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Abstract

Soft Robotics is a relatively new area of research, where progress in material science has
powered the next generation of robots, exhibiting biological-like properties such as soft/elastic
tissues, compliance, resilience and more besides. One of the issues when employing soft
robotics technologies is the soft nature of the interactions arising between the robot and its
environment. These interactions are complex, and the their dynamics are non-linear and
hard to capture with known models. In this thesis we argue that complex soft interactions
can actually be beneficial to the robot, and give rise to rich stimuli which can be used for
the resolution of robot tasks. We further argue that the usefulness of these interactions
depends on statistical regularities, or structure, that appear in the stimuli. To this end, robots
should appropriately employ their morphology and their actions, to influence the system-
environment interactions such that structure can arise in the stimuli. In this thesis we show
that learning processes can be used to perform such a task. Following this rationale, this
thesis proposes and supports the theory of Soft Morphological Computation (SoMComp),
by which a soft robot should appropriately condition, or ‘affect’, the soft interactions to
improve the quality of the physical stimuli arising from it. SoMComp is composed of four
main principles, i.e.: Soft Proprioception, Soft Sensing, Soft Morphology and Soft Actuation.
Each of these principles is explored in the context of haptic object recognition or object
handling in soft robots. Finally, this thesis provides an overview of this research and its
future directions.
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Chapter 1

Introduction

1.1 Embodied intelligence and Soft Robotics

Since the term Artificial Intelligence was coined in 1956, the research field of intelligence was
initially dominated by the “computational paradigm of intelligence” (traditional cognitivism).
In this context, intelligence was regarded as a computational processes, where symbolic
operations were of central interest without explicitly considering what the symbols actually
meant. At the time, a strong connection was conjectured between the idea of “intelligence”,
the power of symbolic representation (for example in the brain), and the possibility for a
system to change from a state to another [67, 175]. In this context, an individual would
create a symbolic representation of the world by means of sensory perception, then a process
akin to rule-based symbol manipulation would allow them to exhibit intelligence [150, 190].
While the computational paradigm of intelligence has given significant impact mainly in
cyber-space, there have been a number of aspects of intelligence which cannot be fully
explained in this framework.

Traditional cognitivism discards the importance of sensory perception for learning in
the real world. Sensory perception is the ability of individuals to get, interpret, select, and
organize physical stimuli. Learning, on the other hand, is the ability of individuals to use
sensory perception to evolve and improve over time. Because symbols must represent entities
or concepts in the world, and because the entity representations must in some way be task
independent, there is an issue with how exactly sensory perception can lead to a symbolic
representation of the sensed entities in the world, whether these are physical entities, emotions
or even concepts. Without a representation of entities in the real world learning is impossible.
This problem is also known as the symbol grounding problem. The physical grounding
hypothesis arises to match the need for an agent to have its representation grounded in the
physical world. In this context, the world becomes its own best model, and appropriate
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interactions modulates the behavioural intelligence, as eloquently explained in an early article
titled "Elephants Don’t Play Chess" [25].

In contrast to the traditional cognitivistic view of intelligence, the “embodied cognition”
paradigm sees cognition as deeply dependent on the characteristics of the physical body of
an agent [272]. In this view, agents are not passively exposed to sensory perception, but
instead actively interact with their surrounding environment [150]. Therefore agents should
strive for their action and motor control to contribute to the improvement of perceptual
abilities. The embodied view of intelligence has shown that physical system-environment
interactions cannot be overlooked to understand intelligent adaptive systems, especially in
the physical real-world environment. For example, in the book “Vehicles: Experiments in
Synthetic Psychology” [24], Valentino Braitenberg describes a series of thought experiments
in which vehicles can exhibit complex and meaningful behaviours through increasingly more
complex system-environment interactions. In his thought experiments, the vehicles’ steering
is connected to sensor outputs in various ways. By an increasingly more complex network
of inhibitory or excitatory connections, and some analog sensors and actuators, the vehicles
can steer towards a light, they can avoid each other, or group in various ways and exhibit
basic behaviours of fear, aggression, liking and love, at least in the eye of the observer. The
message in his book was key in showing how intelligence can be explained in a bottom-
up fashion, and how intelligent behaviour can emerge from “simple” system-environment
interactions.

Embodied intelligence has changed the field of Robotics, aiding in the search for those
elements meant to achieve intelligence and adaptability in machines. Under the view of
embodied intelligence, the importance of the characteristics of the physical body of an agent
and its behaviour has been recognized for robotics systems. This change has fuelled a new
found effort to endow robots with new capabilities. It is in this context that a field known
as “Soft Robotics” has pushed forward robotics technologies by employing soft materials to
mimic and learn from soft biological organisms [120]. Progress in Soft Robotics has been
spurred by advancements in material science, which have benefited several areas including
the development of functional materials, rapid prototyping technologies, like 3D printing,
sensor development and much more. Soft Robotics has revoked the rigidity constrains of the
industrial robots established in the earlier century, and has allowed the study and development
machines which can bend, stretch, adapt, morph, grow, and achieve bio-inspired capabilities
beyond the rigid machines capabilities. In manipulation, for example, the “universal gripper”,
a soft gripper capable of particle jamming through vacuum pressure control, has been shown
to be able to grasp a diverse range of objects, previously impossible with any rigid solution
[26]. Another branch of research as allowed to study and mimic animals such worms,
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caterpillars, octopuses and more besides, furthering our knowledge of biology, as well as our
ability to endow robots with functionalities akin to those of animals. These functionalities
have been shown to be applicable in a number of scenarios [131, 140, 236]. A comprehensive
overview of these fields will be provided in Chapter 2.

Soft robots often have large (or infinite) degrees of freedom, which makes them hard
to control. Moreover, the softness of their body makes their motions and body dynamics
complex and hard to predict, while the environment itself may not be rigid. Sensory stimuli
(especially those from cameras, force, tactile, or other positional sensors) are also affected by
these complex motions and dynamics, which makes it difficult (if not impossible) for robots
to perceive the their own state, as well as the state of their environment. Both perception
and learning are influenced by the quality of the physical stimuli arising from the system-
environment interactions, and as such, they are subject to the difficulties observed in soft
robots/environments.

The goal of this thesis is to explore general principles for soft robots to exploit system-
environment interactions for better perception and learning in the real world.

We hypothesize that the complexity in the system-environment interactions can actually
be useful for perception. This hypothesis is based on the assumption that the complexity
in soft robots/environments enhances the richness of the physical stimuli arising from their
interaction. We argue that these enriched stimuli can be directly useful to the robot to improve
perception and learning, and that to be useful these stimuli must be “structured” or otherwise
present some statistical regularities.

The structures of sensory stimuli in soft robotics are not direct outcome of neuronal
circuits or programmes in isolation, but that of complex interplays between morphology, soft
action, soft sensing, and proprioception, on top of which learning occurs. These interplays
arising from the embodiment of soft robotics are complex in nature and depend on the
tasks and environment around the robot. These interplays are explored in this thesis as the
framework of Soft Morphological Computation (SoMComp).
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1.2 Soft Morphological Computation (SoMComp)

SoMComp is the framework by which the soft interactions arising between a robot
in its environment can be purposefully used to improve the robot’s perception and its
ability to learn. This improvement is due to the conditioning of the stimuli arising
from these interactions, through the robot’s appropriate use of its Soft Morphology
and Soft Actuation. In this context both Soft Proprioception and Soft Sensing are
necessary for purposeful action and morphological adaptation.

This section introduces the four principles which constitute SoMComp (Fig. 1.1), i.e.: Soft
Morphology, Soft Actuation, Soft Sensing and Soft Proprioception. It is important to notice
that although the focus of this thesis is on soft robotic interactions, many of the concepts
proposed are also relevant for more traditional robotic paradigms.

Soft Morphology: The physical stimuli of an agent acting in its environment are heavily
dependent on the properties of the sensory system which captures them. For example, the
elasticity of our dermis, the morphology of our fingers and our hands capabilities influence
the perception of tactile stimuli. Similarly, the soft morphology of a robot can be used to
influence the system-environment interactions.

In Fig. 1.1 Soft Morphology is placed as the main medium between the environment
and learning processes. The morphology can, in fact, filter and select relevant physical
stimuli from the environment by exploiting soft interactions. This process can be such that
appropriate structure emerges in the information retrieved, and thus the information can
be useful for learning. In other words, within SoMComp the robot should explore ways in
which to change its morphology, so to improve the quality of the sensed stimuli, such that
perception and learning can be improved. In later chapters we will explain how these changes
can be achieved by the robot in an evidence-based manner.

Soft Actuation: Similar to the morphology of the body, our actions shape a robot’s percep-
tion. In Developmental Robotics, the process by which the coordinated robot actions can
influence the physical stimuli is known as Sensory-Motor Coordination (SMC)[189]. This
will be further explained in Chapter 2. In SoMComp we take advantage of SMC. However,
SMC differs slightly. The law of requisite variety states that “if a system is to be stable, the
number of states of its control mechanism must be greater than or equal to the number of
states in the system being controlled” [6]. The complexity of soft robots is usually such that
an infinite number of states are possible. We argue that because of this, a similar complexity
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Fig. 1.1 The Figure shows a diagram of Soft Morphological Computation (SoMComp).

in the action may also be necessary. We call this Soft Sensory-Motor Conditioning (SSMC).
In SSMC these complex actions can improve the richness of the sensed stimuli by inducing
complex soft dynamics in the interactions. If appropriate actions are used, these rich stimuli
will present statistical regularities, or structure, and can be directly useful for perception and
learning.

As shown in Fig. 1.1, the actuation influences the interactions by acting on the body
of the robot, and the physical stimuli are affected according to the changes induced by the
actuation. A robot should thus explore ways in which to actively use its own body to improve
the quality of the stimuli arising from interactions, by using appropriate actuation. Similarly
to soft morphology, in later chapters we will show how this can be achieved in an evidenced
based manner.

Soft Sensing: Soft Sensing refers to the ability of a robot to retrieve stimuli arising from
system-environment interactions. In Soft Sensing it is important that the stimuli perceived
depend, or can be influenced by, the robot. For example, a camera mounted on the robot, or
one which is facing the robot’s workspace, can perform soft sensing. This is because the
sensor response can be influenced by the interactions of the robot and its environment. Even
a sound-sensor can perform Soft Sensing, as shown in later chapters. On the other hand, a
camera not mounted on the robot, and whose field of vision does not include the robot’s
body or its workspace cannot perform soft sensing, even if the visual feeds are used by the
robot for decision making. This can, for example, be the case for an autonomous vehicle
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using satellite images for route prediction. That is because the robot interactions with the
environment do not generally affect the physical stimuli captured by the camera, and thus
SoMComp is impossible. Both the Soft Actuation and Soft Morphology principles depend on
soft sensing. Without a medium to retrieve physical stimuli from the environment, in fact, it
is impossible to reason about the quality of said stimuli, and use them to explore ways to
improve the robot’s morphology or actions.

Soft Proprioception: In this thesis, we will refer to proprioception as both the ability of
the robot to sense its own state, as well as the knowledge of its own physical properties.
For example, without inverse kinematics knowledge there cannot be any conditioning of the
stimuli via actuation. In Fig. 1.1, soft proprioception is tightly related to learning processes.
This relationship is due to the fact that learning processes need knowledge of the body and
the robot’s capabilities to explore these appropriately for perception, while learning processes
should be used to improve the robot’s understanding of its own body and capabilities. Note
that proprioception is not a prerequisite for learning, as learning processes can function
without proprioception. However, it is a prerequisite for SoMComp, as no appropriate action
or morphological changes can be achieved without knowledge of the body and robot’s
capabilities. Moreover, proprioception can be learned, as shown in later chapters.

Several of the concepts developed through this thesis are inspired by older concepts within
the visionary field of Developmental Robotics. These concepts are presented in the review
chapter of this thesis, and within the theory of Soft Morphological Computation they are
revisited and changed, in the light of new developments in material science and the advent of
the area of Soft Robotics, sensing and artificial intelligence. The employment of SoMComp
can change the way we perceive robotics systems, where adaptation arises via learning
through the body. Depending on the task at hand and the robot capabilities (e.g. object
grasping, object detection etc.) it may be useful for the robot to explore changes within its
body, as well as changes in the way it interacts with the objects, to influence the physical
stimuli in ways that make learning simpler, faster or more robust. If the physical stimuli
are appropriately influenced, it may even be possible to solve a task as complex as object
recognition by simple unsupervised methods, like shown in later chapters.

1.3 Contribution

In this section we will give an overview of the contributions in this theses in the context of
each chapter and their content.
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1.3.1 A Use Case of Complex Soft Interactions

As previously mentioned, soft system-environment interactions are characterized by the
complex dynamics between the robot (or a biological organism) and its environment. This
complexity is due to several factors, including the many or infinite degrees of freedom of
soft bodies, the hard-to-capture collision dynamics of soft objects and more besides. As
previously explained, this is the principal motivation behind the need of employing SoMComp.
The majority of the interactions arising in real world settings are, in fact, soft in nature. This
is the case for the human hand manipulation of objects, for example, due to the softness of
our dermis and often the softness of the objects we manipulate.

In Chapter 3 we demonstrate the complexity of soft interactions in a real world scenario.
We consider the area of agri-food robotics, and more specifically the problem of estimating
fruit ripeness by touch, via a robotics platform. In the chapter we propose a model-based
approach to use non-destructive light touch experiments to estimate ripeness with a capac-
itive tactile sensing array. As shown in the chapter, the complex dynamics arise from the
complexity of the structural properties of the fruit considered, including the soft properties of
both the skin and pulp of the fruit, which influence the tactile sensor stimuli. These complex
dynamics make it hard to achieve accurate ripeness estimations with simple model-based
approaches. This chapter further highlights the pro and cons of purely based model-based
approaches, and shows their limitation in capturing the complexity of soft interactions.

1.3.2 Model-Free Soft Proprioception in Continuum Soft Bodies

After the complexity showcase, we dive into each of the principles in SoMComp. We start
from the principle of Soft Proprioception. As previously explained, Soft Proprioception is a
core part of SoMComp, as only the knowledge of the robot’s bodily properties and skills can
allow it to appropriately manipulate these to its advantage.

We focus on continuum soft robots which, due to their softness, are hard to control, and
their dynamics hard to predict. In Chapter 4 we propose a sensorization method to achieve
proprioception in continuum soft robots with capacitive tactile sensing arrays. The method
proposed is model-free, as opposed to the previous Chapter, where a model-based approach
was used to capture the complex interactions. In this work, no knowledge of the body is
needed a priori, and only the careful placement of sensors is necessary. The proprioception
is achieved through movement akin to ‘twitching’ in infants, where random jerky motions
reinforce the robot understanding of its own body given sensor evidence. Moreover, the robot
interacts with entities around it, and these interactions are faithfully captured by model-free
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approaches. The chapter provides a rationale, together with advantages and limitations of
these approaches, with respect to the model-based approach shown in Chapter 3.

1.3.3 Soft Morphology to Structure Tactile Stimuli

The Soft Morphology principle in SoMComp revolves around the concept that the mor-
phology of a soft robot can influence the physical stimuli, and that this influence can be
useful for computation. This concept is inspired by the Developmental Robotics concept of
“Morphological Computation”, but it is revisited in the context of soft interactions.

In Chapter 5 we first demonstrate the importance of morphology for soft interactions in a
real-world practical scenario. The task set for the robot is that of removing the outer leaves
of a lettuce, a soft and delicate object which requires careful manipulation. We show how
the resolution of the task depends on the properties of the robot manipulator, which in turn
influences the soft interactions between the robot and the soft produce.

In Chapter 6 we take this one step further, and introduce Soft Sensing. The robot task
is object feature recognition, and the robot is equipped with a tactile sensor, as well as
changing soft morphology. In the chapter we use unsupervised methods to show how the
soft morphology can be used to influence the soft interactions, such that structure arises
in the physical stimuli, and learning is possible. These morphological changes allow the
robot to discriminate amongst different objects based on their physical properties with simple
unsupervised methods. This in contrast to common approaches in the field, where more
and more complex machine learning techniques would normally be used to solve complex
problems. Complexity in the computation is here off-loaded to the body itself, while brain
would instead be free to resolve higher cognitive tasks.

1.3.4 Soft Actuation to Structure Tactile Stimuli

Besides Soft Morphology, the principle of Soft Actuation is the other mean by which the
robot can influence the physical stimuli. The principle of Soft Actuation is one by which the
physical actions are used to appropriately affect the soft interactions such that structure can
emerge in the physical stimuli.

In Chapter 7 we treat the principle of Soft Actuation. We focus on the task of robotic
palpation, where a robot has to perform tactile discrimination of areas in a silicon phantom
containing hard spherical inclusions, and areas without. Once a morphology has been estab-
lished, we must reason about the type of actions necessary to influence the soft interactions
appropriately, such that structure emerges in the stimuli. We propose an unsupervised mathe-
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matical framework to achieve this. We show that by using this framework, it is possible to
identify actions which can aid leaning processes to perform tactile discrimination.

1.3.5 Complex Soft Actuation to Improve Tactile Perception

As previously mentioned in the Soft Actuation principle of SoMComp, we argue that com-
plexity in the actions of the robot may be required to achieve appropriate structuring of the
physical stimuli. In Chapter 8 and Chapter 9 we focus on the aspect of complexity in Soft
Actuation. We employ large physical experimentation with a robot to: first, assess whether
complexity in the robot actions can be beneficial; and second, to find those actions which
may influence the soft interactions appropriately so that structure emerges in the stimuli.

In Chapter 8 we go back to the topic of robotic palpation, and we devise a control strategy
to generate more complex multi-axis robotic palpations. We show that these trajectories
induce complex dynamics in the soft interactions between the phantom and the robot. We
also show that these dynamics improve the robot’s ability to find inclusions, and that complex
palpations can therefore be beneficial to achieve discrimination.

In Chapter 9 we move away from classification to show instead a regression case. Here,
a robot is made to perform complex key-strokes of piano keys with an elastic finger, and
optimize its performance over trials via sound feedback. A Gaussian Process based approach
is developed, where the robot is made to approximate the complex, non-linear, relationship
of keystroke patters to sound outputs. The complexity of the action space allows the robot to
appropriately interact with the piano instrument, so to be able to play comparably to a human
player over 10 different playing styles.

1.3.6 Soft Morphology & Action Co-Optimization

Finally, in Chapter 10 we put together the concepts of Soft Morphology and Soft Actuation.
If it is true that a soft robot should be able to change its own bodily properties according
to the task to solve, then its actions must also change with the changing body, else the
improvement achieved through the changes in one may be hindered by the inflexibility of
the other. Moreover, these actions can be complex, to account for the complexity in the
system-environment interactions, and enable the retrieval of appropriate physical stimuli. It
is here that we propose a probabilistic approach to efficiently reason about changes in sensor
data due to both changes in the morphology and the action. In this chapter we focus on tactile
perception for the discrimination of objects based on salient features. The chosen features
are shown to be undetectable unless the robot chooses an appropriate morphology and action,
and efficiently explores both.
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Fig. 1.2 The Figure shows a the chapter contributions within Soft Morphological Computation
(SoMComp).

1.4 Structure of this Thesis

As summarized in Fig. 1.2, this thesis is structured as follows. Chapter 2 provides a state of
the art review on fundamental topics to be discussed in this thesis. It introduces the areas
of Soft Robotics and Developmental Robotics, and finally discusses the emergence of a
new field, Developmental Soft Robotics, which re-establishes important concepts from the
developmental sciences to be seen under the new context of Soft Robotics, and advancements
in areas such as machine learning, sensing and actuation and material science. Throughout
the remaining chapters in this thesis we will discuss each of the topics exposed in Section
1.2, and present a series of frameworks through which a robot would be able to change its
bodily morphology, as well as its own action control, to improve the sensory perception
derived from interaction with the environment. In Chapter 3 we present a case study of
complexity in a real world robot manipulation problem, an important motivation behind
the need for SoMComp. Chapter 4 treats the important principle of proprioception in Soft
Robotics, and how to achieve a proprioceptive understanding of a continuum soft body with
model-free methods. In Chapter 5 we move on to the Soft Morphology principle, and show
the importance of morphology in a complex soft manipulation task. In Chapters 6, we show
how we can appropriately make use of the soft morphology of a robot’s tactile apparatus to
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induce changes in its sensory perception. This changes can be purposeful and useful, and we
show how they can aid a robotic system to perform classification of complex objects by touch.
In Chapters 7, 8 and 9 we show how appropriate robot actions and complex interactions can
similarly influence physical stimuli, and so help in complex object haptic perception and
object handling scenarios. In Chapter 10 we put together the concept of soft Morphology
and Soft Actuation to propose a unique, evidence-based, approach to jointly improve sensory
perception via appropriate changes in both action and morphology. At last, in Chapter 11
we draw the conclusions of the work, summarizing the findings, and finally discussing the
remarks of this research and its future in the robotics field.
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Chapter 2

Background: Developmental Soft
Robotics

Reference Publication

This chapter was adapted from a book chapter titled “Soft Robotics: a Developmental
Approach” [224], written in collaboration with Dr. Fumiya Iida, and forthcoming in
the book “Cognitive Robotics Handbook” to be published by MIT Press. The chapter
reviews the topics and Soft Robotics and Developmental Robotics, before introducing
a new area titled “Soft Developmental Robotics”, where the two fields merge into a
unique new area spurring further research. The contribution of the chapter included
the writing of all sections, with guidance by Dr. Fumiya Iida on style, content and
layout.
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2.1 Introduction

In this Chapter we will first briefly introduce and review the area of Soft Robotics, with
emphasis on how compliance and softness have changed the robotics landscape in the past
two decades. We then introduce the area of Developmental Robotics, and the key ideas
which are fundamental for understanding the relationship between biological systems and
artificial systems. Finally, we discuss how the developmental sciences and Soft Robotics
are irrevocably linked, into what we have chosen to call “Developmental Soft Robotics”.
Here, in fact, the two fields can be merged into one where the developmental sciences
can aid in the design and make of soft robots, which can then be used as platforms to
better understand biological systems. We will also discuss how the biological concepts of
phylogenetic development, ontogenetic development and short-term adaptation are indeed
naturally suited to be embedded within a “soft” robotic context, and conclude with the
concept of “Soft Morphological Computation” within this new area.

2.2 Bio-inspired Soft Robotics

Deformation is a fundamental characteristic of biological systems. Almost 90% of the human
body is composed of soft tissue; Many vital functions such as heart, lung, muscles, eye lenses,
and more besides, depends on deformation of materials. In bipedal walking, for example,
evidence has shown how the soft tissue of the body might not only cushion impacts on every
stride, but also both save muscles the effort of actively dissipating energy, and perform a
considerable amount of the total positive work per stride by soft tissue elastic rebound [280].

In the past few decades there has been an unprecedented advancement in material
sciences and manufacturing techniques, furthering our knowledge of functional materials
and empowering artificial systems with newfound abilities. These advancements, together
with the better understanding of biological systems, gave rise to the era of Soft Robotics,
where bio-inspired robotics platforms make use of soft and deformable materials to achieve
more flexible, adaptable and robust behaviours [97, 120].

Since the dawn of Soft Robotics, the application of material science and soft-body
compliance has changed the robotics landscape. In manipulation, for example, the“universal
gripper”, a soft gripper capable of particle jamming through vacuum pressure control, has
been shown to be able to grasp a large number of objects [26]. Other solutions for grasping
and manipulation range from tentacle-like systems [131] to pneumatic soft grippers [276]
and human inspired soft-robotic hands [94] (Fig. 2.1).
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(c)

(d)

(e)

Fig. 2.1 Bio-inspired Soft Robot examples. (a) Worm-inspired soft robot [236]. (b) Human-
inspired soft passive hand [94]. (c) Caterpillar-inspired soft robot [140] (d) Octopus-inspired
tentacle [34]. (e) Fish-inspired soft robot [119].

Animal-inspired soft-robots are amongst the most developed sub-ares of Soft Robotics,
where the robot platforms range from worms [236] or caterpillars [140], to octopuses [131],
fish [119] and others besides (Fig. 2.1). In worm-like soft-robots for example, akin to their
biological counterparts, the contraction of longitudinal muscles followed by the contraction
of circumferential muscles simulates a travelling wave along the body, generating locomotion
[263]. In caterpillars, motion is generated by coordinated control of the time and location of
the prolegs attachment to the substrate, together with waves of muscular contraction [14].

