and several hidden layers.

Differently from standard MLP, hidden layers in addition to fully connected(FC) layer

have convolutional layers and pooling layers. CNNs have wide applications particu-

larly in computer vision tasks such as face recognition [93], object detection [94, 95]
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and object segmentation [96].

Figure 2.3: An example of convolutional neural network structure [1]

2.4.1 Convolutional Layer

The convolutional layer is the key and the most important layer of a CNN. It uses

convolution operation to convolves the feature pixel matrix with the given pixel image

to produce a feature map representing the spatial arrangements of a given feature.

The distinction of using the convolution operation for images is that it extracts all

the distinguishing features into several feature maps and simultaneously reducing the

size of the pixel matrix to be processed. The feature pixel matrix is called convolution

kernel/filter which basically is a feature detector that includes various low-level visual

features.

Figure 2.4: The convolution operation in a convolutional layer
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Figure 2.4 demonstrates a graphical explanation of the process of an input image

is being convolved with a 3x3 filter. The size of a convolution filter is equal to the

receptive field of a neuron in the convolution layer, where in this case a single value

in the feature map represents the intensity of the feature in a 3x3 dimension of the

input image. Each neuron in the convolution layer only processes data only for its

receptive field, and the size of the feature map depends on the size of the kernel and

stride(Distance of each kernel shifting within the image). For example, A 3x3 kernel

convolves with an image size of 7x7 with the stride of 1 results in a 5x5 feature map.

The 2D convolution that generates the feature map G can be expressed as follow.

G[m,n] = (I ∗ k)[m,n] =
∑
j

∑
k

k[j, k]·I[m− j, n− k] (2.2)

where I denotes to input pixel matrix and k to the convolution kernel. G is the

output feature map and m, n are horizontal and vertical pixel index respectively. The

subsequent feature map is guaranteed to has a shrink in terms of dimension every time

a convolution operation is performed, thus the convolution layer brings a significant

benefit which reduces the number of free parameters and allows the network to be

deeper.

2.4.2 Pooling Layer

In addition to convolution layers, the pooling layer is very often used in CNNs to

further reduce the dimension of the feature maps and speed up the training process.

The idea of pooling operation is to keep only the most important information within a

receptive field while also reducing the spatial invariance. This also reduces the amount

of learnable free parameters for a model. There are different types of pooling operations

such as max pooling and average pooling.

Figure 2.5 demonstrates a pooling process of the max pooling operation. The max

pooling operation simply takes the greatest value from each sub-matrix(receptive field)

and forms a shrunk version of the original feature map. For example, a 5x5 feature map

is pooled by a 2x2 pooling kernel in Figure 2.5, the pooled feature map only preserves
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Figure 2.5: The pooling operation in a pooling layer

the highest value of a 2x2 region and this gives a pooled feature map with the dimension

of 3x3.

2.4.3 Fully Connected Layer

The fully connected(FC) layer is often used in the last layer of a CNN. The processed

feature map is flattened from 2D to 1D before fed into FC layers. Thus the extracted

features are broken into vectors that can be processed by standard MLP. Thus it is

hard to follow the data after this layer due to the loss of spatial arrangements.

2.5 Recurrent Neural Network

Recurrent neural networks (RNNs) [41] have been commonly recognized as an ANN

structure that powerful in dealing with sequential data, such as text, audio and video

data. Unlike the standard feedforward neural network structure, RNNs capture the crit-

ical dynamics of a sequence via cycle connections in network nodes. Although recurrent

structure makes an RNN is more difficult to train and it usually contains millions of

free parameters, recent developments in network optimization, parallel computing and

tuning method have enabled many different successful training ways that can be used

in RNNs.
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Figure 2.6: Diagram of a one-unit RNN [2]

Figure 2.6 illustrates a basic RNN which from bottom to top consists of 3 fun-

damental components: input state, hidden state and output state respectively. RNN

introduces a notion of time to the model, where the processed information in the cur-

rent step will be transferred as a part of input in the next time step. For example at

time t, current hidden state h(t) is formed by combining current input data x(t) and

previous hidden state h(t− 1). The output o(t) is then computed at each time step

via correspond hidden state h(t). With W xh denotes to input-hidden weights and W hh

denotes to hidden-hidden weights, W ho denotes to hidden-output weight, vectors bh

and by to bias value of hidden state and output state respectively, the process of a

standard RNN can be expressed as:

h(t) = ϕ(W xhx(t) +W hhh(t−1) + bh) (2.3)

o(t) = ϕ(W hoh(t) + by) (2.4)

Despite the advantages of RNNs in sequence learning, training an RNN has long

been challenging due to the gradient vanishing/explosion problems. This phenomenon

occurs when backpropagation across too many layers. This is particularly common in an

RNN since the input sequences are usually very long (e.g. text recognition tasks) [97].

Assuming an example of RNN with a single input node, hidden state and the output

node(Figure 2.6)and a sequence is injected to this RNN at time tau and an error signal

calculated at time t. As t − τ goes large, the contribution of input at t to output at
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time t will either grows to infinity or decays to zero. Thus the corresponding derivative

of the error signal is also vanished or exploded.

Technically, RNN can either be trained with only a few parameters or as an unfolded

feedforward manner across many time steps. The selection of the training algorithms for

RNNs is a trade-off between network performance and computational costs. It is clear

that training a unfolded RNN dramatically increased free parameters and the length of

backpropagation in the model, which can usually get better results than folded RNN.

In this way, the backpropagation will be passing through all the unfolded parameters in

each unfolded time step, which is named backpropagation through time (BPTT) [98].

A folded RNN has very few parameters and the information is recurrently propagating

through the same model thus require much less computational resources. This strategy

however usually degrades the network performance since it does not contain enough

parameters to well modeling the problem.

Truncated backpropagation through time(TBPTT) [99] is a solution that can bal-

ance both the gradient problem and the computational performance of RNN, which

enables continuously training for RNNs. It defines a limit number of time steps that

backpropagation can propagates and segments the input sequence to several fragments

with the same length as the number of time steps.

2.5.1 Long short-term Memory

Long short-term memory(LSTM) [100] is a brilliant RNN design that introduced by

Hochreiter and Schmidhuber to solve the gradient vanishing/explosion problems and

handle long-term dependencies. LSTM replaces the original RNN neurons with a hid-

den cell that consists of 5 elements Input node as is shown in Figure 2.7. For an

introduction purpose, these five key elements Input gate, Hidden state, Forget gate

and Output gate are described as below.

A. Input Node g(t)

The Input node is a channel that receives the value from input x(t) at the current

time step and hidden state h(t−1) from the previous time step. A tanh or sigmoid

activation function is used to process the sum weighted input signal.
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Figure 2.7: Diagram of a LSTM.

B. Input Gate i(t)

The input gate controls the flow of the data from the input node. It is a sigmoidal

unit that takes the activation value from input x(t) as well as from the previous

layers. It is called a gate since its value is used to multiply the values from other

gates. If the gate value is 0, then the correspond propagation route is cut-off. In

contrast, the gate value with 1 will allow all the information pass through.

C. Forget Gate f (t)

The forget is introduced into LSTM by Gers et al [101]. The forget provides a

method that can learn to what extent the information in the hidden state should

be kept and thrown away. This is particularly useful in maintaining the network

stability during the training process.

D. State s(t)

The state is the key in a LSTM cell which represents the status of the information

at the current time step. It spans the integrated information from forget gate and

input gate to adjacent time steps and simultaneously propagates them to output

gate. With the forget gate, the process that generates the hidden state of current

time step can be written as:
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s(t) = g(t) � i(t) + f (t) � h(t−1) (2.5)

where � represents the pointwise multiplication.

E. Output Gate o(t)

An output produced by a LSTM cell at a single time step is the value of hidden

state h(t) multiplied by the value of the output gate. It summarizes the hidden

state by applying a tanh function which limits the output of each LSTM cell

within the same dynamic range.

In a summary, the overall calculations of a LSTM can be expressed as follows.

g(t) = φ(W (xg)x(t) +W (gh)h(t−1) + bg) (2.6)

i(t) = σ(W (xi)x(t) +W (ih)h(t−1) + bi) (2.7)

f (t) = σ(W (xf)x(t) +W (fh)h(t−1) + bf ) (2.8)

o(t) = σ(W (xo)x(t) +W (oh)h(t−1) + bo) (2.9)

s(t) = g(t) � i(t) + f (t) � h(t−1) (2.10)

h(t) = φ(s(t))� o(t) (2.11)

where φ and σ denotes to tahn and sigmoid activation function respectively. h(t) repre-

sents the hidden layer value of the LSTM at the time t. The superscription/subscription

x, g, h, x, f , o of W are the correspond gate abbreviation which denotes to weight

values of different connections. For example, W (xf) is the input to forget gate weight

values, bg is the bias of input nodes.

It should be noted that gate components in LSTM can learn when to switch

ON/OFF gate to control the forward/backward information propagate [41]. This

demonstrates a significant ability to learning long-term dependencies compared to con-

ventional RNNs.
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2.5.2 Variations of RNN

Currently, the term RNNs in the modern ANN domain are mostly mean LSTM and

its variations. Since the successful development of LSTM, several variations have been

proposed based on this structure such as a Gated Recurrent Unit (GRU) [102] that

integrates the forget gate and input gate of the original LSTM cell to reduce the pa-

rameters. Schuster and Paliwal [103] presented a bidirectional RNN that enables the

network can be trained both in the forward and backward direction(Along with the

input sequence time axis). To determine the optimal architecture of an LSTM cell,

Jozefowicz et al. [104] evaluated over 10000 different RNN structures and identified the

MUT series that outperform the performance of both LSTMs and GRUs.

RNNs have been found that can be used for sequential input and sequential output

[105]. Figure 2.8 demonstrates 5 types of structure that can model numerous tasks

into RNNs. The structure in Figure 2.8(a) is an individual RNN cell that acts as

a standard feedforward network that takes non-sequential input and produces non-

sequential output. Figure 2.8(b) is commonly known as a many-to-one problem that

suitable for tasks requiring a sequential input with a single output(e.g. text, audio,

video classification). By contrast, the model in Figure 2.8(c) represents a one-to-many

processing strategy that can be used for captioning related tasks. Last but not least,

Figure 2.8(d) and (e) are two forms of the many-to-many RNN structure which have

been widely used in natural language processing(NLP)and text predictions.

2.6 Convolutional Recurrent Neural Network

The convolutional recurrent neural network (CRNN) structure has been well studied

in the second generation of ANNs. The convolution operation in the ANNs usually

acts as a spatial visual feature extractor that assumes features are in different levels of

hierarchy. The recurrent structure introduces memory to the network and an ability to

deal with sequential data dependently.

A significant design of the CRNN structure is the ConvLSTM structure [106] that

was initially designed for forecasting precipitation. By replacing the general gate acti-
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Figure 2.8: Graphical illustration of RNN tasks models

vation by the convolutional operation, the network is able to exploit an extracted 3D

tensor as the cell state. The ConvLSTM was also evaluated on the moving MNIST [107]

dataset and was shown to successfully separate the overlapping digits and predicted the

overall motion with a high level of accuracy.

Another CRNN structure CNN-LSTM concatenates a CNN and an LSTM to for-

mulate a joint network. The LSTM in the structure is placed behind a pretrained CNN

that directly takes the output feature vector from the CNN as the input sequence. The

implementation of this structure however is highly dependent on a well pre-trained

CNN that was designed for the interest as the feature extractor. The CNN-LSTM is

proved powerful in many application domains such as acoustic scene classification [108],

emotion recognition [109], action recognition [110].

Over the past few years, researchers have successfully applied CRNN in medical

applications [111], speech processing [15, 112], music classification [113]. Adopting a

recurrent structure enables the neural network to encapsulate the global information
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while local features are extracted by the convolution layers. Yang et al [114] demon-

strated a Convolutional LSTM network that was successfully evaluated on various hu-

man hand gesture recognition datasets. The importance of using CRNN structure in

the application of visual-based gesture recognition is that unlike the recognition tasks

in images, the same task in videos relies on motion dynamics in addition to visual

appearance. Although CNNs and its variants like 3D convolution [115, 116] achieved

good performance, they still do not make sufficient use of temporal relations between

frames. More recently, Maj et al. [117] designed a motion-ware ConvLSTM for the

hand gesture recognition task which is an LSTM unit that considers the correlation of

consecutive video frames in addition to the spatio-temporal information.

2.7 Conclusion

This chapter illustrates a review of ANN/DNN techniques and how they have been

used in human hand gesture recognition tasks. The fundamentals of statistical neu-

ral processing in terms of the neuron model, training method and activations were

introduced. CNN and RNN are discussed as two important structures that have sig-

nificantly contributed to visual and auditory based gesture recognition. These neural

network landmarks form the basis for the chosen research inspirations and contributions

in chapter 4 and 6 of this thesis.

The combination of CNN and RNN(CRNN) is reviewed since its importance in

solving the video-based gesture recognition since it can well preserve both spatial and

temporal information for dynamic scene recognition tasks. Despite the different pro-

cessing mechanisms, the idea of using spatio-temporal feature for gesture recognition

is also applicable in the SNN domain. The CRNN structure provides a key inspiration

for the work in chapter 4.
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Chapter 3

Review of Spiking Neural

Networks and Neuromorphic

Computing

3.1 Introduction

In this chapter, the literature review of the spiking neural network (SNN) is presented.

Neurons in the second generation ANNs sending float points and employ continuous

activation functions(e.g. sigmoid and tanh). SNNs, as the third generation of ANN,

are inspired by way of biological information processing which typically sparse and

asynchronous binary spikes are transported in a parallel manner. SNN is fundamentally

different from ANNs in terms of the information carrier, basic processing unit, sensing

technique and training methods. In the human brain, the communication between

neurons is achieved by broadcasting trains of action potentials which also known as

spike trains that have sample amplitude and sparse in time.

Form the scientific aspect, it is widely recognized that a series of processing states

with learning mechanisms in a multilayer neural network significantly assist the human

brain perception system to recognize complex visual patterns or auditory information

in a noisy environment [118–120]. Compare to ANNs, SNNs provides the structure to

29



Chapter 3. Review of Spiking Neural Networks and Neuromorphic Computing

better process temporal information. The representation of spikes in the spatial and

temporal domain makes SNNs unique to address the event-based data which is closer

to how actual neural systems works. More details of the SNN representations have

been introduced in [121].

Form the engineering perspective, SNNs have several advantages compared to tra-

ditional ANNs/DNNs in terms of energy efficiency and the implementations in NM

hardware. The SNN process takes the input, process, and output spike trains which

sparse in time. An advantage of this is that the binary spike events consume only very

few energy but can contain high information content in the spike timing [122]. Bio-

inspired SNNs, technically, have a higher potential of power consumption and capacity

than traditional neural networks [123]. Thus, it is not hard to consider the engineer-

ing application potential of the low energy NM systems that is highly responsive to

event-based sensors regards to the property of SNNs.

3.2 Spiking Neuron

The Neuron in SNN represents the elementary processing unit which communicates

with each other by sending and receiving spikes. Hodgkin and Huxley [124–126] carried

out an experiment on the giant axon of a squid and build up the first conductance-

based neuron model which can reconstruct the electrophysiological behaviour of the

biological neuron. In 1996, Knig etc al. [127] suggests that a neuron can be regarded

as an integrator or coincidence detector, which is commonly used as the fundamental

idea of modern spiking neuron models. The spikes in the spiking neuron model are

only identified at the time instant when they arrive at the neuron. A spiking neuron

integrates the incoming spikes and transfers these spikes to a voltage change that is

commonly termed as postsynaptic potential(PSP). Then, the overall PSP is compared

to a pre-defined threshold. If the PSP reaches the threshold, then a spike is emitted by

the spiking neuron. Figure 3.1 demonstrates a spiking neuron internal process where

in (a) a single spiking neuron that receives incoming spike trains from s1, s2 and s3

and generates an output spike.
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Figure 3.1: The illustration of spiking neuron operating mechanism (a): An example
of a single spiking neuron that consists of integrator and threshold operator (b): A
simulation of membrane potential u(t) change of a spiking neuron

The incoming spikes to a neuron are integrated and transferred to the membrane

potential dynamics u(t) as is shown in Figure 3.1(b). Whenever the membrane potential

reaches a certain threshold value ϑ, the spiking neuron will emit a spike and reset the

membrane potential to its resting value urest. After a spike activity, the neuron enters

the refractory period and cannot fire any further spikes until its membrane potential

resets to its resting value. A typical spiking neuron model can contain additional

parameters that approximate the membrane potential changes in the neural cortex.

Commonly used spiking neuron model in SNNs include: Integrate and fire neurons(IF)

[128,129], Leaky integrated and fire neurons(LIF) [130], Izhikevich neuron model [131]

and Spike Response Model(SRM) [132].
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3.2.1 Leaky Integrate-and-Fire(LIF) Neuron Model

The integrated and fire neuron (IF) model [133] is the first model that is applied in

event-based information processing. When the input spikes arrive at the neuron in

time, the internal PSP potential then correspondingly increases or decreases depends

on the value of the synaptic weight. The PSP due to positive weights commonly termed

as excitatory PSP(EPSP) and the negative weights lead to an inhibitory PSP(IPSP).

