2,178 research outputs found

    Spatio-Temporal Patterns act as Computational Mechanisms governing Emergent behavior in Robotic Swarms

    Get PDF
    open access articleOur goal is to control a robotic swarm without removing its swarm-like nature. In other words, we aim to intrinsically control a robotic swarm emergent behavior. Past attempts at governing robotic swarms or their selfcoordinating emergent behavior, has proven ineffective, largely due to the swarm’s inherent randomness (making it difficult to predict) and utter simplicity (they lack a leader, any kind of centralized control, long-range communication, global knowledge, complex internal models and only operate on a couple of basic, reactive rules). The main problem is that emergent phenomena itself is not fully understood, despite being at the forefront of current research. Research into 1D and 2D Cellular Automata has uncovered a hidden computational layer which bridges the micromacro gap (i.e., how individual behaviors at the micro-level influence the global behaviors on the macro-level). We hypothesize that there also lie embedded computational mechanisms at the heart of a robotic swarm’s emergent behavior. To test this theory, we proceeded to simulate robotic swarms (represented as both particles and dynamic networks) and then designed local rules to induce various types of intelligent, emergent behaviors (as well as designing genetic algorithms to evolve robotic swarms with emergent behaviors). Finally, we analysed these robotic swarms and successfully confirmed our hypothesis; analyzing their developments and interactions over time revealed various forms of embedded spatiotemporal patterns which store, propagate and parallel process information across the swarm according to some internal, collision-based logic (solving the mystery of how simple robots are able to self-coordinate and allow global behaviors to emerge across the swarm)

    Self Organized Multi Agent Swarms (SOMAS) for Network Security Control

    Get PDF
    Computer network security is a very serious concern in many commercial, industrial, and military environments. This paper proposes a new computer network security approach defined by self-organized agent swarms (SOMAS) which provides a novel computer network security management framework based upon desired overall system behaviors. The SOMAS structure evolves based upon the partially observable Markov decision process (POMDP) formal model and the more complex Interactive-POMDP and Decentralized-POMDP models, which are augmented with a new F(*-POMDP) model. Example swarm specific and network based behaviors are formalized and simulated. This paper illustrates through various statistical testing techniques, the significance of this proposed SOMAS architecture, and the effectiveness of self-organization and entangled hierarchies

    Combat Drones: Hives, Swarms, and Autonomous Action?

    Get PDF
    From both jus ad bellum and jus in bello perspectives, the lawfulness of unmanned aerial vehicle/combat drone strikes have been examined extensively but not yet exhaustively. Recent advances in technology allow combat drones to operate as a swarm—similar to their vespidae counterparts. An overly simplistic conclusion would suggest that the current legal tapestry applicable to solo drone usage would ‘automatically’ apply to drones acting collectively or as a swarm. This article, however, posits a more controversial position that the technological uniqueness of individual drones acting as a swarm necessitates a more thorough deconstruction of the applicable legal framework. In other words, does the unique way in which a swarm operates lawfully comply with both jus ad bellum and jus in bello parameters? Crucial to this discussion, is to examine the extent to which a swarm is programmed both offensively and defensively—with a view to exploring the algorithm of an automated response from other drones within the swarm. Within this broader question, the article seeks to scrutinise two specific areas. First, to what extent is the drone swarm’s architecture calibrated to comply with the cardinal self-defence parameters of necessity and proportionality should the swarm be attacked? And secondly, is the ‘swarm’ capable of being fully jus in bellow compliant in terms of distinction and proportionality and the duty to take precautions (‘The General Principles’). Would, for example, the chain of command structure in a drone swarm encompass the concept of the ‘reasonable military commander’ when it comes to targeting? The purpose of this article is not to reopen, or indeed close the debate surrounding artificial intelligence and its ethical implications. Rather, it is to seek to open further discussion surrounding the applicability of 20th century legal thresholds to 21st century phenomena and beyond

    Understanding Behavior of System of Systems Through Computational Intelligence Techniques

    Get PDF
    The world is facing an increasing level of systems integration leading towards systems of systems (SoS) that adapt to changing environmental conditions. The number of connections between components, the diversity of the components and the way the components are organized can lead to different emergent system behavior. Therefore, the need to focus on overall system behavior is becoming an unavoidable issue. The problem is to develop methodologies appropriate for better understanding behavior of system of systems before the design and implementation phase. This paper focuses on computational intelligence techniques used for analysis of complex adaptive systems with the aim of identifying areas that need methodology customization for SoS analysis

    Bio-inspired multi-agent systems for reconfigurable manufacturing systems

    Get PDF
    The current market’s demand for customization and responsiveness is a major challenge for producing intelligent, adaptive manufacturing systems. The Multi-Agent System (MAS) paradigm offers an alternative way to design this kind of system based on decentralized control using distributed, autonomous agents, thus replacing the traditional centralized control approach. The MAS solutions provide modularity, flexibility and robustness, thus addressing the responsiveness property, but usually do not consider true adaptation and re-configuration. Understanding how, in nature, complex things are performed in a simple and effective way allows us to mimic nature’s insights and develop powerful adaptive systems that able to evolve, thus dealing with the current challenges imposed on manufactur- ing systems. The paper provides an overview of some of the principles found in nature and biology and analyses the effectiveness of bio-inspired methods, which are used to enhance multi-agent systems to solve complex engineering problems, especially in the manufacturing field. An industrial automation case study is used to illustrate a bio-inspired method based on potential fields to dynamically route pallets

    Hardware Architecture Review of Swarm Robotics System: Self-Reconfigurability, Self-Reassembly, and Self-Replication

    Get PDF
    Swarm robotics is one of the most fascinating and new research areas of recent decades, and one of the grand challenges of robotics is the design of swarm robots that are self-sufficient. This can be crucial for robots exposed to environments that are unstructured or not easily accessible for a human operator, such as the inside of a blood vessel, a collapsed building, the deep sea, or the surface of another planet. In this paper, we present a comprehensive study on hardware architecture and several other important aspects of modular swarm robots, such as self-reconfigurability, self-replication, and self-assembly. The key factors in designing and building a group of swarm robots are cost and miniaturization with robustness, flexibility, and scalability. In robotics intelligence, self-assembly and self-reconfigurability are among the most important characteristics as they can add additional capabilities and functionality to swarm robots. Simulation and model design for swarm robotics is highly complex and expensive, especially when attempting to model the behavior of large swarm robot groups.http://dx.doi.org/10.5402/2013/84960

    Bio-Inspired Multi-Agent Technology for Industrial Applications

    Get PDF
    • …
    corecore