The ability to mimic these unique systems makes soft robots an exciting new field, where
the limits of the (rigid) robots of the past century can be overcome with new-found solutions.

2.2.1 Soft Materials and Soft Actuation

The area of Soft Robotics is inevitably connected to the field of material science, where new
discoveries in the latter facilitate progress in the former. For a soft robot to be able to use
material compliance to aid in robotics tasks, it is necessary for the make of the robot to be,
at least in part, deformable. Elastomeric (polymer) materials, like EcoFlex or DragonSkin
[241] have been at the center of researchers’ attention for several years, with new materials
composite materials being discovered every year. Moreover, the advent of 3D printing
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technology has induced robot design and testing operations to be much faster than before,
facilitating rapid and cheap prototyping in Soft Robotics.

Actuation poses one of the biggest challenges in Soft Robotics. In many animals, the
co-action of a large number of muscles distributed over their body is capable of generating
relatively high forces, facilitating coordinated and robust action. Replicating this ability
is no easy feat, as the majority of the robotics solution lack the ability to generate forces
comparable to the industrial robots of the past.

Four main soft actuation techniques exist: tendon driven, pressurized air or fluids,
dielectric elastomeric actuators, or DEAs, and shape memory alloys, or SMAs [120]. Tendon
driven actuation mimics biological musculoskeletal systems, where actuation is achieved
through the pull and release of tendons, via the appropriate control of motors (Fig. 2.2a).
Although a powerful and widespread actuation technique, a large number of tendons is
usually necessary to achieve complex behaviors and control complexity increases with the
number of motors necessary to control the tendons. For softer robots, like continuum soft
robots, this type of actuation usually does not scale. Pressurized air and fluids are one of the
most powerful actuation techniques for soft robots, capable of generating high forces and
displacements. The actuation usually consists of varying the pressure inside pre-designed
chambers within the body of the robot, to achieve their expansion and contraction and
generate motion or morphological changes (Fig. 2.2b). However, these actuation systems are
usually bulky, heavy and require high power sources, making it unsuitable for untethered
robotics systems [130]. DEAs are made of soft materials that can be actuated through
electrostatic forces (Fig. 2.2c). DEAs have been shown to have high strain/stress and mass-
specific power, however, the need for DEAs to be pre-strained imposes rigid constraints on
the robots’ design [181]. Finally, SMAs with the most common nickel-titanium alloys, can
generate force through a change in shape due to a rise or fall in temperature of the material
(Fig. 2.2d). Temperature change control, however, is a challenge. High voltages are usually
required to achieve temperature changes, and robustness over varying temperatures in the
environment is still an issue to be overcome [208]. Other methods exist; it is possible for
example to induce pneumatic contraction by evaporating ethanol via resistive heating [163],
or achieve bending through combustion [259]. Other issues, like reduced output force or slow
speed however come into play [204]. Soft Robotics actuation and material sciences are still
an ever changing field, with new solutions being expedited by fast prototyping and iteration.

2.2.2 Soft Robot Control, Simulation and Learning

Soft robotic control poses several challenges and opportunities. Here, the “degree of softness”
matters. Take, for example, a rigid robotic hand, where the palms and fingertips are covered
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(a) (b)

(c) (d)

Fig. 2.2 Examples of some of the main actuation mechanisms used for soft-robotic systems.
(a) Tendon driven continuum robot [213] and model [73]. (b) Pneumatic soft actuator and
[279]. (c) Variable stiffness dielectric elastomer actuator [239] (d) Curved shape memory
alloy-based soft actuator [209].



18 Background: Developmental Soft Robotics

with an elastomeric material. The control of the hand may be achieved with classical methods
(i.e. inverse kinematics), however, the complexity of the control may be reduced, as it may
here be possible to make use of the mechanical passive dynamics of the soft-fingers to
achieve a desired grasping behavior, averting the need for sub-millimeter precision in the
robot control [105, 193]. On the other hand, as the “degree of softness” in the body increases,
new challenges arise.

A robot made entirely of elastomeric materials, for example one simulating the tentacle
of an octopus or the trunk of an elephant, can not be controlled classically; moreover,
proprioception and simulation become problematic. As opposed to the hard links with sliding
or rotational joints in classical robots, the continuity and softness of the body makes the
control and simulation of continuous soft robots much harder. Novel actuation methods
aid robotics researchers in their endeavours to achieve desired robot control (Section 2.2.1),
and new sensing and control methods are discovered on a daily basis [214]. Achieving a
proprioceptive understanding of the robot’s configuration is necessary to be able to control
continuum soft robots accurately and repeatably, thus making the appropriate sensorization
of soft-bodies fundamental.

Much effort has been put in the sensorization of soft robots. The most common soft
sensors are perhaps strain sensors, which are soft deformable sensors capable of sensing
body deformations through stretching. It is thus possible to embed such sensors into the
(soft) body of a robot, without influencing its ability to deform. Other sensors have been
used, based on resistive [90] or capacitive [153] technologies. Recently, work in [69] and
[229] have shown how it is possible to achieve a high fidelity proprioceptive understanding
of a continuum soft body through its sensorization via Fiber Optic and capacitive tactile
sensors respectively.

In the context of control, and simulation, Learning plays a fundamental role. With the
infinite degrees of freedom posed by continuum soft body, for example, precise control via
classical methods is hard, and usually does not scale. Model based solutions based on the
piece-wise constant curvature assumption have been shown to work for small tentacle-like
robots [52]. However, the error in the controller always increases with the increase in the
number of soft segments within the robots. The models, in fact, are usually too simplistic to
accurately capture the complexity of continuum soft robots. Learning in this case, has been
shown to be useful in compensating for the lack of knowledge or model complexity [227].



2.3 Developmental Robotics 19

2.3 Developmental Robotics

Cognitive Developmental robotics (CDR) is an area of research where robotics and the
developmental sciences merge into a unique field; one that seeks to better robotics with
insights from developmental sciences, and further our understanding of developmental
sciences through the use of robotics platforms [150]. The need for Cognitive Developmental
Robotics to be a research area on its own, arose at the dawn of the 21st century from the
need to understand, not only the cognitive and social development of individuals (as explored
in the area of epigenetic robotics [282]), but also how the acquisition and development of
motor skills, as well as morphology, influence the development of higher order cognitive
functions [4, 5, 150]. In this context, robots can be used as experimental subjects, where
developmental models can be implemented in robotics platform and scientists can gain
insights from behavioural analysis, an approach known as synthetic methodology ([219,
246]).

As mentioned in Chapter 1, in stark contrast to the traditional cognitivistic approach, in
developmental robotics there is no clear separation between the physical body, the processes
that determine reasoning and decision making (cognitive structure) and the symbol represen-
tation of entities in the world. Rather, these processes influence each other and intelligence
emerges from their interaction.

2.3.1 Facets of Development

In biology, ontogeny can be defined as the development of an organism, usually from the
moment it is conceived and thereby throughout its lifespan. Ontogenetic development thus
can be seen as the evolution of an organism throughout its life, as dictated by a co-active action
of internal (endogenous) and external (environmental) factors to the organism itself [112, 150].
Within ontogeny there is dissent on the role of physical development, through maturation
and growth, and the role of learning. Although initially ontogenetic development was seen as
tightly coupled to physical development, and learning would only occur as a consequence of
development itself [186], several subsequent views thought to break the boundary between
learning and development. One such view would see learning and development influencing
each other bi-directionally, thus learning, modulated by physical developmental processes,
could actively advance development itself [126]. Others thought dynamics processes to be at
the base of development and learning, breaking the boundaries between development and
learning altogether in what is known as “Dynamic Systems Approach to Development” [68].
Understanding ontogeny has the potential to give us invaluable insights to better understand
biological system and thus build better artificial systems. A few components, or facets, of



20 Background: Developmental Soft Robotics

ontogenetic development are key to that end, and their understanding will be important for
the purpose of the concepts proposed throughout the chapters in this thesis. Therefore, we
will briefly report some of these facets in the following subsections.

Degrees of Freedoms, Freezing and Freeing

The degrees of freedom problem was first introduced by Russian physiologist N. Bernstein
[15], and it referrers to the ability of many biological organisms (humans in particular)
to achieve highly controlled and coordinated behaviors, despite the non-linearity of their
muscular-skeletal system and their high number of muscular degrees of freedom. Part of
a solution to the degrees of freedom problem was proposed by Bernstein himself, through
what he called the principle of freezing and freeing degrees of freedom. By freezing, or
tightly coupling the peripheral joins, a body can reduce its degrees of freedoms so that
learning is possible. Freeing, or weakening the coupling at the peripheral joins at a later stage
would instead allow the body to re-claim its degrees of freedom, and learn more complex
motion patters [250]. In this process, the emergence of coordinated motion from a dynamic
interaction with the environment is fundamental for any organism to achieve controlled
behaviors.

Self-exploration and Spontaneous activity

At infancy, the inquiring of one’s surroundings through physical exploratory action, and
the perceptual consequences of said explorations, have been shown to play a crucial role
in an infant’s “sense of bodily self” [207, 264]. The concept of self-exploratory action is
tightly coupled with the concept of spontaneous activity. Infants, for example, explore their
physical constraints through coordinated behavior emerging from spontaneous neural and
motor activity (e.g. kicking or suckling), useful to create or reinforce joint coupling and
motor synergies.

Intrinsic Motivation

When infants explore the surrounding environment and their own physical constraints, not
all their actions may be strictly goal oriented. Instead, an intrinsic value mechanism guides
the motor actions to achieve specific motion patters. Intrinsic motivation has a key role in
learning and development, and, in infants, it has been linked to the concept of curiosity [184].
In artificial systems, such a mechanism could allow learning without explicit teaching or
supervision [11, 12].
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Categorization

Categorization is one of the most fundamental abilities for the majority of living organisms,
without whom there would be no chance for an organism to distinguish any entity within its
environment, including food sources, dangers, peers and so on [150]. The vast majority of
the organisms, thus, are capable of categorising and discriminating between a wide range
of sensory stimuli [56]. This is not usually a passive process, but rather one where the
active exploration [150, 199] and the motor-coordinated behaviour of an organism would
purposefully influence the sensory stimuli so that structure arises, and categorization is both
possible and simpler [255].

Sensory Motor Coordination

In the context of embodied cognition, it becomes key to consider and understand the inter-
actions arising when an individual learns and adapts its motor skills while interacting with
entities in the world it lives in. The sensory-motor coordinated behaviours link action and
perception in a cohesive loop to better discriminate known or unknown entities in the world,
these are also known as “Sensory Motor Contingencies” (SMC) [189]. Under the light of
SMCs, the perceptual experience of an individual is no more thought of as a consequence
of brain computations, but rather a synergic interaction of skilful actions and sensing, both
influencing each other to improve the perceptive experience [27, 183, 189].

Morphology and Morphological Computation

Akin to the role of sensory motor coordinated behaviour, the morphology of the body plays a
fundamental role in the developmental process, and the acquisition of motor skills [16, 197].
Within the idea behind Morphological Computation, some complexity due to the interaction
of an agent with its environment can now be outsourced to the body, leaving more canonical
computational frameworks to serve higher level functions [192]. It is here that the role of
morphology, materials and mechanical intelligence can be understood.

Body schema

Body schema, also known as forward models, are simulators of the musculo-skeletal system
and the environment [37, 78, 273]. These simulators confer the ability to an organism to
understand both their body and the environment surrounding them, and thereby predict the
consequences of their actions. Systems possessing body schema are capable of predicting
future states, given their body configuration and other sensory inputs. In humans, instances
of such systems have been previously hypothesized to exist in the cerebellum [162].



22 Background: Developmental Soft Robotics
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Fig. 2.3 Developmental Soft Robotics. (a) Conceptual Map of Developmental Soft Robotics.
(b) Diagram of Developmental Soft Robotics across timescales.

2.4 Developmental Soft Robotics

One of the most difficult tasks in modern day robotics is to achieve an appropriate robot
design for a robot to perform certain tasks in the world. As previously mentioned, the advent
of Soft Robotics, if anything, has increased the complexity of robots, revoking the rigidity
constrains established in the earlier century, and bringing about a new era. In this new era,
robot design is driven by factors much like biological systems, where functional morphology,
co-ordinate sensory-motor action, physical adaptation and embodiment all contribute to the
“robot’s survival" in the world, and to its ability to see a task to completion. Developmental
Soft Robotics aims at bringing together the areas of Soft Robotics with that of Developmental
Robotics and the developmental sciences. These, in fact, are irrevocably linked, as we will
later show (Fig. 2.3a).

Within the developmental sciences, in its simplest form, the development of a biological
organism can be distinguished on three different scales: Phylogenetic, Ontogenetic and
short-term.

In biological organisms, Phylogenetic Development has the largest time-scale, where
changes happen at the level of groups of organisms, over many generations, and where
processes like natural selection are responsible for certain “traits” to survive and evolve,
while others to become extinct. Akin to Phylogenetic development is Soft Robotics design,
where the design of robots is adaptive and ever-changing, to comply and conform to the task
the robot has to achieve. Currently, the majority of the adaptation is due to human design and
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biased by human skill and experience. However, new methodology for autonomous designed
are a hot research topic, and processes like evolutionary algorithms have shown promise in
the past [55, 179].

Ontogenetic development, like previously explained, concerns changes throughout and
within the lifespan of an organisms, and include growths and bodily adaptation. The ability
of robots to “morph” throughout their lifespan to achieve desired behaviour has been one
of the key advantages of soft robots, as opposed to their rigid counterparts of the previous
century. Robots navigating through growth, like fungal hyphae [84], elongating their bodies
due to pressure, as well changing their stiffness to change their body dynamics and achieve
different behaviors [36] are all examples of such adaptability.

Short-term adaptation refers to the shortest adaptive and developmental time-scale of
all, where adaptation needs to be achieved instantaneously. Short-term adaptation is perhaps
the most naturally suited to be discussed in a soft setting. In the past, this type of adaptation
needed to be actively achieved at the control level, where real-time control would allow short-
time adaptive behavior through mechanical or sensory feedback. Within the Soft Robotics
framework, much like biological organisms, the short time adaptation is just a consequence
of the soft instantaneous deformation of the soft body itself. When we delicately slide our
finger through a ridged surface, for example, the need for complex and precise control is void
by the ability of our dermis to deform and conform to the surface under touch. Much like
the illustrated example, the compliance and softness of materials, in soft robots, can achieve
short-term adaptation. The mechanical feedback becomes only a physical consequence of
contact, and compliance can naturally suppress the need for complex controllers.

Fig. 2.3b illustrates the diagram of Developmental Soft Robotics within the timescales
presented. For the remainder of the chapter, we will highlight some of the design principles
to achieve short term and ontogenetic adaptation, as well as briefly explain evolutionary
algorithms on a phylogenetic time-scale interest. Finally, we discuss some of the challenges
and perspectives for the future.

2.4.1 Design Principles

In the next subsections we will discuss a collection of design principles which can aid in the
development of adaptive soft machines, based on current literature.

Functional Morphology and Morphological Computation

As explained in Section 2.3.1, the morphology of the body plays a fundamental role in living
organisms, one which influences their learning and developmental process, and aids in the
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ability of said organisms to perform every-day tasks. When designing robotics systems,
if shape was initially the most salient of morphological features, with the advent of Soft
Robotics this may no longer be the case. Materials at different levels of elasticity have been
shown to be able to perform “computation” [57, 227]. In Chapter 6, for example, we will
show how complex haptic information can be used to classify objects based on different
properties, simply by unsupervised clustering methods. This is achieved by exploiting the
soft characteristics of elastomers, which can influence the response of tactile sensors so as to
simplify object discrimination by a robot.

A paradigm trying to make use of the complex body-environment interactions is the
“reservoir computing” framework of computation. The original idea behind reservoir comput-
ing begins with network computation, where an input is fed to a network, which computes a
corresponding output. In reservoir computing a fixed random dynamical system, also known
as reservoir, is used to map input signals to a higher dimensional space. The “readout” final
part of the network, then, is trained to map the signals from the higher dimensional space to
their desired output. As previously mentioned, soft robots, as well as biological organisms
are usually made, at least in part, of soft materials. The body dynamics of soft robots are thus
very complex, highly non-linear and high dimensional, making control hard. Through the
reservoir computing paradigm it is possible to capitalize on the complexity of such system
by exploiting the soft body as a computational resource, using the body dynamics to emulate
non-linear dynamical systems, and thus offloading some of the control to the body itself
[169, 172]. Work in [170], for example, has shown how it is possible to control a complex
continuum soft arm, inspired by the tentacle of an octopus, in close loop without any external
controller, by using the body of the robot as a computational resource. Under this light, high
non-linearity and complexity may be a desirable property of the body, and design might have
to be thought of accordingly.

An additional property which allows soft bodies to be used as a computational resource
is memory. The soft body dynamics of soft robots, in fact, can exhibit short-term memory,
allowing robots to emulate functions which require embedded memory [170]. When under-
actuating a continuum soft robot, for example, it may be the case that control mechanism is
not deterministic with respect to the behaviour of the robot. In these cases the behavior of
the robot may depend, not only on the induced control and its current state, but also on the
history of the previous robot states. This may be the case when actuating a soft tentacle arm
via only moving one of its extremities.
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Soft System-Environment Interactions

At the dawn of the 21st century, the concept of “morpho-functional machines” was proposed.
Morpho-functional Machines were defined as machines which were adaptive by being
able to change their morphology as they performed tasks in the real world [82]. In this
context changes at different timescales were already argued to be important, i.e.: short-term,
ontogenetic, and phylogenetic, or evolutionary. It is important to note that the adaptation and
the resolution of the task is here achieved not at the control level, but at the morphological
level.

As advocated by the Developmental Robotics paradigm intelligence and coordinated
action are the results of complex interactions between the body, the mind and the environment.
The latter, in fact, plays an important role in determining the behaviors of the artificial or
natural organisms living within it.

Following this trend, one of the most influential experiments of the last two decades
was the “dead fish experiment”, performed in a collaboration between Harvard and MIT
in 2005 [13]. In the experiment, a dead fish was shown to be able to swim up-streams
when no control impulse was clearly being sent by the brain. Upon further studies it was
apparent how the streamlined body of the fish, passively oscillating, was capable of turning
the surrounding energy into mechanical energy, and thus propel itself forward passively.
Although the morphology and make of the body allowed the dead fish to transduce the
surrounding energy, the environment was the enabling factor. The vortexes created by water
streams were key in the experiment, as they generated the energy to be transduced and
recreated the conditions for the body to manifest its propelling abilities. The interaction
between the body and the environment were, in fact, the decisive factors in determining the
observed behavior. A similar influential experiment was the passive dynamic walker. In
the experiment, a walking robot was built without a controller. The make of the robot, with
kneecaps, springs and pendulum-like leg swings was capable of stable, human-like and low
energy, bipedal locomotion. However, the walking locomotion was initiated and stabilized
by the environment itself, as it manifested when the robot was placed on a downward slope
[39], thus the potential energy could be skillfully be turned into kinetic energy.

In robot design, it is therefore always necessary to take the environment into account.
Much like the examples previously mentioned, the body and the brain are often not enough to
achieve useful objectives. Things in the world exist to affect and change their surroundings,
and live within the environment they are situated in [156]. In this context, it is in the interplay
of the body and the environment that intelligent, situated, behavior can be observed, and that
morphology can be empowered and purposefully adapted.
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(a) (b) (c)

(d) (e)

Fig. 2.4 Bio-inspired flexible and soft sensing examples. (a) Artificial compound eyes [66],
(b) Robotic tactile vibrissal sensing [187], (c) I-cub robot with large-area flexible capacitive
tactile skin [89], (d) Conductive Thermoplastic Elastomer’s sensorized universal gripper [95],
(e) Stretchable and conformable sensor for multifunctional sensing [92].

Sensor Morphology and Soft Perception

In nature, morphology plays a fundamental role within the sensing landscape, mechanically
converting, filtering and amplifying sensor stimuli from the outside world, to make sense of
the surrounding environment, or internal states [106, 261]. In rats and mice, for example,
vibrissae, or sensitive tactile hairs, have been known to confer these mammals specialized
tactile capabilities, aiding them in a number of sensory discrimination tasks [200]. In
a similar light, most mammals have evolved to mediate vision through compound eyes,
compromising resolution for larger fields of view and high temporal resolution, enabling
fast panoramic perception [129]. Within the biomimetic robotics field attempts have been
made to endow robotics systems with the capabilities of organisms observed in nature, haptic
robot perception through whiskers [187] and compound vision [66] are two such examples
(Fig. 2.4).

Soft sensing is one of the most popular fields within the Soft Robotics landscapes.
Augmenting Soft Robotics system with the ability of sensing the environment can enable
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robots to react to unknown events, to improve their control and morphology over time, and
capture information or reason about entities in the world. Sensorizing soft robots is no easy
task. One of the goals within this field is to devise sensors which themselves exhibit some
“soft” behavioural characteristics, usually flexibility (i.e. can be bent), and stretchability [146]
are desirable. Currently, approaches to achieve stretchable electronics include wavy circuits
[155, 210] and conductive liquids [31]. One of the most widespread soft sensors are strain
sensors, which have been shown to be highly elastic [167]. New embedding methodologies
have also shown the possibility of embedding strain sensors within elastomers through 3D
printing techniques. Other flexible sensing technologies, like capacitive tactile sensing [154]
and optic fibers [69] have been been used within Soft Robotics systems.

As previously mentioned, sensory-motor coordination and morphology can enhance the
sensing capabilities of robotics systems. Sensors thus, should not be thought of simply as
independent and self-sufficient technologies, but instead, it is fundamental to think of sensor
technologies as apparatuses which reside within a body. The body dynamics derived from
its morphological properties, coupled with the environment the robotic system is situated
in, should all contribute to the sensor morphology, its characteristics and its perceptual
capabilities. The appropriate coupling of these factors has been shown to be able to improve
the sensing capabilities of robotic systems [107]. In [95], for example, the sensorization of a
universal gripper was achieved with a pair of Conductive Thermoplastic Elastomer (CTPE)
strain sensors 2.4 (d). Differential sensing was then used to compute deformations within
the soft body. Morphology, however, was key. By weaving the strain sensor in different
patterns within the soft gripper, information regarding the magnitude, orientation or location
of a deformation could be detected. Because the sensing is also inescapably linked to motor
control, the mechanical dynamics and the objectives of the robotic system, the concept
of “adaptive morphology” has recently been proposed [106], where the iterative design,
assembly and evaluation of sensor mythologies attempts to explain the adaptive nature of the
perceptual abilities of living organisms.

2.4.2 Ontogenetics and Adaptivity

Adaptation and Growth

The principles previously discussed encourage a different approach to design, in line with
endowing robots with the ability to adapt to ever changing environments, and indeed make
use of the environment as a means to solve the tasks given to them. Besides design principles
at a phylogenetic scale, and instantaneous deformation on the short term scale via material
properties and design, another important factor is ontogenetic change and adaptation. Plants,
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for example, are capable of continuously changing their morphology and physiology in
response to variability within their environment, in order to survive [160]. Inspired by
the unique abilities of plants to survive in diverse and extreme environments, a stream of
researchers has more avidly tried to reproduce some of their adaptivity in robotics system.
Plantoids, or robotic systems equipped with distributed sensing, actuation, and intelligence to
perform soil exploration and monitoring tasks, have started to gain traction in this direction
[160]. Root-like artificial systems in [215] and [216], for example, have been shown to
be able to perform soil explorations through novel methodologies simulating growth via
elongation of the tip. Other plant-inspired technologies in biomimicry and material sciences
include Velcro, from the mechanisms behind the hooks of the plant burrs [267], bamboo-
inspired fibers for structural engineering materials [135], or novel actuation mechanisms in
[249] based on reversible adsorption and desorption of environmental humidity, and in [159]
based on the osmotic principle in plants.

