1,501 research outputs found

    A Planning Pipeline for Large Multi-Agent Missions

    Get PDF
    In complex multi-agent applications, human operators are often tasked with planning and managing large heterogeneous teams of humans and autonomous vehicles. Although the use of these autonomous vehicles broadens the scope of meaningful applications, many of their systems remain unintuitive and difficult to master for human operators whose expertise lies in the application domain and not at the platform level. Current research focuses on the development of individual capabilities necessary to plan multi-agent missions of this scope, placing little emphasis on the integration of these components in to a full pipeline. The work presented in this paper presents a complete and user-agnostic planning pipeline for large multiagent missions known as the HOLII GRAILLE. The system takes a holistic approach to mission planning by integrating capabilities in human machine interaction, flight path generation, and validation and verification. Components modules of the pipeline are explored on an individual level, as well as their integration into a whole system. Lastly, implications for future mission planning are discussed

    Move, hold and touch: A framework for Tangible gesture interactive systems

    Get PDF
    © 2015 by the authors. Technology is spreading in our everyday world, and digital interaction beyond the screen, with real objects, allows taking advantage of our natural manipulative and communicative skills. Tangible gesture interaction takes advantage of these skills by bridging two popular domains in Human-Computer Interaction, tangible interaction and gestural interaction. In this paper, we present the Tangible Gesture Interaction Framework (TGIF) for classifying and guiding works in this field. We propose a classification of gestures according to three relationships with objects: move, hold and touch. Following this classification, we analyzed previous work in the literature to obtain guidelines and common practices for designing and building new tangible gesture interactive systems. We describe four interactive systems as application examples of the TGIF guidelines and we discuss the descriptive, evaluative and generative power of TGIF

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    Interactive spaces for children: gesture elicitation for controlling ground mini-robots

    Full text link
    [EN] Interactive spaces for education are emerging as a mechanism for fostering children's natural ways of learning by means of play and exploration in physical spaces. The advanced interactive modalities and devices for such environments need to be both motivating and intuitive for children. Among the wide variety of interactive mechanisms, robots have been a popular research topic in the context of educational tools due to their attractiveness for children. However, few studies have focused on how children would naturally interact and explore interactive environments with robots. While there is abundant research on full-body interaction and intuitive manipulation of robots by adults, no similar research has been done with children. This paper therefore describes a gesture elicitation study that identified the preferred gestures and body language communication used by children to control ground robots. The results of the elicitation study were used to define a gestural language that covers the different preferences of the gestures by age group and gender, with a good acceptance rate in the 6-12 age range. The study also revealed interactive spaces with robots using body gestures as motivating and promising scenarios for collaborative or remote learning activities.This work is funded by the European Development Regional Fund (EDRF-FEDER) and supported by the Spanish MINECO (TIN2014-60077-R). The work of Patricia Pons is supported by a national grant from the Spanish MECD (FPU13/03831). Special thanks are due to the children and teachers of the Col-legi Public Vicente Gaos for their valuable collaboration and dedication.Pons Tomás, P.; Jaén Martínez, FJ. (2020). Interactive spaces for children: gesture elicitation for controlling ground mini-robots. Journal of Ambient Intelligence and Humanized Computing. 