575 research outputs found

    A bistable soft gripper with mechanically embedded sensing and actuation for fast closed-loop grasping

    Get PDF
    Soft robotic grippers are shown to be high effective for grasping unstructured objects with simple sensing and control strategies. However, they are still limited by their speed, sensing capabilities and actuation mechanism. Hence, their usage have been restricted in highly dynamic grasping tasks. This paper presents a soft robotic gripper with tunable bistable properties for sensor-less dynamic grasping. The bistable mechanism allows us to store arbitrarily large strain energy in the soft system which is then released upon contact. The mechanism also provides flexibility on the type of actuation mechanism as the grasping and sensing phase is completely passive. Theoretical background behind the mechanism is presented with finite element analysis to provide insights into design parameters. Finally, we experimentally demonstrate sensor-less dynamic grasping of an unknown object within 0.02 seconds, including the time to sense and actuate

    What is morphological computation? On how the body contributes to cognition and control

    Get PDF
    The contribution of the body to cognition and control in natural and artificial agents is increasingly described as “off-loading computation from the brain to the body”, where the body is said to perform “morphological computation”. Our investigation of four characteristic cases of morphological computation in animals and robots shows that the ‘off-loading’ perspective is misleading. Actually, the contribution of body morphology to cognition and control is rarely computational, in any useful sense of the word. We thus distinguish (1) morphology that facilitates control, (2) morphology that facilitates perception and the rare cases of (3) morphological computation proper, such as ‘reservoir computing.’ where the body is actually used for computation. This result contributes to the understanding of the relation between embodiment and computation: The question for robot design and cognitive science is not whether computation is offloaded to the body, but to what extent the body facilitates cognition and control – how it contributes to the overall ‘orchestration’ of intelligent behavior

    Design and analysis of a variable-stiffness robotic gripper

    Get PDF
    This paper presents the design and analysis of a novel variable-stiffness robotic gripper, the RobInLab VS gripper. The purpose is to have a gripper that is strong and reliable as rigid grippers but adaptable as soft grippers. This is achieved by designing modular fingers that combine a jamming material core with an external structure, made with rigid and flexible materials. This allows the finger to softly adapt to object shapes when the capsule is not active, but becomes rigid when air suction is applied. A three-finger gripper prototype was built using this approach. Its validity and performance are evaluated using five experimental benchmark tests implemented exclusively to measure variable-stiffness grippers. To complete the analysis, our gripper is compared with an alternative gripper built by following a relevant state-of-the-art design. Our results suggest that our solution significantly outperforms previous approaches using similar variable stiffness designs, with a significantly higher grasping force, combining a good shape adaptability with a simpler and more robust design.This paper describes research conducted at UJI Robotic Intelligence Laboratory. Support for this laboratory is provided in part by Ministerio de Ciencia e InnnovaciĂłn (DPI2015-69041-R and DPI2017-89910-R), by Universitat Jaume I (UJI-B2018-74), and by Generalitat Valenciana (PROMETEO/2020/034)

    Towards Generalist Robots: A Promising Paradigm via Generative Simulation

    Full text link
    This document serves as a position paper that outlines the authors' vision for a potential pathway towards generalist robots. The purpose of this document is to share the excitement of the authors with the community and highlight a promising research direction in robotics and AI. The authors believe the proposed paradigm is a feasible path towards accomplishing the long-standing goal of robotics research: deploying robots, or embodied AI agents more broadly, in various non-factory real-world settings to perform diverse tasks. This document presents a specific idea for mining knowledge in the latest large-scale foundation models for robotics research. Instead of directly using or adapting these models to produce low-level policies and actions, it advocates for a fully automated generative pipeline (termed as generative simulation), which uses these models to generate diversified tasks, scenes and training supervisions at scale, thereby scaling up low-level skill learning and ultimately leading to a foundation model for robotics that empowers generalist robots. The authors are actively pursuing this direction, but in the meantime, they recognize that the ambitious goal of building generalist robots with large-scale policy training demands significant resources such as computing power and hardware, and research groups in academia alone may face severe resource constraints in implementing the entire vision. Therefore, the authors believe sharing their thoughts at this early stage could foster discussions, attract interest towards the proposed pathway and related topics from industry groups, and potentially spur significant technical advancements in the field

    Interoceptive robustness through environment-mediated morphological development

    Full text link
    Typically, AI researchers and roboticists try to realize intelligent behavior in machines by tuning parameters of a predefined structure (body plan and/or neural network architecture) using evolutionary or learning algorithms. Another but not unrelated longstanding property of these systems is their brittleness to slight aberrations, as highlighted by the growing deep learning literature on adversarial examples. Here we show robustness can be achieved by evolving the geometry of soft robots, their control systems, and how their material properties develop in response to one particular interoceptive stimulus (engineering stress) during their lifetimes. By doing so we realized robots that were equally fit but more robust to extreme material defects (such as might occur during fabrication or by damage thereafter) than robots that did not develop during their lifetimes, or developed in response to a different interoceptive stimulus (pressure). This suggests that the interplay between changes in the containing systems of agents (body plan and/or neural architecture) at different temporal scales (evolutionary and developmental) along different modalities (geometry, material properties, synaptic weights) and in response to different signals (interoceptive and external perception) all dictate those agents' abilities to evolve or learn capable and robust strategies

    Intersection-free Robot Manipulation with Soft-Rigid Coupled Incremental Potential Contact

    Full text link
    This paper presents a novel simulation platform, ZeMa, designed for robotic manipulation tasks concerning soft objects. Such simulation ideally requires three properties: two-way soft-rigid coupling, intersection-free guarantees, and frictional contact modeling, with acceptable runtime suitable for deep and reinforcement learning tasks. Current simulators often satisfy only a subset of these needs, primarily focusing on distinct rigid-rigid or soft-soft interactions. The proposed ZeMa prioritizes physical accuracy and integrates the incremental potential contact method, offering unified dynamics simulation for both soft and rigid objects. It efficiently manages soft-rigid contact, operating 75x faster than baseline tools with similar methodologies like IPC-GraspSim. To demonstrate its applicability, we employ it for parallel grasp generation, penetrated grasp repair, and reinforcement learning for grasping, successfully transferring the trained RL policy to real-world scenarios

    The Fractal Hand-II: Reviving a Classic Mechanism for Contemporary Grasping Challenges

    Full text link
    This paper, and its companion, propose a new fractal robotic gripper, drawing inspiration from the century-old Fractal Vise. The unusual synergistic properties allow it to passively conform to diverse objects using only one actuator. Designed to be easily integrated with prevailing parallel jaw grippers, it alleviates the complexities tied to perception and grasp planning, especially when dealing with unpredictable object poses and geometries. We build on the foundational principles of the Fractal Vise to a broader class of gripping mechanisms, and also address the limitations that had led to its obscurity. Two Fractal Fingers, coupled by a closing actuator, can form an adaptive and synergistic Fractal Hand. We articulate a design methodology for low cost, easy to fabricate, large workspace, and compliant Fractal Fingers. The companion paper delves into the kinematics and grasping properties of a specific class of Fractal Fingers and Hands.Comment: This paper is prepared for ICRA 202
    • 

    corecore