Another important factor in ontogenetic adaptivity is the ability for organisms to mend
their own tissue over their lifespan. Endowing artificial systems with self-healing abilities
has recently become of primary importance, setting the landscape for untethered robots to
“survive” for longer periods of time in more uncertain and dynamic task environments. Self-
healing of soft materials is typically achieved through heat treatments of the damaged areas,
which allow some polymers to re-connect and retrieve most of their structural properties. In
[254], for example, a soft gripper, a soft hand, and artificial muscles were developed with
Diels-Alder materials [220]. In the developed systems, the Diels-Alder were shown to be
reversible at temperatures of 80°C, recovering up to 98 to 99% of the mechanical properties
of the polymers post damage.

Tool Use and Extended Phenotype

In Biology, the phenotype is known to be the set of observable traits of an organisms,
including its morphology, developmental process and physiological properties. The idea of
extended phenotype was first introduced by Richard Dawkins in [50], where he argued that
the concept of phenotype might have been too restricted. In fact, the effects that a gene may
have are not limited to the organism itself, but to the environment the organism is situated in,
through that organism’s behaviour. The coupling of an artificial agent and its environment
was discussed in Section 2.4.1. The extended phenotype notion, however, extends to even
more radical concepts.

One of the most fascinating examples of this is found in primates, corvids and some fish,
which have been found to be able to purposefully make and use ‘tools’ to achieve goals within
their environments, such as acquiring food and water, defence, recreation or construction
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[240]. Extending the phenotype concept, the observable traits of the organisms in this case
should be augmented to include the extended functionalities, behaviors and morphology
derived from the tool under use. When a primate is holding a small branch, for example,
the physical characteristic of the primate are undeniably changed, its reach is longer, its
weight and morphology is affected, as is the stance to keep balance on two or three limbs, or
the ability to affect the environment around them. Under the extended phenotype concept,
these as well as many other changes need to be captured within the phenotypic traits of the
organism.

In the context of Soft Developmental Robotics, the ontogenetic development of robotics
systems should include their ability to adapt to their environments over their lifespan (physical
adaptation), and indeed the ability to augment their functionality by the active creation and
use of tools, initially excluded from their phenotypic traits. This ability was previously
investigated in [88] and [168] where it was obvious that at the foundation of the idea of
tool use there was the concept of body schema, previously mentioned in Section 2.3.1. The
body schema in this scenario requires adaptability and alterability throughout ontogenetic
development, to cope with the changes in one’s body, including growth, as well as with
the extended capabilities conferred by the use of tools. In [168], the temporal integration
of multisensory information was argued to be a plausible candidate mechanism to explain
tool use incorporation within the body schema. Another core component in this context is
proprioceptive sensing, or the ability to sense self-movement and body position. Previously
discussed in Section 2.2.2 to be important in Soft Robotics, proprioception also plays a
significant role in the Perception/Action model of body representations [51].

2.4.3 Learning Through the Body

The advancements in AI in the last two decades have begun a scientific revolution, endowing
machines with the possibility of achieving super-human performance levels in several dif-
ferent fields, like image based object detection [222], virtual agent control [164] or haptic
texture identification [64]. In robotics, machine learning has extensively been used both on
the perceptual side, like object detection and recognition, and on the control side, like robot
trajectory planning and motor control.

The most powerful machine learning algorithms make use of supervision, or the knowl-
edge of target labels, to improve performance over time or trials. Broadly speaking, from
the machine learning point of view, it is common to try and fit the best function to some
collected data, to be able to achieve good behavior in future instances of similar data. The
data could, for example, be streaming images from a camera mounted on an indoor mobile
robotic platform, and the supervised machine learning module could have learned when and
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how to turn the wheels left and right, based on collected and labelled visual feed in a similar
indoor environment.

Throughout the sections in this chapter we have treated the concepts of morphology, with
the repercussions of what is known as morphological processing, sensory-motor coordinated
behavior and environment. In cases such as the one mentioned above, it is common that
this interconnection of mind, body and environment is neglected. In fact, in robotics the
data is usually perceptual information collected by the robot itself. As such, the perceptual
information is subject to influences from the both the way in which the robot interacts with
entities in the world (sensory-motor coordinated action), and the morphology of the robot’s
body itself. The robot can be thus be seen as a reality filter, which can act in its environment
and affect the information the way that is most appropriate for learning. In this context, not
only the information can be structured so to be rendered suitable for learning, but the structure
information itself can guide both the morphology and the control of the robot, creating a
sensory-motor and morphological adaptation loop capable of intrinsically drive the robot’s
behavior. ‘Soft Morphological Computation’ refers to the ability for the robot to understand
how its own body and actions filter the information retrieved from the world, and change its
configuration and interactions so to optimize information retrieval. This simplification can
then drive learning and further the adaptive capabilities of autonomous robotics systems.

The concept by which information can be structured by the body has not passed unnoticed.
The term ‘Information self-structuring’ is decades old, and advocates how that statistical
structure and regularities arise in organisms as a consequence of effectively coordinated
motor activity [149, 193]. Previous research has shown robots to be capable to purposefully
affect the information gathered from its environment through both morphological processing,
and sensory-motor coordination [189, 192]. The concept of SoMComp shares a similar
intuition with three main differences. First, in contrast to previous research, SoMComp
considers the soft context of the robot body or the environment, and thus concerns itself
with ‘soft interactions’. This is possible thanks to recent advances in material science, Soft
Robotics, and our understanding of physical processes. Second, it puts together the previously
self-standing concepts of morphological processing and sensory-motor coordination into a
unified theory of Soft Morphological Computation. Finally, it links information conditioning
to learning, and shows how learning processes can make use of embodied processes to
improve baseline performance.

The ability of robotics systems to purposefully shape the sensory information through
their actions, or morphology, and learn from the induced structure, has the potential to change
the learning landscape within robotics systems. The reminder of the chapters will further
develop this idea with specific frameworks and applications.
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2.5 Challenges and Perspectives

Through this chapter we have been treating the various aspects bio-inspired robotics with em-
phasis on Soft Robotics and the idea that intelligence exhibits as an interplay, and reciprocal
dynamical coupling, of the brain, the body, and the environment. The concept of Develop-
mental Soft Robotics was introduced in this context, where some design principles can be
established on three different time-scales, aiding and enabling roboticists and researchers to
develop systems for the new generation of robotics. Many enabling technologies for sensing
and actuation have driven progress in the past few decades, and have allowed robots to pass
from rigid, and industrial, to soft and human-friendly. These robots have been shown to
achieve locomotion, to pick and manipulate objects, to be able to safely interact with humans
and much more. However, many challenges still await this field, as the road to the ultimate
goal of creating machines with abilities akin to those of biological organisms is only at its
early stages.

2.5.1 Evolutionary Robotics

On the phylogenetic time-scale, the question of how to achieve complex embodied behavior
has been answered by nature for a very long time. The concept of evolution in biological
organisms is fairly straightforward, where evolution is thought of as the change in inheritable
characteristics of populations over successive generations [81]. Due to various sources of
genetic variation, new generations have increasingly different traits, and by a mediating
process like that of natural selection some traits will ensure higher or lower chances of
survival [234]. Eventually the surviving population has all the different traits that we can
now see in the immense variety of living organisms in our planet, which have adapted to use
a plethora of different methodologies and techniques to ensure their survival.

The field of phylogenetics is tightly coupled with this concept, and consequently this field
has a major impact in emergent design and control in robotics. In the area of “evolutionary
robotics”, evolutionary computation is used to develop physical design or controllers for
robots. Evolutionary computation takes inspiration from biological evolution. In robotics, for
example, it is possible to create an initial set of candidate robots, and encode their physical
and or control characteristics numerically. By testing the robot population against a specific
task, it is then possible to identify which combination of morphology and control performed
better. The encoded characteristics of the best performing robots can then be perturbed and
used to create a new generation of robots which can now be tested again. The iteration of
this process for thousands of iterations has been shown to be able to achieve robust controls
[65, 158] and designs [142, 148, 191].
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One of the biggest limitations of evolutionary algorithms lies with the resources and time
necessary to be able to achieve good controllers or designs. Because iteration of robot design
or robot control and robot evaluation are very time consuming, it is generally not feasible to
apply evolutionary algorithms in very complex problems, by starting from a generic, non-
bounded, robot characteristics’ encoding. The world of simulation has historically been more
suited for evolutionary algorithms [142, 158, 178] given the ease with which populations can
be created, tested and iterations achieved. The controllers and designs found, however, are
usually not robust real world solutions, as simulation environments are still very limited, and
the solutions found within them do not necessarily correspond to solutions in the real world
[108]. Moreover, depending on the complexity of the problem, computational resources are
still an issue.

In Soft Robotics, given the complexity of the bodies, and the interactions emerging from
them, design and control pose one of the biggest problems. Evolutionary algorithms find
themselves suited as a candidate solution, but the limitations previously mentioned still
apply. Further advancements in virtual reality engines, new manufacturing methods for fast
prototyping, advancements in material science and the ever increasing computing power,
however, may solve some of the mentioned limitations in the near future.

2.5.2 Complexity and Scalability

As of today, the robots we see still “feel” unnatural, they move slowly and sluggishly,
humanoid robots still do not possess the ability to walk, run or move the way humans do, they
can not reason about the world the same way we do and get confused when unknown events
occur [195]. One of the several reasons contributing to this fact is complexity. The amount
of actuators and distributed sensors present in humans is much too high to be replicated
by motors and standard sensors in machines. This complexity poses a problem, as it does
controlling the coupling of a high number of motors and sensors. Even when dealing with
sub-problems, like humanoid hands, the complexity may very well be already too high to
try and tackle with standard methods. Some attempts to replicate complexity have already
been made, for example, by replicating in a robotic manipulator many of the degrees of
freedom present in a human hand [265]. This approach, however, did not give the results
many were hoping for, as complexity in the body was coupled with complexity in the
control, and achieving adaptable, smooth grasp and manipulation behavior was no easy task.
Recent advances have shown how under-actuated or even passive hands can achieve complex
behaviors if the interactions with the environment is appropriately exploited [94, 97]. It
is here that complexity can be avoided, since complex behaviour can emerge from simple
design, when appropriate interaction takes place.
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Within this framework, many questions still remain. It is, in fact, unclear how design
should be achieved so that complexity can be avoided or exploited. Exploiting environmental
constraints is no easy feat, as the constraints to be exploited are also tightly linked to the task
at hand. In Soft Robotics, the softness of the robot themselves induces highly non-linear
behaviors and complex dynamics. Paradigms like that of reservoir computing can capitalize
on the complexity of such structures, using them as a computational resource and thus making
complexity a desirable feature. Control, however, is still hard to achieve, and mathematical
models fail to comprehensively account for dynamical interactions when the complexity of
the body becomes to high. This complexity presents infinite challenges and opportunities,
and the ever changing landscape of robotics will have to face many of them in the near future.





Chapter 3

A Case Study of Soft Interactions: Robot
Maturity Assessment

This chapter reports a case study to show the complexity of soft interactions in a real world
robot manipulation task. The chapter further highlights both the pro and cons of common
model based approaches to capture these complex interactions for haptic perception.

Reference Publication

This chapter was adapted from an article titled “Non-Destructive Robotic Assess-
ment of Mango Ripeness via Multi-Point Soft Haptics” [230] published in the
International Conference on Robotics and Automation (ICRA) in 2019 [230]. The
article was written in collaboration with Dr Perla Maiolino and Dr Fumiya Iida and
proposes a novel model based tactile procedure to assess mango ripeness in a non-
destructive manner. I am first author in the article and my contribution includes the
design and application of the experiments, data analysis and writing of the article. Dr
Fumiya Iida contributed with the conceptualization of the topics, experiment design
and paper writing. Dr Perla Maiolino contributed with the conceptualization of the
topics, the design of the mechanical model for the sensor, the sensor technology and
paper writing.
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3.1 Introduction

3.1.1 Mango Ripeness, a Case Study

With ever increasing demand for high quality horticultural products, and an increase in
their acceptable marketing standards, there is a need to find fast, reliable and autonomous
processes which can provide these guarantees [115]. The quality of crop is dependent on
several pre-harvest factors, among which weather conditions, growing land, irrigation patters,
chemical treatments and others still [217]. After harvesting, an important characteristic
determining quality, and which has a direct impact in the marketability of the produce, is
ripeness [114]. Besides appropriate harvesting time, determining the ripeness of horticultural
produce is useful for classification, transportation, handling and the security of its quality.

In crop such as bananas, strawberry, watermelons and tomato, visual cues have been
shown to be sufficient in assessing ripeness and classifying produce accordingly [58, 166,
206]. Other fruits like kiwis, blueberry or mango, however, do not provide useful visual
diversity between ripe and unripe units. In this paper we focus on ripeness assessment of
mango, a high value agricultural and food product, which shows different ripeness visual
cues depending on its variety. Given the large variety of mangoes (over a 1000 only in India),
assessing ripeness by machine vision is discouraged.

The current approach for ripeness assessment of mango and similar fruits is by measuring
their firmness through a penetrometer instrument [1, 20]. A penetrometer is a pressure tester
with a cylindrical head, which is usually inserted in the pulp of test fruit at a set depth,
and a speed approximately controlled by an operator. The firmness values of fruit tested
by a penetrometer may largely vary depending on the instrument’s user [23]. Moreover,
penetrometer testing is a destructive procedure, as the post-measurement fruit damage is
irreversible, and the tested fruit must therefore be discarded. Finally, the firmness distribution
of the pulp of fruit across its surface may largely vary, and only successive single penetrometer
tests in different locations can insure a thorough firmness assessment.

In this paper, we propose a method for testing the ripeness of mango by means of touch.
The proposed method is non-destructive, and allows the user to test multiple surface areas
with a single touch. The method designed is possible given the use of capacitive tactile
sensing technology, endowing end-effectors with the ability to retrieve multiple contact
pressure readings in relatively small areas. We make use of a custom-made probe equipped
with a capacitive tactile sensor array in order to palpate the fruit and thereby assess its
ripeness. We model the mango’s pulp and skin behavior when deformed through a simple
spring system and thus retrieve fruit firmness as a stiffness measure.
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This paper is structured as follows. Section 3.1.2 presents a brief review of the current
technologies available for ripeness assessment of horticultural produce. In Section 3.2 the
methods are explained, including the theoretical framework for ripeness assessment. In
Section 3.2.1, the gripper design in Section 3.2.2, and the tactile sensor technology used in
Section 3.2.3. In Section 3.3 the results are reported and finally a conclusion in given in
Section 3.4.

3.1.2 Approaches for Ripeness Assessment

In the past few decades, with advancements of machine learning and vision, systems have
been made showing it is possible to assess the ripeness of horticultural produce by visual
cues [58, 166, 206]. These systems, however, are limited to produce which show differences
in chromacity at various ripeness stages. For mangoes specifically, systems using machine
vision have previously been explored [173]. Given the large variety of mango types, however,
these solutions were only limited to specific families.

Recently, spectral techniques have been used to assess the quality of post-harvested
produce [104, 110, 243]. More specifically, Raman imaging, Fluorescence imaging, Laser
backscattering imaging, Hyperspectral imaging and Nuclear magnetic techniques have
been shown to be able to classify produce lacking chromaticity differences into various
stages of ripeness. The equipment required for said methods, however, is usually bulky
and the information processing often computationally intensive, making it hard to create
solutions which can be exported in the field, or do not require the transportation of produce
to appropriately equipped areas.

When assessing ripeness, consumers use a combination of tactile sensing and visual cues.
The physical probing of produce is indeed one of the oldest modalities for ripeness assessment,
and brought the advent of penetrometer measurements [20], non the least because of the
instrument’s ease of use and transportability. Recent years have seen a rapid development of
robotics technology in the context of agriculture, mainly related to transport and harvesting
[62, 85, 98, 176]. Moreover, technological advances in tactile sensing and perception [43, 87]
have changed the landscape for tactile based inference procedures [196, 227]. In this context,
however, robotics solutions for post-harvest quality assessment remain a largely unexplored
area.
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Fig. 3.1 Stiffness model.

3.2 Methods

3.2.1 Stiffness Model

We propose a palpation procedure to assess the ripeness of mango, and devise a simplified
system to model the fruit’s pulp and skin behavior throughout palpation. In the model we
exemplify the scenario where a finger, equipped with a force sensor, is in contact with the
surface of a mango. The finger is actuated by a motor, and its displacement is known by
means of a motor encoder. Fig. 3.1 shows the modelled elastic response of the probing finger,
and the object’s surface, as system of springs. We choose a linear model as the simplest
mechanical model of the fruit, and make the simplifying assumption that each spring is
constant. The probing finger has a spring stiffness constant of Kr, while the mango can
be seen as a two layered structure, the first layer of which consists of the spring response
of the skin, with a spring constant of Ks, and the second the spring response of the pulp,
with a spring constant of Kp. The lengths of each are also respectively Xr, Xs and Xp. The
estimation of the produce’s stiffness is equivalent to retrieving the elastic constant Ke. The
motor generates a torque capable of directly influencing the distance between the finger
and the produce. At equilibrium, the forces generated by the probing fingers Fr equate the
reacting forces from the produce’s surface Fe, thus Fr = Fe, i.e.:

Fr = (
1
Ks

+
1

Kp
)−1(∆Xp +∆Xs) . (3.1)
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As the skin of mango is much stiffer than its pulp, when applying a small displacement
though the motor, it is useful to make the simplifying assumption that Ks ≈ ∞, therefore
∆Xs = 0 and

Fe = KpXp . (3.2)

Finally, the motor displacement as computed by the encoder corresponds to ∆Xm =

∆Xr +∆Xp. So from equation 3.2, and the simplifying assumption we have:

Ke(1+ ε) =
Fr

∆Xr +∆Xp
(3.3)

where, ε =
∆Xr

∆Xr +∆Xp
(3.4)

i.e. when the motor displacement is large and/or the compression of the sensor ∆Xr is much
smaller than that of the mango ∆Xp, ε can be neglected.

3.2.2 Probing Gripper Mechanism

Fig. 3.2 shows the gripper used for the experiments. The gripper is composed by a main
rectangular case containing a lead screw and two metallic rods. The chamber contains two
opposite fingers, which remain parallel to each other throughout the gripper’s actuation. We
designed two fingers with flat surfaces at the extremities, capable of holding the referenced
tactile sensor. A central actuation unit reduces the distance between the fingers by actuating
one finger thorough a Micro Metal Gearmotor motor, with a 6:1 gear ratio and equipped
with a rotary encoder. The rotational actuation movement is then transferred into a linear
displacement by the lead screw and metallic rod. We control the motor via a TB6612FNG
Dual Motor Driver Carrier controller. Each gripper component was 3D-printed, for fast
prototyping.

3.2.3 Tactile Sensor Technology and Data Acquisition

The tactile sensor (CySkin) used for the experiments is described in [223].
The adopted sensing mode is based on the capacitive transduction principle. A capacitive

transducer (i.e., a tactile element, or taxel) is organized in a layered structure: the lower
layer consists of the positive electrode, which is mounted on a Flexible Printed Circuit Board
(FPCB). The dielectric for the sensor is here fundamental. The deformation of a too soft
dielectric layer, like air, may reach its saturation before inducing any deformation in the pulp
of a mango. From equation 3.4 it is clear how the deformation of the mango surface must be
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Fig. 3.3 (a) The CySkin technology architecture. (b) The CySkin patch used for the experi-
ments.
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grater than that of the sensor, for the assumptions to hold. Knowing typical mango firmness
ranges2, we choose a 3D-printed dielectric layer of 2mm, composed of VeroBlack rubber
with A-27 Shore coefficient.

In the experiments we use 2 hexagonal shaped modules, each placed in the inner flat
extremity of a finger in the gripper (Fig. 3.2). Each module hosts 6 taxels (Fig. 3.3b),
as well as the Capacitance to Digital Converter (CDC) chip (namely, the AD7147 from
Analog Devices) for converting capacitance values to digital. The CDC chip can measure
variations in capacitance values with 16 bits of resolution. All the modules are interconnected
and communicate through an SPI bus to a read-out board which performs a preliminary
processing of the tactile sensor data and send them to the PC through CAN bus (Fig. 3.3a)
with a sensitivity of 0.32pF. In this context, the normal forces exerted on the sensor produce
variations in capacitance values reflecting the varied pressure over the taxel positions. A
sensor reading, or tactile image, from the tactile sensors described is produced at 20Hz,
and corresponds to two 6-dimensional arrays, where each element contains the capacitance
variation value of the corresponding taxel within each finger in the gripper. Here and for the
remainder of the experiments, each taxel is considered a separate tactile sensing unit.

3.2.4 Robot and Experimental Set-Up

To perform the mango experiments the end-effector, coupled with the tactile sensor, was
mounted onto an ST-Robotics R12/5 arm3. The R12/5 robotic arm was controlled open-loop
in Cartesian coordinates. A teach-pendant was used to manually teach the robot the starting
position with the arm and end-effector facing forward (Fig. 3.4a).

After the robot arm reaches the starting position, and a test produce is placed within the
end-effector’s reach, the probing experiment consists of three stages: a reaching, a probing
and a release stage (Fig. 3.4b).

In the first phase, the gripper’s moving finger is driven towards its immobile counterpart at
1mm/s. When any taxel, in both fingers, reads values above 5% of their maximum calibration,
a touch is detected and the gripper is stopped.

In the second phase, the mobile finger is further actuated to close the gripper until either
of two conditions are met: first, the last touching taxel has moved of at least 1mm into the
flesh of the fruit; second, the encoders do not change value over two consecutive readings
(i.e. the motor is at equilibrium at its maximal gripping force).The slow motion induce
quasi-static interaction validating the model’s static assumptions. The depth of 1mm was

2https://www.mango.org/wp-content/uploads/2017/10/Mango_Maturity
_And_Ripeness_Guide.pdf

3http://www.robotshop.com/uk/st-robotics-r12-5-axis-articulated-robot-arm.html
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Fig. 3.4 Experimental procedure, including (a) the set-up for the experiments and (b) the
Flowchart of the touch experiments.

Fig. 3.5 Raw taxel value to force logarithmic fit on taxel 3.
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chosen to induce enough deformation in the mango, while working within the linear range of
the sensor (Fig. 3.5, force range [0,5.5]N).

In the third phase, the gripper mobile finger is reversed at 1mm/s to the gripper’s fully
opened state (Fig. 3.4b).

The system has been implemented in MATLAB, synchronizing the gripper control and
the sensors acquisition. The tactile images are thus recorded at ≈ 15Hz throughout the run
of the second stage and later used to retrieve the stiffness of the touched produce.

3.3 Results

3.3.1 Sensor Force Calibration

To make use of the theoretical spring model we converted the tactile sensor pressure response,
of each taxel, in force. To achieve accurate conversions, the end-effector coupled with the
tactile sensor was made to close onto a stiff metal cuboidal object. The opposite surface
areas of the cuboid, in contact with the end-effector’s fingers, were covered by two force
sensitive resistors FSR 174 sensors, previously calibrated to measure forces in 0−10N range
with an accuracy of 0.01N (Fig. 3.2). In the experiment, the gripper was actuated to close at
1mm/s until motor torque limit. The force sensor response and corresponding taxel values
were sampled at ≈ 15Hz. Given prior knowledge of the dielectric layer deformation behavior
[153], we fit a logarithmic curve of the form f (x) = a log(bx−1)+ c, mapping the pressure
response to the punctual forces registered during the calibration. The a, b, and c parameters
were optimized by least squares. Fig. 3.5 shows an example force fit for taxel 3, all other
taxels were similarly calibrated.

3.3.2 Mango Penetrometer Testing

A set of 25 mangoes of the Keitt variety were used for testing. The mango were divided
in three subsets and made to ripen at room temperature for 1, 3 and 5 days, increasing the
ripeness differences amongst subsets (Fig. 3.6a).

We use a penetrometer instrument to retrieve ground truth mango firmness measurements.
Penetrometer tests were done following industrial standards. The skin of each mango was
removed before the measurement, and pressure was applied to reach the penetrometer’s head
full insertion in approximately 2s. A total of 10 measurements were done on each mango.
Fig. 3.6b shows the penetrometer measurement values for each fruit in the test set. Mangoes
1-9 were tested on day one, mangoes 10-18 were tested on day two and mangoes 19-25 were
tested on day five. Comparing the measured values to standard ripeness levels4 20 mangoes



44 A Case Study of Soft Interactions: Robot Maturity Assessment

(a)

(b)

Fig. 3.6 (a) Mangoes used for the experiments at purchase time. (b) Penetrometer measure-
ments of each mango when tested at a distance of 1, 3 and 5 days from purchase.
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(a)

(b) Mango no. 7, ripeness stage 6.