11(6):2467-2488. https://doi.org/10.1007/s12652-019-01290-6S24672488116Alborzi H, Hammer J, Kruskal A et al (2000) Designing StoryRooms: interactive storytelling spaces for children. In: Proceedings of the conference on designing interactive systems processes, practices, methods, and techniques—DIS’00. ACM Press, New York, pp 95–104Antle AN, Corness G, Droumeva M (2009) What the body knows: exploring the benefits of embodied metaphors in hybrid physical digital environments. Interact Comput 21:66–75. https://doi.org/10.1016/j.intcom.2008.10.005Belpaeme T, Baxter PE, Read R et al (2013) Multimodal child–robot interaction: building social bonds. J Human-Robot Interact 1:33–53. https://doi.org/10.5898/JHRI.1.2.BelpaemeBenko H, Wilson AD, Zannier F, Benko H (2014) Dyadic projected spatial augmented reality. In: Proceedings of the 27th annual ACM symposium on user interface software and technology—UIST’14, pp 645–655Bobick AF, Intille SS, Davis JW et al (1999) The KidsRoom: a perceptually-based interactive and immersive story environment. Presence Teleoper Virtual Environ 8:367–391. https://doi.org/10.1162/105474699566297Bonarini A, Clasadonte F, Garzotto F, Gelsomini M (2015) Blending robots and full-body interaction with large screens for children with intellectual disability. In: Proceedings of the 14th international conference on interaction design and children—IDC’15. ACM Press, New York, pp 351–354Cauchard JR, E JL, Zhai KY, Landay JA (2015) Drone & me: an exploration into natural human–drone interaction. In: Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing—UbiComp’15. ACM Press, New York, pp 361–365Connell S, Kuo P-Y, Liu L, Piper AM (2013) A Wizard-of-Oz elicitation study examining child-defined gestures with a whole-body interface. In: Proceedings of the 12th international conference on interaction design and children—IDC’13. ACM Press, New York, pp 277–280Derboven J, Van Mechelen M, Slegers K (2015) Multimodal analysis in participatory design with children. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems—CHI’15. ACM Press, New York, pp 2825–2828Dong H, Danesh A, Figueroa N, El Saddik A (2015) An elicitation study on gesture preferences and memorability toward a practical hand-gesture vocabulary for smart televisions. IEEE Access 3:543–555. https://doi.org/10.1109/ACCESS.2015.2432679Druin A (1999) Cooperative inquiry: developing new technologies for children with children. In: Proceedings of the SIGCHI conference on human factors computer system CHI is limit—CHI’99, vol 14, pp 592–599. https://doi.org/10.1145/302979.303166Druin A (2002) The role of children in the design of new technology. Behav Inf Technol 21:1–25. https://doi.org/10.1080/01449290110108659Druin A, Bederson B, Boltman A et al (1999) Children as our technology design partners. In: Druin A (ed) The design of children’s technology. Morgan Kaufman, San Francisco, pp 51–72Epps J, Lichman S, Wu M (2006) A study of hand shape use in tabletop gesture interaction. CHI’06 extended abstracts on human factors in computing systems—CHI EA’06. ACM Press, New York, pp 748–753Fender AR, Benko H, Wilson A (2017) MeetAlive : room-scale omni-directional display system for multi-user content and control sharing. In: Proceedings of the 2017 ACM international conference on interactive surfaces and spaces, pp 106–115Fernandez RAS, Sanchez-Lopez JL, Sampedro C et al (2016) Natural user interfaces for human–drone multi-modal interaction. In: 2016 international conference on unmanned aircraft systems (ICUAS). IEEE, New York, pp 1013–1022Garcia-Sanjuan F, Jaen J, Nacher V, Catala A (2015) Design and evaluation of a tangible-mediated robot for kindergarten instruction. In: Proceedings of the 12th international conference on advances in computer entertainment technology—ACE’15. ACM Press, New York, pp 1–11Garcia-Sanjuan F, Jaen J, Jurdi S (2016) Towards encouraging communication in hospitalized children through multi-tablet activities. In: Proceedings of the XVII international conference on human computer interaction, pp 29.1–29.4Gindling J, Ioannidou A, Loh J et