Whenever the PSP reaches a threshold, an output spike is released. The LIF introduces

a decay term to the original IF model which leads to the PSP decay over time [134]. This

means that when a neuron is not receiving any input spikes, the PSP will gradually

decrease to the resting potential. This mechanism can be modeled as a simple RC

circuit. The differential equation of a LIF neuron can be expressed as:

Cm
dVm(t)

dt
= −Vm(t)

Rm
+ I(t) (3.1)

where Vm(t) denotes to the membrane potential of the neuron, Rm denotes to the

membrane resistance, Cm is the membrane capacitance and I(t) represents the input

current source. Figure 3.2 further shows an example of LIF neuron dynamics. The

input spikes θi(t − tf )(a spike from ith neuron at time f) is weighted by synaptic

weights wi to generate PSPs. In this case, the input current I(t) is defined as the

weighted integration of incoming spikes as follows.

I(t) =

N∑
i=1

(wi

∑
k

θi(t− tf )) (3.2)

where N represents the number of synapses connected from input stimulus to LIF

neuron. The neuron receives the summed current input and transfer the input current

to membrane potential(Vm) according to (3.1) then compare with the threshold Vth.

Whenever the membrane potential satisfies the criteria of Vm ≥ Vth, the neuron sends

out a spike and the membrane potential reset to its resting value(0 in this example).
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Figure 3.2: The illustration of LIF neuron dynamics [3]

3.2.2 Izhikevich Model

The Izhikevich model (IZ) [135] introduced additional parameters to the differential

potential, which creates a 2D ordinary differential equation system. The model com-

bines the original Hodgkin-Huxley dynamics and the computational efficiency of LIF

neurons. The differential equation of an IZ model is expressed as:

dVm
dt

= 0.04V 2
m + 5Vm + 140− u+ I(t) (3.3)

du

dt
= a(bVm − u) (3.4)

If Vm ≥ 30mV then v ← c, u← u+ d (3.5)

where u is the adjusting function, a,b,c,d are the additional hyperparameters to

control the functionality of the model. When the Vm reach the limit(30mV) of voltage,

then a spike is generated by IZ model, then the Vm and u are reset to its values

according to (3.3). The standard factor of a,b,c,d are set as 0.02, 0.2, -65mV and 2

respectively [136].

3.2.3 Spike Response Model

The spike response model (SRM) [132] is a representative spiking neuron model that

generalized the LIF and provides a simplified model to simulate the action potential

generation process. Just like other neuron models, the spikes are generated when the
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PSP above a pre-defined threshold. A significant difference for SRM is using the filters

to construct the PSP curve rather than differential equations. The formula for an SRM

model membrane potential generation is given as follows.

Vmem(t) = η(t− t̂) +

∫ ∞
0

κ(t− t̂, s)I(t− s)ds (3.6)

where t̂ is the actual spike firing time. η denotes to the form of the action potential.

κ is the linear spike response kernel. The spike is generated if the Vmem(t) reach a

threshold Vth in which the t̂ is updated. The main features of an SRM include:

• The threshold of an SRM is dynamic and it depends on the last spiking time.

Typically the threshold will increase at the time of firing and decay back to its

original value.

• The spike curve η is a function of spiking time. This means it can change along

with the spiking activities of the neural processing.

• when the time constant of kernel κ is modelled include single exponential or com-

binations of exponentials, the SRM has a Hodgkin-Huxley model [124] equivalent

behaviour.

3.3 Neural Coding Algorithms

The relation between spike trains and the transmitted information forms the require-

ments of neural coding. The information propagation in an event-based processing

system differs from the conventional system. Thus the outside input stimulus has to

be converted to the form of spikes that contains the information. A range of neural

coding paradigms has been developed over the past decades. The most common coding

strategy is called rate coding [137,138], which the information is coded in the forms of

the frequency/rate of spikes over a limited time period. The latency coding mechanisms

encode the information into the arrival time of the first spike [139,140]. These two cod-

ing methods are commonly known as the temporal coding method, which modulates
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the timed pattern of spikes to represent corresponding information. Besides, there is

also population coding [141] which manages the firing behaviour of a group of neurons

to express the information efficiently.

3.3.1 Rate Coding and Spike Count Coding

Rate coding was originally presented by ED Adrian and Y Zotterman [137] with a

weight experiment on a muscle. With the weight increases, the number of spikes

recorded from muscle nerves also increased. A rate coding model commonly states that

as the intensity/magnitude of an input stimulus increases, the firing rate/frequency of

the neuron increases. In other words, the value of the input stimulus is regularized

to the frequency of the spike trains. Figure 3.3 demonstrates an example of the rate

coding model. The blue bar at the left side represents the magnitude of the input

stimulus where the higher the input is, the more spikes are generated.

Figure 3.3: Example of neural rate coding model

It should be noted that the rate coding can also be termed as the spike count

coding, which defines how many spikes are generated by a stimulus intensity. When a

time window is applied, the number of spikes is equivalent to the sense of the frequency

35



Chapter 3. Review of Spiking Neural Networks and Neuromorphic Computing

of overall spike trains. However, the disadvantages of rate coding are distinct as it only

focuses on the magnitude but ignores the temporal structure that encoded in the spike

trains. Rate coding is also time consuming since each coding neuron needs to average

the temporal spike number at every time step.

3.3.2 Latency Coding

A number of researches have identified that the typical temporal resolution of neural

coding is in the millisecond range, which implies that a precise spike timing is significant

[142]. The temporal coding can efficiently map the information into the sequence order

of spike trains rather than the average firing rate.

As is shown in Figure 3.4, unlike rate coding, a latency coding model transfer the

information of stimulus to individual spikes rather than a spike train. Within a certain

time window, the magnitude of the stimulus is converted to the precise time of the

spikes [140]. For example, a high intensity of stimulus will lead to a low latency of

spike generation. In contrast, spike generation is delayed for those input with a low

magnitude.

Figure 3.4: Example of latency coding model
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The latency coding can express features of spike trains that cannot be described

just by the firing rate. For example, time to first spike after the stimulus onset or timed

groups of spikes [143].

3.3.3 Neural Coding in Applications

In addition to rate coding and latency coding methods, there are variants of coding

scheme including population coding [141], correlation coding [144], sparse coding [145].

Despite the remarkable contributions of these coding methods in the field of neuro-

science, it is challenging to map all of the existing neural coding methods to real-world

stimuli.

Diehi et al. [146] presented an SNN system to perform a handwritten digit recog-

nition task using the 28x28 greyscale MNIST dataset. The neural coding in this work

is modeled using 28x28= 784 neurons to represent each pixel of the image. For each

pixel location, a Poisson spike train with firing rates proportional to the corresponding

pixel intensity is generated. An example of the coding process for digit 7 in the MNIST

dataset is shown in Figure 3.5. With these paradigms, the inked region with higher

pixel intensity will result in a high-frequency spike train and the blank region with low

pixel intensity will produce no spikes or low-frequency Poisson spike trains.

Figure 3.5: Example of image neural coding

Dong et al. [4] proposed an SNN based speech recognition system that utilized the

latency coding method to transfer the speech signal to spikes. As is shown in Figure 3.6,
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the speech signal is firstly transferred to Mel-Frequency Spectral coefficients(MFSCs)

matrix by applying mel-scaled filter banks and take the logarithm of the results. Then,

the energy components in the MFSC matrix are encoded in the response latency of

the time of the first spike to the value onset. With this latency coding, each neuron

represents a frequency bands only need to emit a single spike during a presentation of

an input sample and all after spikes can be ignored since they are less important than

the first spike.

Figure 3.6: Example of speech neural coding [4]

The neural coding is a vital process in the development of event-based algorithms.

From the engineering perspective, it provides alternatives to the NM hardware which

can transfer the information of output stimulus to an event-based processing system.

However, these spiking information is hard to be tracked and analysed. It can be clearly

seen that the format of spiking information is fundamentally different from the data

captured by conventional sensors. Thus, to efficiently make use of the advancement of

spiking data, applicable spiking learning algorithms(section 3.5) is vital for developing

an SNN application.
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3.4 SNN Architecture

An SNN is typically similar to ANNs in topology but different in neuron activations

and information carrier. With the introduced knowledge of neuron models (section

3.2) and input coding methods (section 3.3), SNN can be regarded as a result of the

integration of both action potential generation dynamics and network dynamics. Spike

trains in an SNN are propagated via synaptic weights which reflects the relevance of the

connections between spiking neurons. These synaptic weights as a result are the key

learning parameters in SNN as it controls the spike activations and the output target

spike train patterns. An example of a standard multilayer spiking neural network is

shown in Figure 3.7. It can be seen that the architecture of an SNN is very similar

to the conventional ANN. If an event-based input is not available, a coding layer is

usually placed at the front of the spiking neuron layers to transfer the outside signals

into spike trains.

Figure 3.7: Graphical illustration of a feed forward multi-layer SNN structure

The architectures of SNNs are not limited to only the standard feedforward but

can be modified by introducing extra signal processing techniques or changing topo-

logical neuron connections. Such as spiking CNNs(SCNNs) have been developed by

introducing difference-of-Gaussian(DoG) as edge detection and spiking coding meth-

ods and several weight-sharing neuron groups(convolution kernel) represents a specific

receptive field [147–152]. In addition to SCNNs, many ideas in the conventional ANN
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domain have been brought into the construction of SNN architecture such as spiking

deep belief network [153, 154], Recurrent spiking neural networks [155–157] and liquid

state machine based reservoir spiking neural networks [158–160].

3.5 SNN Learning Algorithms

The second generation of ANNs are relying on the gradient descent based backpropaga-

tion training algorithm(section 2.3.4), which requires differentiable activation functions

to represents the error gradients. However, the backpropagation can not be easily ap-

plied to SNN since the discrete asynchronous events produced by spiking neurons are

not differentiable.

During the past few years, many works demonstrated successful employment of

spike-timing-dependent-plasticity(STDP) in various applications. The STDP techni-

cally is able to solve unsupervised clustering tasks [161,162]. Encouragingly, [163,164]

has shown that the convolutional SNN can be learned in an unsupervised manner using

STDPs. More recently, spiking CNNs [165,166] were proved can be used in the field of

frame-level object recognition with a design of identical kernel weight sharing method.

However, Hebbian learning based bio-inspired SNN learning algorithms does not

offer the desired accuracy compared with supervised learning algorithms in classification

or recognition tasks. Employment of STDP is still experiencing several obstacles as a

training method such as the parameters of STDP and spiking neurons have to obey

the spike distributions of data. The excitatory and inhibitory strength performed by

coupled spiking neurons is really sensitive to the spike timing and weights, which can

easily cause neuron domination(not learn) problem.

Currently, the exact learning method for bio-inspired neurons is still remaining as

an open question. Recent research has shown various types of synaptic plasticity that

enable weight and axon delay learning to be compatible with SNNs [167]. Similar to the

learning mechanism described in section 2.3.4, supervised learning and unsupervised

learning are the two known types of training strategies. To date, the developed SNN

training methods can be categorized as the following 3 types.
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• Conversion from standard ANNs: Train a conventional ANN with backprop-

agation and then transfer the weight, input data and neurons to spiking version.

• Supervised learning with SNNs: Although the spikes are not differentiable,

the backpropagation can still be used by approximating gradient of other dynam-

ics in SNN.

• Bio-inspired learning rule: Some biologically realistic synaptic plastic rules

can be applied to spiking neuron model which enables learning of SNNs such as

STDP.

It should note that most current SNN training algorithms are highly dependent on

the preliminaries of the spiking neuron model(section 3.1) and the way of information

coupled in spikes (section 3.3) since different spiking processing model can perform

different learning behaviour on the spike patterns.

3.5.1 Unsupervised Bio-inspired Learning Rule in SNN

In addition to transfer the learning mechanisms in traditional ANNs (backpropagation

and ANN-SNN conversion), a wide range of the neuroscience synaptic plasticity learn-

ing mechanisms can be applied into SNN training such as Spike Timing Dependent

Plasticity(STDP) [168, 169] or Hebbian learning [170]. The bio-inspired learning rules

is very attractive for practical applications since it would allow online learning to be

implemented on hardware [171].

Unsupervised learning is implemented only according to local events that do not

have any extra information to supervise the SNN outputs. The unsupervised learning

in SNN may be constructed by one or a combination of following synaptic plasticity

rule.

• A reward or decay of synaptic weights according to the presence of any spiking

activity [172].

• A reward or decay of synaptic weights independent of pre-synaptic spikes [173].
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• The synaptic weight modulation caused by only pre-synaptic spikes but exclude

post-synaptic spikes [174].

• The synaptic weight modulation caused by both pre-synaptic and post-synaptic

spiking activities such as Hebbian learning [175].

Although these types of plasticity methods, currently, only the Hebbian term based

learning mechanisms are used in SNN, other weight modulation rules are still found to

be challenged to be applied to practical SNN training.

Figure 3.8: An example of working principle of STDP

STDP is an interesting variant of Hebbian learning, which is popularly involved as a

part of the unsupervised SNN learning algorithm [176,177]. Figure 3.8 demonstrates an

example of the working principle of STDP. When a pre-neuron is sending spikes to post-

neuron, the amount of weight modulation ∆s is determined based on the actual spike

time of the pre-neuron tpre and post-neuron tpost. The synaptic weights is strengthened

if presynaptic spike comes before a postsynaptic spike tpost − tpre > 0, this potential

increase commonly termed as long-term-potentiation(LTP). In contrast, if tpost−tpre <
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0, the synaptic weights is penalized which refers to long-term depression(LTD). A

standard formula of STDP can be written as:

∆s =
∑
tpre

∑
tpost

W (tpost − tpre) (3.7)

W (∆t) =

 Apree
−∆t
τpre ∆t > 0

Aposte
∆t
τpost ∆t < 0

(3.8)

where Apre and Apost are the constant learning rate parameters, τpre and τpost denote

to the time constant of LTP and LTD for the temporal STDP learning window [178,179].

The STDP is found can affect neurons’ spiking behaviour in response to spike train

patterns.

Previous works have demonstrated that repeating temporal patterns can be detected

by a single neuron with STDP embedded synaptic plasticity [180, 181]. STDP and its

variants can also be tuned to solve complex problems if a precise time reference is coded

within a spike train [161]. A significant development of STDP was proposed by Nessler

et al. [182]. They approximated the STDP as a stochastic winner-take-all(WTA) circuit

[183]. This method is able to estimate an expectation maximization(EM) algorithm to

learn parameters for multinomial data distribution.

3.5.2 Training SNN by ANN Conversion

The conversion algorithms were originally developed to process the event-based data

generated by NM hardware without SNN. Early researches manually mapped convolu-

tional filters to spike train inputs [184, 185]. The main idea of their work follows the

idea of rate coding which translates the information of ANNs into neuron firing rates.

The weights are scaled according to the spiking neuron models.

Transferring an ANN to SNN has the advantages of high performance and short

development period. The developed ANN frameworks can be used for the design as

well as numerous state-of-art ANN architectures [186]. The trained ANN inference

model should be converted to SNNs by adapting weights and parameters of the spiking
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neurons. The method not only needs to map the whole processing system from ANN

to SNN but also includes the input and output spike encoding and decoding. The

ANN-SNN conversion technique [187] is possible to provide performance guaranteed

SNN that can satisfy the expected accuracy.

However, the ANN-SNN conversion also comes with limitations. First, not all ANNs

can be easily transferred to SNN. One of the main challenging issues is the negative

activations in ANN where the latencies or firing rate of spikes are always positive values.

To address this problem, many solutions have been proposed. Such as Prez-Carrasco et

al. [185] suggests using a pair of spiking neuron to represents the positive and negative

activations.

Second, modern ANN structures have introduced several mathematical operations

into network structure which is difficult to be considered used in SNNs. One of the

examples is the pooling operation in CNNs(described in section 2.4.2). The max-

pooling operation is not a linear function that can be approximated in a spike to spike

basis. The average pooling [188] although is a linear operation but it is proved that

may degrade the performance of the original work.

Third, the parameters conversion and normalization will bring the additional cost

of spikes which is significantly less computationally efficient. This comes to a trade-off

between the performance of converted SNN and the computational costs.

3.5.3 Supervised Learning in SNN

The supervised learning reduces the SNN training method back to the methods in

traditional ANNs. Many works have been proposed to directly manage the gradient

flow through spiking units on the different aspects of spikes. This form of training

method does not really aim to mimic the biological plausible learning mechanism but

to efficiently adapt SNNs to many problems with state-of-art backpropagation learning

rule.

As mentioned in section 2.3.4, supervised learning must rely on the error signal gen-

erated by the difference between the label and actual outputs. In the context of event-

based SNN, the goal of spiking supervised learning rule is to reduce the error between
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input and output spike trains. SpikeProp [189] is the first spiking backpropagation

based training algorithm. The loss function in SpikeProp looks into the approximation

of firing time of neurons rather than non-differentiable spikes. This method showed an

example of classification for non-linear data XOR problems with SRM(section 3.2.3)

spiking neuron model. The use of the SRM model is a significant progress in the de-

velopment of backpropagation based learning algorithm. The problem that computing

derivatives on specific spikes was avoided since the spiking unit’s response can be mod-

eled as PSPs which can be straightforwardly applied to synapses. The limitation of

SpikeProp is that the output of SNN has to be strictly constrained to a single spike.

With the appearance of SpikeProp, many variants were developed to solve the

limitation of it. Using the same neural model and architecture of SpikeProp but a

different choice in formulations of spike coding and loss function [190, 191]. More

recent works that focus on the training of synapses to cause output neurons to generate

spike trains with expected spike times include ReSuMe(remote supervised learning)

[192, 193], Chronotron [194] and SPAN(spike pattern association neuron) [195]. Huh

and Sejnowski [196] in 2017 identified the problem that all of the previous gradient

descent based spiking learning mechanisms still suffers from a constrain which the

number or the precise times of output spikes from SNN has to be satisfied a specific

range. They proposed a hard spike threshold function that enables the spike generation

process to be continuity by releasing the modeled postsynaptic currents when the PSP

approaches the threshold.