(c) Mango no. 4, ripeness stage 4.

Fig. 3.7 (a) Mean and error of all raw tactile sensing units, (b) raw tactile sensor response,
when performing the touching experiment on mango number 7, at ripeness stage 6, and (c) a
mango number 4, at ripeness stage 4.

were found to be at ripeness stage 6 (very ripe), 2 mangoes at ripeness stage 5 (ripe) and
3 mangoes at ripeness stage 4 (non-ripe). Fig. 3.6b shows how penetrometer tests, even
when the instrument is operated by the same user, are somewhat variable (average standard
deviation of penetrometer measures ≈ 0.287Kg/cm2), and do not always clearly collocate a
mango in a ripeness stage.

3.3.3 Stiffness Measurement Analysis

We analyze whether from the raw tactile information is possible to dissociate between ripe
and unripe mangoes. Fig. 3.7 shows the raw tactile sensor response, when touching fruits at
ripeness stage 4, and 6 (as determined by penetrometer testing). In Fig. 3.7a it is clear how
the ripeness stage information is captured by the sensor response. Moreover, we observe
how different taxels activate at different times and with different intensity depending on the
mango. The variability is mainly due to the curvature of the fruit against the sensor’s flat
surface.

During the experiments with each sample, the recorded sequential sensor response was
used, together with equation 3.3, to retrieve the stiffness Ke of the mango’s pulp (Fig. 3.8). We
compare the computed stiffness of each mango against average penetrometer measurements in
two scenarios: one, as an average of the stiffnesses computed by all sensing units (Fig. 3.9a),
and two, as an average of the four taxels registering the highest change in pressure over
the course of each touch experiment (Fig. 3.9b). Fig. 3.9 shows how it is only possible for
the sensor (y-axis in figure) to separate between ripe and non-ripe mangoes when given the
opportunity to choose reliable tactile sensing units, depending on the touch experiment. The
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Fig. 3.9 (a) Computed stiffness averages from all sensing units and (b) stiffness averages
of the 4 taxels recording the highest change in pressure throughout the experiment, against
average penetrometer measurements. Each point in the plot is a different mango in the
dataset.
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Table 3.1 Results Summary

STAGE No. Correctly classified Misclassified Accuracy(%)
5&6 (ripe) 22 19 3 86
4 (non-ripe) 3 3 0 100

Overall Accuracy(%) 88

result emphasizes the need of sensors capable of drawing multiple measurements at once, as
any one measurement might be unreliable in its ripeness estimation. Moreover, the sparse
sensor response for mango at ripeness stage 6 (Fig. 3.9b), suggests that the skin of mangoes
has a non-linear influence on the measured pressures. Given typical mango skin thicknesses,
such influence is negligible for non-ripe mangoes, where the stiffness of the pulp dominates
the sensor readings. For ripe and very ripe mangoes, however, the stiffness of the skin, at
times, induces the stiffness of the whole fruit to be much higher than its pulp.

For the final estimation of mango stiffness after contact, we thus limit the computation
on an average of the four taxels measuring the highest change in pressure over the course of
the touch experiment’s second stage. In this context, the use of multiple taxels for stiffness
estimations allows for the dismissal of outliers generated by the curvature of the fruit. We
consider non-ripe the mangoes whose stiffnesses is in the range Ke > 9.7, and ripe the
mangoes those where Ke < 9.7. The ripeness threshold was chosen to maximize accuracy
over the tested fruit. Table 3.1 reports the thresholding results. In particular, we find we can
classify 88% of the tested fruit correctly, and accurately detect all the non-ripe samples in
the tested mangoes.

Finally, wish respect to mango ripeness estimation, it is noteworthy to notice the distri-
bution of classes in Fig. 3.9b. In the figure, in fact, it is clear how when separating stage 4
and stage 5-6 mangoes, an equal number of mangoes (approximately three) falls within the
“non-ripe” category. With the decision boundaries set as previously described, our approach
misdetects three of the ripe mangoes as non-ripe. This, however, does not heavily impact the
overall accuracy of the model, as the density of ripe mangoes below the chosen threshold is
much higher than the ones above it. In other words, given the density distribution of mangoes
ar stage 6, it is less likely for these to fall in a range Ke > 9.7 than for those belonging to
stage 4, and thus classification should be possible. It is however worth noticing that this
statistical argument is not necessarily shown for the mangoes at stage 4, as we observe only
a few elements belonging to this class. Further experiments are here encouraged for future
directions and possible commercialization.



48 A Case Study of Soft Interactions: Robot Maturity Assessment

3.4 Conclusions

Given the lack of standard, non destructive and non-chemical tests for assessing the ripeness
of fruit, we devise a ripeness testing method based on capacitive tactile sensing technology.
We devise a custom made gripper, supplied with 12 capacitive tactile sensing units distributed
homogeneously over two fingertips. We perform experiments by which the gripper close onto
the flesh of test fruit until a pre-set depth is reached, while recording tactile image sequences.
The tactile image sequences, together with a spring stiffness model, are used to retrieve the
stiffness of the palpated fruit and assess its ripeness. We test the proposed method on a set
of 25 mango fruit of the Keitt variety. We compare the whole fruit stiffness computations
to pulp ripeness measurements based on a standard penetrometer instrument. Results show
that the tactile based ripeness assessment method is capable of classifying mangoes into ripe
or non-ripe, with accuracies increasing with the stiffness of the pulp. Moreover, since the
proposed method, based on capacitive tactile technology, hinges on the relationship between
flesh stiffness and ripeness of target produce, we argue the method is valid for other types
of horticultural produce showing such relationship, e.g. tomatoes, grapes, apricot, cherries,
kiwis and others besides, some of which may present difficulties for visual based ripeness
assessment.

As the scale of penetrometer measurements may vary depending on the user, the proposed
method presents clear transferability advantages for testing ripe over non-ripe mangoes.
Moreover, the method is non-destructive, the sensor technology utilized can test several
surface locations at once, the gripping technology is light thus can be mobile, and its usage
does not require any specialized expertise.

Finally, in the context of this thesis, we have shown how model-based approaches can get
far in real-world settings, by embedding knowledge of the world within the robotic solution
of the task to achieve. Even so, the are several issues and limitations with these approaches
when trying to approximate the soft interactions arising from the robot and the environment.
A non-linear effect to the stiffness estimation, due to the intact skin of the mango, was in fact
observed. The effect makes the distinction between stage 5 and 6 mangoes almost impossible
within this framework, as may be the discrimination of several other consecutive stages. One
of the reasons behind these results is the simplicity of the model, which does not capture the
dynamics of the complex interactions between the robotic end effector and the produce. The
skin layer, in fact, was assumed to be infinitely stiff. This however, is an oversimplification,
and a more complex non-linear model should instead have been adopted to capture the
stiffness of the skin. Issues, however, might occur even then, where the distribution of the
stiffness across different sections of the fruit might be different, as well as the pulp’s stiffness
whose depth to the bone will change depending on the location and the application of the
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experimental touch. These issues can be in part solved by increasing the complexity of
the model and fitting some parameters through experimentation. This approach, however,
is eventually bound to fail, where any model is but an approximation and errors can be
minimized but hardly ever they can be entirely discarded. In capturing soft interactions,
model free approaches have the advantage of basing the model itself on experimentation,
and thus they are not bound by the limitation of human assumptions and design. These also
present several issues, which usually discourage purely model-free approaches. These will
be further discussed in the next chapter.





Chapter 4

Proprioception in Soft Continuum
Bodies

This chapter presents a case study for the principle of proprioception. Within SoMComp,
Soft Proprioception is the necessary condition for any robot to be able to purposefully
make changes to its body morphology or action, so to achieve the conditioning of the soft
interactions arising from the robot in its environment.

Reference Publication

This chapter was adapted from a published Journal article titled “Model-free Soft-
Structure Reconstruction for Proprioception using Tactile Arrays” [229] pub-
lished in the journal IEEE Robotics and Letters (RA-L) in 2019. The article was
written in collaboration with Dr Perla Maiolino, Dr Josie Hughes and Dr Fumiya Iida
and proposes a novel model-free sensorization method to achieve proprioception in
continuum soft robots. I am first author in the article and my contribution includes the
design and application of the experiments, the formulation of the learning framework,
data analysis and writing of the article. Dr Fumiya Iida and Dr Perla Maiolino con-
tributed with the conceptualization of the topics, design of the experiments and the
writing of the article, Dr Josie Hughes contributed with the creation of the physical
set-up and review of the article.
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4.1 Introduction

The advent of Soft Robotics has changed the robotics landscape, enabling rapid and low cost
prototyping and providing resilience to external disturbance and internal failures [120, 155].
One key remaining challenge is the extrinsic and intrinsic sensing of soft bodies to provide
environmental information which is key for complex environmental interaction. Considerable
work has focused on the development of tactile sensing approaches [96, 227] and soft
manipulators for environmental exploration [97]. There has been minimal investigation on
how the inherent compliance of soft structures can be exploited to achieve environmental
awareness [107, 180].

The use of fully soft continuum body structures for manipulation has been demonstrated
with the creation of octopus tentacle systems [29, 269]. These adaptable manipulators take
advantage of the intrinsic compliance of soft structures, exploiting environmental interactions
in the process. However, the potentially infinite degrees of freedom offered by soft continuum
body structures make it challenging, and often impossible, to accurately determine their
spatial configuration, or proprioceptive awareness [237]. For environmental interactions
to be understood in this context, it is necessary to develop sensing techniques capable of
reconstructing the configuration of a soft continuum body. Research on the configuration
reconstruction of such bodies has mainly been driven by tactile [44, 147, 268] and medical
applications [174].

Historically, exteroceptive sensing technologies, such as cameras, have been predom-
inantly used for soft body shape reconstruction [54, 133, 270]. These methods, however,
are inapplicable in scenarios where it is impossible or impractical to set-up sensing units
external to the soft body. More recently, sensors which are capable of measuring curvature
and bending have been used, with early work showing how fiber optic curvature technology
can be used to sense bending and twist [46]. Electroactive polymeric sensors have also
been used to sense bend angles and rates in prostheses [18], while in [127], fluid-resistive
bending sensor were developed for flexible pneumatic balloon actuators. Additionally, work
in strain sensor technology has shown how proprioceptive curvature information can be
retrieved and used for partial reconstruction of soft continuum bodies [35, 43]. Despite the
progress, integration into soft robot technologies is limited. Additionally, the technologies
developed allow discrimination of different preset states, such as bending, twisting and
pushing, but do not obtain sufficient information for the full configuration reconstruction of
a soft body. Recent work has shown how flexible force sensors can be embedded in Soft
Robotics manipulators, obtaining information useful in task such as grasping and object
recognition [90, 91]. However, this force sensing technology allows the curvature in only
one axis to be measured.
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Fig. 4.1 Role of tactile sensing to allow reconstruction of passive systems. The deformation
of the continuum body structure leads to internal pressure distributions which allow 3D
reconstruction.

To solve the proprioceptive problem, it is necessary to devise a method capable of recon-
structing the spatial configuration of continuum soft materials over all axis of deformation,
while maintaining the soft body characteristics (e.g. stretch and bend). We propose that
by integrating a tactile sensor array at the base of a tentacle-like continuum soft body, it is
possible to use the distributed change in pressure over the surface of the sensor, induced
by the change in posture of the body, to retrieve the 3D position of the tentacle end-point.
Through this method, the position estimation can thus be used to reconstruct the shape and
configuration of the soft continuum body. This is summarized in Fig. 4.1.

To demonstrate these hypotheses we sensorize a soft tentacle-like body segment using
capacitive tactile sensing technology. Using a simple feed-forward Neural Network, the
mapping from the spatial response of the tactile sensor and the deformation of the continuum
body can be obtained. This allows deformations to be sensed along all axes in 3D space,
whilst maintaining the soft properties of the body (e.g. bend and stretch). By understanding
the body structure, we demonstrate how this can enable exploration and reconstruction of the
system’s work-space.

The ability to understand the shape of a continuum body structure has the potential to
impact work including medical robotics, soft robotic exploration and enables control of
continuum structure which was previously not possible. To the authors knowledge, this is the
first soft-robotic sensorization method based on capacitive tactile sensing technology, which
is capable of sensing accurate deformation along all three dimensional axis in space.

In this paper, Section 4.2 presents the methods developed, including the capacitive tactile
sensing technology, continuum structure design and experimental set-up. The results are
reported in Section 4.3 which characterize the performance of the system. Additionally, a
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Fig. 4.2 Experimental setup showing the flexible soft body, location of the sensor, vision
tracking system and the servo control and tendon system.

case study of environmental exploration through body posture inference is presented. The
paper concludes with a discussion in Section 4.4.

4.2 Methods

4.2.1 Tactile Sensing Technology

The tactile sensor used for the experiments is described in Section 3.2.3. Differently than
before, however, a small air chamber act as dielectric and the upper layer is a ground plane
made with conductive Lycra. In the experiments we use an hexagonal shaped sensor module,
hosting 7 taxels (Fig. 3.3b). Given the sensor design, a sensor reading, or tactile image,
from the tactile sensors described is produced at 20Hz, and corresponds to a 7-dimensional
array, where each element contains the capacitance variation value of the corresponding taxel
within the patch.



4.2 Methods 55

Fig. 4.3 Results from FEM experiments showing the stress distribution at the top of the
sensorized body. (a), (b) and (c) show the resulting stress distributions when actuating a
single tendon with a force of 1N, 0.3N and 1.2N respectively. (b) shows the stress distribution
a two-tendon actuation, applying a force of 0.8N and 0.2N in two different locations.

4.2.2 Soft Continuum Body Design and Sensor Embedding

A continuum soft body segment has been developed by casting EcoFlex 00-30 silicone in a
3D printed mould. This soft ‘finger’ (height = 50cm, radius = 15mm) is controlled by three
tendons equally distributed around the finger, and which allow full position control of the
soft body.

The capacitive tactile sensor module described in Section 4.2.1 is placed at the base of the
cylindrical finger. Thus, the capacitive sensor taxels are uniformly distributed along one of
the circular surfaces of the elastomeric finger. The sensor placement allows pressure patterns
to be sensed at the top of the finger when deformations are induced along its body.

To perform the experiments, we devised a set-up by which the soft continuum finger is
suspended at the top of a cubical frame (Fig. 4.2). The hexagonal tactile sensing module
is thus placed between the base of the finger and the top metal beam of the cage. Three
servos are placed above the top beam, each connected to a tendon to allow the continuum
structure to be deformed. Two cameras are mounted in adjacent corners of the frame. The
cameras face the finger in orthogonal directions, and perform visual tracking of markers on
the finger’s head, to reconstruct the posture of the continuum body (Fig. 4.2). Both visual
tracking and tactile images are logged synchronously throughout the experiments.
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Fig. 4.4 Tactile image pressure sensing, induced by the change in posture of the soft body. (a)
shows the coordinate system for each corresponding row in the figure. Figures (b), (d) and
(f) show the visually tracked soft body pose in three different poses. Figures (c), (e) and (g)
show the corresponding tactile images, where increasing brightness implicates higher sensed
pressure.

4.2.3 Sensor Pressure Distributions and Visual Tracking

When the tendons are actuated by the servos, the finger’s change in posture induces changes
in the distributed pressure on the sensor’s surface. To demonstrate how these vary for different
poses of the soft structure, we have modelled the soft structure and pressure distributions
through FEM. The soft continuum body structure has been modelled as a third order reduced
polynomial with a modulus of E=1.4 MPa, which has been shown to provide the closest
model to the true behaviour [59]. We use a Cosserat model to represent the interaction
between the tendon and the soft body. The surface pressure for a given force applied to a
tendon can be simulated. The simulation was performed through the MATLAB FEM toolbox.
The force applied by a tendon changes the magnitude and area of the pressure distribution at
that location (as shown by Fig. 4.3 (a), (b) and (c)). Similarly, by combining different tendon
actuation, more complex pressure distributions can be observed (Fig. 4.3 (d)), reflecting the
type of actuation both in magnitude and location. Following the hypothesis, the pressure
distribution is here indicative of the posture of the soft body, determined by the specific
tendon actuation.
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This approach has also been shown experimentally (Fig. 4.4) where the tactile image
represents the pressure distribution on the sensor’s surface for different finger configurations,
as retrieved and reconstructed by the camera tracking system.

The tracking system performs 3D tracking of markers placed at the head of the soft finger.
Given the shape and make of the soft continuum body, the reconstruction of the body’s
configuration consists of a logarithmic interpolation between the base of the finger, sensed
when the finger is at rest, and the tracked x-y-z positions thereafter.

4.3 Results

4.3.1 Soft-Body Configuration Learning from Visual Tracking

We perform experiments where the soft finger is actuated by random combinations of servo
angles, reaching arbitrary points in space. The cameras, placed on the aluminum frame,
perform visual tracking and retrieve the configuration of the 3D finger for each set of servo
angles. Concurrently, tactile images from the capacitive tactile sensor array are recorded and
stored for each configuration. The actuation of the finger is run autonomously for a total of
15000 random configurations. A Neural Network is used to map the tactile sensor responses
directly to the finger head positions. Given the servo and tendon placement, stretching
postures could not be achieved unless manually induced. As such, the network was not
trained on stretch prediction.

The Neural Network is a fully connected feed-forward network with an input layer of 7
units, to read tactile image information, two hidden layers of respectively 60 and 30 units,
and an output layer of 3 units, returning an xyz position in space, corresponding to the camera
tracked outputs, and relative to the learned finger configuration (Fig. 4.5a). The non-linearity
for all units is a tanh, with a Glorot uniform initialization [75]. The design of the network is
here secondary to the main research goal, with this specific implementation enabling testing,
to identify whether it is possible to accurately determine the deformation of the finger vie
the capacitive tactile sensor array sensing. The number of layers and neurons was a design
choice meant to confer the network enough flexibility (in terms of learning parameters) to
learn 3D configurations, while keeping the architecture small enough for fast training in
machines with low computing power.

The network is trained over 52 epochs, with the 15000 tactile images in input and
corresponding x-y-z visually tracked positions for target outputs. 75% of the data was used
for training while 15% was used for validation and 10% for testing. Fig. 4.5b shows the
training error, validation and test performance of the network during learning. The network
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Fig. 4.5 The figure shows (a) the Neural Network for tactile pose estimation, and (b) the
Neural Network training and validation curves.

trained over 52 epochs, before halting due to early stopping, and reaching a lowest validation
error of 22.589px and test error of 22.732px. Given cameras’ placement with respect to the
finger position, a pixel corresponds to ≈ 0.13mm

4.3.2 Tactile Proprioceptive analysis

For testing purposes we retrieve 2000 previously unseen finger configurations, with corre-
sponding tactile images and visually tracked head positions. Fig. 4.7 shows the compared
finger deformation reconstruction of four different finger test configurations, based on the
camera visual tracking and the proprioceptive tactile sensor response after learning.

The close correspondence between the true position and that estimated by the tactile
sensors clearly demonstrates how the embedded capacitive tactile sensor is capable of
matching the performance of the external camera tracking. In Fig. 4.6 we compare the error
of the tactile sensor, over all axis within its work-space, to the ground truth retrieved by
visual tracking. In a ‘reachable’ work-space of ≈ 40X40mm in x-y space, and ≈ 30mm in z
(or height), from the figure it is possible to see how, on average, the tactile prediction after
learning is within 1mm from its ground truth counterpart, retrieved from visual tracking.
The experiments show how the tactile sensor array is capable of capturing the information
relative to the deformation of the soft continuum fingers, with levels of accuracy near 1mm
on average in all axis of deformation.
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(a) (b)

Fig. 4.6 The error (red line) and standard deviation (gray area) of the finger (a) in x-y
coordinates, and (b) in z coordinates, as compared to the corresponding visually tracked
positions.

(a) (b) (c) (d)

Fig. 4.7 Shape reconstruction based on the proprioceptive tactile sensing as compared to
visual tracking.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.8 Work-space reconstruction after random exploration. (a) shows the work-space
explored when the finger was free to move over its reachable work-space. Figures (d) and (f)
show respectively the reached positions when the soft finger was placed inside the cuboidal
object shown in (c) and (e).
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4.3.3 Tactile Proprioceptive Work-space Exploration

As previously mentioned, it is often the case that the conditions surrounding a deployed
robotics system do not allow the installation of exteroceptive sensing mechanisms, like
cameras. After learning, we halt the camera tracking system and undertake experiments
where the sensorized finger is randomly actuated within unknown work-spaces. Initially,
The finger is actuated over 2000 random servo angles, whilst free to move within its own
environment. After, the soft continuum body is placed within a semi-closed and closed off
environment, where vision based reconstruction methods are not possible. In the first instance,
the finger is placed in a cuboid with three missing faces (Fig. 4.8c), and is further actuated
over 2000 random configurations. In the second instance, the experiment is repeated with
the finger placed within a space in the shape of a cuboid with two missing faces (Fig. 4.8e).
Figures 4.8b, 4.8d and 4.8f show the x-y positions of the soft finger, as predicted by the Neural
Network using only the sequential tactile images recorded. The finger explored spaces in
Fig. 4.8f and Fig 4.8d are significantly smaller than the full work-space explored explored in
Fig. 4.8b. Remarkably, the retrieved x-y positions accurately match the work-space explored
by the sensorized soft structure in shape, as can be seen by comparing Fig 4.8c with Fig. 4.8d
and Fig. 4.8e with Fig. 4.8f. The figure illustrates how through autonomous exploration and
proprioception, it is possible to accurately retrieve the state of the work-space surrounding
the soft finger.

4.4 Discussion and Conclusions

Retrieving the spatial configuration of soft continuum materials is currently a challenge.
Over the past few decades, various methods have been devised, however, these methods are
only capable of discriminating between preset states, or can sense deformations along one
axis in space. We have devised a novel method to retrieve deformation information based on
capacitive tactile sensing technology, where we embedded a capacitive tactile sensor array
to read pressures at the base of a soft continuum cylindrical body, or finger. Experiments
were performed, where the soft continuum body was deformed by actuating three attached
tendons concurrently. The resulting material deformation allowed the finger’s head to reach
an arbitrary point in 3D space within its work-space. A camera tracking system was used to
track the head of the finger synchronously to retrieving pressure patterns at its base, through
the tactile sensor array.

By using the camera tracking system as a supervisor we have shown how it is possible to
autonomously learn the body configuration and the work-space of the soft structure, through
the random actuation of the finger. The capacitive tactile sensing technology is used to
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achieve a proprioceptive kinaesthetic understanding of the soft structure, allowing a Neural
Network to guess the head position of the cylinder within 1mm from its visually tracked
position. Moreover, the system was shown to be reliable against external disturbances and
interactions, as demonstrated during the random exploration of closed spaces, where the
actuated body would unavoidable collide with the surface of the surrounding walls. We have
shown how it is possible for the finger to perform autonomous explorations of work-spaces
where cameras are impractical to use. Finally, the method of embedding the tactile sensor
into the continuum body allows for the inherent soft properties of the continuum material
to be maintained (e.g. stretch and bend). This work has the potential to enable and assist
with many applications, such as medical exploration, e.g. provide postural feedback, or the
resolution of exploratory and manipulation tasks.

The limitations of this approach lie with the range of physical modalities that are possible
to recognize on the tactile sensor surface. The forces generated on the tip of the robot (via
appropriate tendon pulls), in fact, generate a reaction force at the base of the robot, where the
sensor is placed. The girth and length of the soft continuum body is such that these reacting
forces almost always generate a unique bending configuration for the robot, in the form of
compression and (single) bends. As such, it is possible to map the pose of the soft structure
with one sensor, and a simple neural network. If the robot was to be such that these reacting
forces could generate more than one unique configuration (e.g. allow for double bending, or
buckling in different directions), then the final pose of the robot would not be unique to a
pressure pattern, but would also depend on the “history” of bends of the soft structure. This,
in turn, would not allow a simple neural network to uniquely identify the pose of the soft
structure through the tactile information at the base alone. Multiple ways can be devised to
obviate this issue. One, for example, would be the placement of sensors in multiple sections
of the soft structure, such that for any two adjacent sensors, the assumption of unique bending
modalities is held. Another, would be to allow for a model of the soft structure to account for
the missing information, thus a hybrid model-based and learning approach could allow for
accurate sensing of more complex structures.