al (1995) LEGOsheets: a rule-based programming, simulation and manipulation environment for the LEGO programmable brick. In: Proceedings of symposium on visual languages. IEEE Computer Society Press, New York, pp 172–179Gonzalez B, Borland J, Geraghty K (2009) Whole body interaction for child-centered multimodal language learning. In: Proceedings of the 2nd workshop on child, computer and interaction—WOCCI’09. ACM Press, New York, pp 1–5Grønbæk K, Iversen OS, Kortbek KJ et al (2007) Interactive floor support for kinesthetic interaction in children learning environments. In: Human–computer interaction—INTERACT 2007. Lecture notes in computer science, pp 361–375Guha ML, Druin A, Chipman G et al (2005) Working with young children as technology design partners. Commun ACM 48:39–42. https://doi.org/10.1145/1039539.1039567Hansen JP, Alapetite A, MacKenzie IS, Møllenbach E (2014) The use of gaze to control drones. In: Proceedings of the symposium on eye tracking research and applications—ETRA’14. ACM Press, New York, pp 27–34Henkemans OAB, Bierman BPB, Janssen J et al (2017) Design and evaluation of a personal robot playing a self-management education game with children with diabetes type 1. Int J Hum Comput Stud 106:63–76. https://doi.org/10.1016/j.ijhcs.2017.06.001Horn MS, Crouser RJ, Bers MU (2011) Tangible interaction and learning: the case for a hybrid approach. Pers Ubiquitous Comput 16:379–389. https://doi.org/10.1007/s00779-011-0404-2Hourcade JP (2015) Child computer interaction. CreateSpace Independent Publishing Platform, North CharlestonHöysniemi J, Hämäläinen P, Turkki L (2004) Wizard of Oz prototyping of computer vision based action games for children. Proceeding of the 2004 conference on interaction design and children building a community—IDC’04. ACM Press, New York, pp 27–34Höysniemi J, Hämäläinen P, Turkki L, Rouvi T (2005) Children’s intuitive gestures in vision-based action games. Commun ACM 48:44–50. https://doi.org/10.1145/1039539.1039568Hsiao H-S, Chen J-C (2016) Using a gesture interactive game-based learning approach to improve preschool children’s learning performance and motor skills. Comput Educ 95:151–162. https://doi.org/10.1016/j.compedu.2016.01.005Jokela T, Rezaei PP, Väänänen K (2016) Using elicitation studies to generate collocated interaction methods. In: Proceedings of the 18th international conference on human–computer interaction with mobile devices and services adjunct, pp 1129–1133. https://doi.org/10.1145/2957265.2962654Jones B, Benko H, Ofek E, Wilson AD (2013) IllumiRoom: peripheral projected illusions for interactive experiences. In: Proceedings of the SIGCHI conference on human factors in computing systems—CHI’13, pp 869–878Jones B, Shapira L, Sodhi R et al (2014) RoomAlive: magical experiences enabled by scalable, adaptive projector-camera units. In: Proceedings of the 27th annual ACM symposium on user interface software and technology—UIST’14, pp 637–644Kaminski M, Pellino T, Wish J (2002) Play and pets: the physical and emotional impact of child-life and pet therapy on hospitalized children. Child Heal Care 31:321–335. https://doi.org/10.1207/S15326888CHC3104_5Karam M, Schraefel MC (2005) A taxonomy of gestures in human computer interactions. In: Technical report in electronics and computer science, pp 1–45Kistler F, André E (2013) User-defined body gestures for an interactive storytelling scenario. Lect Notes Comput Sci (including subser Lect Notes Artif Intell Lect Notes Bioinform) 8118:264–281. https://doi.org/10.1007/978-3-642-40480-1_17Konda KR, Königs A, Schulz H, Schulz D (2012) Real time interaction with mobile robots using hand gestures. In: Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction—HRI’12. ACM Press, New York, pp 177–178Kray C, Nesbitt D, Dawson J, Rohs M (2010) User-defined gestures for connecting mobile phones, public displays, and tabletops. In: Proceedings of the 12th international conference on human computer interaction with mobile devices and services—MobileHCI’10. ACM Press, New York, pp 239–248Kurdyukova E, Redlin M, André E (2012) Studying user-defined iPad gestures for interaction in multi-display environment. In: Proceedings of the 2012 