Later advanced development of supervised training algorithms in SNN is focusing

on the management of alternatives of spike functions. Such as backpropagating the

membrane potentials of a spiking neuron. Lee et al. [197] approximated a small signal at

every spike time which is applicable for the gradient descent method. Zenke et al. [198]

proposed a Superspike surrogate function to the membrane potential generation which

can serve as derivatives. Among these methods, it is worth mentioning a state-of-art

spiking supervised learning algorithm Spike Layer Error Reassignment(SLAYER) [199].

SLAYER successfully approximates the derivative of the spike function based on the

neuron state changes and assigns the error to previous layers. Due to the selection
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of SLAYER training algorithms for the contributions in Chapter 4 and Chapter 6, a

simplified SLAYER training algorithm with its embedded SNN model is provided.

The neuron model used for the SLAYER is the Spike Response Model(SRM). As

described in section 3.2.3, the membrane potential generation process of a SRM neuron

is achieved by convolving a spike response kernel σ(t) with the incoming spike train

si(t) to this neuron to form a spike response signal as a(t) = (σ(t) ∗ si(t)). Here the

index i represents the ith input channel. The spike response signal is further weighted

by the synaptic weight w. Similarly, the refractory response signal can be obtained

via convolving a refractory kernel ν(t) with the neuron output spike train so(t) as

r(t) = (ν(t) ∗ so(t)). The overall neuron membrane potential u(t) can be obtained by

summing all the spike response signal and refractory response signal as:

u(t) =
∑

wi(σ(t) ∗ si(t)) + (ν(t) ∗ so(t))

= W>a(t) + r(t)
(3.9)

The bold character W represents the weight matrix. The generated membrane

potential u(t) is then compared with a predefined threshold ϑ and output spike when

u(t) > ϑ. In a multilayer feedforward spiking neural network architecture, with nl

layers and synaptic weights W l, the forward propagation can be modelled as 3 part as

is shown in (3.10) to (3.12). First, generate the spike response signal for all neurons in

layer l based on incoming spikes s(l)(t). Secondly, calculate the membrane potential for

each neuron based on the weighted spike response signal a(l)(t) and refractory response

signal. Third, generate spike trains by applying thresholing operation on the membrane

potential.

a(l)(t) = ((σ(t) ∗ s(l)(t)) (3.10)

u(l+1)(t) = W (l)a(l)(t) + (ν(t) ∗ s(l+1)(t)) (3.11)

s(l+1)(t) = fs(u
(l+1)(t)) (3.12)

Instead of directly managing the non-differentiable spike neuron equations, SLAYER

46



Chapter 3. Review of Spiking Neural Networks and Neuromorphic Computing

approximates the derivative of the spike function as a probability density function(PDF)

of spike state changes. Further details of the model and its use in training the SNN can

be found in [199]. With a good estimation PDF as the derivative term of spike change

state, the SLAYER can easily derive the gradient of weights and delays in each layer

from a feedforward SNN. This allows the network to adapt developed gradient descent

method for optimization purposes such as ADAM [91], RmsProp [200].

3.6 Neuromorphic Hardware

During the past decade, there has been a significant exploration of novel devices and

technologies as the enablers of brain-inspired computation. Multiple NM systems us-

ing SNNs to perform energy efficient computing, which was inspired by the biological

working mechanism of human brain. Many researchers and industrial partners have

tackled the difficulty of design of NM chips that is scalable in architecture and able to

handle various SNN architecture. The most challenging problem in the NM chip design

is to handling numerous semiconductor with a great number of artificial neurons and

synapses.

In addition to NM computing hardware, the NM sensors are another influential

field that attracted increasing attention from both researchers and industries. The NM

sensor not only provides a way of acquiring the event-based data to SNNs but also

upgraded the sensing techniques beyond the conventional visual/auditory sensors.

In this section, the noticeable NM hardware will be reviewed. The NM chips will

be illustrated in section 3.6.3. Section 3.6.1 introduces a popular vision sensor called

Dynamic Vision Sensor(DVS) and Section 3.6.2 introduces a type of audio sensor named

Dynamic Audio Sensor(DAS).

3.6.1 Dynamic Vision Sensor

The traditional vision sensor is a digital camera that repeatedly refreshes its entire array

of pixel values at a predefined frame rate. However, using the digital camera has three

drawbacks for dynamic motion recognition. First, a digital camera normally operates
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with a predefined frame sampling rate(typically range 25-50 frames per second), which

limits the temporal resolution of activities observed. Secondly, consecutive frames and

redundant pixels in each frame waste significant storage resources and computation.

Thirdly, the dynamic range of traditional image sensors is limited by its exposure time

and integration capacity. Most cameras suffer from saturating linear response with

dynamic range limited to 60-70dB where light from natural scenes can reach approxi-

mately 140dB of dynamic range [201].The dynamic vision sensor(DVS) [34,35,202] pro-

vides a solution to these problems. The DVS using address event representation(AER)

is an event-driven technology based on the human vision system. The benefit of the

event-based sensor on dynamic scene recognition task is that it offers very high tempo-

ral resolution when a large fraction of scene changes, which can only be matched by a

high-speed digital camera with the requirement of high power and a significant amount

of resources.

Figure 3.9: Output from (left)conventional sensor, (right)Dynamic vision sensor [5]

Figure 3.9 demonstrates an example of the visualised DVS output with a comparison

to the conventional sensor, where DVS can produce crisper edges for rapidly moving

objects. This is significant in both the process of object identification and memory

saving. In DVS, information is coded and transmitted as electric pulses(or spikes),

which is similar to the processing mechanism in biological sensory systems. The out-

put of DVS is generated asynchronously by comparing each activity of a retina pixel

with a certain threshold. The emergence of dynamic vision sensor(DVS) demonstrated

significant potential in applications of ultra-fast power efficient computing. Compared

to traditional vision sensors, DVS returns unsynchronized events rather than sampled
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time-based frame series [35]. For a given real-world input, DVS records only changes

in pixel intensity values and outputs a stream of ON/OFF discrete events regarding

to the changing polarity. Such an event-based acquisition mechanism offers many ad-

vantages such as low power consumption, less redundant information, low latency and

high dynamic range.

With the successful design of DVS, a benchmark was built up for characteristics

that NM sensor should deal with and provide guidance for further research in event-

based vision sensing. Many enhanced version of DVS is proposed to improve either

the spatial resolution or the dynamic range of the devices. Such as Brandli et al. [34]

proposed a hybrid method to addressing the frame-based and frame-free visual sensing

problem. The DAVIS(Dynamic and Active-Pixel Vision Sensor) integrated both frame-

based active pixel sensing and asynchronous DVS sensing in a single camera.

3.6.2 Dynamic Audio Sensor

Just like the DVS mimic the human visual system, the working mechanism of a dynamic

audio sensor is inspired by the sensory organ in the human auditory system [203].

The DAS is an asynchronous event-driven silicon cochlea which takes the stereo audio

inputs. The DAS uses microphone pre-amplifiers and 64 binaural channels which set

up a benchmark in NM audio sensing. The DAS integrates the local digital-to-analog

converters(DACs) to allow the quality factors in each channel can be modified. The

function of cochlear is modeled by cascaded second-order sections analog components

which include half-wave rectifiers, frequency modulator, digital to analog converters

and serverl amplifiers and buffers.

An example of binaural DAS output of speech is demonstrated in Figure 3.10 and

3.11. Figure 3.10 demonstrates a DAS response to the speech signal where green and

red color are corresponds to the left and right sampling channels respectively and each

dot is an acquired event. The chirp response of DAS is shown in Figure 3.11, which

the input signal has a dynamic frequency change ranging from 30Hz to 10kHz.
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Figure 3.10: DAS output response of speech signal [6]

Figure 3.11: DAS output of chirp signal [6]

3.6.3 Neuromorphic Computing Platforms

Initially, NM chips were only investigated by research institutions. As the researchers

have shown significant potential of these outstanding brain-like computing models,

many big companies have started to involve in the development of NM chips.

IBM company has recently developed the TrueNorth system [33] which is a part

of the defense advanced research projects Agency SyNAPSE development program

[204]. One single TruNorth chip consists of 4096 computation core, which can achieve

the dynamic mapping of neural synapses and neuron arrangement. Each core can

maximumly implement 256 IF neurons with 1024 axonal circuits for input connection,

which organized as static random access memory crossbar [205]. An attractive feature

of the IBM TrueNorth systems is that a single chip consists of 5.4 billion transistors with
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only 70mW power density consumption, which accounts for only 1/10000 of traditional

computing units.

The SpiNNaker NM platform [206] is developed by researchers at the University

of Manchester which is a part of the Human Brain Project(HBP) [207] that funded

by the European Union. The SpiNNaker provides ASIC solutions to hardware im-

plementations of SNNs. It utilized multiple ARM cores and FPGAs to configure the

hardware and PyNN [208] software API to enable the scalability of the platform. The

ARM processors allow the platform can configure billions of spiking neurons with a

biological realistic connectivity with only 1ms simulation time step. Furthermore, the

second generation platform SpiNNaker2 is under the development, which allows the

simulation of significantly larger and more complex SNNs with over 10 millions pro-

cessors [209]. In addition to SpiNNaker, the BrainScaleS [210–212] is also another NM

computing platform as a result of the HBP project. BrainScaleS is a mixed signal

NM chip developed using waferscale integration technology which allows a utilize of

40 million synapses and up to 180k neurons. The next generation of BarianScaleS is

being designed and named BrianScaleS-2 which is capable of using more complex neu-

ron models and simultaneously supports non-linear synapses and customized structure

neurons.

Stanford University created two NM hardware designs which are Neurogrid and

Braindrop respectively. The neurocore in the Neurogrid [213] is built up by a 256x256

array of fabricated CMOS, which enables a mixed analog-digital implementation of

SNNs. Neurogrid is able to provide biological plausible computation with the capacity

of millions neuron and billions of synapses. The Braindrop [214] like the Neurogrid is

a mixed-signal NM processor but at a high level of abstraction. Braindrop is designed

with a 28-nm FDSOI process and integrates 4096 spiking neurons on a single chip which

is neuron capacity limited for large scale SNN implementation.

The Loihi NM chip [215] is a digital NM computing platform that was recently

announced by Intel. The most attractive feature of Loihi is the potential of chip online

learning. Loihi has a special programmable microcode engine for SNN training on the

fly. Loihi has 3 unique Lakemont NM cores that are designed specifically to assist with
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advanced learning rules. There are totally 128 NM cores in a single Loihi chip, which

is able to implement 130K LIF neurons and 130M synapses. The maximum size of the

Loihi system can supports a scale up to 4096 on-chip cores with 16384 chips [216].

The Brainchip company delivered Akida neuromorphic computing platform [217]

which can effectively implement 1.2 million neurons and 10 billion synapses with one

NSoC. The platform has several on-board processors includes the functionalities of

event-based processing, digital processing, memory, input/output interface and multi-

chip expansion.

In addition to these NM chips, there are still many emerging NM chips that demon-

strated significant potential in NM computing. Such as the DARWIN chip [218] from

Zhejiang University which targeted for embedded low power applications. The DYNAP-

SEL [219] developed by researchers at the University of Zurich combines the asyn-

chronous digital logic and analog circuits to achieve analog SNN implementation. The

researchers at Tsinghua university successfully design the hybrid Tianjic NM chip [220]

which allows both conventional neural network and SNN implementation. The sum-

mary of the features of mentioned NM computing platforms is shown in Table 3.1.
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Table 3.1: Summary of existing NM platforms

Name Type Learning Simulation
time

Capacity Connection

TrueNorth Digital No Faster than
real time

4096 core
per chip

AXI bus to
SoC

SpiNNaker Digital No Real time 1% of brain
capacity

Ethernet

SpiNNaker2 Digital No Real time 10M pro-
cessing

Ethernet

Loihi Digital Yes Faster than
real time

4096 core
per chip

Ethernet,
USB

Neurogrid Analog-Digital No Real time 256x256
CMOS

USB via
FX2

Darwin Digital No 70MHz
clock

2048 neu-
rons per
chip

UART to
USB

BranScaleS Analog, Digital No Slower than
real time

180K neu-
rons

Ethernet

Dynap-SEL Analog, Digital No Real time 512 neurons
per chip

FPGA

Braindrop Analog, Digital No Real time 4096 neu-
ron per
chip

Not speci-
fied

Akida Analog, Digital No Not speci-
fied

1.2M neu-
ron

USB/UART/PCI

Tianjic Digital No Real time 40k neuron
per chip

Not speci-
fied

3.7 Spiking Neural Network Software

Despite the advantages of SNNs, the computational problems in terms of simulating

spiking neurons are relatively large. In some cases, the detailed differential represen-

tation of biophysical spiking neurons is required like the IZ neuron model. On the

other hand, the simplified neuron model which does not need to reconstruct the biolog-

ical spiking generation mechanism realistically can be simulated easier (i.e. IF neuron
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model) [221]. The simulation strategies of an SNN can be divided into two families:

synchronously or asynchronously. The synchronous algorithms update all the neurons

at every time steps which causes higher computational resources than asynchronous or

”event-driven” algorithms. The asynchronous method only updates the neuron status

when they receive or send out spikes just like the working paradigm as a DVS sensor.

Unlike the unified neural network frameworks in ANN(such as tensorflow [222] and

Pytorch [204]), neither the SNN model nor the training method for SNNs is general-

ized. The way of simulating the SNNs still remains diverse and objectively oriented.

Currently, the process of design an SNN is not only considering the feasibility of the net-

work itself but also can extend to features like biological plausible, computational cost

and learning mechanisms. To comprehensively review the software implementations of

SNN, the noticeable SNN simulators are summarised as Table 3.2, which includes key

features of these emerging software.
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Table 3.2: Summary of SNN simulators

Name Enviorment Hardware Synaptic Plas-
ticity

Synchrony GPU
sup-
port

Feature

BRIAN [223] Python,C++ N/A Hebbian Synaptic
Plasticity

syn & asyn No Biological Plasible

NEST Python/nest N/A short-term plas-
ticity, STDP

syn No Biological Plasible

Spyketorch [224] Python
/MATLAB

N/A STDP. R-STDP syn YES Convolutional opera-
tion and Pooling op-
eration avaliable

NeuronFlow [225] Python FPGAs pair-based near-
est neighbor
STDP

syn No Ability of mapping
FPGAs

PyNN [208] Python SpiNNaker
& Bain-
ScaleS

STDP variants syn Yes Hardware applicable

Nengo [226] Python,C++ SpiNNaker,
Loihi,
FPGA

STDP and back-
propagation

syn & asyn Yes Hardware friendly;
Supports deep learn-
ing and conversion

SLAYER [199] Python,
C++

Loihi Supervised back-
propagation

syn Yes Convolution and
pooling supervised
learning

NeuCube [158] Pythom,
Matlab,
JAVA,
C++

SpiNNaker reservoir syn Yes end to end module to
address applications

SNN toolbox [187] Python N/A N/A syn N/A ANN-SNN conver-
tion toolbox

BindsNET [227] Python,
C++

N/A machine learning,
reinforcement
learning, Reser-
voir

syn YES Programming flexi-
ble

Brian2GeNN [228] Python,C++ DSP,FPGA Hebbian Synaptic
Plasticity

syn Yes BRIAN with GPU
support

3.8 Neuromorphic Technology in Human Gesture Recog-

nition

Recently, using neuromorphic technology for orientated engineering applications have

attracted increasing attention. Due to the availability of visual and audio NM sen-

sors, various SNN architecture and learning rules, researchers have successfully applied

the NM in many fields. Human gesture recognition as described in section 1.1 is an

inter-discipline problem which is well suited to the event-based processing such as for

those scenarios that require SWaP profiles(UAV, IoT, robots). With the described NM

related techniques in section 3.1 to 3.7, an extensive review of the noticeable works is

provided in Table 3.3.
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Table 3.3: Summary of previous works on NM human gesture recognition

Application SNN type Learning Rule Dataset Accuracy NM Hardware Feature NM Sensor

Hand Gesture
Recognition [32]

CNN-SNN conversion Backpropagation DVSGesture 128 89.64%-10class Loihi End-End Recog-
nition

DVS

Hand Gesture
Recognition [36]

CNN with filters and
weight quantization

Backpropagation DVSGesture 128 96.49%-10class TrueNorth Ultra low power DVS

Hand Gesture
Recognition [199]

Spiking CNN Spiking Bachpropaga-
tion

DVSGesture 128 93.64(+-0.49%)-
11class

N/A Pure Spiking DVS

Hand Gesture
Recognition [229]

Spiking CRNN Spiking Bachpropaga-
tion

DVSGesture 128 96.59%-10class N/A CRNN structure DVS

Early Predic-
tion in Human
Robot Collabora-
tion [230]

Turn-taking SNN STDP self collected N/A N/A ability of early
prediction

N/A

Spoken Digit
Classifica-
tion [231]

SNN-SOM SOM and Tempotron
learning

TIDIGIT 97.40% N/A The use of SOM N/A

Head Pose Esti-
mation [232]

Objective Oriented N/A self collected N/A Loihi No training N/A

Human action
recognition [233]

Reservoir STDP UCF101 81.30% N/A Reservoir based
learning

N/A

Human Motion
Recognition [234]

Feedforward Backpropagation MSR-Action3D 82% N/A 3D coordinates
data

N/A

EMH signal Hand
Movements Clas-
sification [235]

ANN-SNN conversion Backpropagation limb position
sEMG dataset

89.79% N/A EMG classifica-
tion

N/A

Speech Recogni-
tion [4]

MFSC + Convolution
SNN

STDP TIDIGITS and
TIMIT

97.50% N/A Robust in speech
recognition

N/A

Speech Recogni-
tion [236]

Constrained CNN-SNN
conversion

Backpropagation self collected 92.21% N/A Novel auditory
sensor

FPGA DAS

Speech Recogni-
tion [237]

STFT+SOM+ SNN Tempotron learning TIDIGITS 97.60% N/A The use of SOM N/A

Speech Recogni-
tion [238]

Reservoir STDP Emo-DB 82.35% N/A N/A N/A

Speech Emotion
Recognition [239]

Convolutional SNN STDP RAVDESS(only
6/8 class used)
eNTERFace

80.30% N/A Multi-model N/A

EEG Emotion
Recognition [240]

wavelet + FFT +Neu-
Cube

Hebbian Learning SEED 96.67% N/A EEG emotion
recognition

N/A

Text Emotion
Recognition [241]

CNN-SNN conversion Backpropagation self collected N/A TrueNorth NM text process-
ing

N/A
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It can be seen that the SNN has been applied to HCI human gesture recognition

tasks with or without hardware. Due to the event address representation of the input

data, researchers in the NM visual-based domain mainly focus on the tasks with the

input has a characteristic of the dynamic scene such as action recognition, hand gesture

recognition, action recognition and motion recognition. For the audio domain, the

speech-related applications were extensively investigated.