In the context of conferring robots the ability to extend their bodily properties in order to
cope with the uncertainty and unknowns of the real world, the ability to be able to perceive
your own body is fundamental. Moreover, the ability to extend, and adapt, that perception
over time becomes a necessity, when prior knowledge about the task to solve is not available
a priori. This work marks a clear step towards conferring robots the ability to morph, and
achieve a proprioceptive understanding of their own capabilities in a mostly autonomous
manner.
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Finally, this Chapter has shown the ability of model-free approaches to capture the
complex interactions between a soft body and its surroundings. These have allowed the
robot to autonomously achieve accurate proprioception of its continuum soft body, and or
resolve a map reconstruction of the area surrounding it, through collisions. As detailed in
Section 4.1, prior work has also applied model-based proprioception approaches to capture
these interactions. One of the biggest limitations of model based approached in the context
of this chapter, is our limited ability to compute mathematically the complex soft physical
interactions unfolding in the soft continuum robot when tendons are pulled, or external
entities are collided with. Approximate models can give reasonable results, but slight
changes in the body, or the environment, usually induce the model to move far away from
the physical reality of the robot, and consequently, proprioceptive approximations to worsen.
Although model free approaches can solve this problem by continuously updating the model
through new sensor data, it is also true that they usually do not scale in complexity. If
several sections of the sensorized soft robots presented in this chapter were to be connected
together, such that complex twists or double bends were possible, thousands of additional data
points would need to be generated by “random bubbling” before learning a proprioceptive
mapping appropriately. One of the most important direction for future research should aim at
combining model-free and model based approaches into one, such that scaling complexity
is possible, but the models are not fixed a priori by human knowledge, rather they change
with the changing of the physical properties of the robot. This topic will be expanded upon
in Chapter 11.





Chapter 5

The Importance of Morphology:
Achieving Robotically Peeled Lettuce

In this chapter we begin to contemplate the topic of Morphology. This chapter reports a case
study of the usefulness of morphology and design to solve a real world robot task. The task
is that of removing the leafs from a lettuce, a soft and delicate object.

Reference Publication

This chapter was adapted from a published Journal article titled “Achieving Robot-
ically Peeled Lettuce” [98], in the journal IEEE Robotics and Automation Letters
(RA-L) in 2018. The article was written in collaboration with Dr Perla Maiolino, Dr
Josie Hughes and Dr Fumiya Iida and investigates the ability of robots to perform
‘leaf removal’ in lettuce produce for automation purposes. This paper highlights the
importance of morphology in tactile tasks. Dr Fumiya Iida and Dr Perla Maiolino
helped with the conceptualization of the topics, design of the experiments and the
writing of the article. Dr Josie Hughes contributed by devising and carrying out the
physical lettuce leaf removal experiments, and the writing of the manuscript. As
co-first author in the article, my contribution includes the development of the vision
based technologies in the project, design of the experiments as well as data analysis,
and article writing.
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Fig. 5.1 Iceberg lettuce before processing showing the two outer leaves which require
removal.

5.1 Introduction

The automation of agricultural systems presents many challenges due to the extreme variabil-
ity in the environment e.g. varying light, terrain and weather conditions, unlike constrained
industrial or lab environments. As such, the successful application of robotics systems to
agriculture remains limited. However there is a growing need to develop automated robotic
solutions due to the increasing demand for food, sub-optimal climate conditions and de-
creasing labor availability [71]. The majority of existing robotic agriculture research has
focused on developing harvesting systems [62, 85, 128, 176]. However, often there is a
crucial, labor-intensive post-processing step required after harvesting to produce supermarket
ready produce [275, 278].

Previous work has seen the development of vision, learning and manipulation solutions
for lettuce harvesting [32]. However, supermarkets require the complete removal of one
or two loose outer-leaves from the stem after the harvesting process, with no bruising,
damage or ‘browning’ to the lettuce [30, 70] (Fig.5.1). This is a challenging task requiring
dexterous manipulation and robust vision as the leaves are fragile, tear easily and have limited
identifiable features.

Manipulation of soft produce is challenging; dexterity is required and the produce must
not be damaged. Although Soft Robotics has significant potential for such applications [211],
current solutions provide limited dexterity and require complex control [19]. The vision
problem is also challenging, especially when using only 2D stereo cameras. The variability in
produce and the lack of rotational varying features makes lettuce a difficult object to interact
with, and means existing approaches cannot be used [62, 128, 176, 248].

The problem addressed is this work is the removal of outer leaves, typically two, from a
harvested lettuce. The produce, placed in an unknown pose on a flat environment, should
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not be damaged by the peeling process. The proposed system uses a single vacuum suction
point to grab a leaf and remove it from the main body of the lettuce by tearing. Suction is a
method which has been applied successfully in other agriculture applications and reduces the
complexity of the required control [9, 143]. This process has been be optimized to maximize
successful tearing.

To address this problem, firstly computer vision must be used to locate and determine
the pose of the lettuce. A novel machine vision pipeline has been created for orientation
detection which uses only a 2D web camera. The pipeline is robust, and unlike existing
approaches it does not require depth information from RGB-D, TOF cameras or stereo
vision [62, 128, 176, 248]. The lettuce must then be manipulated into a known state with the
outer leaves exposed. The nozzle diameter, material properties, location and trajectory of
motion must then be optimized for successful leaf removal.

In this chapter the specific methods and implementation are given in Section II, with
corresponding results in Section III. Complete testing and demonstration of the leaf removal
system is shown in Section IV, concluding with a discussion and review of the work presented.

5.2 Methods and Implementation

5.2.1 Vision and Detection

For a lettuce placed in a unknown location within a work space, machine vision must be used
to determine the location and orientation of the lettuce. The former is possible through simple
lettuce image segmentation. We propose a novel method for retrieving pose by detecting the
lettuce stem. This method is necessary as the lack of depth information makes previously
explored solutions unsuitable [116]. Moreover, existing approaches for 2D images use color
thresholding techniques which are not applicable as the stem hue and saturation can vary
significantly depending on freshness and growing conditions of the lettuce [79, 85].

Lettuce Segmentation and Position Estimation

The vision system uses a single Carl Zeiss Tezzar HD 1080p camera placed above the work
space, where it is assumed a single lettuce is within the field of vision. The background
is assumed to be distinguishable in color to the lettuce, thus, a combination of color-based
thresholding and binary cleaning is used for robustness.

The approach adopted uses the HSV (Hue, Saturation and Value) format of the retrieved
frame. Two noisy, binary masks are computed by thresholding the Hue channel for pixels
30 < ph < 100 and the Saturation channel, for pixels ps > 50. These are combined with an
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(a) (b)

Fig. 5.2 The figure shows two sample images, (a) example masked frame, after segmentation.
(b) Example lettuce under the A-channel of the LAB color space, showing homogeneous
stem pixels.

element-wise AND operation. Hue thresholding is empirically set to retrieve pixels with a
color pigmentation within the typical lettuce range. The Saturation channel thresholding
removes the false positives due to no luminosity and discarding the brightness channel
provides robustness to varying lighting conditions.

In the second step, we clean the mask by applying a morphological dilation followed by
an erosion, with a circular disk small enough to connect only nearby pixels (25px in radius).
Finally, we find the contour of the largest connected binary area in the mask, set the enclosed
pixels to 1, and extract the lettuce from the original frame by masking it with the computed
mask (Fig. 5.2a). The center of the connected binary area in the final mask is assumed to be
the center position of the lettuce.

Stem Detection

Stem detection is the first step towards retrieving a reliable orientation estimation of a lettuce.
Due to radical variations in hue and saturation depending on the freshness of the produce,
stem detection can not be performed using simple thresholding. A sliding window is used
to perform a sequential search of the area within the detected lettuce. In the search we
attempt to identify a set of features unique to the stem. The image is converted into the LAB
color space, such that value of the pixels within the stem area will be homogeneous across
different hues, saturation and lighting conditions. The A-channel spans from a minimum
where pixels partake a green coloring, to a maximum where they show a red hue. As the
stem never has the same coloring as the green outer leaves, the A-channel is suitable for the
stem detection. Fig. 5.2b shows the A-channel of a detected masked lettuce picture after the
LAB conversion.
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The stem detection process starts by finding the expected size of the stem within the
lettuce. Let M be the previously computed binary mask. We first find the area of the lettuce
al as the sum of the pixels in the mask. The radius of the circle whose area is the same as the
detected lettuce is rl =

√
al
π

. Experimentally, the stem diameter has been determined to be
≈ rl

5 , with an average error of ± rl
12 .

The stem look-up is performed by searching pixels, sliding left to right and top to bottom
within the area where the lettuce is contained. The stride length, ι , is tuned to a value small
enough to fall within the expected area of the stem multiple times before the end of the
search, i.e.: ι =

re
s
4 , where re

s is the expected radius of the stem in the lettuce.

Let A be the A-channel of the image in the LAB color space. For each set of indexes
(i, j), A is thresholded around the value of Ai,j, thus creating an initial masked window Mf ′

,
where we compute the element in position (k,m) as:

Mf ′
k,m =

1 if Ak,m > Ai,j − ε and Ak,m < Ai,j + ε

0 otherwise
(5.1)

The ε determines the strength of the thresholding around the currently inspected pixel
(Fig. 5.3b), where 0 < ε < 256. We empirically set ε = 7, to ensure homogeneity amongst
the thresholded pixels.

The binary image is de-noised by performing an opening morphological operation with a
disk of rl

8 followed by a closing operation with a disk of disk radius = rl
3 . The parameters

were chosen to cope with the expected radius of a stem. Finally, we retrieve the largest binary
area contour and set the enclosed pixels to 1 (Fig. 5.3c). We will refer to the clean mask as
matrix Mf. The binary area in Mf is an estimate of the stem location in the image. To validate
the stem we have devised four unit test: vicinity, comparative area, solidity and elongation.

For vicinity, we test if the (x,y) coordinate of the binary area found after the cleaning
operation is within a distance equal to the expected radius of the stem. In the comparative
area test, we retrieve the expected area of the stem as ae

s = re
s

2
π , and validate the binary area

as if |as −ae
s|< ae

s . In the third test, solidity is a measure of the convexity of the found area.
Here we compute the solidity sol, as:

sol =
as

Φ(C̆s)
and sol ∈ {x ∈ R+|x < 1} (5.2)

where C̆s is the contour of the binary area in Mf and Φ(C̆s) is the area of the convex hull
surrounding the contour C̆s. In general we expect a stem to be approximately round (i.e.
sol = 1), so we reject a candidate if sol < 0.7.
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(a) (b) (c)

Fig. 5.3 The stem detection process: (a) search amongst selected pixels in the lettuce, (b)
thresholding on the value of the looked up pixel, (c) cleaning the image. The stem candidate
is accepted only after validation.

In the fourth and last test we require the stem to be circular, by assuming convexity, we
can test this by Ψ(C̆s)

ψ(C̆s)
< ζ where Ψ(C̆s) is the length of the major axis in C̆s, Ψ(C̆s) the length

of its minor axis, and ζ calibrates the accepted error elongation margin (here ζ = 1.2, to
ensure approximately round binary areas).

Once all tests are passed, the (x,y) position in the frame will be returned as the location
of the lettuce stem (Fig. 5.3). In this process, almost all tunable parameters are based on
the previously found radius of the lettuce. Therefore, assuming that produce can be reliably
detected this is a generic process for stem detection.

Lettuce Orientation Estimation

Given the shape, a lettuce can be found in one of two poses: stem facing downward or facing
up. In the case where the stem cannot be found, an action can be taken to flip the lettuce over.
If the stem is found, it is possible to find the pose as a 3D vector starting from the stem and
pointing outward, towards the front of the lettuce. This vector is given as:pl[0]− ps[0]

pl[1]− ps[1]

he
l

 (5.3)

where pl is the estimated center of the lettuce, ps the position of the stem and he
l the expected

lettuce height. As the proposed solution is based on single 2D images, the height of the
lettuce is expected to be the average computed height in a data-set of 10 iceberg lettuces
(µl = 111.27mm ±3.51mm). The radius can not be used due to the elliptical shape of lettuce.
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Fig. 5.4 Diagrammatic representation of the lettuce (top) and method for rolling the lettuce
using a soft pad attached to a UR5 robot arm (bottom)

The leaf removal process is tolerant to changes in height, and thus height errors were found
to have a negligible impact on the peeling process.

5.2.2 Lettuce Orientation

By applying a horizontal force and rolling the lettuce, a lettuce can be oriented with the
outer-leaf on top and with minimal risk of damage. Modelling the lettuce as an ellipse, when
a force is applied the lettuce will roll and then stop at a stable point where the centre of mass
is at the lowest point, i.e. the top and bottom side of the lettuce. This corresponds to angles θ ,
between the stem and the normal, of θ ≈ 0 and θ ≈ 180 (Figure 5.4). The optimum distance
to apply this force over to roll the lettuce such that it is in the top position (θ ≈ 0) must be
found.

5.2.3 Leaf Removal

Nozzle Design

3D printed circular nozzles of varying inner diameters have been used, with a 3mm lip around
the nozzle to allow for formation of a seal (Fig. 5.7a. The normal holding force is given by
Fh = ∆pAe where ∆p and Ae denote the pressure difference and the effective contact area
respectively. Rough surfaces of the lettuce can affect the effective area in contact, reducing
the holding force. Therefore a flat non-contoured area of the leaf should be used. The suction
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nozzle surface material affects the leakage flow, with compliant softer materials helping to
achieve a seal. The nozzle diameter and materials must be optimized to hold and tear a single
leaf opposed to lifting multiple leaves or the entire lettuce.

Leaf Removal point

Picking near the stem reduces the risk of tearing the fragile leaves and achieving partial
leaf removal. However, the leaves are more textured (up to 4mm variation in height) nearer
the stem making it harder to achieve suction. Towards the edges of the leaf the thickness
drops to 0.15mm with the leaves more fragile, however the radius of curvature is much lower
providing a flatter surface minimizing leakage flow.

Leaf Pulling Trajectory

The trajectory in which the leaf is moved after suction is applied affects success. Moving
towards the base encourages the snapping of the leaf, as opposed to tearing. The trajectory
should be optimized to maximize this snapping force.

5.3 Results and Discussion

5.3.1 Vision and Detection

The lettuce and stem detection algorithm were tested on a set of 180 pictures taken with the
camera facing directly downwards above the work space at heights between 70cm to 100cm.
10 different iceberg lettuces were used in various poses with varying light direction, light
intensity and background objects (Fig. 5.6). In addition, 30 frames were taken after storing
the produce for 3 days, inducing changes in stem color.

The algorithm had 100% detection accuracy, estimating the center with an average
accuracy of 20.21px ±0.48px from the true lettuce center. The stem detection algorithm
found 64 of the 79 visible stems in the data-set, with an average distance from the true
stem center of 5.76px ±0.24px, reaching a detection accuracy of 81.01%. Given the camera
height, on average we detect the lettuce true center within 7.78mm and the stem within
1.73mm, allowing us to achieve the optimum lettuce removal point.

5.3.2 Lettuce Orientation

The lettuce was placed in a pose corresponding to a randomly generated vector with a
horizontal force of 1N applied at 0.1ms using a UR5 robot arm with a soft pad, rolling the
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Fig. 5.5 Success rates when rolling a lettuce placed randomly, with the stem in the top half
(top graph) or bottom half (bottom graph). 50 experiments performed using 10 lettuce.

Fig. 5.6 Six example images in the data-set used for testing.
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(a) (b)

Fig. 5.7 The figure shows (a) the Nozzles tested, and (b) the possible outcomes when
lifting the lettuce: partial removal, full leaf removal and the entire lettuce being grasped
demonstrated with a number of nozzles and without nozzle.

lettuce (Fig. 5.4). The end position of the lettuce was recorded, with the lettuce considered to
be top down (such that the leaves are exposed for gripping), bottom down (stem is exposed)
or in another direction. The results for 5 lettuce each rolled 10 times (Fig. 5.5) show that
the optimum distance for horizontal rolling is 300mm, where for both tests the lettuce ends
in one of two states, top or bottom facing. Therefore, given an initial random orientation,
the lettuce should be rolled by 300mm. After this, stem detection should then be used to
determine if the stem is exposed (bottom position) and if not, the lettuce should be rolled
a further 300mm in the opposite direction (to keep the lettuce within the work-space). If
necessary, this process can be repeated until the top surface is exposed.

5.3.3 Nozzle Design

Nozzles of varying diameter and material (plastic or silicone) have been tested with the
suction system and nozzle mounted on the end of the UR5 robot arm. A lettuce is placed in
the correct ‘top down’ position, with the suction nozzle then lowered onto the middle of a
lettuce leaf. The vacuum is then applied and the arm lifted. There are four possible outcomes:
failure to grasp, lifting the entire lettuce, partial leaf removal and successful leaf removal
(Fig. 5.7.) The results for the different nozzles are shown in Table 5.1. The maximum lift
force was measured to be 6.8N, significantly exceeding the typical weight of a lettuce (≈4N).

The smaller nozzle (7mm diameter), had insufficient strength to grasp any leaves, only
achieving a partial tear. The largest nozzle (37mm) displayed reasonable ability to remove
the leaves, both partially and fully, however the increased contact area can result in lifting
of the entire lettuce. The addition of a silicone outer ring to the nozzle (27mm and 37mm)
increased the effective area, enabling a higher area of leaf tearing and successful leaf removal.
The silicone’s elastic properties, in fact, can better fit the non-uniform surface of the lettuce’s
outer surface, achieving an appropriate “seal” at the surface level via the soft adaptation of
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Table 5.1 Results from grasping lettuce leaves in the middle of the leaf and lifting with a
nozzle of given diameter and material, each nozzle tested on 10 leaves.

Nozzle
Diameter

Nozzle
Material No Grip Lift

Lettuce (%)

Partial
Leaf

Tear (%)

Successful
Leaf

Removal (%)

7mm Plastic 71 0 29 0
17mm Plastic 9 0 55 36
27mm Plastic 0 8 82 10
37mm Plastic 0 40 38 22
27mm Silicone 0 6 53 41
37mm Silicone 0 10 48 42

the end-effector itself. The softness, in turn, would also provide a more gentle “dragging”
of the tearing leaf across the lettuce’s body. This is an important morphological process,
enabling appropriate leaf manipulation by the robot. The 27mm silicone nozzle showed the
best performance.

5.3.4 Leaf Removal Radius

Using the 27mm nozzle from the previous experiment, lettuce leaves were gripped at varying
distances along the middle of the leaf and then raised vertically, with the area percentage of
leaf removed measured to the nearest 10% (Fig. 5.8).

Due to the extreme variability in lettuces, there is significant variation in the percentage
of leaf removed, as shown by the magnitude of the error bars. At the outer edges, the leaf is
fragile and tears easily, leading to a limited leaf removal. Near the stem, there is limited leaf
removal due to the highly textured leaf. Thus, there exists an optimum picking location at
approximately 0.7r from the stem. The vision system can detect the lettuce location with
an average error of 7.78mm, assuming a typical lettuce to have a diameter of 200mm, the
positioning error in achieving this point is less than 5% such that successful removal can be
maximized.

5.3.5 Leaf Trajectory

To test the impact of the leaf pulling trajectory, the 27mm nozzle was tested 0.7r along the
leaf, with the arm moved at varying angles after applying suction and ‘grasping’ the leaf.
The inclination of the trajectory relative to the normal vector of the lettuce is kept constant, at
45 degrees, such that the leaf comes clear from the body of the lettuce. The percentage area
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Fig. 5.8 Percentage area of leaf removed, with the leaf removal point along the stem of the
leaf. The experiment was repeated for 10 lettuce each with two outer leaves which were
removed, i.e. 20 repeats.

of the lettuce leaf removed is shown in Fig. 5.9 for different pulling angles. Pulling at 120
degrees offers the greatest chance of leaf removal as enables the leaf to snap opposed to tear.

5.4 Demonstration

To demonstrate the abilities of the methods and approaches presented, leaves were removed
using the techniques discussed. Fig. 5.10 showcases the peeling process and videos shows the
different components of the peeling process2. A lettuce was placed in a random location and
orientation (as discussed previously) and is then rolled to the correct location. The second
process, leaves are removed from the optimal position on the lettuce using the 27mm silicon
nozzle. The time for this leaf removal process (assuming the lettuce is correctly orientated)
was measured to determine the average cycle time. With limited testing (10 lettuces, each
with 2/3 outer leaves) there was a success rate of full leaf peel of 50% and partial leaf removal
of 30% with an average time of 28.5 seconds. In most cases failure was due to lifting the
lettuce followed by leaf tearing.

5.5 Conclusion

This chapter has presented mechanical and vision concepts to enable the automated removal
of lettuce leaves; the proposed pipeline is the first autonomous system to perform this
task. The mechanical systems have been tested and demonstrated and the required vision

2Video demonstrations can be found at: https://goo.gl/S68Wnr
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Fig. 5.9 Percentage of lettuce leaf removed with varying trajectory angle α (see inset). Each
angle was tested on different outer lettuce leaves.

systems presented. Although the system has been specifically designed for the removal of
lettuce leaves, there is significant wider applicability of the system and techniques developed.
The model and understanding of the physical parameters affecting successful removal of
lettuce leaves can be applied to many other crops such as cauliflower which is far less
fragile and presents less visual variations with orientation [8]. The vision, in particular,
has wide applicability in other crops where similar information would be required for the
post-processing of the produce.

The lettuce and stem detection, tested on a challenging data set, have demonstrated that the
proposed solutions are robust to clutter, lighting conditions, camera distance, morphological

Fig. 5.10 Time series of the leaf removal showing the time taken to complete the process.
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variations of the produce and changes in its position and orientation in general. The major
drawback of the approach lies in the significant reliance on the produce’s assumptions.
Although the assumptions provide robustness, they have the potential to induce detection
failures when the are not met in the real world (e.g. approximate lettuce-to-stem relative
size). In this context, the tuned parameters based on the produce assumptions would need to
change to reflect different produce types.

Although all components of the system have been tested (rolling, pose estimation and
peeling) they are currently distinct processes. Further work to integrate this into one single
end-to-end solution is required. The current system is capable of performing the peeling pro-
cess with full leaf removal 50% of the times with an average time to complete of 27 seconds.
This approach was specifically designed to minimize contact with the lettuce, reducing the
chances of damage. A two ‘arm’ approach, however, should also be investigated3.

The work in this chapter highlights how the morphology of the lettuce removal apparatus
plays a fundamental role in achieving accurate and damage-free manipulation of the soft
lettuce object. This is especially shown in Fig. 5.7 and Table 5.1. The influence of morphology
to the soft physical interaction between the robot and the environment is one of the two
main underlying themes of this thesis. One of the main limitations, however, is that the task
resolution was here achieved via human intuition and design. Future work should instead
focus on achieving similar results, while allowing the robot itself to change its morphology
appropriately for the resolution of the task at hand. As explained in Chapter 1, to be able to
reason about which morphology can structure the stimuli appropriately so to better achieve
the task resolution, sensing is necessary. The next chapter will treat this topic in more depth.

3Steps towards achieving this can be found in the Further Work video which shows lettuce peeling performed
with a two arm Baxter robot. The pose estimation and peeling process is combined. https://goo.gl/S68Wnr





Chapter 6

Soft Morphology to Structure
Information

The concept of morphological conditioning, or morphological computation, was first intro-
duced in Section 2.3.1, as well as in 2.4.1, where the role of morphology in filtering and
moulding the sensory perception was explained. In the previous Chapter we have shown how
morphology plays a fundamental role in manipulation. In this chapter we finally introduce
Soft Morphology within SoMComp, and focus on the topic of tactile perception. We investi-
gate the possibility of purposefully choosing a morphology to improve the soft interactions
such that the physical stimuli arising can aid in object discrimination tasks. We focus on
tactile sensing as a modality which is heavily dependent on morphology, as well as physical
interactions, and therefore it is a good venue to show the concepts within this thesis.