ACM international conference on intelligent user interfaces—IUI’12. ACM Press, New York, pp 93–96Lambert V, Coad J, Hicks P, Glacken M (2014) Social spaces for young children in hospital. Child Care Health Dev 40:195–204. https://doi.org/10.1111/cch.12016Lee S-S, Chae J, Kim H et al (2013) Towards more natural digital content manipulation via user freehand gestural interaction in a living room. In: Proceedings of the 2013 ACM international joint conference on pervasive and ubiquitous computing—UbiComp’13. ACM Press, New York, p 617Malinverni L, Mora-Guiard J, Pares N (2016) Towards methods for evaluating and communicating participatory design: a multimodal approach. Int J Hum Comput Stud 94:53–63. https://doi.org/10.1016/j.ijhcs.2016.03.004Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60. https://doi.org/10.1214/aoms/1177730491Marco J, Cerezo E, Baldassarri S et al (2009) Bringing tabletop technologies to kindergarten children. In: Proceedings of the 23rd British HCI Group annual conference on people and computers: celebrating people and technology, pp 103–111Michaud F, Caron S (2002) Roball, the rolling robot. Auton Robots 12:211–222. https://doi.org/10.1023/A:1014005728519Micire M, Desai M, Courtemanche A et al (2009) Analysis of natural gestures for controlling robot teams on multi-touch tabletop surfaces. In: Proceedings of the ACM international conference on interactive tabletops and surfaces—ITS’09. ACM Press, New York, pp 41–48Mora-Guiard J, Crowell C, Pares N, Heaton P (2016) Lands of fog: helping children with autism in social interaction through a full-body interactive experience. In: Proceedings of the 15th international conference on interaction design and children—IDC’16. ACM Press, New York, pp 262–274Morris MR (2012) Web on the wall: insights from a multimodal interaction elicitation study. In: Proceedings of the 2012 ACM international conference on interactive tabletops and surfaces. ACM Press, New York, pp 95–104Morris MR, Wobbrock JO, Wilson AD (2010) Understanding users’ preferences for surface gestures. Proc Graph Interface 2010:261–268Nacher V, Garcia-Sanjuan F, Jaen J (2016) Evaluating the usability of a tangible-mediated robot for kindergarten children instruction. In: 2016 IEEE 16th international conference on advanced learning technologies (ICALT). IEEE, New York, pp 130–132Nahapetyan VE, Khachumov VM (2015) Gesture recognition in the problem of contactless control of an unmanned aerial vehicle. Optoelectron Instrum Data Process 51:192–197. https://doi.org/10.3103/S8756699015020132Obaid M, Häring M, Kistler F et al (2012) User-defined body gestures for navigational control of a humanoid robot. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), pp 367–377Obaid M, Kistler F, Häring M et al (2014) A framework for user-defined body gestures to control a humanoid robot. Int J Soc Robot 6:383–396. https://doi.org/10.1007/s12369-014-0233-3Obaid M, Kistler F, Kasparavičiūtė G, et al (2016) How would you gesture navigate a drone?: a user-centered approach to control a drone. In: Proceedings of the 20th international academic Mindtrek conference—AcademicMindtrek’16. ACM Press, New York, pp 113–121Pares N, Soler M, Sanjurjo À et al (2005) Promotion of creative activity in children with severe autism through visuals in an interactive multisensory environment. In: Proceeding of the 2005 conference on interaction design and children—IDC’05. ACM Press, New York, pp 110–116Pfeil K, Koh SL, LaViola J (2013) Exploring 3D gesture metaphors for interaction with unmanned aerial vehicles. In: Proceedings of the 2013 international conference on intelligent user interfaces—IUI’13, pp 257–266. https://doi.org/10.1145/2449396.2449429Piaget J (1956) The child’s conception of space. Norton, New YorkPiaget J (1973) The child and reality: problems of genetic psychology. Grossman, New YorkPiumsomboon T, Clark A, Billinghurst M, Cockburn A (2013) User-defined gestures for augmented reality. CHI’13 extended abstracts on human factors in computing systems—CHI EA’13. ACM Press, New York, pp 955–960Pons P, Carrión A, Jaen J (2018) Remote interspecies interactions: improving humans and animals’ wellbeing through mobile