The IBM DVSGesture 128 dataset [36] which was collected using a 128X128 res-

olution of DVS is one that most popular used for visual-based hand gesture recog-

nition applications. Researchers from IBM created an offline inference model which

trained by the dataset and successfully transferred the model to the TrueNorth chip,

which delivered a real-time edge neuromorphic computing example for hand gesture

recognition. Similarly, Massa et al. [32] successfully implemented an efficient SNN on

the Loihi chip using the CNN-SNN conversion technique. In addition to conversion

techniques, Shrestha et al. [199] using a spiking backpropagation equivalent method

SLAYER delivered a nine layer convolutional SNN for the DVSgesture dataset, which

enables completely event-based processing without and preprocessing of the data. The

work in [233] presented a reservoir based SNN trained with STDP that can effectively

handle the challenge of visual-based action recognition on UCF101 dataset [242]. This

essentially demonstrates the ability of bio-inspired unsupervised learning on large scale

gesture recognition dataset.

Apart from the visual side, a variety of SNN solutions were proposed to address the

audio-based gesture recognition problem. However, unlike the vision data, the informa-

tion in the audio signals are difficult to be extracted by the network along without prior

information to the frequency components. This causes most of the researches to employ

additional preprocessing techniques to raw audio signals. Wu et al. [231] suggested an

SNN based spoken digit classification strategy using the frequency band energies along

with the self-organizing map to extract time-frequency features in the speech signal.

It utilizes the tempotron supervised learning rule for a feedforward fully connected

SNN as the classifier which offered a 97.4% accuracy for TIDIGIT dataset [243]. Addi-

tionally, Dong et al. [4] developed an event-based speech recognition system using the
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Mel-Frequency-Spectral-Coefficient (MFSC) as the feature extractor. The MFSCs were

treated as frames and processed by a convolutional SNN with STDP as the learning

rule. A speech emotion recognition(SER) model was developed in [239] , which employs

Mel-frequency cepstral coefficients(MFCC) as the pre feature extractor and a convolu-

tional SNN as the main spiking unit. The method provides a recognition accuracy of

80.30% for 6 class of different emotion gestures on the RAVDESS dataset.

Other noticeable works that using input signals from different sensors is described

as follows. An emotional recognition SNN model using Electroencephalogram(EEG)

signals was presented in [240]. The model combines the continuous wavelet transform

and NeuCube reservoir based SNN together, which offers an accuracy of 96.67% on the

SEED dataset. Diehl et al. [241] proposed an interesting CNN-SNN based model ’True-

Happiness’ that can predict the emotion from written text. The model was successfully

implemented on TrueNorth NM computing platforms.

3.9 Conclusion

In this chapter, the fundamentals of NM technology and SNN working principles are

presented. The SNN is a key element in a neuromorphic system that receives, processes,

and outputs the event-based information. The emerging neuromorphic sensors and

computing platform allow SNNs can maximize the potential of SNNs in terms of energy

efficient and real-world performance. The chapter forms up the fundamentals of original

contributions in SNN algorithms design in chapter 4, chapter 5 and chapter 6.

Despite the advantages of NM technology, there are still many challenges in the

NM computing such as limited accuracy compared to traditional ANN, the difficulty

of large-scale network implementations, lack of reliable supervise training algorithms,

difficult to train with bio-inspired synaptic plasticity. There is still no universal frame-

works that either for SNN algorithm design or NM circuit layout.
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Chapter 4

A Novel Spiking Convolutional

Recurrent Neural

Network(SCRNN) Structure

4.1 Introduction

This chapter presents a novel spiking neural network structure that can adapt to neuro-

morphic vision data based recognition problem especially for those data that contains

strong spatiotemporal correlations such as visual based human gesture recognition.

The convolutional operation and recurrent neural network connections are combined

in a SNN that uses a supervised learning based spiking convolutional recurrent neu-

ral network(SCRNN). By adjusting the integration period of input data sequence and

convolution kernel, SCRNN can achieve arbitrary spatio-temporal resolution according

to the recognition demand. Besides, The Spike Layer Error Reassignment (SLAYER)

training algorithm as described in section 3.5.3 is successfully deployed to the SCRNN

for the purpose of generalization and training stability. The use of SLAYER effectively

prevents the common gradient vanishing and explosion problem associated with recur-

rent neural networks. Since the recurrent propagation between the SCRNN cells rely

on the information fusion from inputs of current timestamps and output from previ-
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ous timestamps. Particularly for SCRNN, a spiking feature map integration method is

developed in the SCRNN cell to maintain information continuity in temporal domain.

To validate the robustness of the SCRNN, the network structure is evaluated by

performing the recognition task on the IBM DVS gesture dataset [36]. The experi-

mental result of action recognition using SCRNN will is presented in section 4.8 with

discussions.

4.2 3D spiking Convolution Operation

Consider an input sequence S(n) =, n = 0, 1, 2, ...N as is illustrated in Figure 4.1. At

each time step, S(n) is a 3D tensor with shape {u, v, t} where u and v denote the

width and height of each frame and t correspond to the pre-defined time resolution.

For a given event based video stream, it can be arbitrarily segmented into several

tensors according to the desired temporal frequency. For example, for a 1.5sec 128x128

resolution events data stream with 30ms temporal resolution and 1ms sampling time

can form a input sequence S(n), n = 0, 1, 2, ...50. For each segment, the tensor shape

is {128, 128, 30}.

Figure 4.1: The 3D spiking convolutional operation

The sampled input tensor S(n) with shape of {u, v, t} is convolved with a 3D con-
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volutional kernel to generate a spiking neuronal feature map. The spikes within a

arbitrary kernel can be regarded as a bunch of spike trains su,v(t) where each spike

train corresponds to the spikes at a specific coordinate (u, v) within the temporal reso-

lution window t. Each neuron in the feature map receives the spikes from the neurons

in the 3D convolutional kernel. The spikes in the region of the kernel are integrated

to generate membrane potential for a single neuron in the feature map. The neurons

in a map detect the spatio-temporal dynamic patterns in different 3D volumes. Unlike

the standard feature map generated by CNN, the information at each coordinate in a

spiking feature map is expressed by spike trains which is a spiking representation of

detected patterns.

The convolutional kernel is highly overlapped to ensure the proper detection of fea-

tures. The SRM neuron model is used to describe the 3D spiking convolution operation,

which gathers all the input spikes from pre-synaptic neurons and outputs spike when

the membrane potential reaches the pre-defined threshold. In the SLAYER, this is done

by convolving the spike trains in the kernel with spike response kernel and followed by

the threshold function. Each spike train will be transferred to the spike response signal

then further to the membrane potential of the postsynaptic neuron. The process can

be expressed as:

au,v(t) = su,v(t) ∗ σ(t) (4.1)

uj,k(t) =

K∑
m=1

K∑
n=1

Wm,naj+m−1,k+n−1(t) + (sj,k(t) ∗ ν(t)) (4.2)

sj,k(t) = 1 & uj,k(t) = 0 when uj,k(t) ≥ Vthr (4.3)

where W denotes the synaptic weights. u and v are the vertical and horizontal coordi-

nate index of the input tensor. j and k represent the vertical and horizontal coordinates

in the feature map. K represents the convolution kernel width and height.

The 3D spiking convolution can decompose the input event based data into several

spatio-temporal pattern feature maps, where each spike in the map corresponds to a
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specific pattern. When multiple spiking convolution layers are used, the feature in a

layer is a combination of several low level features extracted from the previous layer.

4.3 The SCRNN cell

The SCRNN cell is designed as the fundamental unit of the SCRNN system. The idea

was inspired by the structure of ConvLSTM cell as is introduced in section 2.6. A

graphical illustration of a single SCRNN cell is shown in Figure 4.2.

Figure 4.2: The proposed single SCRNN cell. The state spiking feature map and
input feature map are combined in the cell with an output feature map recurrently
connected to the cell

The inputs to the cell comprises two parts: First is the spiking feature map gen-

erated by the outside events(e.g. a fragment from a event-based action data). The

second part is the hidden spiking states which represent the fused feature map of previ-

ous states and the feature map generated by current input. To ensure the state feature

map has the same shape as the input, a padding technique is needed before the actual
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convolution operation, which means padding empty events(zeros) on the boundary of

state maps. This can be viewed as the current state having no prior knowledge in terms

of the region outside the current receptive field. At zero time index, the internal state

needs to be initialized randomly or set empty which represents no prior knowledge at

the beginning from the temporal perspective. Consequently the 3D spiking convolution

operation is applied on both input-to-internal state transitions and state-to-state tran-

sitions in a SCRNN cell. The future state to state transition is achieved by utilizing

another 3D convolution layer that contains a pre-defined number of hidden neurons.

Two feature maps are concatenated to form a single map. Then the spikes in the same

kernel of the fusion map are accumulated and activated to generate the membrane po-

tential signal for future states. Consider an input segment Xi. The entire computation

process within a SCRNN cell can be written as:

si(t) = θ{
∑

Wih(Xi ∗ σ(t))} (4.4)

sh(t) = θ{
∑

Whi(sh(t− 1) ∗ σ(t))} (4.5)

sh(t+ 1) = θ{
∑

Whh(si(t) ∗ σ(t) + sh(t) ∗ σ(t))} (4.6)

so(t) = θ{
∑

Who(si(t) ∗ σ(t) + sh(t) ∗ σ(t))} (4.7)

where θ represents the thresholding operation. Wih, Whi, Whh and Who denotes the

weight input to state, state to input, state to state and state to output respectively.

It can be seen from (4.6) and (4.7) that the output of a SCRNN cell comprises two

terms: sh(t + 1) is the spiking states that can be used for future cells and the so(t)

represents the output spike train. The output from the cell represents the 3D feature

map extracted from the current cell that allows the network to go deeper by using the

so(t) as the input of next layer.
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4.4 The Spiking Convolution Recurrent Neural Network

Architecture

The overall SCRNN architecture shown in Figure 4.3 comprises a combination of single

cells that are stacked in both temporal and spatial processing domain. From a tempo-

ral point of view, the cells can process the input sequence separately using the internal

state correlations. Furthermore, the input can be further decomposed by adding addi-

tional cells at each time step, thus allowing the network to form greater computational

complexity and processing higher level spatial features. In other words, at a specific

time step, the concatenated SCRNN cells(layers) can be treated as a standard spiking

convolutional neural network wherein each input of a SCRNN cell is the output signal

of previous cell. It should be noted that additional initial states are needed for every

added layer.

Figure 4.3: The proposed SCRNN structure which is comprised by prior defined
individual SCRNN cells

Similarly to the conventional recurrent neural network, the SCRNN can also be

unrolled to form a short-term feed-forward structure that increases the network pa-

rameter capacity. Unrolling a recurrent structure represents a trade off between the

network performance and the computational cost. Although theoretically the cells can
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be unrolled up to the length of the input sequence, the computation cost in the training

process increases dramatically along with the number of cells. Moreover, to guaran-

tee the network performance in terms of temporal information, the backpropagation

through time(BPTT) as described in section 2.3.4 is used which is another factor that

affects the training speed. BPTT calculates and accumulates errors across each time

step, which can be computationally expensive as the number of time step increases.

4.5 DVS Gesture Dataset

The DVS gesture dataset comprises of recordings of 29 different actors carrying out

10 different hand gesture actions. All recordings are captured by an Inilabs 128 x 128

dynamic vision sensor under three different lighting conditions. Each gesture sample

has a duration of approximately 6 second. Figure 4.4 shows an example of hand waving

gesture with 0.5s integral time interval in nature light condition. The goal is to classify

the gesture event video data into correspond label. The DVS gesture dataset is split

as 1176 samples for training and 288 samples for testing as annotated. Note that the

amount of samples of arm roll is twice than other gestures in the original dataset.

Figure 4.4: The demonstration of DVS gesture dataset with integral time of 0.5s.
The gesture showing in the example is hand waving. The green and red edges in each
Figure 5 represents the ON/OFF polarities of spikes.

65



Chapter 4. A Novel Spiking Convolutional Recurrent Neural Network(SCRNN)
Structure

4.6 SCRNN Setup

A 3 layer SCRNN was constructed to solve this problem as is shown in Figure 4.5.

The network uses a standard SRM response neuron that introduced in section 3.2,

the detailed neuron parameters are shown in Table 4.1. The parameters define the

standard neuron dynamics behavior which is used in all SCRNN networks. Where

ϑneuron is the neuron firing threshold. τneuron is the neuron time constant, τref is the

neuron refractory time constant, Cref is the refractory response scaling coefficient, τf

is the neuron spike function derivative time constant, and the Cf is the neuron spike

function derivative scaling coefficient.

Figure 4.5: The SCRNN structure that used for IBM DVS gesture dataset hand
gesture recognition.

Table 4.1: The neuron parameter setting for the SCRNN simulation.

ϑneuron τneuron τref Cref τf Cf

5 10 1 2 1 1

As the gesture recognition is a many-to-one problem(described in section 2.5.2),

only the output from last layer and last time step SCRNN cell is taken into account

for the loss calculation. The loss function used in this method is defined as the square

error based on the number of spikes between the target and actual output in a time
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window according to [199]. With the So as the output spike train of the last layer of

SCRNN and Ŝ denotes to the target spike train, the loss function L can be expressed

as follows.

L =
1

2

N∑
1

(∫
So(τ)dτ −

∫
Ŝ(τ)dτ

)2

(4.8)

where N is the number of output neuron of the last layer. At each time step, the

error signal is calculated according to the current output spike count and target spike

count. It should be noted that the backpropagation pipeline covers both spatial and

temporal propagating routes through the recurrent connection. To save on computation

resources, only 1s out of 6s of each gesture samples were used for the experiment. The

input event sequence is integrated to several frames based on pre-defined segmentation

length ls. The segmentation length significantly affects the sparsity and the number of

integrated frames. A small ls will results in a large number of sparse frames, on the

contrary a chosen of large ls will reduce the amount of frames but increase the number

of events in each frame.

4.7 SCRNN Output Activities

To evaluate the performance of SCRNN, different combinations of network parameters

are carried out to perform the action recognition task. The following hyper-parameters

were used in the experiments: Number of filters in convolutional layer, the segmentation

length(time resolution)ls, the target true spike count TgTrue and target false spike count

TgFalse. Figure 4.6 illustrates the output spike activities before and after training of

the last layer of the SCRNN. The vertical dash line in the figures simulates the time

window that spikes will be counted for a input sample. In other words, the spikes

between two dash lines are the output from a single input instance. The output neuron

index from 1 to 10 represents 10 different gesture classes. The red bars are target

spike(labels) and black bars are actual network output spikes. It should be noted that

the loss for the SLAYER training algorithms is calculated from the error signal that

67



Chapter 4. A Novel Spiking Convolutional Recurrent Neural Network(SCRNN)
Structure

was generated according to the difference between the number of actual output spikes

from the network and the target spikes(TgTrue and TgFalse). If the actual spikes count

of output neuron match that from the target spike count then a correct prediction is

implied. As shown in Figure 4.6(a) the SCRNN have zero output before training and

gradually learns to generate spikes that match the target spike in terms of the target

spike quantity. Figure 4.6(b) demonstrates the output spike monitoring after-training

the SCRNN. It can be clearly seen from Figure 6(b) that the actual spikes(shown

in black) now have similar spike counts as target spikes(shown in red) for the input

samples. It should be noted that, the target spikes and actual spikes have different

spike timings but similar spike counts in each window.

4.8 SCRNN Experimental on DVS gesture Dataset

The experiment results are shown in Table 4.2, where each listed architecture is sim-

ulated for 100 epoch over the full dataset. For each structure listed in the table, the

accuracy is obtained by averaging the best testing accuracy among the 5 repeated ex-

periments with different randomly initialized weights. Among these experiments, the

best testing accuracy of 10 classes gesture is 96.59% with the 3 layer SCRNN structure

with the first convolutional layer consisted of 32 5x5 convolutional filter, second and

third convolution layer has 64 and 128 3x3 convolutional kernel respectively. The ls is

50ms which represents there are total of 1000/50 = 20 time steps. The loss and training

curve for the best network structure is shown in Figure 4.7(a) and Figure 4.7(b). This

structure also was used to train the 11 classes gesture (plus a random other gesture

action) and obtained a testing accuracy of 90.28%.