Reference Publication

This chapter was adapted from an article titled “Soft Morphological Processing of
Tactile Stimuli for Autonomous Category Formation” [227], published in the 1st

IEEE International Conference on Soft Robotics (RoboSoft 2018). The article was
written in collaboration with Dr Perla Maiolino and Dr Fumiya Iida and proposes
a mathematical framework to make use of the morphology of a soft robot to aid in
discrimination tasks. Dr Fumiya Iida and Dr Perla Maiolino contributed with the
conceptualization of the topics, design of the experiments and the writing of the article.
As first author in the article, my contribution includes conceptualization of the topics,
the design and execution of the experiments, the robot control, the formulation of the
mathematics for the framework, data analysis and the writing of the article.
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6.1 Introduction

Sensor morphology is a fundamental aspect of tactile sensing technology. Design choices
induce stimuli to be morphologically processed, changing the sensory perception of the
touched objects and affecting inference at a later processing stage. The main contribution
of this chapter is to propose a conceptual framework to examine whether any processing
or meaningful transformation occurs in robotic tactile sensing due to its morphology and,
consequently, how Morphological Computation can drive the robot’s internal representation
of the world. This work marks a step towards the design of sensors whose morphology can
sensibly aid in the information processing of perceptual inputs for a task at hand.

For this purpose we perform tactile discrimination experiments. Haptic sensing differs
from other modalities, such as vision, in virtue of its tight coupling with, and need of, physical
interactions. The somatosensory system of biological organisms decodes, interprets and
categorizes a wide range of tactile stimuli arising from interactions with the environment.
This difficult task, if in part achieved at a neural level, is known to be initially performed
at sensory receptor’s level [2]. As an example, the morphology of the vibrissal system of
rats is useful in extracting information relative to object texture, orientation, shape, size and
location of surfaces. The system then, preprocesses information from the environment into
useful stimuli to be further processed by the brain [10]. In humans, when a scene is explored
by touch, the morphology of the skin (in particular of the Meissner′s Corpuscles together
with the Dermal Papillae) allows the encoding of edge information [33].
In the last decades, substantial efforts have been made in enhancing the perceptions capabil-
ities of robots by providing them with a sense of touch [45]. Despite the large number of
tactile sensors developed, the proposed solutions have been often presented at a prototypical
level, where the designs needed be specifically tailored to individual robots and applications.
In this context, design principles would be focused on finding trade-offs between aspects
such as transduction principles, sensor performances and ease of integration, but only a
limited number of research work, mainly in the Soft Robotics community, have focused on
the development of tactile sensors with functional morphology [41, 43, 93]. A structured
research review about the use of sensor morphology in robotic systems can be found in
[106]. Despite the efforts, the role of sensor morphology in encoding and categorizing touch
stimuli remains a significant challenge. Moreover, the interpretation of the sensor signals to
discriminate between a set of stimuli or to perform object recognition has relied mainly on
supervised machine learning techniques [72, 113, 252], burdening solutions with the need of
large amount of labelled data.

The chapter is organized as follows: In Section 6.2 we describe the proposed unsupervised
method for clustering using the soft filters, in Section 6.4 we describe in detail the tactile
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Fig. 6.1 Conceptual map for the Morphological Computation of Sensory Receptors.

sensor technology as well as the experimental set-up used for performing the experiments. In
section 6.5 the experimental results are presented. Finally, section 6.6 gives a discussion of
the results followed by a conclusion in Section 6.7.

6.2 Autonomous Category Formation

We propose an unsupervised process to automatically cluster a set of objects in two categories.
After acquiring tactile images for each object in a set, the autonomous category formation
process is mainly divided in two pipelined steps: Principal Component Analysis projection
(PCA) [257] and K-Means Clustering (KMC) [144]. We use the proposed process to observe
the influence soft filters with variable thickness have on the categories.

We start the process with tactile sensor readings for each object we wish to cluster. For
a set of N different objects, let X be a (N ×D) matrix where each unique tactile image for
an object is a D dimensional row in the matrix, where typically D ≫ 2. We define a tactile
image as a one-off tactile sensor reading, where each element in the vector is proportional to
the deformation of a tactile element in a predetermined location on the sensor (Fig. 6.3b). As
the tactile sensor technology does not affect the processing stages, we leave its description to
Section 6.4. We begin by finding the average tactile image by

µ⃗ =
1
N

N

∑
i=1

x⃗i (6.1)

where x⃗i is a row vector in X. We proceed by computing the scatter matrix of X as

S =
N

∑
i=1

(⃗xi − µ⃗)(⃗xi − µ⃗)T (6.2)

We use Single Value Decomposition to factorize S into

S = QΛQ−1 (6.3)
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Fig. 6.2 Autonomous category formation steps.

where Q is matrix such that each column q j corresponds to an eigenvector of S, and each
element λ j j in the diagonal matrix Λ is its corresponding eigenvalue.

We list the eigenvectors in ascending order of eigenvalue and select the first two in the list.
Let p⃗1 and p⃗2 be the selected eigenvectors obtained from PCA. We form a (D×2) projection
matrix

P =
[

p⃗ T
1 , p⃗ T

2

]
(6.4)

where p⃗ T
1 and p⃗ T

2 are column vectors in P. Finally, we project the D-dimensional row
vectors in X onto a 2-dimensional subspace by:

W = X ·P (6.5)

where W is a (N × 2) matrix and each row in it is a 2-dimensional encoding of a tactile
image. The choice of a 2-dimensional subspace was made to be able to perform clustering
robustly. The choice of experimental procedure is such that each tactile interaction between
the robot and an object would subject the tactile evidence to noise. Reducing the number of
dimensions is beneficial in maintaining only the relevant information for discrimination. In
this context, one dimension might be too low to capture the separation of classes across the 7
different tasks (where each object might cluster in the same areas), while dimensions higher
than 3 might not induce robust clusters (due to the fluctuations of the tactile sensor response
over time across experiments). Moreover, dimensionalities higher than 3 present difficulties
for visualization and understanding. We proceed by using KMC (k=2 and random centroid
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initialization) to split the tactile images in W into two clusters, thus:

v⃗ = KMCk=2(W) (6.6)

where v⃗ is an N-dimensional array, ∀i ∈ {1,2, ... ,N}. v⃗i ∈ {0,1}, and ∀i ∃ j. i ̸= j ∧ vi ̸= v j

(no one cluster can contain all objects). In general v⃗i = 0 i f f the ith tactile image belongs to
cluster 0 and v⃗i = 1 i f f the ith tactile image belongs to cluster 1 (Fig. 6.2). The v⃗ vector then
contains the cluster membership of each object in the initial set. To avoid cluster anomalies
due to the random centroid initializations we run the K-Means Clustering algorithm three
times and discard the clustering attempt if, after convergence, any of the three cluster guesses
vectors differs from any other.

As it becomes clearer later, the cluster assignments for each object are largely dependent
on the soft filter employed. The change in cluster assignment is the main object of analysis
in the following sections.

6.3 Tactile Sensor Technology and Data Acquisition

The tactile sensor technology utilized in the experiments for this chapter has been described
in 3.2.3. In the prototype used for the experiments within this chapter the sensor is composed
of 6 modules. Each module hosts 10 taxels, as well as the Capacitance to Digital Converter
(CDC) chip (namely, the AD7147 from Analog Devices) for converting capacitance values
to digital (Fig. 6.3a). A sensor reading from the tactile sensor described is produced at 20Hz,
and corresponds to a 60-dimensional array (we exclude the central taxel in Fig. 6.3b), where
each element contains the capacitance variation value of the corresponding taxel.

6.4 Methods and Experimental Set-Up

We investigate the influence soft filters with varying thickness have on tactile information
encoding. We build three filters using Ecoflex 00-202 from Smooth-on, each respectively
3mm, 6mm and 10mm thick. The material was selected for its mechanical properties, in
particular a Shore Hardness of 00-22. We 3D-print a custom-made end-effector with a
circular flat surface (diameter = 80mm) onto which the soft filters can later be placed and
we integrate the referenced capacitive tactile sensor onto its surface to retrieve tactile images
of the objects during the experiments (the above set up is described in Fig. 6.5).

2https://www.smooth-on.com/products/ecoflex-00-20/
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(a) (b)

Fig. 6.3 (a) The CySkin technology architecture. The hexagonal patch is connected to a
Intelligent Hub Board (IHB) that collect the tactile sensor data and send them to the PC
through a CAN bus. (b) The CySkin patch used for the experiments. It is composed by 6
interconnected triangular modules, each hosting 10 taxels.

Fig. 6.4 Task Table. Each task is a possible clustering outcome for the object set.
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Fig. 6.5 The experimental set-up used for the experiments. The ST robot was used to push
the sensorised end-effector against the object. A FlexiForce sensor A502 from TekScan was
used for controlling the normal force applied. Three different soft filters were used in the
experiments
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In this chapter we refer to tactile images as the sensor readings for a specific object. To
carry out the experiments we design and 3D-print a minimalistic set of four different objects
with distinct features: a Cube (side = 30mm), a Cuboid (side = 30mm, length = 80mm),
a Sphere (radius = 30mm) and a Half-Cylinder (radius = 30mm, length = 80mm). The
objects present mainly two varying properties: long vs short length (Sphere & Cube vs
Half-Cylinder & Cuboid) and edged vs non-edged surfaces (Cube & Cuboid vs Sphere &
Half-Sphere). We define a task as a unique split of objects into two sets. Given the 4 objects
it follows we can derive 7 different tasks (Fig. 6.4). A task here represents one of the possible
ways we could wish to perceive similarities among objects. If we were to cluster objects
according to Task 5, for example, we would be associating objects based on edges; while
optimizing for Task 6 would signify grouping objects by length. Some of the tasks are
conceptually less intuitive as no one particular feature can resolve the inclusion of an object
in a cluster. As we are interested in the effects of Morphological Computation to the objects’
associations, all 7 tasks are considered.

We carry out the experiments by mounting the printed end-effector, coupled with the
tactile sensor, onto an ST-Robotics R12/5 robotic arm3. For each set of experiments we
secure a different soft filter onto the end-effector flat’s surface, and proceed by controlling
the arm to descend perpendicularly down on the center of the object (Fig. 6.5).

We place a FlexiForce force sensor A5024 at the base of the object in order to apply
a controlled perpendicular force when retrieving tactile images. The linear range of the
sensor is 0-22N, however, we recalibrate its response in the 0-10N range and choose the
maximal calibrated force of 10N, as this falls in the low-pressure regime (characterized as
gentle touch [53]) for object exploration. We arrest the arm for the time needed to retrieve
10 consecutive tactile sensor readings and average them to create a tactile image. To further
remove experimental bias, we repeat each set of experiments three times and average the
computed tactile images, for each object, over the three trials (Fig. 6.6). We finally construct
the tactile image matrix X by setting each of its rows to a computed tactile image.

3http://www.robotshop.com/uk/st-robotics-r12-5-axis-articulated-robot-arm.html
4https://www.tekscan.com/products-solutions/force-sensors/a502
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Fig. 6.6 3D-printed Sphere, Cube, Half-Cylinder and Cuboid (view from above) and relative
tactile images computed (averaged sensor readings over three trials).

We utilize the process described in Section 6.2 to process the tactile image matrix for
each experiment.

The unsupervised part of the process (PCA & KMC) clusters the objects automatically
based on the two dimensions of highest variance in the data. We define the cluster matching
process CM as:

v⃗ ′ = CM(⃗v, t⃗k) (6.7)

Given a task t⃗k and a cluster guess vector v⃗ then, v⃗ ′ is a new vector such that

∀i ∈ {1,2, ...,N}.
(⃗vi = 1 =⇒ v⃗ ′

i = 0)∧ (⃗vi = 0 =⇒ v⃗ ′
i = 1)

⇐⇒ ||⃗v− t⃗k||> ||⃗v ′
i − t⃗k||
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(a) (b)

Fig. 6.7 (a) Process pipeline for the Cluster Matching Algorithm. (b) Confusion matrices and
accuracy values for 7 different tasks corresponding to the clustering results obtained with
three soft filters of 3mm, 6mm and 10mm respectively. The diagonal in each matrix retains
the counts for the correct cluster guesses. Each soft filter is optimized for a specific task,
highlighted in red.

i.e. we associate a cluster guess to a target cluster maximizing accuracy on a particular task
(Fig. 6.7a). A vector v⃗ = [0 0 0 1] for a task t⃗k = [1 1 1 0], for example, would be re-associated
as v⃗ ′ = [1 1 1 0]. We utilize this to benchmark the performance of the algorithm in the
various tasks (the object’s inclusion in a cluster does not change after matching).

6.5 Experimental Results

6.5.1 Task Optimization

After the experiments, we observe the accuracy of the clustering with respect to the 7
predefined tasks. Fig. 6.7b illustrates the resulting confusion matrices. For each (2× 2)
confusion matrix C, the darkness in square Ci j is proportional to the number of times an
object class i was matched to a object guess j. The main diagonal then, contains the counts
for the correct guesses, while anything outside of it is a mismatch. As clear from the figure
each of the soft filters alters the clustering process significantly. The tactile images taken
through the 3mm soft filter optimize clustering for Task 5 (accuracy = 1); The tactile images
taken trough the 6mm soft filter optimize clustering for Task 2; and finally, sensing through
the 10mm filter clusters optimally according to Task 6.
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(a) (b)

(c)

Fig. 6.8 The figure shows the 2-dimensional projection of each object on the two axis of
highest variance in the data for the 3mm soft filter (a), 6mm soft filter (b) and 10mm soft
filter (c). The line lkmc corresponds to the decision boundary of the two clusters as found by
the KMC algorithm (see Section 6.2, equation (6.6)), while C0 and C1 represent the cluster
centroids. From the figure is it clear how the relative distance between objects changes
when changing the soft filter, and the corresponding cluster assignment through the KMC
algorithm.

6.5.2 Autonomous Category Formation variations

Fig. 6.8 illustrates the plots for each object in their optimal matched tasks. In the figure, the
relative position of the objects to each other changes according to the soft filter used, drawing
closer objects with respect to the morphologically processed features. The descriptions
retrieved from the 3mm soft filter encode information relative to edges, and therefore draw
together in space objects with or without edged surfaces (Cube & Cuboid vs Sphere &
Half-Cilinder). As the thickness of the soft filter increases, the tactile sensor response
becomes more blurred [238]. With thicker soft filters (10mm) the propagation of forces in
the filter changes, and neighbouring taxels to the ones directly under the object are also
affected. As edges, in a tactile image, become less and less sharp, another parameter (i.e.
length) comes to induce the highest change in sensor readings from object to object. As
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(a) (b)

Fig. 6.9 The figure reports the average accuracy and error e = ±
√

std
N for the inference

algorithm to cluster according to Task 4 (a) and Task 5 (b), when morphologically processing
the data with their respective optimal filters (3mm soft filter and 10mm soft-filter respectively).

a direct consequence the dimensions of highest variance, appointed by PCA, change from
encoding edge information to encoding length deviations of objects, and eventually draw
close in space the representation of objects with similar lengths (Cube & Sphere vs Cuboid
& Half-Cilinder).

6.5.3 Spatial Resolution Influence

We test the reliability of the findings over tactile spatial resolution by running the Autonomous
Category Formation procedure over subsets of s selected taxels. For each subset, we randomly
select within the sensor an increasing number of taxels, where s ∈ {6i| i ∈ 1, ...,6}, and run
the procedure 100 times. In Fig. 6.9, we report the average accuracy levels and errors over
the performed runs for the optimal soft filter in Task 5 (3mm filter) and Task 6 (10mm filter).
We find that the ability to morphologically process the data is highly dependent on the spatial
resolution of the tactile sensor and that results are best when using ≈ 50 or more taxels.
The findings highlight the need of a high spatial resolution tactile sensor for the analysis
described in this chapter.

6.6 Discussion

After morphologically processing the tactile stimuli, we observe inherently different cluster
guesses. Each soft filter alters the sensor response significantly, and induces the object
descriptions (based on the two dimensions of highest variance in the data) to be qualitatively
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largely different. The experiments provide direct evidence of how changing a single parameter
of a soft filter can drastically change the way we perceive objects in the world. In the context
of understanding relations amongst objects (for example clustering objects based on different
features), the standard approach in the field is to change the inference mechanism to implicitly
discern among features. Many of the used algorithms, in fact, need a large amount of data
(usually labelled) which allows them to build an internal model of the objects and later do
inference on the same. Understanding object properties in an unsupervised manner can be
appealing, as there is no need of labelling or explicit modelling throughout the process. The
experiments suggest we can drive the unsupervised findings by a careful design of the soft
filters for a tactile sensor. As an indirect consequence, we show it is possible to optimize the
tactile sensor’s soft filter to drive the unsupervised inference algorithm into creating a useful
world representation. In the context of manipulation or gripping mechanisms, for example,
we may wish to grip an object based on a set of two or more properties. A soft filter can
then be carefully designed to be optimal in extracting only the most relevant information
for a task while filtering the others. The resulting clusters, then, would be retaining the
feature information in terms of object similarities. By simple reinforcement learning, or other
more involved strategies, a robot could then learn to grip an object in a cluster, and possibly
generalize the gripping mechanism easily on other members of the cluster. In this scenario,
no other information, besides cluster membership, would need to be known, and the human
input in the process would be minimal.

6.7 Conclusion

We propose a concept to examine the way morphology affects the encoding of tactile sensor
stimuli and analyse its effects on category formation. We actualize the concept by developing
an unsupervised method for clustering a set of objects into two clusters. After integrating a
capacitive tactile sensor onto a custom 3D-printed end-effector, we change the properties of
a soft filter to alter the tactile stimuli and observe the change in cluster formation derived
from the alteration. Results show that changing one parameter of the soft filter is enough to
provide three qualitatively different representations of the objects. When clustering, we find
the inference procedure relies on different object properties depending on the Morphological
Computation applied. In this context, the 3mm soft filter optimizes the inference procedure
for edge detection while the thicker 10mm object results optimal for elongation detection. A
test on the reliability of the findings over various randomly selected set of taxels shows the
results are highly dependent on the tactile spatial resolution of the sensor.
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The work in this chapter has shown how it is possible to assess the quality of soft robot
morphology via unsupervised methods. The soft interactions arising between the soft filter
and the object under touched are heavily influenced by the soft properties of the filter itself.
The ability to use information theory to autonomously reason about the influence of soft
morphology to the physical stimuli is a powerful tool which can aid severely improve the
current robot learning frameworks in Soft Robotics.



Chapter 7

Soft Actuation to Structure Information

As mentioned in previous chapters, morphology is not the only way to influence the sensory
stimuli arising from physical interactions. In SoMComp, Soft Actuation can pertain a similar
role, i.e. to influence the soft interactions, such that appropriate physical stimuli arise. In
this chapter, we treat this topic for robotic palpation, where a robot is made to discriminate
between areas of a soft phantom containing hard spherical inclusions, and areas without, by
touch.

Reference Publication

This chapter was adapted from a journal article titled “Structuring of Tactile Sensory
Information for Category Formation in Robotics Palpation” [231], published in
2020 in the journal Autonomous Robots. The article was written in collaboration with
Dr Perla Maiolino, Mr Ed Bray and Dr Fumiya Iida and investigates the importance
of appropriate end-effector trajectories when performing robotic medical palpation.
Moreover it proposes an unsupervised framework to assess the quality of these trajec-
tories. Dr Fumiya Iida and Dr Perla Maiolino contributed with the conceptualization
of the topics, design of the experiments and the writing of the article. Mr Ed Bray
contributed with the robot control and data collection. As first author in the article, my
contribution includes conceptualization of the topics, the design of the experiments, the
formulation of the mathematics for the framework, data analysis and article writing.
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7.1 Introduction

7.1.1 Robotic Medical Palpation

In medical palpation diagnosis, given the nature of soft tissues in the human body, haptic
perception plays a fundamental role [201].

Palpation is a key diagnostic examination, performed by medical practitioners for the
exploration of abnormal masses or lumps within the body[256]. In this examination, prac-
titioners use their hands to explore and feel for abnormalities within the soft tissue of the
body, exploiting their physical dynamics and sensing capabilities [17]. This is a technique
commonly used for the initial detection and screening of abnormalities within the breast
[235], abdomen [28], thyroid [60] or other parts of the body. Abdominal palpation, in partic-
ular, is used for the detection of several different conditions [63, 202], ranging from cancer
[221] and abdominal aortic aneurysm [132], to appendicitis [83]. Medical practitioners are
required to acquire complex sensory-motor skills over many years of training to be able to
appropriately perform this type of examination [22, 161]. Appropriate diagnosis can enable
the early detection of potentially life-threatening conditions, aiding the success of treatments
for the disease.

The strong dependence between the somatosensory system and motor actions in human
palpation has been investigated in relation to the development of robotic palpation systems
for detection of hard inclusions [87, 122, 124, 244, 277]. In the context of hard inclusion
detection, the structure of sensory stimuli generated by physical palpation, helps to under-
stand similarities or differences amongst the palpated objects. Through pertinent physical
interactions, sensory stimuli of similar objects will maintain strong invariant similarities in
the sensing space, whilst increasing their difference with dissimilar objects. In this context,
the invariances allow for the dissociation of stimuli originated from different objects and
the association, instead, of stimuli derived from similar objects. This fundamental process,
corresponding to the separation and association of sensor stimuli into groups, will be referred
to as categorization.

Palpation poses a particularly hard challenge for autonomous robotics systems. For a
fully autonomous robotics system to achieve high diagnostic accuracy, it is firstly necessary
to have an appropriate sensing and probing apparatus, capable of retrieving enough sensory
information. The detection of small masses in complex soft bodies, however, is a challenging
sensory task and it additionally requires the selection and learning of the appropriate physical
interactions with the soft-tissue of the body, to obtain sensory information which can be
used to make diagnosis possible [76, 251]. Human medical practitioners, in fact, must learn
appropriate sensory-motor control. Appropriate physical palpation techniques emerge from
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the understanding of the consequences of one’s actions to the sensory stimuli for a given task
or problem, in this case, the specific patient being examined.

Recently, our understanding of haptics and the importance of the human touch, and
sensory-motor information has advanced significantly. In particular, the role of sensory-motor
co-ordination and haptics has been explored for medical research [38, 253]. Sensor modalities
beyond purely visual sensing has recently been emphasized, and the use of tactile sensors for
tumour localization has thus been explored in some depth [47, 49, 218, 245, 251]. Finally,
it has been investigated how augmenting haptic feedback to surgeons during teleoperated
minimal invasive surgery can increase performance [121, 185].

In the past, many robotics palpation systems have been developed, for the detection of
hard inclusions in soft tissue. In the early 1980s, the development of the WAPRO-4 showed
how a robotics palpation system couple be capable of performing simple breast palpation to
identify relatively large inclusions [118]. This has been followed in more recent years with
increasingly anthropomorphic palpation systems [48] and abdominal palpation systems [49].
Over a decade prior to this work, Trejos et al investigated the ability to use TSI to augment
the abilities of surgeons to perform internal organ palpation under minimally invasive surgery
[262]. In [103] and [102], Hui et al investigated the use of SynTouch BioTac tactile sensor,
coupled with a Gaussian inference model or Support Vector Machine classifiers, for the
detection of soft plastic inclusions within a simulated silicon tissue sample. In [80] Gwilliams
et al compared the ability of an artificial tactile sensor to that of a human finger, thus showing
key differences between the two, and the ability of the former to outperform the latter in
specific scenarios. In [134], Li et al proposed the use of a compliant capacitive tactile
sensor array, between the tissue and a probing apparatus, to capture tissue properties during
palpation. They show the technology is capable of imaging lumps, if somewhat dependent
from their depth within the tissue. Further work focused on the employment of machine
learning approaches to palpation [7, 177]

In all previous research, there has been little focus on the physical palpation techniques
employed by the robot during the palpation examination. The robotic palpation techniques
employed, in fact, were mainly simple vertical displacement, mostly with the tactile sensor
constantly normal to the surface of the tissue under palpation. However, it is generally
possible to positively influence sensory response through appropriate physical interaction, as
advocated by the sensory-motor conditioning framework. In the context of palpation, the
efficacy of diagnosis could be significantly improved by influencing the sensory response
through appropriate palpation techniques [150, 228].