playful spaces. Pervasive Mob Comput. https://doi.org/10.1016/j.pmcj.2018.12.003Puranam MB (2005) Towards full-body gesture analysis and recognition. University of Kentucky, LexingtonPyryeskin D, Hancock M, Hoey J (2012) Comparing elicited gestures to designer-created gestures for selection above a multitouch surface. In: Proceedings of the 2012 ACM international conference on interactive tabletops and surfaces—ITS’12. ACM Press, New York, pp 1–10Raffle HS, Parkes AJ, Ishii H (2004) Topobo: a constructive assembly system with kinetic memory. System 6:647–654. https://doi.org/10.1145/985692.985774Read JC, Markopoulos P (2013) Child–computer interaction. Int J Child-Comput Interact 1:2–6. https://doi.org/10.1016/j.ijcci.2012.09.001Read JC, Macfarlane S, Casey C (2002) Endurability, engagement and expectations: measuring children’s fun. In: Interaction design and children, pp 189–198Read JC, Markopoulos P, Parés N et al (2008) Child computer interaction. In: Proceeding of the 26th annual CHI conference extended abstracts on human factors in computing systems—CHI’08. ACM Press, New York, pp 2419–2422Robins B, Dautenhahn K (2014) Tactile interactions with a humanoid robot: novel play scenario implementations with children with autism. Int J Soc Robot 6:397–415. https://doi.org/10.1007/s12369-014-0228-0Robins B, Dautenhahn K, Te Boekhorst R, Nehaniv CL (2008) Behaviour delay and robot expressiveness in child–robot interactions: a user study on interaction kinesics. In: Proceedings of the 3rd ACMIEEE international conference on human robot interaction, pp 17–24. https://doi.org/10.1145/1349822.1349826Ruiz J, Li Y, Lank E (2011) User-defined motion gestures for mobile interaction. In: Proceedings of the 2011 annual conference on human factors in computing systems—CHI’11. ACM Press, New York, p 197Rust K, Malu M, Anthony L, Findlater L (2014) Understanding childdefined gestures and children’s mental models for touchscreen tabletop interaction. In: Proceedings of the 2014 conference on interaction design and children—IDC’14. ACM Press, New York, pp 201–204Salter T, Dautenhahn K, Te Boekhorst R (2006) Learning about natural human-robot interaction styles. Robot Auton Syst 54:127–134. https://doi.org/10.1016/j.robot.2005.09.022Sanghvi J, Castellano G, Leite I et al (2011) Automatic analysis of affective postures and body motion to detect engagement with a game companion. In: Proceedings of the 6th international conference on human–robot interaction—HRI’11. ACM Press, New York, pp 305–311Sanna A, Lamberti F, Paravati G, Manuri F (2013) A Kinect-based natural interface for quadrotor control. Entertain Comput 4:179–186. https://doi.org/10.1016/j.entcom.2013.01.001Sato E, Yamaguchi T, Harashima F (2007) Natural interface using pointing behavior for human–robot gestural interaction. IEEE Trans Ind Electron 54:1105–1112. https://doi.org/10.1109/TIE.2007.892728Schaper M-M, Pares N (2016) Making sense of body and space through full-body interaction design. In: Proceedings of the 15th international conference on interaction design and children—IDC’16. ACM Press, New York, pp 613–618Schaper M-M, Malinverni L, Pares N (2015) Sketching through the body: child-generated gestures in full-body interaction design. In: Proceedings of the 14th international conference on interaction design and children—IDC’15. ACM Press, New York, pp 255–258Seyed T, Burns C, Costa Sousa M et al (2012) Eliciting usable gestures for multi-display environments. In: Proceedings of the 2012 ACM international conference on interactive tabletops and surfaces—ITS’12. ACM Press, New York, p 41Shimon SSA, Morrison-Smith S, John N et al (2015) Exploring user-defined back-of-device gestures for mobile devices. In: Proceedings of the 17th international conference on human–computer interaction with mobile devices and services—MobileHCI’15. ACM Press, New York, pp 227–232Sipitakiat A, Nusen N (2012) Robo-blocks: a tangible programming system with debugging for children. In: Proceedings of the 11th international conference on interaction design and children—IDC’12. ACM Press, New York, p 98Soler-Adillon J, Ferrer J, Pares N (2009) A novel approach to interactive playgrounds: the interactive slide project. In: Proceedings of the 8th international conference on interaction design and children—IDC’09. ACM Press, New York, pp 131–139Stiefelhagen R, Fogen C, Gieselmann P et al (2004) Natural human–robot interaction using speech, head pose and gestures. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS) (IEEE Cat. No. 04CH37566). IEEE, New York, pp 2422–2427Subrahmanyam K, Greenfield PM (1994) Effect of video game practice on spatial skills in girls and boys. J Appl Dev Psychol 15:13–32. https://doi.org/10.1016/0193-3973(94)90004-3Sugiyama J, Tsetserukou D, Miura J (2011) NAVIgoid: robot navigation with haptic vision. In: SIGGRAPH Asia 2011 emerging technologies SA’11, vol 15, p 4503. https://doi.org/10.1145/2073370.2073378Takahashi T, Morita M, Tanaka F (2012) Evaluation of a tricycle-style teleoperational interface for children: a comparative experiment with a video game controller. In: 2012 IEEE RO-MAN: the 21st IEEE international symposium on robot and human interactive communication. IEEE, New York, pp 334–338Tanaka F, Takahashi T (2012) A tricycle-style teleoperational interface that remotely controls a robot for classroom children. In: Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction—HRI’12. ACM Press, New York, pp 255–256Tjaden L, Tong A, Henning P et al (2012) Children’s experiences of dialysis: a systematic review of qualitative studies. Arch Dis Child 97:395–402. https://doi.org/10.1136/archdischild-2011-300639Vatavu R-D (2012) User-defined gestures for free-hand TV control. In: Proceedings of the 10th European conference on interactive TV and video—EuroiTV’12. ACM Press, New York, pp 45–48Vatavu R-D (2017) Smart-Pockets: body-deictic gestures for fast access to personal data during ambient interactions. Int J Hum Comput Stud 103:1–21. https://doi.org/10.1016/j.ijhcs.2017.01.005Vatavu R-D, Wobbrock JO (2015) Formalizing agreement analysis for elicitation studies: new measures, significance test, and toolkit. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems—CHI’15. ACM Press, New York, pp 1325–1334Vatavu R-D, Wobbrock JO (2016) Between-subjects elicitation studies: formalization and tool support. In: Proceedings of the 2016 CHI conference on human factors in computing systems—CHI’16. ACM Press, New York, pp 3390–3402Voyer D, Voyer S, Bryden MP (1995) Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol Bull 117:250–270. https://doi.org/10.1037/0033-2909.117.2.250Wainer J, Robins B, Amirabdollahian F, Dautenhahn K (2014) Using the humanoid robot KASPAR to autonomously play triadic games and facilitate collaborative play among children with autism. IEEE Trans Auton Ment Dev 6:183–199. https://doi.org/10.1109/TAMD.2014.2303116Wang Y, Zhang L (2015) A track-based gesture recognition algorithm for Kinect. Appl Mech Mater 738–7399:334–338. https://doi.org/10.4028/www.scientific.net/AMM.738-739.334

    A Framework For Abstracting, Designing And Building Tangible Gesture Interactive Systems

    Get PDF
    This thesis discusses tangible gesture interaction, a novel paradigm for interacting with computer that blends concepts from the more popular fields of tangible interaction and gesture interaction. Taking advantage of the human innate abilities to manipulate physical objects and to communicate through gestures, tangible gesture interaction is particularly interesting for interacting in smart environments, bringing the interaction with computer beyond the screen, back to the real world. Since tangible gesture interaction is a relatively new field of research, this thesis presents a conceptual framework that aims at supporting future work in this field. The Tangible Gesture Interaction Framework provides support on three levels. First, it helps reflecting from a theoretical point of view on the different types of tangible gestures that can be designed, physically, through a taxonomy based on three components (move, hold and touch) and additional attributes, and semantically, through a taxonomy of the semantic constructs that can be used to associate meaning to tangible gestures. Second, it helps conceiving new tangible gesture interactive systems and designing new