The loss can be very large at the start compared with normal loss value since the

network can have empty output with untrained weights and delays. It was found that

setting the ls = 50ms produces the best result for SCRNN structure which can be

explained as follows. First, the time resolution is matched with the frame continuity

for this dataset, which means the. to the training process. A proper selection of ls

can make sure of the sparsity of frames which guaranteed the stability of the training
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Figure 4.6: A demonstration of the last layer SCRNN output: (a)Before Training
(b)After Training

process.

The confusion matrix in Figure 4.7(c) shows a detailed performance of the SCRNN

for the 10 gestures recognition tasks. Note that the amount of samples of arm roll

is twice than other gestures in the original dataset. It can be seen that the SCRNN

achieved an overall good performance except that the confusion between the hand

clapping and air drums gesture where there are totally 3+4 = 7 instances that SCRNN

misclassified the hand clapping or air drum as each other. This is due to the dynamic

69



Chapter 4. A Novel Spiking Convolutional Recurrent Neural Network(SCRNN)
Structure

Table 4.2: Comparisons of SCRNNs performance on DVS gesture dataset with dif-
ferent hyper-parameters. TgTure: The preliminary setting of target True spikes count;
TgTure: The preliminary setting of target False spike count; ls(ms): The segmentation
length(time resolution)

Conv1 Conv2 Conv3 FC1 FC2 TgTure TgFalse ls(ms) Trainacc Testacc

5x5x16 3x3x32 3x3x64 1024 512 30 5 25 91.67% 85.23%
3x3x16 3x3x32 3x3x64 512 128 30 5 25 88.64% 88.64%
5x5x32 3x3x64 3x3x128 1024 512 30 5 25 94.32% 89.15%
5x5x16 3x3x32 3x3x64 1024 512 60 10 50 95.45% 91.67%
3x3x16 3x3x32 3x3x64 512 128 60 10 50 95.08% 86.37%
5x5x32 3x3x64 3x3x128 1024 512 60 10 50 98.48% 96.59%
5x5x16 3x3x32 3x3x64 1024 512 80 15 75 95.45% 88.64%
3x3x16 3x3x32 3x3x64 512 128 80 15 75 93.18% 81.06%
5x5x32 3x3x64 3x3x128 1024 512 80 15 75 96.59% 90.9%

Figure 4.7: (a): The training and testing loss changes for 3 layer SCRNN; ls=50ms
(b):The training and testing accuracy changes for 3 layer SCRNN; ls=50ms; (c): The
confusion matrix for 3 layer SCRNN; ls=50ms;

similarity of these two gestures for some instances.

In order to identify the reason why the SCRNN performs commonly misclassification

on the hand clapping and drum gesture dataset. Deeper analysis of these two gestures

was conducted. Figure 4.8 demonstrates an example of misclassification which shows

both 3D and 2D view of dynamics of these two gestures. From our observations, some

of hand clapping and air drum gestures exhibit strong similar spike change pattern

which is a potential reason that leads to misclassification. This further matches our

initial design purpose of SCRNN, which is an action dynamics sensitive, event stream

pattern based recognition network.
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Figure 4.8: The example of 3 layer SCRNN misclassification case

For comparison purposes, results from previous published works on IBM DVS ges-

ture dataset is carried out which is shown in Table 4.3. It can be seen that the SCRNN

approaches the state of the art recognition accuracy and surpassing the benchmark

accuracy of the IBM’s work in 10 categories gesture classification task. The original

work from IBM that running on TrueNorth was trained with Eedn [36] and requires

extra filters and preprocessing before the CNN. On the other hand the SCRNN take the

neuromorphic data directly from the sensor and the training process do not require any
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Table 4.3: Comparison of SCRNN gesture recognition results with previous works

Method Type of processing 10 class 11 class

IBM TrueNorth Eedn [36] spiking 96.49% 94.59%
SLAYER CNN [199] spiking unknown 93.64%± 0.49%
PointNet++ [244] Non-spiking 97.08% 95.32%
SCRNN spiking 96.59% 90.28%

addition processing to the data. The SLAYER algorithms [199] using CNN achieved

93.64% on average. Although the SCRNN does not outperform the SLAYER based

CNN network in 11 class classification, the SCRNN is still competitive at 90.28%. We

conclude this accuracy drop for the 11 class recognition task is due to the introduc-

tion of the additional class of random gesture. The ”other” class in the DVS gesture

dataset consists of random samples and each of those is neither same as other sam-

ples nor does it fall into the first ten categories. The SCRNN with designed recurrent

convolution operation is found to be less effective to such type of training data. The

pointnet++ [244] processed individual event data by a MLP based feedforward neural

network which achieved the best accuracy in both 10 and 11 category gesture recog-

nition tasks. However, the pointnet++ is not a spiking based training algorithm that

has less potential to be applied to neuromorphic hardwares and the DVS data in their

method needs to be modelled as multiple points cloud with each spike{x,y,z} fed into

a MLP.

4.9 Effect of Recurrent Connection

To further demonstrate the effectiveness of SCRNN for the category-limited dynamic

scene recognition, an experiment was designed to directly compare the effect of the

recurrence for the 10 class gesture recognition. A feedward spiking convolutional neural

network and a SCRNN were designed following a ”same learning capacity rule” as is

shown in Figure 4.9. The two structures are exactly same in neuron parameters, number

of neurons and number of layers except the SCRNN has a recurrent connection in each

convolution layer. For both structures, with the segmentation length of ls, the first layer
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is a pooling layer with a kernel size of 4x4xls which reduced the dimension of data from

128x128xls to 32x32xls. The second layer is a convolutional layer that has a kernel size

of 3x3xls with 16 hidden neurons. The third layer is a pooling layer using 2x2 kernels

to further reduce the dimension of each feature map to 16x16xls. The fourth layer is

a convolutional layer with 32 hidden neurons with the kernel size of 3x3xls, which the

output is flattened and fed into a fully connected layer with 5256 neurons followed by

the output layer to perform the classification.

The feedforward spiking CNN is different from the SCRNN in the training phase.

For CNN, the first 1s event data of each sample with a temporal resolution of 1ms(ls =

1000) is used as the input data which only need to be fed to the network once per

sample. The SCRNN takes the same length of input data in total for each sample but

a segmentation length of ls = 50 is selected to partition the input into 20 subsets. This

represents that the SCRNN needs to take the data to perform the recurrent processing

iteratively.

Figure 4.9: The network structure for the experiment of the feedforward Spiking
Convolutional Neural Network and SCRNN

Both of the designed structures are trained 100 epochs for 5 trials with different
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weight initializations, the averaged testing accuracy dynamics of these two experiments

are plotted in Figure 4.10. It is seen that the performance of the SCRNN compared

to standard feedforward spiking CNN with the similar learning condition can provide

a faster convergence speed. As is shown in Figure 4.10, the averaged testing accuracy

of SCRNN stabilises after approximately 40 epochs while the CNN requires about an

additional 25 epochs to fully converge with the data. Besides, the SCRNN without the

inference of the unknown class can provide a recognition accuracy of 88.64% on the 10

class gesture recognition in this particular structure, while the feedforward CNN only

achieves 84.09%.

Figure 4.10: The testing accuracy curve for the designed experiments

4.10 Conclusion and Discussion

This chapter presented a novel spiking convolutional recurrent neural network that is

designed for efficient event-based hand gesture recognition. The individual cell is able

to extract the spatial features by 3D spiking convolution operation and transferring the

information recurrently. The SLAYER is used in the SCRNN for the network training.

The SCRNN was successfully deployed on the DVS 128 gesture dataset. The

SCRNN tested on the IBM DVS gesture dataset achieved an averaged recognition ac-

curacy of 96.59% for 10 category classification which outperformed the original IBM’s
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work. An accuracy of 90.28% was obtained for 11 category classification. Section 4.9

has shown that the designed SCRNN compared to standard feedforward CNN structure

performs less competitive for the ’unknown’ class but has the advantages in terms of

convergence speech and accuracy for the fixed amount of categories.

However, the usage of SCRNN is not only limited to the action recognition but can

be extended to various dynamic scene recognition and prediction tasks since it can also

handle many-to-many and one-to-many tasks.Additionally, using new neuromorphic

hardware with low SWaP(Size, Weight and Power) profile, the SCRNN has a potential

to be implemented as a efficient training algorithms for neuromorphic action recognition

based applications.
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Chapter 5

Novel Spiking Speech Processing

Algorithms

5.1 Introduction

In this chapter, two novel spiking speech processing algorithms are presented. Firstly,

a cochlear bio-inspired audio spike converting algorithm is proposed in section 5.2 as

an efficient coding strategy that mimicked the sensing methodology of human auditory

system. The output spike trains effectively expressed the time-frequency information

of the speech signal into the spike firing rate.

Secondly, a spiking speech enhancement algorithm is proposed in section 5.3 that is

based on the lateral inhibition mechanism in SNN. This algorithm employs simplified

idea of speech coding algorithm to firstly convert the input speech signal to event-based

data, then the connectivity of lateral inhibitory SNN is applied in a layerwise local to

global competitive fashion. The proposed architecture does not need to be trained to

react for specific noise type but only uses forward propagation with naturally event

based information processing.
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5.2 Cochlear inspired auditory spike coding algorithm

5.2.1 Introduction

The utilizing of spike train as main processing unit allows network to incorporate

strong temporal information which is especially useful for speech processing. Unlike

the DVS(section 3.6.1) which replicates the visual cortex function for image processing,

acoustic sensing using spiking technologies has not been well developed. Furthermore,

very few information encoding methodologies can be applied to input data. In order

to take advantage of SNNs in audio processing domain, it is essential to develop the

correspond compressive information converting method which is the main idea of this

work.

A commonly used neural coding scheme is rate coding as described in section 3.3

[137] where the frequency of rate of spike trains is dependent on the intensity of the

input stimulus. For example in [245], SNNs incorporating STDP on computer vision

tasks where the input image is encoded into spike trains according to the pixel value

at every locations. Proper managing the arrangement of synapses connections and

input sequence between neurons could involve the spatial relations between pixels to

pixels from the image. Unlike images, 1D signal especially speech has more temporal

information correlated and at most circumstance time-frequency domain information is

also vital for orientated applications like speech recognition and speech enhancement.

Sergey etc [246] showed a time window based multichannel coding scheme. A fixed

size time widow is applied over the signal of each channel, then compute root mean

square (RMS) of the signal being the intensive of the rate coding. This strategy however

is not suitable for signals that contain high time-frequency information due to the RMS

calculation only gives a vague estimation of the signal strength averaging but actually

missing the information either in temporal domain or frequency domain.

Humans auditory sensory system has ability to decompose the spectral components

in real time with its efficient compressive coding scheme that can transporting the

acoustic signal to central nervous system in proper fashion. Scientists have identified

its sensing principles through many experimental observations on primates. The cochlea
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known as the main signal processing unit in the auditory system, which receives the

perceived outside stimulus (i.e. acoustic) and translates it to electrical signals that

higher level auditory cortex could understand.

Based on previous studies on cochlear partitions [247–249], the basilar membrane of

the cochlear encodes the induced activation into electrical spikes. It is able to decom-

pose the sound into several frequency components and based on this property we can

assume that different spatial location of auditory cortex responds to certain frequency

band. Another important organ in cochlear known as inner hair cells(IHCs) [250] which

exhibits primary function that encode the graded potential from basilar membrane into

neural spikes through mechanoelectrical transduction. The neural spike train is a se-

ries of binary electrical spikes that only fire when a certain membrane potential is

reached. Single spike would not carry information within its amplitude but instead all

information is encoded in the frequencies of a series spikes.

5.2.2 Conversion Algorithm

The cochlear has an ideal root that serves as the biological auditory cortex. In engi-

neering domain this process could be modelled as a sensing algorithm that can achieve

orientated fast spiking coding from outside stimulus. As is shown in Figure 5.1, the

primary function of cochlear can be described in a order as signal segmentation in fre-

quency domain, peak extraction followed by lower/upper value thresholding and finally

rate coding process.

The main function of basilar membrane has been usually modelled as bandpass

filtering function [251]. Thus, signal decomposition is designed as passing input signals

through several bandpass filters - this can be regarded as using a window to segments

the signal in frequency domain. Considering the unique properties of speech signal,

lower frequency components usually contain higher energy and information than high

frequencies, pass band range can be arbitrarily altered in terms of the analysing purpose.

Each nth filter convolved with given signal with central characteristic frequency ωn that

represents the corresponds frequency bands. Letting x(t) be the input signal and hn(t)

be the impulse response of the nth bandpass filter, output from nth filter yn(t) can be
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Figure 5.1: The block diagram description of speech spike coding algorithm

found as follows.

yn(t) =

∫ N

0
x(τ)hn(τ − t)dτ (5.1)

Then the reconstruction of x(t) is the sum of all the bandpass filter outputs as (5.2).

x(t) ≈
N∑

n=1

yn(t) (5.2)

It should be noted that reconstruction quality directly related to the number of

bandpass filters. The resulting filtered signal can be considered as the decomposed

sub-band feature in desired frequency which is determined by central characteristic

frequency of bandpass filters. This estimates the input stimulus over all the interested

frequency bands. Avissar et al. [252] suggested that in auditory sensing system the

firing rate is linear correlated with the peaks of sinusoidal signal. Regarding the output

from bandpass filter containing large amounts of samples depending on the sampling

frequency, a peak extraction algorithm used after bandpass filter will significantly re-

duce the coding computational intensity while saving the majority of temporal features

of signal in forms of coding. The detected peak is further filtered to eliminate the neg-
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ative/accident peaks values which are considered meaningfulness to speech frequency

content. The remaining detected peak magnitude will then be linearly encoded into

frequency of spike trains. Let M i
n being the magnitude of ith peak of the output sig-

nal from nth bandpass filter, u and l are the upper and lower firing rate boundary

respectively, the firing rate f in can be calculated as:

f in = l +
(u− l)M i

n

Max(M i
n)

(5.3)

The number of encoded spikes are proportional to the frequency, which means higher

frequency bands will result in larger number of spikes. The reconstruction procedure

in turn is that decodes the peak values locating in each frequency bands from firing

rates of spikes. It has been pointed out that the algorithms reconstruction quality

and compressing rate highly dependent on the number of bandpass filters, bandwidth

of each filter and the striding steps of each filter [253]. These parameters are highly

application dependent, when assuming the compressing rate is not prior consideration

while these spikes being the input of SNNs.

5.2.3 Experiment Results

To evaluate the distinction features detected by the sensing conversion algorithm, the

Edinburgh speech enhancement dataset [254] is selected as the input and then visualize

the output spikes in raster plot form. The dataset contains 28 speakers clean sound

recording which sampled at 48kHz. Table 5.1 illustrates the information of a speech

sample in the database which will be carried out for discussion later on. The band-

pass filtered bands were designed using a minimum-order filter with the bandwidth of

50Hz and 60dB stopband attenuation. Each two adjacent passband of bandpass filters

are 50% overlapped to satisfy a 25Hz frequency resolution which is also the interval

of the central characteristic frequencies of two adjacent bandpass filter. As stated in

last section, the quantity of spikes will increase significantly along with the frequency.

The sensing range was set from 20Hz to 2.5kHz, where the lower boundary matches

80



Chapter 5. Novel Spiking Speech Processing Algorithms

Table 5.1: The experiment speech corpus information

Index Description Duration(s)

P232 001 please call stella 1.743

humans auditory system and upper boundary is sufficient for analysis purpose for the

speech signal. This results in 199 bandpass channels filtered the signals that appear

in parallel, which means separating the signal into 199 sub-bands with 25Hz frequency

resolution. The frequency resolution is arbitrarily adjustable without losing time do-

main resolution by changing the bandwidth of bandpass filters and overlapping rate.

This provided a sensing friendly characteristic of the algorithm that could achieved

both high frequency resolution and time resolution if needed when a large number of

narrow-bandwidth bandpass filters involved in. In the experiment, the parameters were

chosen as l=50Hz and u=100Hz that limits both the highest and lowest firing rate that

can be encoded from each peak value. The large difference between upper and lower

firing rates boundary will be helpful to distinguish the time-frequency pattern visually

for study purpose. Each peak value will be encoded into 5 spikes then being placed in

an order at the time location where original peak located at.

The Figure 5.2 demonstrates a sample results of the output from the proposed

algorithm. To clearly demonstrate the spike activities that encoded in the results, a

zoomed in figure among the region approximately in time range of 0.72s to 0.88s and

frequency range approximately of 100Hz to 700Hz is shown in Figure 5.3.

5.2.4 Comparison with DAS

For comparison purpose, the output from the spectrogram generated by the same STFT

window size is shown in Figure 5.4. It can be clearly seen that the proposed spike cod-

ing algorithm well estimated the time-frequency information by comparing the spike

activities(Figure 5.2) to the energy spectrogram(Figure 5.4). The spike coding algo-

rithm only preserves the high-energy valued temporal-frequency components due to

the proper use of the threholding technique. To further validate the robustness of the

proposed coding technique, a chirp signal is input to the algorithm to compare with
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the output from the output signal from DAS sensor(described in section 3.6.2). Figure

5.5 shows the response from the DAS sensor, where red and green coloured signal rep-

resents the left and right ear channel. Figure 5.6 demonstrates the output signal that

generated from the coding algorithm. It is clear that the algorithm can output a DVS

equivalent signal and do not suffer the analog noise.