This Chapter addresses two related problems. First, we wish to investigate how motor
actions can aid in the separation and categorization of tactile sensor information. Research
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has previously shown that motor actions can introduce structure in sensory information
[151, 194, 247], but it is yet to be understood which principles guide the emergence of such
structure. Second, as later shown in this chapter, knowing the task to solve may not be
enough to understand which physical interaction strategy is appropriate to use, or predict
its effects to the tactile information. Here, instead, it is first necessary to understand the
properties of the objects in interaction with the agent and the level of abstraction intended for
the categorization.

In order to address the above problems this chapter investigates the processing of sensor
signals based on dimensionality reduction and clustering. We explore the way active physical
interactions with a soft body affect the structure of haptic spatio-temporal information.

7.1.2 Chapter Structure

The chapter is organized as follows: In Section 7.2 we describe the methods used, starting
from the experimental set-up in Section 7.2.1, to the acquisition of tactile data though various
probing strategies in sections 7.2.2 and 7.2.3. In Section 7.3 we describe the proposed
framework. In Section 7.4 we report the results of the experiments followed by a case study
in Section 7.5 and the conclusion in Section 7.6.

7.2 Methods

We arrange an experimental scenario where a robotic arm, equipped with an end-effector
and a tactile sensor, probes the soft tissue of a soft phantom organ, to detect hard inclusions
within it. The properties of the phantom organ designed to test the ability of the robotic agent
to be detect hard inclusions by their depth and size, as shown to be important in previous
systems [87].

7.2.1 Soft Phantom and Robot Set-Up

We built two 160x160x40mm soft phantom organs using Ecoflex 00-102 from Smooth-on.
The phantom organs are divided in 16 locations disposed in a coarse grained grid system as
shown in Fig. 7.1e. Each location in the phantoms may or may not contain hard inclusions.
An inclusion consists of a 3D-printed hard, spherical bead, embedded in the phantoms at a
depth of either 5mm or 15mm, and having a diameter of 7mm or 20mm (Fig. 7.1d). Hereafter
we may refer to a 7mm inclusion placed at a depth of 5mm as SS (Small-Shallow), a 20mm

2https://www.smooth-on.com/products/ecoflex-00-10/
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inclusion placed at 5mm as BS (Big-Shallow), a 7mm inclusion placed at 15mm as SD (Small-
Deep), a 20mm inclusion placed at 15mm as BD (Big-Deep) and an area containing no hard
inclusions as NA.

The experiments were performed on two phantoms: Ph-1, containing 12xNA, 1xSD, 1xSS,
1xBS, 1xBD (Fig. 7.1b); and Ph-2, containing 4xNA, 3xSD, 3xSS, 3xBS, 3xBD (Fig. 7.1c).

We 3D-printed a custom-made end-effector and integrated a capacitive tactile sensor onto
its surface to retrieve tactile images during the probing experiments (Fig. 7.2a). The printed
end-effector, coupled with the tactile sensor, was mounted onto an ST-Robotics R12/5 robotic
arm3 (Fig. 7.1a).

7.2.2 Tactile Sensor Technology and Data Acquisition

High spatial resolution is a crucial component of the sensor technology necessary for the
analysis in this chapter. The tactile sensor used has previously been described in Section
4.2.1.

In the current prototype, the tactile sensor module is placed on a 3D printed rigid
hexagonal prism, to allow for probing experiments (Fig. 7.2a). The sensor schematic
architecture is discussed in 3.2.3.

A sensor reading, or tactile image, from the tactile sensor described is produced at 20Hz,
and corresponds to a 7-dimensional array, where each element contains the capacitance
variation value of the corresponding taxel.

7.2.3 Probing Strategies

We control the r12/5 robotic arm open-loop in Cartesian coordinates. A teach-pendant was
used to manually teach the robot the x-y location of the areas to probe. We use the stored
end-effector positions in the subsequent control algorithm, where the robot automatically
probes each location using the preferred probing strategy. We differentiate between two
qualitatively different types of probing strategies, summarized in Fig. 7.2b: vertical and
rotatory.

First, the vertical probing strategy is performed with the probe aligned vertically and
plunged directly down into the phantom at 0.5 mm increments. After each increment, the
robot briefly pauses to allow a tactile image to be recorded before continuing with the next
movement. This continues until the probe is at a depth d below the surface of the silicon,
whereupon it stops recording and returns to a neutral position 10 mm above the surface in a
single movement.

3http://www.robotshop.com/uk/st-robotics-r12-5-axis-articulated-robot-arm.html
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Fig. 7.2 The figure shows the set-up for probing including (a) the sensorized probe coupled
with the CySkin patch used for the experiments, and (b) the diagram of the two probing
motions employed. The architecture for the sensor is shown in Fig. 3.3a. The vertical probing
motion is performed when r = 0 and is described by the parameter d. The rotatory motion is
performed with r > 0, and is fully described by both the d and r parameters.

Second, the rotary motion is performed with the robot d mm below the surface of the
silicone, rotating about a nexus point r mm away in the vertical direction. To reach the initial
position of this motion strategy, the robot moves vertically downward from its rest position,
until it reaches the position set by d. Hence, a nexus point r distant from the end effector is
assumed, and the robot rotates about it in the +θ direction until it is at an angle of 30o from
its initial, vertical, position. Here, the palpation action can begin. The probe rotates in the
−θ direction at 1o increments, recording a tactile image after each step. Once the probe has
rotated of 60o it stops recording, and returns to its rest position 10 mm above the surface of
the silicone.

In general, a probing strategy can be uniquely identified by a depth d and a radius r, thus:

Θ =

{
d
r

}
, (7.1)

where if r = 0, the probing motion will be vertical, while if r > 0 the probing takes place via
the rotatory strategy (Fig. 7.2b).
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7.3 Analytical Framework

In this chapter we consider the framework in Fig. 7.3. In the framework, an agent retrieves
tactile sensor information while interacting with samples of objects, defined by a task.
Here, the tactile information is directly influenced by the interactions with the samples. A
categorization system allows for the information to be: first, re-encoded into a meaningful,
lower-dimensional space (Cognitive Mapping); second, differentiated into useful categories
(Category Formation). The abstraction level corresponds to the number of categories that
should be observed in the sensor information and has a direct influence on the significance of
the formed categories. At its limit, 2 categories might be too coarse to be useful in capturing
differences amongst different types of objects, while a number of categories equal to the
number of object samples is impractical in identifying any similarities amongst them, and
therefore amongst similar objects. The direct influence of the physical interactions to the
tactile information, if substantial, should be observable in the category formation process.

7.3.1 Task and Physical Interactions

Within the considered framework, the agent is an embodied system equipped with a tactile
sensor, and capable of performing probing actions. The interactions consist of physical
probing, through different strategies, of target areas in a soft phantom, as was described
in Section 7.2.3. As exemplified in Fig. 7.4, an experiment consists of an agent probing a
preselected phantom with a chosen probing strategy. The agent iteratively selects a target
area in the phantom to probe, and performs the chosen probing strategy for the experiment
(described by Θ) while acquiring and storing tactile information. After probing all intended
areas the stored sensor information can undergo categorization.
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7.3.2 Categorization

Cognitive Mapping

A process is needed to reduce the high dimensionality of the spatiotemporal data acquired
through the tactile sensor, while interacting with the environment. We define a tactile image
sequence as a series of tactile sensor readings taken at set intervals, and concatenated into
a single array. After acquiring tactile image sequences for each probed location, we use
Principal Component Analysis projection (PCA) [257] to reduce the dimensionality of the
acquired data [144].

For a set of N different locations in a phantom, let X be a (N ×D) matrix where each
unique tactile image sequence for a probed location is a D dimensional row in the matrix.
The dimension of D, then, will be strictly dependent on the probing strategy and on the
interval at which the agent captures each tactile image within the sequence.

After obtaining the tactile image sequences matrix X, we use equations 6.1, 6.2, and
6.3 to create a scatter matrix S of X, and factorize it into matrices Q and Λ. Similarly to
Chapter 6, the Q matrix is such that each column q j corresponds to an eigenvector of S, and
each element λ j j in the diagonal matrix Λ is its corresponding eigenvalue. Furthermore, we
proceed to form a 2D projection matrix P with the two eigenvectors corresponding the the
two highest eigenvalues in Λ, and use equations 6.4 and 6.5 to form an (N ×2) matrix W,
where each row in the matrix is a 2-dimensional encoding of a tactile image sequence for a
probed location.
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Category Formation and Abstraction Level

To observe the effects of the probing strategies to the tactile sensor information we wish to
have a process to categorize the re-encoded sensor information. We use K-Means Clustering
(KMC) to find clusters in the data, where each found cluster will represent a potential category
of inclusion types. The analysis is analogous to that of Chapter 6, to observe whether the
same type of qualitative influence can be observed in the stimuli due to the actions of the
robot. The processes, however, differ slightly, as in the context of palpation they need to
be generalized for a multi-class classification scenario. The abstraction level is set by the
number of clusters we wish to find in the data. We initialize the KMC algorithm with random
centroids, and split the re-encoded sequences in W into K clusters by:

v⃗ = KMCK(W) (7.2)

The resulting v⃗ is an N-dimensional array, where each element v⃗i ∈ {1, ...,K}, and ∀i ∈
{1, ... ,N} ∃ j ∈ {1, ... ,N} : i ̸= j ∧ vi ̸= v j (Fig. 7.4); in other words, none of the resulting
clusters can contain all the sample areas in the phantom. Like previously, v⃗i = k only if the ith

tactile image sequence belongs to cluster k, thus the v⃗ vector contains the cluster membership
of each probed location in the initial set.

To avoid cluster anomalies due to the random centroid initializations we run the KMC
algorithm three times and discard the clustering attempt if, after convergence, any of the
three cluster guess vectors differs from any other. At the end of the clustering process a list
of centroids C is obtained, uniquely dividing the space into K categories (7.4). In this context,
the cluster assignments for each probed location is largely dependent on the probing strategy
employed.

The category formation is an unsupervised analysis to the data, and it is thus useful if
performed on all available data at the time of analysis.

7.3.3 Motion Strategy Scoring

At the end of the clustering process it is necessary to be able to assess the usefulness of the
probing in generating meaningful data for classification. For the unsupervised clustering
algorithm to be able to find meaningful clusters in the re-encoded tactile data, it is necessary
that the data exhibits structure. Therefore we score the probing strategy that generated the
data via a metric of structure tightly connected to the type of clustering utilized in this chapter,
i.e. the silhouette score [212].
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The silhouette score s(i) for cluster i can be computed as:

s(i) =
b(i)−a(i)

max(a(i), b(i))
(7.3)

where a(i) is the mean intra-cluster distance of cluster i, and b(i) is its mean nearest-cluster
distance. We will refer to the silhouette score s as the average score for each cluster found by
KMC, i.e.:

s =
∑

K
i=1 s(i)

K
(7.4)

The score will thus be a number s ∈ [−1,1], where data exhibiting more structure will score
higher s values.

After probing the selected phantom through various probing strategies, the maximum
observed silhouette score can identify which probing strategy is capable of generating
structured data for hard inclusion detection and classification. The analysis as described thus
far can be done without any prior labelling, and can thus be applied to all available data at
the time of analysis. After, a supervised method can, for example, be used to perform the
classification.

7.3.4 Experimental Procedure

We execute 180 experiments, each of which sees the robot probing all 16 areas of Ph-1 or
Ph-2 with the preferred Θ parameters. The experiments are carried out for all combinations
of d ∈ [6.5mm, ...,20.5mm] at 1mm increments and r ∈ [0mm,10mm,12mm,14mm,16mm].
The bounds were chosen to reach the minimal/maximal experimentally feasible probing
depth and rotation with the robotic arm, and the devised soft phantoms.

Given the procedure two datasets are collected, each consisting of time-series tactile data
collected from either the first or the second phantom under examination (Ph-1 or Ph-2). Each
dataset contains 90 sets of experiments, each of which is composed of 12 data-points, so
1440 data-points are present for each of the datasets. Each data-point is a time series of tactile
images with variable length (each tactile image is a 7-dimensional array). For the rotatory
motion, each tactile image was taken at 1o increments, while for the vertical motion each
image was taken at 0.5mm increments.

For each of the experiments, after the probing has ended, the time-concatenated data is
used to form the tactile image sequence matrix described (see Section 7.3.2). The matrix
can then be used to re-encode the tactile sensor information for each probed location into a
lower dimensional space (Cognitive Mapping). After clustering, each probed location will
be differentiated into one of a predetermined number of categories (Category Formation).



7.4 Results 105

0 2 4 6 8 10 12

time

t0
t1
t2
t3
t4
t5
t6

ta
xe

ls

NA

0 2 4 6 8 10 12

time

t0
t1
t2
t3
t4
t5
t6

ta
xe

ls

BD

(a) Θ =

{
6.5
0

} 0 2 4 6 8 10 12

time

t0
t1
t2
t3
t4
t5
t6

ta
xe

ls

NA

0 2 4 6 8 10 12

time

t0
t1
t2
t3
t4
t5
t6

ta
xe

ls

BD

(b) Θ =

{
19.5

0

}
Fig. 7.5 Raw spatiotemporal tactile image sequences, as captured when probing Ph-2 verti-
cally at varying depths, in an area containing no hand inclusion, and an area containing a
15mm inclusion placed 20mm deep. (a) and (b) correspond to a re-shaped xi.
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Fig. 7.6 The explained variance of each principal component when projecting the X matrix
belonging to two different experiments where both the number of probed areas in Ph-2, to
base the PCA projection on, and the Θ parameters where changed.

7.4 Results

The following sections will progressively analyse the described framework, starting from
the dimensionality reduction process (PCA), to the repercussions of physical interactions to
categorization (KMC).

7.4.1 Sound Dimensionality Reduction

One of the principal components of the proposed framework is the reduction of the high
dimensional spatiotemporal tactile information, into re-encoded lower dimensional data. An
example of the acquired tactile information is shown in Fig. 7.5. Without knowing which
category each tactile sequence vector x⃗i belongs to, it is impossible to assess the quality of
dimensionality reduction from X to W. However, it is feasible to maximize the information
retention in the original tactile sensor data.
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Fig. 7.7 The change in explained variance by the 2D PCA subspace projection, when probing
vertically (a) and through the rotatory motion (b), changing the number of samples used to
find the principal components (N in X, see Section 7.3.2).

6 8 10 12 14 16 18 20
depth (mm)

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

ex
pl
ai
ne

d 
va

ria
nc
e 
(%

)

{3xNA, 1xSD}
{2xNA, 1xSD, 1xSS}
{1xNA, 1xSS, 1xSD, 1xBD}
{1xNA, 1xSS, 1xBD, 1xBS}

(a) Ph-2: Vertical Probing

10 11 12 13 14 15 16
radius (mm)

20

30

40

50

60

70

80

90

ex
pl
ai
ne

d 
va

ria
nc
e 
(%

)

{3xNA, 1xSD}, d=17mm
{2xNA, 1xSD, 1xSS}, d=19mm
{1xNA, 1xSS, 1xSD, 1xBD}, d=19mm
{1xNA, 1xSS, 1xBD, 1xBS}, d=19mm

(b) Ph-2: Rotational Probing

Fig. 7.8 The change in explained variance by the 2D PCA subspace projection, when probing
vertically (a) and through the rotatory motion (b), changing the quality of the samples used
to find the principal components, while maintaining their number constant.

The explained variance can be thought of as a measure of the information captured by
the PCA subspace after projection. As the eigenvalues in Λ (see Eq. 6.3) are proportional to
the variance captured by the corresponding PCA principal components, we can compute the
explained variance τi for the principal component p⃗i as:

τi =
λi

∑
N
j=1 λ j

(7.5)

where λi is the eigenvalue corresponding to the ith principal component. Here, τi is a measure
of the proportion of variance in the data, captured along the direction the principal component
p⃗i in the original sensor space.
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Fig. 7.6 shows the explained variance of each p⃗i, after the robot probed Ph-2 in two
different experiments where both Θ and the number of probed areas used for the projection
(N) were varied. As clear from the figure, the number of probed areas and the Θ choice
significantly affect the distribution of the sensor data in its original D space. In one case,
the sensor data is mainly spread along 7 axis ( p⃗1 − p⃗7) (Fig. 7.6b), making it unsuitable for
dimensionality reduction. In the other, instead, p⃗1 captures the majority of the information
in the data (Fig. 7.6a). The figure suggests the suitability of the tactile information to the
drastic reduction in dimensionality is dependent both on the properties of the probed areas,
and probing strategy employed.

We further explore the way the probing strategy, and the properties of the probed areas
in the phantom, affect the amount of information retained after dimensionality reduction.
The explained variance achieved prior to categorization is I = τ1 + τ2. Fig. 7.7b shows the
explained variance trends when the number of probed areas used for PCA projection varies.
When the number of probed areas in maximal (16 areas, red plot in Fig. 7.7b), the influence
of Θ is negligible. Conversely, with less data to base the PCA projection on (2 areas, blue
plot in Fig. 7.7b), the choice of Θ can be the sole determinant to induce structure in the
data. A second interesting phenomenon can be observed in Fig. 7.7a, when comparing the
explained variance obtained after projecting X based on 4 vs 8 probing areas in the phantom
(yellow vs green plots). Here, the agent retains more information, even when basing the
projection on less data, if the employed probing is vertical and at a depth of at least 17.5mm.

This result suggests that proper physical interaction can help information retention in the
absence of enough data.

Ultimately, we observe the influence of the quality of the data samples to the information
retention after PCA projection. Fig. 7.8a shows how in presence of very diverse inclusion
types (left triangle plot), the effects of the vertical probing strategy Θ to I is negligible. The
presence of very diverse data, in fact, is useful for PCA to find good projection axis. In
absence of good data, or non-diverse inclusion types, instead, appropriate interaction can
minimize information loss (peaks in Fig. 7.8a and 7.8b). In the figures, it is possible to see
how the least diverse set of samples can yet induce the tactile information to retain most of
the information when the phantom is appropriately probed (peak in triangle plot, Fig. 7.8a).

The explained variance analysis shown allows for a preliminary assessment of the robot
palpation action employed. For any one palpation we show that good palpation actions corre-
spond to information that can be safely projected onto a two dimensional space, preserving
most of the information in but a few principal components.
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Fig. 7.9 The change in position for the 2D PCA projected NA and BS samples when probing
the phantom vertically at a depth of 6.5mm and 19.5mm. The yellow and blue line show the
two parameters on which the silhouette score is based, i.e. intra-cluster distance and nearest
cluster distance respectively.

7.4.2 Information Structure and Silhouette Coefficient

Similarly to the previous sections we wish to observe the effects of changing the Θ parameters
to the structure of the information after PCA projection. The silhouette coefficient, as
explained in Section 7.3.3, depends on the mutual mean intra-cluster distance, and mean
nearest-cluster distance for each pair of clusters (Fig. 7.9).

Fig. 7.10 and Fig. 7.11 both show how the change in Θ influences the silhouette score.
This influence, however, is primarily dependent on N and the diversity of the inclusions
probed, as suggested by the change in trends of the plots in each of the figures. Fig. 7.10a
shows that little structure emerges when probing Ph-2 vertically too superficially or too
deeply. In both cases, in fact, the sensor response is uniformly too moderate or too steep to
have any variation from an area of the phantom to another, thus inducing no variation in the
information. Fig. 7.10b, instead, shows how, when in absence of enough data samples (2
areas, blue plot), a correct choice of Θ can be the sole determinant for good or bad structure
in the information. In Fig. 7.11a and Fig. 7.11b, interestingly, it is shown how even without
much diversity in the inclusion types, good structure can emerge when the phantom is probed

appropriately (Θ =

{
16.5

0

}
or Θ =

{
14.5
16

}
).

At last, we investigate the influence of the number of clusters K to the structure of the
information s. The number of clusters sets the level of abstraction that the robot may wish
to have to make use of the tactile information, and directly affect the interpretation of the
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Fig. 7.10 The change in silhouette coefficient by the 2D PCA subspace projection, when
probing vertically (a) and through the rotatory motion (b), changing the number of samples
used to find the principal components (N in X, see Section 7.3.2).
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Fig. 7.11 The change in silhouette coefficient by the 2D PCA subspace projection, when
probing vertically (a) and through the rotatory motion (b), changing the quality of the samples
used to find the principal components, while maintaining their number constant.

emerging clusters. We choose three varying number of clusters: K = 2, presence vs. absence
of an hard inclusion; K = 3, absence vs. small vs. large inclusion; K = 5, all inclusion
types. Fig. 7.12 shows the trends when probing the soft phantom vertically at varying depths
and changing K in the KMC algorithm. The emerging clusters present different structural
properties. The different trends in the figure suggest how K directly affect the way the
probing strategy influences the structure of the data. Interestingly, probing at a deeper depth
increasingly helps to sense inclusions, or detect their size. To dissociate between all different
inclusion types, instead, an optimal probing depth is found for d = 14.5mm, after which the
increasingly high sensor response converges, and renders the clusters less separable, thus
decreasing the values of s.
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Fig. 7.12 The silhouette score of PCA projected tactile sensor information for every probing
area in the soft phantom, when performing the probing action at different depths, and over
varying number of clusters.

7.4.3 Motion influence on Cognitive Maps

Predicting the effects of Θ to the low-level encoding of the information in W is a highly
complex process. Understanding such effects, however, would allow an agent to appropriately
choose a Θ when solving the probing task.

To understand this relationship we make a plot of the cognitive maps for each set of
motion parameters in Θ and observe how the encoding of each probed area changes according
to the probing strategy used. Here, to have a better understanding of the motion effects, we
perform the experiment on the least cluttered phantom, i.e. Ph-1 (Fig. 7.1c), which would
suffer less from disturbances due to the vicinity of adjacent inclusions. Fig. 7.13a and 7.13b
show the plots corresponding to probing the phantom vertically at the minimal and maximal
experimental depth. By increasing the depth of probing, two very interesting effects take
place: one, nearest cluster distance b(i) between almost all types of inclusions increases,
allowing for better dissociation of diverse tactile information; two, the intra cluster distance
a(i) between any two probing areas with the same type of hard inclusion decreases, allowing
for each possible phantom inclusion type to be better represented.

Extending the analysis to the rotational probing strategy we can similarly observe the
effects of changing the parameters in Θ from their minimal to their maximal experimental
values. Interestingly, when employing the rotational strategy, the generated tactile information
presents a structured layout, by which it is already possible to dissociate one stimulus type
from another. In this scenario, then, the effect of the rotational parameter r to the structure of
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Fig. 7.13 The 2-dimensional projection of the tactile information generated from probing
Ph-2 at varying depths. The ellipses correspond to the distributions of the clusters based on
their true inclusion types, at a distance of 2 standard deviations from their cluster centers.
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Fig. 7.14 The 2-dimensional projection of the tactile information generated from probing
Ph-2 at varying depths and radii. The ellipses correspond to the distributions of the clusters
based on their true inclusion types, at a distance of 2 standard deviations from their respective
cluster center.
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the data s appears to only mildly act upon the nearest-cluster distance parameter (Fig. 7.14a
to Fig. 7.14b). The effect of increasing d, instead, confirms the hypothesis by which the
probing depth influence acts upon the intra cluster distance of each stimulus type.

The effect of the depth parameter can be attributed to the strength in response of the
sensorised probe. The tactile sensor, in fact, detects pressure levels on its surface. When
probing the phantom at the minimum depth, the pressure registered by the sensor is mostly
due to the elastic response of the Ecoflex 00-10 soft phantom, almost independently from
the presence or absence of inclusions in the probed area. As the depth increases, the elastic
response is influenced by the non-elasticity of the hard inclusion, should there be one in
the probed area. We hypothesize this influence can be captured by the sensor response in
three ways: first, the response should be higher when inclusions are present in the probed
area; second, the sensor’s increase in detected pressure should arise at slightly different
sample intervals depending on where the inclusion is placed in the phantom (deep vs shallow
inclusion); third, the area of the response should vary depending on the size and depth of the
inclusion.

In this framework, an acceptable probing depth is one which neither saturates the sensor
response in each area, nor fails to detect changes in pressure when the probed area contains
non-elastic inclusion. The task of dissociating amongst all different types of inclusions is
optimized (i.e. maximal silhouette score) for Θ =

{
12.5

0

}
in Ph-1 and Θ =

{
14.5

0

}
in Ph-2.