interactions based on gestures with objects, through dedicated guidelines for tangible gesture definition and common practices for different application domains. Third, it helps building new tangible gesture interactive systems supporting the choice between four different technological approaches (embedded and embodied, wearable, environmental or hybrid) and providing general guidance for the different approaches. As an application of this framework, this thesis presents also seven tangible gesture interactive systems for three different application domains, i.e., interacting with the In-Vehicle Infotainment System (IVIS) of the car, the emotional and interpersonal communication, and the interaction in a smart home. For the first application domain, four different systems that use gestures on the steering wheel as interaction means with the IVIS have been designed, developed and evaluated. For the second application domain, an anthropomorphic lamp able to recognize gestures that humans typically perform for interpersonal communication has been conceived and developed. A second system, based on smart t-shirts, recognizes when two people hug and reward the gesture with an exchange of digital information. Finally, a smart watch for recognizing gestures performed with objects held in the hand in the context of the smart home has been investigated. The analysis of existing systems found in literature and of the system developed during this thesis shows that the framework has a good descriptive and evaluative power. The applications developed during this thesis show that the proposed framework has also a good generative power.Questa tesi discute l’interazione gestuale tangibile, un nuovo paradigma per interagire con il computer che unisce i principi dei più comuni campi di studio dell’interazione tangibile e dell’interazione gestuale. Sfruttando le abilità innate dell’uomo di manipolare oggetti fisici e di comunicare con i gesti, l’interazione gestuale tangibile si rivela particolarmente interessante per interagire negli ambienti intelligenti, riportando l’attenzione sul nostro mondo reale, al di là dello schermo dei computer o degli smartphone. Poiché l’interazione gestuale tangibile è un campo di studio relativamente recente, questa tesi presenta un framework (quadro teorico) che ha lo scopo di assistere lavori futuri in questo campo. Il Framework per l’Interazione Gestuale Tangibile fornisce supporto su tre livelli. Per prima cosa, aiuta a riflettere da un punto di vista teorico sui diversi tipi di gesti tangibili che possono essere eseguiti fisicamente, grazie a una tassonomia basata su tre componenti (muovere, tenere, toccare) e attributi addizionali, e che possono essere concepiti semanticamente, grazie a una tassonomia di tutti i costrutti semantici che permettono di associare dei significati ai gesti tangibili. In secondo luogo, il framework proposto aiuta a concepire nuovi sistemi interattivi basati su gesti tangibili e a ideare nuove interazioni basate su gesti con gli oggetti, attraverso linee guida per la definizione di gesti tangibili e una selezione delle migliore pratiche per i differenti campi di applicazione. Infine, il framework aiuta a implementare nuovi sistemi interattivi basati su gesti tangibili, permettendo di scegliere tra quattro differenti approcci tecnologici (incarnato e integrato negli oggetti, indossabile, distribuito nell’ambiente, o ibrido) e fornendo una guida generale per la scelta tra questi differenti approcci. Come applicazione di questo framework, questa tesi presenta anche sette sistemi interattivi basati su gesti tangibili, realizzati per tre differenti campi di applicazione: l’interazione con i sistemi di infotainment degli autoveicoli, la comunicazione interpersonale delle emozioni, e l’interazione nella casa intelligente. Per il primo campo di applicazione, sono stati progettati, sviluppati e testati quattro differenti sistemi che usano gesti tangibili effettuati sul volante come modalità di interazione con il sistema di infotainment. Per il secondo campo di applicazione, è stata concepita e sviluppata una lampada antropomorfica in grado di riconoscere i gesti tipici dell’interazione