Figure 5.2: The spike coding results for speech ’please call stella’, red box:zoom in
region
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Figure 5.3: The detailed spike activities of low frequency bands of word ’please’

Figure 5.4: The spectrogram results for speech ’please call stella’.
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Figure 5.5: Chirp signal response from DAS

Figure 5.6: Chirp signal response from proposed spike coding method

The successful design of the speech coding method provides a alternative event-data

acquisition method for audio based data. The technique can simulate the functionality

of DVS to efficiently transfer digitised audio signal to spike trains that encoded time-

frequency information.
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5.3 A novel spiking speech enhancement system

5.3.1 Introduction

In this section, a novel noise reduction method that is based on neuron rate coding

(introduced in section 3.3 and section 5.2) and bio-inspired spiking neural network

architecture is proposed. This work extend the contribution of audio coding to a

real application, which demonstrates how the coding method can affect the way of

event-based processing in terms of SNN design and performance. To improve the

computational efficiency of the coding, the bandpass filters are is simplified with short-

time-fourier-transform(STFT), the spike counting stage is replaced by bio-inspired LIF

neurons(described in section 3.2.1) which can automatically transfer the input stimulus

to rate coded spike trains.

5.3.2 Motivation

In the past decades, numerous speech enhancement techniques have been investigated

by researchers. Spectral subtraction [255] subtracts an estimated noise spectrum from

the noisy signal to produce the denoised spectrum. Ephraim and Malah introduced the

minimum mean-square error (MMSE) [256] that reduces the residual noise level without

significantly affecting the original speech components. The optimally modified log

spectral amplitude estimator (OMLSA) [257] and improved minima controlled recursive

averaging (IMCRA) [258] offer high performance in speech enhancement tasks.

Early work using shallow neural networks [259,260] estimated Signal-to-Noise-ratio

(SNR) based on the spectrogram which is then subsequently used to reduce the noise in

each frequency band. In [261] and [262] speech enhancement was considered as a clas-

sification problem to predict an ideal mask in the time frequency domain to estimate

the presence of speech components. Although DNN based models can achieve effective

noise reduction, they usually require large datasets to represent various types of noise

and multiple hidden layers with a significant number of free parameters. The compu-

tational cost and power-hungry nature of DNN based speech enhancement technique

makes it difficult for them to be applied on SWaP limited devices.
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With limitation of conventional techniques on speech enhancement tasks and a re-

quirement of a efficient pure-spiking algorithms for speech processing, a need to develop

a spiking speech enhancement algorithm is identified.

5.3.3 Neural Synchronization

The use of lateral inhibition as neural synchrony and coincidence detector was investi-

gated by Abbott [263]. A simple SNN is illustrated in Figure 5.7. It comprises 3 spiking

neurons that each produce a spike train output. In Figure 5.7(a) neuron A and B are

Leaky-integrated and fire (LIF) neurons(described in section 3.2) that interacts with

each other via lateral inhibitory connections. A simplified differential equation that

describes the membrane potential dynamics of a LIF neuron model can be expressed

as:

dv

dt
=
RmemI(t)− v

τmem
(5.4)

Figure 5.7: Illustration of two LIF neuron SNN that behave neural synchronization
phenomenon

where v is the membrane potential, Rmem denotes the membrane resistance, τmem

refers to the membrane constant and I(t) stands for the synaptic input current. The

LIF neuron reacts to input stimuli that raises a certain amount of membrane potential.

Once the membrane potential is greater than a pre-defined membrane threshold, the

neuron will emit constant amplitude spikes at a certain frequency which is dependent
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on the magnitude of membrane potential. The inhibition in the example is modelled

as one decreasing its membrane potential due to the other neurons firing activity. As

illustrated in Figure 5.7, Neuron B is inhibited from firing if Neuron A is firing and vice

versa. Output neuron C simply receives the output spikes from A and B to generate

output spike trains. Figure 5.7(b) shows the input stimuli (synaptic input current) to

neurons A and B are different over a certain time period t. One input excitation makes

the neuron firing at constant rate of 25Hz (A in Figure 5.7(c)) while the other input

makes the neurons firing rate linear changing from 28Hz to 22Hz (B in Figure 5.7(c)).

As shown in the highlighted red rectangular in C in Figure 5.7(c), the output neuron C

will fire maximally in a short period when A and Bs firing rates are approximately equal.

When they have different firing rates, the two neurons tend to inhibit each other in

turn leading to sparse events, until their firing rates reach the range of synchronization

(nearly the same).

Cornelius et al. demonstrated that multiple fully connected lateral inhibitions are

able to exploit the inhibitory process between neurons, to remove uncorrelated spikes

(frequency difference) [264]. This mechanism can be extremely useful when the speech

components are able to be coded into spike trains with similar frequencies.

5.3.4 Speech Coding Method

The Short-Time-Fourier-Transform (STFT) is used in this work to form the complex

spectrogram. The STFT can perform equivalent time-frequency domain information

extraction process as the strategy proposed in section 5.2.2 which utilizes cascaded

structure consists of bandpass filter, peak extraction, negative filtering and thresh-

olding. The benefit using STFT to approximate the time-frequency characteristics of

audio is that it significantly reduced the computational costs caused by a series of filter-

ing operations.The STFT is formed using a Hamming window length of 1024 samples

to provide high frequency resolution with 80% overlap which results in 514 frequency

channels ranging 0 to 8kHz.

Recall the dynamic behaviour of LIF neuron model mentioned in section3.2.1, the

LIF neuron can transfer the input stimulus to spike trains which frequency is non-
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linearly proportional to the corresponding input magnitude. This mechanism, there-

fore, is considered to be used in the design of the input coding stage. The absolute

value of the output complex matrix from the STFT is log scaled and normalised to

the input current to LIF neurons. The number of input neurons is set to be the same

as the number of frequency channels according to the spectrogram. The use of the

lateral inhibitory connections preserves the spike trains that have approximately the

same frequency. Each LIF neuron responds to noise and speech components to generate

fixed frequency spike train during every single time resolution bin. The LIF neuron

is expected to have a higher firing rate in a STFT time resolution bin to the speech

components. In contrast, the noise components should be converted to low frequency

spike trains which are easier to be distinguished by lateral inhibition. The firing fre-

quency of a LIF neuron usually is proportional to its input, but this is not obvious

when simulating it at a very small time step.

Figure 5.8: The firing rate dynamics experiment of a LIF neuron with simulation
time step of 100µs, the input current linear changes from 0 to 500mA where the neuron
firing rate becomes unstable after 115mA.

Figure 5.8 shows the firing rate dynamics of a LIF neuron with input current linear

changing from 0 to 500mA with the simulation time step of 100us. The firing rate profile
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displayed in Figure 5.8 ensures the LIF neurons are able to response differently to a

certain range of synaptic input currents during a single time bin of STFT temporal

resolution (i.e. the time difference between two adjacent value in a same frequency

band). The neuron firing frequency becomes unstable when the input current is over

approximately 115mA. Thus, the range of input current from 0mA to 115mA is scaled

to provide a balanced input current normalization. In our case, the input neuron

firing rate ranges 0-15Hz which means there will be maximally 15 spikes that can be

observed in a single time resolution bin of STFT. The full spectrogram is input to 514

LIF neurons by updating the input current of each input neuron based on STFT time

resolution. Figure 5.10 shows the results of spike coding method applied on the clean

speech sample. For comparison purposes, the spectrogram of the same speech sample

is shown in Figure 5.9. It can be seen that the method can represent the temporal-

frequency pattern of the speech signal. Figure 5.11 demonstrates the coding results for

white noise corrupted speech sample with SNR=1dB. The resulting raster plot shows

the speech components are densely packed (high frequency spike trains). The goal of

the SNN is to remove the sparse distributed spikes resulting from noise and preserve

the speech elements.

Figure 5.9: Log Spectrogram of clean speech signal
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Figure 5.10: Spike coding result of clean speech samples

Figure 5.11: Spike coding result of noisy speech signal (with white noise SNR =1)

5.3.5 SNN with lateral inhabitation

In [265], lateral inhibitory SNN with neighbourhood connectivity [266] has been suc-

cessful demonstrated on Gaussian while noise corrupted speech. Unlike the approaches
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described in [265] and [266] which uses global inhibitory actions we consider a local to

global inhibitory connection strategy. The lateral inhibitory connections are built with

different inhibitory radius for each layer. The inhibitory radius defines how neurons in

a layer that are close to one another are connected laterally. The basic idea is described

in Fig 5.12. The dynamic inhibitory radius, results in a local to global neural temporal

competition while the lateral inhibition simultaneously removes spikes that are sparsely

distributed in time from small set of frequency channel to all frequency bands.

Figure 5.12: Lateral inhabitation in terms of connection radius which defines how
close the adjacent neurons can be lateral connected

To adapt the different inhibitory connection radius for each layer, the inhibitory

strength is modelled as (5.5) to exponentially decay in terms of synapse length (distance

between two neurons) rather than a constant inhibitory strength for all inhibitory

connections.

Wn = An · e( −
|i− j|
Dn

), i 6= j (5.5)

where n is the layer index, W represents the weights (strength) of the inhibitory

synapse, A represents the maximum inhibitory strength, i and j denote to the neuron

index of two lateral connected neurons, and D is decay constant. This is because it was

discovered through simulation that strong inhibition for large inhibitory radius (global
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competition) will result in information loss. On the contrary weak inhibition for small

inhibitory radius (local competition) can have little effect on removing unsynchronized

spikes.

5.3.6 Experiment Results

A test clean speech corpus was obtained from the VoxForge open public dataset [266],

where speech sample is sampled at 16kHz. We selected 5 types of real-world envi-

ronmental noise corrupted speech from the DEMAND noise database [254], including:

living, office, river, kitchen and white noise. A range of SNR were chosen for test

performance of proposed model (-5, 0.1, 1, 5 and 10) dB.

The Python and the BRIAN are used as the main simulator for this study(described

in section 3.7) [223]. A 3-layer SNN is used with each layer contains 514 LIF neurons

that are laterally connected with different inhibitory radii. The connection between

each layer is one to one using excitatory synapses. The inhibitory radius from layer one

to three are set as: 10, 50 and 250 respectively. The inhibitory synapses parameters

are set as A1 =7, A2 =5, A3 =1, D1 =5, D2 = 30, D3=250. The selection process of

these parameters was according to the experiments. It was found that, a lower inbitory

strenth with large radius performes bad in terms of remove noisy spikes. A high inbitory

strenth can result in dominant probelm. The output from SNN is spike times of 514

neurons which represents 514 frequency channels of STFT. The quantity of spikes can

accurately represent the log intensity of correspond time frequency element. Thus, the

processed spectrogram can be obtained by summing the number of spikes and linear

decoding for each time resolution cell in the spectrogram. Due to the lack of phase in

the log spectrogram we use the processed spectrogram as a binary mask for the original

complex spectrogram. The mask is constructed by comparing the number of spikes in a

spectrogram cell to a certain threshold, which determines the ON(1)/OFF(0) status of

correspond location. The mask is then element by element multiplied to both real and

imaginary parts of the original noisy spectrogram. This preserves the original phase

information from the complex numbers of spectrogram which can be used to perform

ISTFT to reconstruct time domain signal.
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Figure 5.13 shows an example of raster plot output from SNN. The spikes that

are not densely packed in Figure 5.13 are further reduced by the thresholding during

decoding process (from raster plot to spectrogram). Figure 5.14 demonstrate the re-

constructed spectrogram using the binary mask. Compare to the Figure 5.13, most

sparsely distributed noise is supressed. An example of time domain signal comparison

of before and after denoising is shown that Figure 5.15(a) demonstrate the original time

domain clean speech, Figure 5.15(b) is the noisy speech corrupted by white noise with

SNR = 1dB and Figure 5.15(c) is the noise reduced and reconstructed time domain

speech signal.

Figure 5.13: The SNN spike output, noisy spikes are significantly reduced compared
to Figure 5.11 (white noise SNR=1)

Five types of noise sources were used to evaluate the effectiveness of the SNN

based method. During the set up of simulations, informal listening was carried out

to subjectively determine how successful the method performed. To determine the

numerical speech improvement, the clean signal is pass through SNN and the output

signal is used as the reference target speech signal. The power of residual noise signal is

determined by estimating the signal power during the time when no speech is presented.

This assumed that the noise signal is stationary over the presence of speech. The reason
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Figure 5.14: Reconstructed spectrogram (white noise SNR =1) Note sparse spikes
are removed during the thresh hold process

of not using the subtraction to obtain the residual noise is because of the non-linear

and unsynchronized information processing property of the SNN.

Table 5.2 presents the results on 5 types of noise with different noise level. The

lateral inhibitory based SNN can have an average improvement of SNR of 10.915dB

among 5 types noises. However, the improvement is noise type dependent, for example

Figure 5.15: The time domain signal representation. (a) Time domain clean
speech.(b) Time domain noisy speech with white noise SNR=1 (c) Time domain recon-
structed denoised signal
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it improved approximately 19dB for white noise but only 8dB for the living noise. We

strongly believe that the parameter of proposed SNN should be dynamically tuned in

terms of the noise level and type. In future work, we will investigate an automated way

of tuning the parameters.

5.3.7 Discussion

The work presented has demonstrated successful noise reduction on real world noise

using multilayer lateral inhibitory spiking neural networks. The lateral inhibition

strengthens correlations in the time-frequency domain and naturally suppresses the

noise which are usually sparsely distributed. Unlike standard artificial neural net-

works, the lateral inhibitory based SNN does not need to train with datasets. However,

during our experiment, it should be noted that the performance of lateral inhibition is

highly dependent on the presence of speech. In Figure 5.13 and Figure 5.14, the noise

cannot be efficiently removed by lateral inhibition without the presence of the speech

components. This is nothing to do with the SNN structure but is due to the natural

property of inhibitions. A possible solution to this is to separate the speech element

from the noise using effective speech detection algorithms. In next stage of our work,

we will further improve the performance of lateral inhibitory SNN by applying speech

detection algorithms to detect the presence of speech.

5.4 Conclusion

In this chapter, two novel event-based speech processing methods are proposed.

Firstly, section 5.2.1 to 5.2.3 reported a novel idea that could lead to efficient coding

the speech signal into high time-frequency pattern correlated spike representations. The

main objective of this work is to address a software-based solution that can help current

SNN effectively sensing 1D signal that contains complex temporal-spectral information.

The resulting raster plots demonstrate how the converted spike trains can be useful

to further SNN speech processing applications. Combining the the techniques that

illustrated in chapter 3, SNNs processing systems can achieve real-time power efficient
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Table 5.2: Experiment results of proposed speech enhancement algorithm on variable
types of noisy signals

Type of Noise Original SNR Measured SNR Enhanced SNR

White

-5 -5.033 13.62
0.1 0.0662 19.48
1 0.9662 23.08
5 4.9662 24.48
10 9.9662 24.62

Living

-5 -5.0436 3.22
0.1 0.0109 8.29
1 1.0111 9.61
5 5.0254 13.95
10 10.0229 15.022

Office

-5 -4.9554 2.515
0.1 0.1049 8.016
1 1.0234 9.07
5 4.995 13.95
10 10.00 15.022

River

-5 -4.8716 3.26
0.1 0.0109 8.28
1 1.149 9.75
5 5.0254 13.96
10 10.0229 18.72

Field

-5 -4.133 4.62
0.1 0.103 9.66
1 0.9961 10.68
5 4.991 15.48
10 9.996 20.8

Kitchen

-5 -4.8275 7.08
0.1 0.1059 11.91
1 1.0022 13.48
5 5.0094 18.60
10 9.9077 23.83

Average Improvement 10.915
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neuromorphic computing with their bio-inspired processing mechanism.

Secondly, section 5.3.1 to 5.3.6 described a novel spectrogram coding method and a

lateral inhibitory SNN structure that naturally suppresses uncorrelated noise in time-

frequency domain. It demonstrated an average of 10.915dB SNR improvement on 5

types noise. Furthermore, with the emergence of novel SNN learning rule(section 3.5),

it is envisaged large scale SNN with ability of denoising and recognition.
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Chapter 6

A Novel Bio-inspired Spiking

Speech Emotional Recognition

System

6.1 Introduction

This chapter presents a novel design of a SNN based end-to-end speech emotion recog-

nition(SER) system. A SNN is built for addressing the temporal correlations that are

coded in the extracted spectral features. The SNN model is set up by the SLAYER algo-

rithm described in section 3.5.3 using a novel spiking recurrent neural network(SRNN)

architecture. The Mel frequency cepstral coefficients(MFCCs) is used as the input

speech feature for the proposed SRNN structure. The eNTERface and RAVESS emo-

tion dataset was used for validating the proposed SER system, where the proposed

system achieves both state-of-art SER recognition accuracy and computational effi-

ciency compared to previous work.

Many of proposed SER works have applied bio-inspired auditory working mecha-

nism such as Gammatone filter bank [267] and Mel-scaled filter bank [268]. However,

both feature extractors and classifiers used in previous works are mainly based on con-

ventional machine learning or deep learning techniques. These methods usually utilize
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a self-designed feature extraction method followed by a range of classification structures

such as support vector machines [269,270], CNNs [271–274] and LSTMs [275].

The remainder of this chapter is organized as follows. Section 6.2 describes the

overall proposed SER system. The pre-processing techniques used to convert the in-

put signal to spikes is provided in Section 6.3. Section 6.4 illustrates the design of

novel SRNN structure in detail. Section 6.5 describes the information in terms of the

datasets used in this study. The experiments and results of the designed SER system

are proposed in Section 6.6. Besides, a noise reduction spiking SER system is described

in Section 6.8. Finally, conclusions are provided in 6.9.