interpersonale. Per lo stesso campo di applicazione, un secondo sistema, basato su una maglietta intelligente, riconosce quando due persone si abbracciano e ricompensa questo gesto con uno scambio di informazioni digitali. Infine, per l’interazione nella casa intelligente, è stata investigata la realizzazione di uno smart watch per il riconoscimento di gesti eseguiti con oggetti tenuti nella mano. L’analisi dei sistemi interattivi esistenti basati su gesti tangibili permette di dimostrare che il framework ha un buon potere descrittivo e valutativo. Le applicazioni sviluppate durante la tesi mostrano che il framework proposto ha anche un valido potere generativo

    Spatial embodied augmented reality: design of AR for spatial productivity applications

    Get PDF
    Recently there has been a growth in commercial systems for Augmented Reality (AR), such as the Microsoft HoloLens and Magic Leap, which aim to subsume traditionally 2D productivity tasks performed by previous technologies through the use of a 3D User Interface (3DUI). However, there is currently a lack of research into how to design effective AR interfaces and no consensus on how to design general purpose 3DUIs. Augmented reality is an emergent technology with little prior design precedent. As AR becomes more widespread, it becomes apparent that new design paradigms are required to translate potential benefits of these new interfaces. This thesis aims to explore the design of AR productivity software that can exploit the spatial nature of augmented reality to complement the spatial nature of human interaction. To investigate this, three user studies were performed using an email client as a use case scenario. Each study focused on a different aspect in the design of an augmented reality system starting with user elicitation using informance design methods. This progressed to testing of alternative interfaces for three-dimensional document presentation using a formal lab experiment, finally ending with an observation of how users arrange documents in a simulated limited prototype system. The findings of this thesis include: • A new method of user elicitation for augmented reality interface design called “spatial informance design”. • Design recommendations of spatial interface augmentations for email. • Data to support that space can be used to triage email more effectively. • Different layouts of documents in space provide greater or lesser time, accuracy and memorability. • Presentation of document layouts with either an ego or exocentric view alters performance. • Users have a preference to use space over colour to group documents. • Users take advantage of space when a 3rd dimension is available. The conclusion of this thesis is that augmented reality has the potential to improve the user experience over the traditional two-dimensional GUI for knowledge work tasks

    LOCATIVE MEDIA, AUGMENTED REALITIES AND THE ORDINARY AMERICAN LANDSCAPE

    Get PDF
    This dissertation investigates the role of annotative locative media in mediating experiences of place. The overarching impetus motivating this research is the need to bring to bear the theoretical and substantive concerns of cultural landscape studies on the development of a methodological framework for interrogating the ways in which annotative locative media reconfigure experiences of urban landscapes. I take as my empirical cases i) Google Maps with its associated Street View and locational placemark interface, and ii) Layar, an augmented reality platform combining digital mapping and real-time locational augmentation. In the spirit of landscape studies’ longstanding and renewed interest in what may be termed “ordinary” residential landscapes, and reflecting the increasing imbrication of locative media technologies in everyday lives, the empirical research is based in Kenwick, a middleclass, urban residential neighborhood in Lexington, Kentucky. Overall, I present an argument about the need to consider the digital, code (i.e. software), and specifically locative media, in the intellectual context of critical geographies in general and cultural landscape studies in particular
    corecore