6.2 The Proposed Speech Emotion Recognition System

As is shown in Figure 6.1, the proposed event-based SER system consists of 2 stages.

The first stage of the system is the pre-processing stage, which transforms the input

speech signals into spike represented features using designed feature extraction and

spike coding algorithms. Secondly, the converted spike trains are fed into a designed

SRNN to perform classifications of emotions.

Figure 6.1: The proposed SNN based SER system

6.3 Feature Extraction and Spike Coding

Figure 6.2 illustrates the proposed speech spike generation block of the SNN SER sys-

tem. MFCCs are used in the feature extraction stage since it is more discriminative

to human hearing frequency ranges. As shown in the figure, the speech signal fed

into the SNN is first processed so as to better extract the spectral information. The
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speech signal is firstly pre-emphasised to amplify the high energy frequency compo-

nents. Hamming windows with a duration of 20ms and an overlap of 10ms are used

in order to sufficiently acquire the temporal variations of signal. The the Short-Time-

Fourier-transform(STFT) is performed on all the speech segments to extract the time-

frequency energy spectrogram of the entire speech signal. The resulting spectrograms

are convolved with mel-scaled filter banks to reduce the information in desired non-

linear frequency bands. The generated mel-scaled frequency spectra are transformed

to MFCCs by taking the DCT of the mel-scaled log powers of the spectrogram.

Figure 6.2: The proposed speech preprocessing block diagram for SNN SER system

The latency coding schedule is applied to the generated MFCC matrix to transform

the feature value to spikes. There is evidence that the neurons in the auditory nervous

system respond faster to the early individual stimulus [276]. The latency coding, as

described in section 3.3.2, encodes the values in the precise spike timings. The higher

intensity MFCC values are transformed to spikes with short delays in the encoding

window while the lower intensity values will evoke spikes that appear later. Due to the

use of single spike based latency coding, the computational cost in both pre-processing

stage and SNN is significantly reduced compared to rate-based spike coding scheme.

The formulation of the latency coding is given as follows:
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ti = (1− Xi −min(Xi)

max(Xi)−min(Xi)
) ∗ T (6.1)

where t denotes the firing time of a spike, i represents the ith frequency channel

which corresponds to the output from the ith mel-scaled filter, X is the generated

MFCCs and ti denotes to the actual spike occurance time. The term max and min

denote to the maximum and minimum operation and T is the length encoding time

window. The spiking coding described above is a normalization process that normalizes

the MFCCs with the same scale. The setting of the window size can be flexible, as

long as the connected SNN can provide sufficient temporal resolution to distinguish

individual spikes.

6.4 Spiking Recurrent Neural Network

As shown in Figure 6.3, a recurrent spiking neural network structure is designed to

address the temporal correlations that are encoded in spike trains. It can be seen that

the proposed SRNN consists of an input layer and a hidden cell that has a internal

hidden layer within it. Typically, a layer of spiking neurons firstly integrating the

incoming spike trains to PSPs by applying a thresholding operation on the generated

PSPs to generate outbound spike trains. In the proposed method, the thresholding

operation is omitted and the information recurrent propagation is simply achieved by

sums the PSPs from the current input layer and the PSPs from the previous hidden

layer. It should note that throughout the entire information flow within a cell, the

spikes are only being generated after the PSPs are fused. With a train si(t) as the

input spike train to the SRNN, an output spike train so(t) is generated, membrane

potential changes in the cell is given based on the modification on the feedforward

structure as follows:

uk(t) =
∑

wi(σ(t) ∗ ski (t)) + (ν(t) ∗ ski (t)) + uk−1(t) (6.2)
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where u is the post synaptic potential, w denotes to the synaptic weights, σ(t) is the

spike response kernel and ν(t) is the refractory response kernel. k represents the time

step index which is defines the order of input spike train batches and i defines the input

channel index.

Figure 6.3: The proposed Spiking Recurrent Neural Network Architecture

It can be seen in the Figure 6.3, the SRNN structure can either be treated as a

feedforward structure by unfolding the structure with stacked cells or as a independent

structure which propagates information cyclically. The unfolded structure can increase

the network capacity but also increases the computational costs of the network. A

compromise solution is to unfold the SRNN in a short-term and segments the input

sequence into subsets which will be fed into SRNN at each corresponding time step.

6.5 Dataset

Three datasets were selected to conduct experiments of speech emotional recognition,

namely(i)Ryerson Audio-Bisual Database of Speech and Song dataset(RAVDESS) [277]

, (ii)eNTERFACE dataset [278] (iii)EMO-DB dataset [279]. These three datasets con-

tain the audio and video samples wherein only the speech corpus were used for experi-
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ment in this work.

The sample and gender distribution of the RAVDESS dataset are shown in Figure

6.4. The RAVDESS dataset contains emotional speech corpus that performed by 24

professional actors(12 male and 12 female), which vocalize two statements in neutral

American accents. The dataset covers 8 category of emotional gestures which include

Neutral, Calm, Happy, Sad, Angry, Surprise, Fearful and Disgust. The speech samples

were acquired using a 16 bit-format with a sampling frequency of 48kHz.

Figure 6.4: The sample and gender distribution of the RAVDESS dataset

The distribution of eNTERFACE data set is demonstrated in Figure 6.5 . The

eNTERFACE records the emotional videos of 42 independent English speakers from

14 different nationalities with 81% male participants and 19% female participants.

It contains 6 types of emotion which are Happy, Sad, Angry, Surprise, Fearful and

Disgust. The audio samples are recorded with a sampling frequency of 48kHz and

16-bit format. It should note that, the eNTERFACE dataset is unbalanced in both

the samples per class and the gender as is shown in the Figure6.5. Due to the audio

samples of eNTERFACE dataset are embedded in videos and not separately available,

the data used for experiment is the speech corpus extracted from videos.
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Figure 6.5: The sample and gender distribution of the eNTERFACE dataset

In addition, the EMO-DB [280] is also used in the proposed system. The dataset

contains 535 audio utterances with 10 different utterances performed by German speak-

ers. This dataset is recorded in a 16-bit format with a sampling frequency of 16kHz. It

contains 7 emotion class which are Anger, Sad, Fear/Anxiety, Neutral, Disgust, Hap-

piness and Boredom. The sample and gender distribution of the dataset is shown in

Figure 6.6.

Figure 6.6: The sample and gender distribution of the EMO-DB dataset
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6.6 Experimental Results on SER Tasks

The experiments conducted are described in Table 6.1. The RAVDESS dataset is used

to conduct 6 class and 8 class SER tasks with proposed system. The reason for this is

that the emotion of Neutral and Calm are considered as the same, which potentially

corrupts the system performance. The feedforward SNN structure was also used to

show the effectiveness of the proposed recurrent structure on the RAVDESS dataset.

Besides, the system is applied to Emo-DB and eNTERFACE dataset to perform SER

to show its generalization capability. Last, the speech enhancement technique from

section 5.3 is applied to this system to enable the anti-noise ability of the system.

Table 6.1: Description of SRNN experiments

Dataset Description

RAVDESS 8 class emotion recognition
RAVDESS 6 class emotion recognition
RAVDESS SRNN vs feedforward
RAVDESS Comparison to feedforward structure
Emo-DB 6 class emotion recognition

eNTERFACE 7 class emotion recognition
RAVDESS 6 class emotion recognition under the noisy enviorment

Recall the proposed spike generation methods illustrated in section 6.3, all of the

speech signals are segments into sub-frames with 20ms hamming window and 10ms

overlap between adjacent samples to well capture the temporal variations in the raw

signal. The result segments are further transformed to spectrogram using the STFT.

Then mel-scaled filter banks that non-linearly covers the frequency range from 100Hz to

5000Hz are applied to spectrogram. Subsequently, the first 23 MFCCs are taken from

the DCT output of the mel-scaled power spectrum and converted to 23 channel spike

representations by employing (6.1) with T = 100ms. This represents the spiking time

that each coded spike resides in a 0-100ms window. An example of MFCC spectrum

and the converted raster plot are shown in Figure 6.7 and Figure 6.8 respectively. By

comparing these two figures it is noted that the MFCC features become hard to track

after latency coding since all the information are transferred to the time of occurrence
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of each spikes. Nevertheless, these spikes can be used in the by proposed SRNN which

contains strong temporal information across frequency bands.

Figure 6.7: An example of MFCC spectrum. Samples taken from RAVDESS
dataset(’03-01-04-01-01-01-01.wav’)

Figure 6.8: An example of result pre-processed spike output. Samples taken from
RAVDESS dataset(’03-01-04-01-01-01-01.wav’)

To investigate the adaptability and capability of the proposed SRNN structure, a

carefully designed SRNN is used for training three datasets. The input layer consists

of spiking neurons which takes the coded spike train in a one to one fashion. In other

words, each neuron receives the information only from one mel-scaled frequency bands.
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The size of the output layer is equal to the number of the target emotion classes, which

are only activated when the cell completes the propagation for the entire spike trains.

The input spike train is split into N subset where each has segments of spike trains

with a duration of T = (100/N). It is important to highlight that the SRNN in the

experiments was not unfolded to a feedward structure and this means the SRNN is

sharing the same set of weights at each time step and samples. The simulation setting

of the neuron parameters that used in SRNN is shown in Table 6.2.

Table 6.2: The neuron parameter setting for the SRNN SER task

ϑ τ τref Cref τf Cf

10 10 1 2 1 1

where ϑ denotes the neuron firing threshold. τ represents the neuron time constant,

τref denotes the neuron refractory time constant, Cref is the refractory response scaling

coefficient, τf refer to the neuron spike function derivative time constant, and the Cf

is the neuron spike function derivative scaling coefficient.

6.6.1 Eight Class SER for RAVDESS Dataset

To investigate the performance of the proposed SRNN structure, different network

topologies were tested on the entire RAVDESS dataset with different choice of hidden

layer size Lh, the number of input segments T and the number of MFCC coefficients

Nmfcc, which is shown in Table 6.3.

Table 6.3: The SRNN SER experiments with different structure on RAVDESS dataset
8 class

Nmfcc Lh T (ms) Train Acc Test Acc

11 64 250 45.83% 48.61%
11 128 250 56.9% 53.81%
11 128 125 60.07% 57.64%
11 256 250 60.42% 55.21%
23 64 125 76.74% 58.33%
23 128 125 77.23% 59.31%
23 128 250 72.76% 59.72%
23 256 125 84.13% 64.07%
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The 5-fold cross-validation is used in the experiment, which randomly partitions

the entire dataset into 5 subsets with 4 of them used for training and the remaining

one for testing. Thus the accuracy shown in the table is obtained by averaging the

results from 5 experiments. It can be seen that the SRNN with the designed structure

of Lh = 128, T = 125ms and Nmfcc = 23 achieves the best resulting in a training

accuracy of 84.12% and testing recognition accuracy of 69.07% for the entire dataset.

Among these parameters, SRNN is especially sensitive to the number of MFCCs which

determines the amount of input frequency-time features of speech where the SRNN

running with 23 MFCCs yields a significant improvement in both training and test

accuracy.

Apart from this, the results suggests that SRNN performs better with higher number

of hidden neurons and segmentation time steps. This is due to the higher number of

neurons which introduce additional learning capacity to the model, and the utilization

of smaller event segments which can increases the temporal resolution for the input

spikes trains.

The training accuracy curve, loss curve and the confusion matrix for the optimal

run is shown in Figure 6.9 and Figure 6.10 respectively. It can be seen that the SRNN

performs best on the Angry emotion which classifies 89% samples correctly and worst

on Surprise wherein only correctly predicted 59% of the testing samples. Besides, Calm

was very easily misclassified as Neutral, where 27% of Calm samples are recognized as

Neutral.The correspond classification score of this experiment is shown in Table 6.4,

including the precision, recall and f1 score for each class of the emotion according to

the following equations:

Precision =
TP

TP + FP
(6.3)

Recall =
TP

TP + FN
(6.4)

F1Score = 2 ∗ Precision ∗Recall
Precision+Recall

(6.5)
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Figure 6.9: Training(a) and loss(b) curve for 8 class RAVDESS SER task

Figure 6.10: Confusion Matrix for RAVDESS SER 8 class with testing data
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Table 6.4: Classification score accuracy table for SER on RAVDESS with 8 class

Emotion Precision Recall F1 Score

Neutral 52.38 52.38 52.38
Calm 50 56.25 52.94
Happy 66.67 52.17 58.53
Sad 78.57 55 63.71
Angry 89.47 80.95 85
Fearful 68 85 71.56
Disgust 63.64 77.78 66.67
Surprise 58.82 66.67 62.5

6.6.2 Six Class SER for RAVDESS Dataset

Another experiment was carried out to compare the overall performance of the system

with the work reported by Mansouri et al. in [281]. The SRNN is trained with only 6

class of emotions from RAVDESS dataset, which excludes Neutral and Calm emotions

due to the consideration of the disturbances caused by Neutral and Calm. The network

setting remains the same as the setting for the 8 class except the number of spiking

neurons Lh in the hidden layer was set to 64 and the output layer was set to 6. The

training curve and loss curve for this experiment is shown in Figure 6.11(a) and (b)

respectively. It can be seen that the SRNN performs more effectively on 6 classes

SER without the disturbances of Neutral and Calm, which offers a testing accuracy

of 92.85% over the 6 class emotion recognition task. The SRNN performs perfectly

on the Angry and Fearful with 100% recognition accuracy and weakly on the Disgust

and Surprise emotion. The confusion matrix is demonstrated in Figure 6.12 and the

classification score table is shown in Table 6.5.
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Figure 6.11: Training(a) and loss(b) curve for 6 class RAVDESS SER task

Figure 6.12: Confusion Matrix for RAVDESS 6 class SER with testing data
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Table 6.5: Classification score table for 5 class SER on RAVDESS with

Emotion Precision Recall F1 Score

Happy 83.33% 100% 90.90%
Sad 94.44% 94.44% 94.44%
Angry 100% 94.44% 97.14%
Fearful 100% 100% 100 %
Disgust 88.24% 75% 81.08%
Surprise 86.36% 90.48% 88.37%

6.6.3 Effect of Recurrent Connection

To access the effectiveness of the recurrent structure used in SRNN, a feedforward SNN

is trained to directly compare the results with SRNN. This experiment uses exactly the

same number of spiking neurons as SRNN, with a input layer contains 23 neurons,

a hidden layer with 256 neurons and an output layer with 6 spiking neurons. With

the same neuron settings as shown in Table 6.2, training algorithms and the MFCC

based AER input, the feedforward structure only provides a test accuracy of 66.36%

which is approximately 26.5% lower than use the recurrent structure. In fact, the

recurrent connectivity enables the extracted spiking patterns to be accumulated along

with the temporal axis. At each time step, the SCRNN integrates the PSPs from current

input segments and the PSPs that is accumulated and processed over all the previous

time steps. From the viewpoint of feature extraction(MFCCs), the SCRNN actually is

constructing and learning the temporal relations that is represented with spike trains,

for each frequency bands independently. It then summarizes the information across all

specified frequency bands with a fully connected output layer.

6.6.4 Experiment on Emo-DB and eNTERFACE datasets

To further explore the universality of SRNN on the SER task, the SRNN was also

trained with eNTERFACE and EMO-DB emotional dataset with exactly the same

neuron parameter setting as used for RAVDESS dataset. The 5-fold cross validation

method is applied to both dataset. The training dynamics and the confusion matrix

for the eNTERFACE dataset and EMO-DB are shown in Figure 6.13 to Figure 6.16.
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Table 6.6 illustrates the network settings for the conducted experiments.

For EMO-DB dataset, considering the limited amount of samples and unbalanced

data distribution, the SRNN is constructed with 64 hidden neurons and input segments

length of 10 with the MFCC feature size of 13. The experiment results yield an average

testing accuracy of 65.12% with a best testing accuracy of 74.05% for 7 class emotion

recognition. The confusion matrix in Figure 6.16 shows that the SCRNN performs well

on Bored and Sad and with precision of 78% and 80% respectively. One of reasons

of this is due to the fact that Bored and Sad samples in the EMO-DB are found to

be distincly different from other types of emotions in terms of volume, intonation and

speech rate. The number of Angry samples in EMO-DB as described in Figure 6.6 are

approximately two times more than other types of emotions, which can be a reason

that the model is over-fitted for Angry and it can be seen that 17% of Disgust, 23% of

Fearful and 27% of Happy were classified falls into Angry. The model perform worst

for the Neutral with only an accuracy of 57%.

For eNTERFACE dataset, SRNN was constructed with 128 hidden neurons using

a segments amount of 8 with first 23 MFCCs, an averaging testing accuracy of 61.34%

with a best testing accuracy of 69.84% and was obtained for 6 class emotion recogni-

tion. SRNN provided an accuracy of 70% for Disgust, 71% for Fearful and worst on

the Surprise and Happy with only 50% and 42% respectively. Although the eNTER-

FACE provides an almost balanced number of emotions in each category, the utterance

durations in the dataset vary from 1.12s to 106.92s, which introduced significant inter-

ference to the SRNN due to the emotion states in a long duration sample are usually

non-stationary and it is difficult to assign the prediction as only one category.

Table 6.6: The SRNN experiment setup for EMO-DB and eNTERFACE dataset

Dataset Lh T Nmfcc

EMO-DB 64 10 13
eNTERFACE 128 8 23
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Figure 6.13: Training(a) and loss(b) curve for 6 class eNTERFACE SER

Figure 6.14: confusion matrix for 6 class eNTERFACE SER
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Figure 6.15: Training(a) and loss(b) curve for 7 class EMO-DB SER

Figure 6.16: Confusion matrix for 7 class EMO-DB SER

6.7 Comparison to Previous SER Works

Table 6.7 illustrates a comparison of the SRNN with previous works. It can be seen

that most previous SER works are based on conventional machine learning or deep

learning methods. Many additional manually selected features have been used such
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as continuous wavelet transform(CWT) in [282], spectrograms in [283], MFCCs [284].

For the RAVDESS dataset, the SRNN achieves 64.07% which outperforms some con-

ventional method based work such as the CWT based SVM model [282] and capsule

CRNN in [285]. The work presented in [284] provided an accuracy of 75.69%, how-

ever they manually extracted and selected 183 different input features such as MFCCs,

MEDCs, Energy, Prosodic, Spectral features, while SRNN only uses the first 23 order

of MFCCs. Zeng et al. [286] employed spectrogram and a gated residual convolutional

neural network to reduce the SER task as an image classification task. Each input audio

file in their work was transformed to a spectrogram with dimension of 257x399 as the

input feature to the network. The SRNN is still competitive to this work with only 128

neurons and the input feature size of approximately 23x229. Noticeably, the BLSTM

network proposed in [275] offers the best recognition accuracy for 8 class SER task

on RAVDESS dataset. This work requires multiple learning and processing techniques

include K-means, STFT, Resnet101 and BLSTMs to achieve the 77.02%, while SRNN

compare to this work has the significant advantage in computational and energy costs.

It is important to note that compared to the only previous SNN based SER system

in [239], SRNN outperforms the state-of-art 6 class RAVDESS SER test accuracy by

approximately 12.55%.
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Table 6.7: The comparison of SER previous works with the performance of SRNN

Method Type Dataset No.Class Accuracy

CWT, prosodic cofficient +SVM [282] Non-Spiking RAVDESS 8 60.1%
Features + bagged SVMs [284] Non-Spiking RAVDESS 8 75.69%
Spectrograms + DNN [286] Non-Spiking RAVDESS 8 64.52%
Features + BLSTM [275] Non-Spiking RAVDESS 8 77.02%
Spectrogram + capsule CRNN [285] Non-Spiking RAVDESS 8 56.2%
MFCC +Feedforward SNN +STDP [239] Spiking RAVDESS 6 80.3%
MFCC+SRNN+SLAYER Spiking RAVDESS 6 92.85%
MFCC+SRNN+SLAYER Spiking RAVDESS 8 69.07%

Spectrogram + CNN [287] Non-Spiking EMO-DB 7 85.2%
Spectrogram + 1D2DCNN [283] Non-Spiking EMO-DB 7 82.41%
Spectrograms + BLSTM [275] Non-Spiking EMO-DB 7 85.57%
Spectrograms + CNN+BLSTM [288] Non-Spiking EMO-DB 7 88.01%
Spectrograms + MultitimeCNN [289] Non-Spiking EMO-DB 7 70.97%
MFCC+SRNN+SLAYER Spiking EMO-DB 7 74.05%

MFCC+RF [290] Non-Spiking eNTERFACE 6 47.1%
Spectrogram + 3DCNN + Kmeans [291] Non-Spiking eNTERFACE 6 72.33%
Sparse autoencoder [292] Non-Spiking eNTERFACE 6 59.1%
Feature selection + MLP [293] Non-Spiking eNTERFACE 6 69.23%
MFCC +Feedforward SNN +STDP [239] Spiking eNTERFACE 6 72.2%
MFCC+SRNN+SLAYER Spiking eNTERFACE 6 69.84%

To the best of the author’s knowledge, there were no SNN based SER baseline

for EMO-DB dataset. Therefore, SRNN is compared with several deep learning based

methods which has advantages in terms of float-point based processing and significantly

larger network learning capacity. Despite these disadvantages, the SRNN is still com-

petitive with a best accuracy of 74.05% with only 64 hidden neurons with 13 MFCCs

and it outperformed the performance of the multi-time scale CNN structure in [289].

Among the SER research for the eNTERFACE dataset, SRNN still was able to cope

with the unbalanced dataset with an accuracy of 69.84% which outperforms the per-

formance of random forest based work in [290], the sparse autoencoder in [292] and

the MLP in [293]. Although from the recognition accuracy perspective the SRNN does

not achieve the best results among all the previous works, section 6.6.1 has shown a

possibility that the performance of SRNN can be increased by increasing the network

capacity or reducing the segmentation steps.
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It is also important to highlight that the SRNN has a strong potential to be applied

in to the Loihi NM chip since the use of SLAYER training algorithm, whereas none of

the above listed conventional machine learning or deep learning based method has such

advantage.

Most ANN/DNNs have a fixed amount of neurons which can only receive fea-

tures(e.g. spectrogram) with a fixed dimension. A common method for this is to

resize or re-sample all the speech samples to same length or use different size of STFT

windows to force a equivalent dimension for the spectrogram. Another significant ad-

vantage of SRNN based SER system is that it can takes the input with arbitrary length

since all the information will be coded into spikes in a fixed size window (such as 100ms).

This efficiently prevents information loss due to the prior pre-processing stage.

Most importantly, the SRNN approached the state-of-art recognition accuracy on

the SER tasks with only 3 layer of binary spiking neurons. The SRNN with 13-128-

6 structure only has (128+7) neurons with 2432 learnable parameters, which is over

40 times smaller compare to the work [283] which uses parallel 1D-2D CNN-LSTM

structure and multiple local feature learning blocks(LFLBs), approximately have over

1.1x105 free parameters. The size of the SRNN is almost equal to only the last classifi-

cation layer in the conventional complex ANN/DNN architecture. With the character-

istic of event-driven processing and NM hardware applicable, the SRNN is especially

significant for SWaP based HCI systems.

6.8 Spiking SER under White Noise

In this section, the lateral inhibition based speech enhancement algorithm that proposed

in Chapter 5.3 is applied to the developed SRNN SER system to construct an anti-

noise SER system. As illustrated, the lateral inhibition can efficiently remove the spike

trains that has a lower firing rate. The de-noising section is designed to use the rate

coded spectrogram which is the intermedia between the MFCC and raw speech signal.

The process of the speech enhancement is developed as a part of spike generation stage

which is shown in Figure 6.17.
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Figure 6.17: The proposed Speech enhancement spike generation algorithms that
used for SRNN SER

From Figure 6.17 it can be seen that, the input speech signal is firstly fed to a

speech boundary detection algorithm. Due to the limitation of the proposed speech en-

hancement algorithm described in section 5.3.7 where the algorithms is speech presence

dependent, the detection algorithm is implemented to reduce the unrelated interference

with the ’detectSpeech’ function in MATLAB audio toolbox [294]. All the speech cor-

pusses are cropped to remove the silence (the time period without presence of speech)

from raw signals to improve the speech enhancement performance by using the detected

speech time-domain boundaries.

Then the cropped speech signals are processed following the preprocessing stages

described in section 6.3 with the speech enhancement stage are inserted before applying

Mel-scaled filter banks. The spectrogram generated by the signal is taken as a reference

to construct the denoised spectrogram with the binary mask. Due to the fact that the

SER process does not need to use the time domain speech signal, the signal reconstruc-

tion stage that is required in original speech enhancement algorithm is omitted and

the denoised spectrogram is directly connected to the preprocessing stage to ultimately

produce the latency coded MFCC.

The SRNN with speech enhancement algorithm is tested with the 6 class RAVDESS
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dataset to demonstrate the usefulness of the method. The clean speech corpus in the

dataset are firstly corrupted with different levels of Gaussian white noise to generate

noisy test samples which has measured SNR of 0.1,5 and 10dBs. The noisy test samples

are fed into the well-trained SRNN with and without the speech enhancement section

respectively to obtain the recognition result which is shown in Table 6.8.

Table 6.8: The speech enhancement experiment results for SRNN based
SER(RAVDESS 6 Class)

SNR Without speech enhancement With speech enhancement Improvement

clean speech 92.85% N/A N/A
0.1 53.04% 58.61% 5.57%
5 51.30% 55.46% 4.16%
10 63.41% 67.74% 4.33%

It can be seen that the speech enhancement algorithm successfully increases the

SER accuracy under the noisy environment. The results suggest that the system has

an average SER improvement of 4.69% under the noisy environment.

However, the method in SER system requires two forms of neural spike coding (one

rate coding, one latency coding) operation and one decoding and mapping operation,

which potentially causes information loss in the spectrogram and degrades the perfor-

mance of the SRNN. Despite the limit improvement of accuracy, it is still noteworthy

that the proposed SNN speech enhancement algorithm does not require prior knowl-

edge to the speech signal as well as training process. The method acts as a non-linear

asynchronous event-based filter which can remove the spikes which are not densely

packed to preserve the high frequency spike trains.

6.9 Conclusion

In this chapter, a novel SER system was presented along with a design of novel prepro-

cessing algorithm, a spiking recurrent neural network structure and a signal denoising

SER strategy. The proposed system has been validated using open public SER datasets

and achieving a state-of-art result on both accuracy and computational efficiency. The

systems achieves 8 class SER accuracy of 64.07% and 6 class accuracy of 92.85% on

RAVDNESS dataset, 74.05% on EMO-DB dataset and 69.84% on the eNTERFACE
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dataset. In addition, the speech processing algorithms presented in Chapter 5 are com-

bined with this work to further improve the performance of the system under the noisy

environment that achieves an average SER accuracy improvement of 4.69%.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

Throughout this thesis, a range of novel event-driven processing techniques and SNNs

have been proposed to address the concept of neuromorphic human gesture recognition.

The novel research especially covers the field of visual hand gesture recognition, audio

speech emotion gesture recognition and the event-driven speech processing algorithms.

These algorithms have strong potentials contributes to the engineering field espicially in

the applications of human gesture recognitions. With the development of neuromorphic

processors and sensors, the contributions in this work can be transformmed to the

applications that adavanced in terms of extremely low power and low latency.

In Chapter 2, a review of conventional neural network and its applications on ges-

ture recognition was provided. The concept of ANNs and its working mechanism was

extensively reviewed which provide the foundation of the new generation SNNs. The

noticeable structure of ANNs that is significant in human gesture recognition is dis-

cussed in detail with several examples of previous works, which includes convolutional

neural network, recurrent neural network and convolutional recurrent neural network.

CNNs are especially effective for the visual gesture recognition tasks with static frame

input. The RNN uses recurrent connectively is well suited to those audio gesture recog-

nition tasks that has a 1D sequential input. The CRNN combines the advantages over

CNN and RNN which is found to be useful to solve the video based dynamic gesture
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recognition tasks. The concepts reviewed in this chapter significantly inspired the novel

designs which enables these remarkable structure in SNN domain for human gesture

recognition.

Chapter 3 presented a review of neuromorphic(NM) technology, which covered the

aspects of spiking neural networks(SNNs), NM software, NM hardware and previous

research on SNN based human gesture recognition. The concept of SNN is explained

in detail that included spiking neuron models, neural coding strategies, learning algo-

rithms, which are fundamentally different from the traditional statistics based ANNs. In

addition, a variety of state-of-the-art NM hardware were illustrated with their different

capabilities and corresponding SNN software implementation adaptabilities. Further-

more, the recent works of SNN based human gesture recognition in both visual and

auditory domain were provided and discussed.

Chapter 4 proposed a novel spiking convolutional recurrent neural network(SCRNN)

that was specially designed to solve the visual based hand gesture recognition challenge.

The proposed SCRNN transferred the idea of CRNN into event-driven processing do-

main to provide an SNN spiking model that can effectively learn the spatio-temporal

pattern in the dynamic gesture AER data. The correspond design of fundamental units

in SCRNN such as 3D spiking convolution operation and individual SCRNN cell were

explained. Moreover, the model was extensively analysed and discussed in terms of

the network topology, training setting and dynamic behaviours. The model was posi-

tively validated by a series of experiments on IBM DVSgesture dataset and performed

a state-of-art hand gesture recognition accuracy.

Novel event-based speech processing algorithms that potentially contribute to the

audio speech gesture recognition were presented in Chapter 5. The first method pre-

sented in this chapter consists of a method for bio-inspired neural coding for audio sig-

nals. This method provided a possible route that bridges the standard digital speech

raw signals to event-based one. The results of this algorithm were compared to the

dynamic audio sensor(DAS) which shows it can offer a DAS equivalent output spiking

signal. The second algorithm presented in Section 5.3 was a speech enhancement al-

gorithm which was build upon the upgraded version of speech coding algorithm. The
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spike coding strategy in this method was simplified with STFT and the use of LIF neu-

rons. With a proper design of lateral inhibition connection between layers of spiking

neurons, the method successfully provides an average SNR improvement of 10.915dB

up to 6 types of noise.

In Chapter 6, a novel end-to-end spiking speech emotion recognition(SER) system

was proposed. The systems consists of a novel preprocessing algorithm and a novel spik-

ing recurrent neural network(SRNN). In addition, the speech enhancement algorithm

developed in Chapter 5 was additionally embedded in this SER system that enabled

a signal denoising feature to this method. The SRNN was firstly tested on 3 different

SER datasets and resulted in a state-of-art recognition accuracy where it provides an

accuracy of 69.07% for RAVDESS 8 class, 92.85% for 6 class, 74.05% on EMO-DB

and 69.84% on eNTERFACE. The significance of SRNN in low power, energy efficient

NM SER was discussed in a detail. The speech enhancement algorithm combined in

the proposed system was able to provide an average recognition improvement of 4.69%

under the interference of vary level of Gaussian white noises.

7.2 Future Work

The work presented throughout this thesis has a wide range of directions that can be

further explored for future research.

A. Transfer algorithms to NM hardware

Both of the algorithm SCRNN(Chapter 4) for hand gesture recognition and SRNN

for SER systems(6) are SNNs that were developed under the SLAYER spiking

layer model which could be implemented on Intel Loihi chip. The proposed human

gesture recognition algorithms thus have a large potential to be implemented

as an offline well trained inference model on NM hardware such as SpiNNaker,

TrueNorth and especially Loihi chip. Particularly, the SCRNN can directly take

the NM sensor DVS input without any preprocessing stage, which is envisaged

to create a fully event based system.

B. Automated network parameter tuning

124



Chapter 7. Conclusions and Future Work

The novel speech enhancement algorithms that was proposed in section 5.3 at

present still needs to manually identify the inhibitory strength and radius. This

is a time consuming and repetitive task where a automated way of parameter

tuning method is needed to improve the convenience of this technique. Further

more, the speech enhancement algorithms can potentially be tested for additional

variety of noises.

C. Applying the algorithms to other applications

The SNN algorithms presented in this thesis although have demonstrated promis-

ing results in human gesture recognition in particular visual hand gestures and

speech emotion gestures, there is still a need to further investigated the appli-

cations of these algorithms in other event-based applications such as SRNN for

speech recognition, SCRNN for dynamic scene recognition. These and other po-

tential applications of SNN have been left for future work.

D. Use of further feature for SER

The SRNN algorithm presented in Chapter 6 efficiently used the MFCC as the

main prior feature extractor. However, there are still a range of speech features

can potentially contributes to the improvement of system. Future research may

include the applications of other features such as CWT and frequency band en-

ergy(FBE) in the recognition tasks by using SRNN.
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“Coarse-fine convolutional deep-learning strategy for human activity recogni-

tion,” Sensors (Switzerland), vol. 19, no. 7, 2019.

[65] A. Kar, N. Rai, K. Sikka, and G. Sharma, “AdaScan: Adaptive scan pooling in

deep convolutional neural networks for human action recognition in videos,” in

Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recogni-

tion, CVPR 2017, vol. 2017-Janua, 2017, pp. 5699–5708.

[66] E. P. Ijjina and K. M. Chalavadi, “Human action recognition using genetic al-

gorithms and convolutional neural networks,” Pattern Recognition, vol. 59, pp.

199–212, 2016.

[67] G. A. Rao, K. Syamala, P. V. Kishore, and A. S. Sastry, “Deep convolutional

neural networks for sign language recognition,” in 2018 Conference on Signal

Processing And Communication Engineering Systems, SPACES 2018, vol. 2018-

Janua, 2018, pp. 194–197.
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K. Meier, S. Millner, N. Ketkar, N. Ketkar, H. Markram, K. Meier, T. Lippert,

S. Grillner, R. Frackowiak, S. Dehaene, A. Knoll, H. Sompolinsky, K. Verstreken,

J. DeFelipe, S. Grant, J. P. Changeux, A. Sariam, A. Neckar, S. Fok, B. V.

Benjamin, T. C. Stewart, N. N. Oza, A. R. Voelker, C. Eliasmith, R. Manohar,

K. Boahen, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M.

Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, K. Boahen, M. Davies,

N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,

N. Imam, S. Jain, Y. Y. Liao, C. K. Lin, A. Lines, R. Liu, D. Mathaikutty,

S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. H. Weng, A. Wild, Y. Yang,

H. H. H. Wang, M. Abadi, P. Barham, J. C. J. Chen, Z. Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg,

R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,

P. Warden, M. Wicke, Y. Yu, X. Zheng, R. Brette, M. Rudolph, T. Carnevale,

M. Hines, D. Beeman, J. M. Bower, M. Diesmann, A. Morrison, P. H.

Goodman, F. C. Harris, M. Zirpe, T. Natschläger, D. Pecevski, B. Ermentrout,
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H. Eisenreich, S. Henker, B. Vogginger, and R. Schüffny, “Vlsi implementation
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