This analysis can be applied to any one dataset, to explore which way the robot action has
influenced the haptic data in terms of information structure. The action parameters generating
the data with the maximal silhouette score can thus be used to perform palpation on the tissue
under examination.

7.4.4 Categorization and Similarity Abstractions

In robotics palpation, proper physical interaction can help in the dissociation of tactile
information, such that the emerging clusters can be meaningful with respect to solving a
task (e.g. finding hard inclusions in a soft phantom). Besides dissociating amongst different
object types, however, another fundamental, yet usually neglected, fragment of information is
related to the similarity associations between clusters. The distances between found clusters
in the 2D re-encoded tactile information subspace, in fact, grants the agent the possibility to
associate types of objects, and order or rank them based on such association.

In the context of probing a soft phantom to find hard inclusions, for example, the agent
might need to prioritize possible findings based on the depth of the inclusion, e.g. [NA,
SD/BD, SS/BS], we’ll refer to this as rank-1. In a different scenario where the size of the hard
inclusion should take priority over its depth, the ranking might, for example, change to [NA,
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Fig. 7.15 The distance between the cluster-matched NA cluster and all matched clusters in
the data. The data is captured when probing Ph-2 and , setting r = 0 and varying the d in Θ.

SD/SS, BD/BS], or rank-2. In this scenario, the influence of the physical interactions with the
soft phantom may induce the agent to see some inclusion types as more similar to others,
depending on which property is deemed more important.

To assess the performance of category formation in each experiment, we first need to
match the clusters found by the KMC algorithm to any set of target classes for the phantom
under analysis. We devise a cluster matching process based on maximal accuracy.

We first define a function Γ such that

Γ(⃗v,C⃗) = [x| x = C⃗⃗vi for i ∈ [1, ...,N]] (7.6)

where v⃗ is the N-dimensional class membership vector, where each element can belong only
to one class, and C is a list of centroids which uniquely divide the space into K categories.
Moreover, v⃗i is the ith element in v⃗, v⃗i ∈ C⃗, and C⃗⃗vi is the v⃗th

i element in C. The function
remaps the elements in v⃗ based on C⃗.

Given a target vector t⃗ we define a function Ψ to re-associate the classes in C such that
the distance between the target and the guess vector is minimal, thus:

Ψ(⃗v,C⃗) = argmin
C⃗ ′

||Γ(t,C⃗
′
)− v⃗||
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Fig. 7.16 The emerging cluster similarities when changing the motion parameters and solving
for either rank-1 i.e. [NA, SD/BD, SS/BS] (a) or rank-2 i.e. [NA, SD/SS, BD/BS] (b). Each
dotted circle is placed on the cluster-matched, KMC found, cluster corresponding to the color
coding in the legend.
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where C
′ ∈ S(C⃗), S(C) is the set of all permutations of C, and || · || is the Euclidean norm of

a vector. Finally we define the cluster-matching as:

CM(⃗v,⃗ t,C⃗) = Γ(⃗v, Ψ(⃗v,C⃗)) (7.7)

We use the cluster-matching process to re-associate the cluster memberships

v⃗ ′ = CM(⃗v,⃗ t,C⃗). (7.8)

Here v⃗ ′ is a new vector maximizing accuracy for a particular task given (specified by the
target vector t⃗). A vector v⃗ = [2 2 1 0 0] for a task t⃗ = [1 1 0 2 2], for example, would be
re-associated as v⃗ ′ = [1 1 0 2 2]. We utilize the cluster memberships in v⃗ ′ to compute each
cluster center and retrieve the mutual distances between clusters. This cluster matching
algorithm is a generalization of the one proposed in Chapter 6, to account for multi-class
problems.

In this analysis we consider two scenarios where we may want to associate the clusters by
depth or size of inclusion, and use the NA type as ground zero, we thus consider the distance
from the cluster-matched NA inclusion type and the remaining types (Fig. 7.15). As clear
from Fig. 7.15, by duly interacting with the soft phantom, the distance between each cluster
type and the NA cluster changes drastically. In this context, then, it is possible to induce a
ranked understanding of robot’s perceived similarities between different inclusion types by
simply acting on the Θ parameters.

We demonstrate the ability to achieve similarity relationships of the kind previously
described by finding the parameters for which the agent can rank the system based on rank-1
or rank-2. We perform the experiments in Ph-2, and we use the experimental data gathered
through the probing of the soft phantom to find the parameters by which we can solve the
ranking. We find the robot capable of abstracting similarities relationships according to
rank-1 for Θ =

{
9.5
0

}
(Fig. 7.16a), and according to rank-2 for Θ =

{
15.5

0

}
(Fig. 7.16b).

7.5 Palpation Test Case

We perform experiments to test the ability of the framework developed to assess and identify
the motion control which can best allow an agent to differentiate among different types of
inclusions. For this purpose, the robot is set to perform palpation on a phantom containing
4xNA, 3xSD, 3xSS, 3xBS, 3xBD. The sensorized robotic arm is made to palpate the phantom
vertically on each location, as described in Section 7.2.3. At this point, dimensionality
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reduction is used to pass from a high dimensional sensor description of each palpated
phantom location, to a two dimensional descriptor based on PCA analysis (see Section 7.3.2).

After dimensionality reduction it is possible to utilize Equations (7) through (9) to assess
the quality of each motion strategy with respect to the collected data. The motion strategy
parameters generating the highest structure in the data can thus be saved.

Here we make use of a standard classification procedure to dissociate amongst the
different types of inclusions, and we assess the ability of the framework described in this
chapter to assist in determining which motion would have generated the best data for
palpation classification. We use a off-the-shelf multi-class Support Vector Machine (SVM)
[40] classifier, as implemented in the scikit-learn python tool [188].

The dataset utilized for this test scenario consists of 224 data-points, each consisting
of sequence of tactile images. The data corresponds to vertical palpations performed at 14
different depths spaced by 0.5mm each, thus for each depth 16 data samples are present. An
SVM classifier is trained on a single sample for each type of inclusion (one-shot learning),
at each different depth. We thus fit 14 different SVM classifiers, and we show how the
unsupervised analysis run on the same data is capable of faithfully predicting the most
performing action parameter before any supervised learning is necessary.

Three different type of classification are executed, following the same qualitative analysis
in Section 7.4.2. First a classification with two classes, where the SVM classifier is trained to
discriminate between locations containing hard inclusions, and locations with no inclusions.
Second, three classes, where the classifier is trained to discriminate between large inclusions,
small inclusions or no inclusions. Third, 5 classes, where all inclusion types are considered.
For each of the three classification types, the classifier is trained on the minimal possible
number of inclusions per class, i.e. 1 sample, and the data-set is split into training and
test set accordingly. For each probed depth, the 16 data-points are therefore divided into 5
samples for training and 11 for testing. This is done at all 14 different depths. The split was
purposefully chosen to observe the classifier performance when lacking large amounts of
data.

After training, the SVM classifier separates the two dimensional space according to the
two, three or five classes, maximizing the distance to the nearest training data points of any
class. Once the classifier has been fit to the training samples, we test the ability of the SVM
to classify a new inclusion correctly by testing it on the unseen phantom test locations.

Fig. 7.17 shows the resulting accuracy of the classifier at different probing depths and
when classifying the inclusions following the three different sets of classes described. Given
the difficulty of the classification task with the limited amount of data, the classifier can only
achieve an average classification accuracy of 68.78% when detecting hard inclusions, 36.26%
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Fig. 7.17 The classification test accuracy of a multi-class SVM trained on a single sample
for each inclusion type, when performing a vertical probing action at different depths, and
over varying number of clusters. The highlighted black circles correspond to the maximal
silhouette score computed through the proposed framework (see Fig. 7.12).

when detecting inclusions based on size and 47.40% when discriminating inclusions based
on all their properties. Even in this scenario, the motion strategy detected by the proposed
framework can achieve accuracies of respectively 78.57%, 69.23% and 63.63% in the same
tasks, improving on the average classification accuracy of up to 10-33%, as shown by the
black circles in Fig. 7.17. More significantly, when comparing Fig. 7.12 and Fig. 7.17, it
becomes clear how the general performance of the classification can indeed be predicted by
the framework proposed, by solely relying on information structure. In fact, additionally
to the best performing motion strategy, both the motion parameters resulting in the least
accurate classification, as well as the general flow of the accuracy graph in Fig. 7.17 can be
almost faithfully predicted based on the scores in Fig. 7.12.

7.6 Conclusion

In this chapter we investigated the effects of various motion strategies to the response of a
capacitive tactile sensor, for the task of detecting hard inclusions in a soft body. Actively
choosing an interaction strategy, to optimize sensory reception for a specific task at hand,
has the potential to be a powerful tool. Such tool could endow robots with the ability to
dynamically filter properties of touched objects, actively helping in the completion of a task
[21, 182] even before the sensor information arrives to a central processing unit.
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The experiments were performed by embedding a capacitive tactile sensor onto a 3D-
printed end-effector, and probing two soft phantoms with various hard inclusions through
different probing strategies. The sequential sensor data obtained through the probing of
each area in the phantom was clustered, and the change in information due to each strategy
observed and analyzed.

We found the amount of information retained after PCA projection to be highly dependent
both on the probing strategy and the properties of the sample areas in interaction. More
interestingly, we found that appropriate probing strategies can help retain information even
when lacking a large quantity or good quality of it. Using the explained variance as a measure
of information is useful in ensuring large amount of heterogeneity is kept in the data, but it is
not capable of ensuring the quality of the information retained. In fact, it could be possible
that the projection makes the information relative to highly distinct object, indistinguishable
after projection. However, under the assumption of no prior knowledge of target labels,
keeping variance in the data is usually a sensible choice. The proposed analysis can therefore
help choose those actions which allow sound dimensionality reduction, with the minimum
loss of information variance in a low dimensional inference space.

Furthermore, we analysed the impact due to motion on cognitive maps and extracted how
the motion influenced the tactile information. This analysis is useful in understanding the
effects of motion to the perception of the probed areas, and can be used to appropriately
choose an interaction strategy that generates structure. To make full use of such effects,
however, it would be ideal to instead be able to predict such change, before interaction takes
place. Here, the change in position of each point within a cognitive map could be interpreted
as a transformation in the same domain. The transformation function could be learned from
initial interaction and used in future tasks to optimize the sensor response for a specific
task. The transformation function, however, would not only be dependent on the motion
parameters employed, but also on the properties of the sample objects in interaction, like
demonstrated in the results.

It is also possible to take categorization one step further and abstract similarities between
object types from Cognitive Maps. Here we have shown that the physical interaction can drive
the similarity relationship between objects. In an unsupervised scenario, the abstractions
can be highly informative and can, for example, be useful to fix an ordering, via mutual
distances, on the sensed object types. The object ordering can be purposefully fixed to the
agent’s advantage. In a real scenario a practitioner might diagnose the gravity of a detected
inclusion based on various features. In our fictitious example we show how it is possible for
an agent to prioritize over two features by simply changing the palpation strategy.
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The unsupervised analysis framework proposed in this work is meant to assess how
the robot’s palpation technique may influence its ability to diagnose hard inclusions in soft
tissue. Without need for explicit labels or knowledge of whether the tissue under palpation
has abnormal lumps, the framework can still inform a robotic agent on what type of haptic
interaction is likely to be most discriminative. As such the framework is most useful when
used as a pre-learning step, before any actual supervised learning takes place. We later show
this with a simple supervised test case, where the most discriminative palpation actions are
found to be coherent with the unsupervised analysis proposed. In the test case application of
the proposed framework a robot is made to palpate a clustered phantom, and an SVM multi-
class classifier is trained on the minimal possible number of samples per class. The classifier
is shown to perform best when employing the highest scoring motion strategy, as detected by
the proposed framework. The chosen strategy is shown to improve the classification accuracy
of the classifier of up to 33%. More interestingly, we observe the silhouette analysis based
on our method can predict the general relative performance of the classification a priori. The
SVM based classifier utilized is effective in showing the usefulness of the analysis, however,
it is too simplistic to outperform any other state of the art supervised learning system. The
SVM, in fact, performs simple on-shot learning, and tries to classify lumps based on only one
example of each type. Although not in the scope of this research, more complex inference
methods can also be considered, and are likely to still benefit from analysis shown in this
chapter.

As a parametric discretization of the sizes of the lumps was necessary for the analysis in
this chapter, the work described palpation on 5 different types of spherical inclusions, thus
no evidence was shown for other types or sizes. As the analysis itself was independent of
the size or type of lump, be believe it can extend to any-one type of lump parametrization
necessary, as shown by the consistency of the results when sub-sampling the lumps in type
groups of 2, 3 or 5 types (see Section 7.5). However, a second assumption was due to the
location of the inclusion, should there have been one present in the tissue under palpation.
Here it is key that the type of lump is approximately the same across experiments, this is
true also of its location with respect to the examining probe. Should this not hold true, it is
possible the unsupervised clustering method may classify two lumps of the same type into
different clusters. Here, additional research is necessary to address the need of haptic search
algorithms to locate, rather than discriminate, between lumps in a soft tissue.

Finally, the parameters were optimized with respect to the actual tissue under palpation,
and are thus likely to be valid for the phantom devised for these experiments. For any
new tissue under palpation, however, the same analysis can be applied, and new optimized
parameters retrieved without knowledge of whether an inclusion is or is not present under
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the palpated tissue. This can serve as a first filtering procedure before carrying out more
expensive, supervised experiments, where the breath of possible robot action may be too large
to be employed. Moreover, the analysis can retrieve motion parameters which either max-
imise information retention in lower dimensional sensor inference space, and/or maximize
information structure within the retrieved haptic data.

In the context of this thesis, this chapter has highlighted the important of actions to
achieve Soft Morphological Computation. In SoMComp, this is one of the two principal
tools that enable the robot to appropriately influence the soft interactions such that structure
emerges in the physical stimuli. This filtering was shown through unsupervised methods,
and the ability of the action to influence perception, and thus learning, was shown within
the context of palpation. One of the most prominent issues with the current approach is the
exponential blow up in the number of experiments necessary to find good parameters for
action, and the discretization of the robot’s action itself, which is based on human intuition
and design. Another limitation instead lies in the parametrization of the action, which limits
the complexity of the robot action to achieve the task at hand. The next chapter will treat
some of these issues, while leaving others for discussion in chapter 11. Complexity is here a
very important topic, as the complexity required in the action to appropriately condition the
stimuli might need to be naturally high, so as to off-set the complexity of the soft interactions
between the robot and its environment. This topic will be treated more in depth in the
next chapters, where large scale physical experimentation is used to achieve appropriate
complexity in the robot actions.





Chapter 8

Action Complexity: Soft-Body Palpation

As mentioned in previous chapters, complexity of the action space is a pre-requisite for any
meaningful influence of complex soft interactions. This is mainly because the an infinite
number of interactions are possible when considering the infinite number of states of a soft
robot and/or its soft environment. This chapter investigates the benefits of action complexity,
to achieve the appropriate conditioning of the soft interactions. Moreover this chapter starts
to treat the topic of complex parameter search. This is an important related topic, as complex
actions are usually generated by similarly complex parameter combinations, which may be
hard to explore with common methods. In Chapter 6 and Chapter 7 we show how through
simple unsupervised machine learning methods it is possible to determine both which
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This chapter was adapted from a journal article titled “A Bayesian Framework
for Multi-Axis Soft-Body Palpation” [225], currently under revision in the Soft
Robotics journal. The article was written in collaboration with Dr Perla Maiolino,
Dr Josie Hughes, Mr Liang He, Dr Thrishantha Nanayakkara, and Dr Fumiya Iida
and proposes a mathematical framework to use multi-axis palpation trajectories for
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the conceptualization of the topics, design of the experiments and the writing of the
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the design and execution of the experiments, the robot control, the formulation of the
mathematics for the framework, data analysis and article writing.
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action and morphology to employ to solve a predetermined task. As of yet, the robot
must first interact with all objects, with all possible strategies and/or morphologies, before
understanding which strategy and morphology improves the information extracted. If the
robot where to discriminate between K object types, for example, in a scenario considering
N objects of each type, and if the robot motion could be described by one motion parameter
which could take any of M discrete values (or a morphology determined by the same
parameter), then the number of experiments ne necessary to retrieve the optimal motion
strategy would be ne = KNM. The experiment number increases linearly with each new
motion strategy parameter, object number or object type. It is often the case that a motion
strategy or morphology is described by more than one parameter with many values. For
any more than one parameter M = Js where s is the number of parameters describing the
motion or morphology, and J is the number of discrete values any one parameter can take,
thus bringing ne = KNJs. The exponential blow up in the search space must therefore be
avoided for larger scale problems. In this chapter we assess the usefulness of complex
actions, and propose a framework to efficiently search the robot parametric space given
sensor evidence, thus avoiding the exponential blow up in the search space derived by the
used of purely clustering methods. We also wish to move forward from the robotic medical
palpation experiments in Chapter 7, by performing medical palpation experiments in a more
complex and realistic soft-tissue environment, as well as using a more dynamic and realistic
interaction strategy by the robot.
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8.1 Introduction

Like explained in Chapter 7, Palpation is a key examination procedure used by the medical
profession for the diagnosis of abnormalities [22, 256]. Practitioners use their hands to
explore and feel for abnormalities within the soft tissue of the patient’s body, exploiting
the physical structure and the sensing capabilities of the human hand [17]. This action is
widely used for the initial detection and screening of abnormalities within the breast [235],
abdomen [28] or thyroid [60]. Detection of abnormalities through palpation can aid in the
diagnosis of conditions including cancer [221], abdominal aortic aneurysm [132], appendici-
tis [83] and many others [63, 161, 202], making it a powerful diagnostic procedure.

Despite its importance, palpation is still poorly understood, because of the complex nature
of the physical interactions involved in this examination. This complexity is due to several
factors. Firstly, the human body is constructed from interacting layers of soft tissues, organs
and muscular-skeletal systems, each with different mechanical properties. Tissues can have
many (or infinite) degrees of freedom and show significant variation in dynamic properties
which makes the nature of interactions hard to model, or predict. Secondly, abnormalities
are often ‘hidden’ beneath layers of skin and tissues, making them physically challenging
to sense. Finally, every patient is different; practitioner must have the ability to learn and
adapt to different interactions across different patients, and immutable solutions are not
appropriate.

The importance of medical palpation and the role of robotics within this field has been
explained in Section 7.1.1.

Although there has been progress made in understanding palpation, there remains a
considerable gap in our knowledge of the physical interactions that occur during palpation.
In particular, there has been a limited investigation of the impact of introducing diversity and
complexity into the trajectory of the robot hand/probe during palpation. Previous work has
only examined robotics palpation systems with simple one-axis vertical displacements [48, 80,
102, 103], or horizontal sliding trajectories [80, 100, 262]. In contrast, medical practitioners
use complex examinations techniques, including rotations, twists and percussions[202].
Palpations can be light-touch, deep, or performed at several angles to feel for different organs,
including liver, kidneys and the aorta [17]. Thus, to fully understand palpation it is necessary
to investigate palpation interactions when multi-axis robot trajectories are introduced. In
particular, it is crucial to understand whether more complex palpation actions give rise to
richer interaction dynamics and can improve the sensory information that is gained, allowing
for better or more confident classification of abnormalities.

As such, following the analysis in Chapter 7, the challenge addressed in this paper is
the optimisation of complex palpation trajectories to enable more accurate classification of
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(a) (b) (c)

Fig. 8.1 Robotic Medical Palpation, including (a) the Experimental Setup, (b) the Training
Phantoms and (c) the Abdominal Phantom developed.

abnormalities. We use a robotic manipulator that is capable of complex rotational and transla-
tional motions. To capture the rich palpation dynamics, the manipulator has a sensorized end
effector with a capacitive tactile sensor providing sensory information from 7 high-resolution
tactile elements (taxels). Using this setup, we perform experiments on anthropomorphic
‘phantoms’, which replicate realistic palpation conditions, including a multi-layered internal
soft structure containing hard abnormal inclusions [100].

The optimisation of complex palpation motion trajectories is not a trivial problem. Firstly,
there exists a non-linear causal relationship between palpation trajectories and sensory signals,
in that the sensory signals often show considerable variations even for small differences in
trajectory. This non-linear relationship stems from the complex, continuum body, soft-rigid
interactions that occur when the sensorized manipulator interacts with the soft phantom.
The second challenge lies with the optimization of the trajectory. Introducing multi-axial,
complex trajectories increases the dimensionality of the possible action space combinatori-
ally, so efficient search techniques are required. As such, increasingly informative sensory
information can be gained with complex motions, but finding these specific, effective be-
haviours requires appropriate search processes. Finally, there is the challenge of finding good
palpation trajectories that work for different phantoms, or patients.

In this paper, we hypothesize that Bayesian inference is an appropriate technique for
identifying optimal complex palpation trajectories. Bayesian inference is investigated for
two purposes. Firstly, to analyse the sensory information obtained in palpation, a Bayesian
approach can provide an effective analysis of the intrinsically non-linear characteristics of
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palpation. This approach can also provide an analysis which is annotated by a confidence
metric to help accurate classification, a metric which would be challenging to generate with
alternative approaches, such as a linear regression. Secondly, Bayesian inference is also
investigated as an effective search strategy (in the form of Bayesian Exploration). Bayesian
approaches can leverage on cumulative past experiences to rapidly search motion trajectory
parameters, and allow for efficient search of high-dimensional action spaces. This search can
enable the robot to select effective trajectories for accurate classification.

8.2 Materials and Methods

8.2.1 Phantom Development

To provide a physical test bed for the abnormality detection experiments several phantoms
were created. The phantoms were created by casting Eco-Flex 00-10 Silicone and included
a number of spherical 3D printed beads of different sizes and depths. The stiffness of the
silicone (6.7 kPa) was chosen to be close to that of human tissue.

The casting of the phantoms included an initial casting of silicone of ‘d’ height at the
bottom of a custom cuboidal mould. The initial cast layer would become the top layer of the
phantom. After curing, 3D printed inclusions of various sizes are then glued into place on
the phantom using a minimal amount of superglue. The beads were placed away from the
edges, and with sufficient area around to provide area of the phantom free of any abnormal
inclusions (no-inclusion). To complete the process, a second layer of silicone was cast, this
time approximately 30mm in height. This depth was chosen so that the dynamics of the
palpation experiments would not be dominated by the interaction between the phantom and
the surface on which this was placed. After curing, the phantoms could then be released from
the moulds. To minimize damage, and extend their usable life, a thin film of cling film was
then applied to their surface.

Two training phantoms were developed to test different palpation difficulties in the
identification of inclusions in human bodies, and kidneys in particular. The inclusion in
Training Phantom 1 varied from 8mm to 15mm in diameter size and were set at a depth
of 10mm, a typical size and depth to tumours which may be identified on the kidney. To
demonstrate how the framework developed could also be used to identify smaller, more
superficial tumours, a second phantom, Phantom 2 was created which had inclusions of size
5mm and 10mm, and at a depth of 5mm.

To demonstrate the adaptability of the framework in complex and realistic environments,
an Abdominal Phantom was created. This was designed to include a silicon kidney organ with
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Fig. 8.2 Process for creating the Abdominal Phantom, showing the curing of abdomen and
adding the inclusions and the overall construction of the abdomen.

inclusions and structure replicating the surrounding tissues and skin. Fig. 8.2 demonstrates
the process of creating the phantom. The approach to fabrication was adapted from previous
work [111]. The phantom was developed by first fabricating a liver from Eco-flex 00-10
and red dye using a 3D printed mould. Inclusions were added to this liver, and additional
silicone used to seal these inclusions. A second mould was then used to cast the abdomen
using Ecoflex 00-00, this was done in multiple layers to allow the liver to be positioned in
the correct place and with the correct curvature. To create a skin Ecoflex 00-20 was cast into
a flat sheet with approximately 1.5mm thickness which was then used to cover the phantom.

8.2.2 Sensor Technology

The choice of the sensory technology is fundamental because its morphology affects the
perceptive ability of the robot to feel for abnormal inclusions [231, 232]. The selection of
the sensor has been performed on the basis of the characteristics of manual palpation that
have been analysed in [123] . A capacitive tactile sensor array was used for the palpation
experiments [154].

The sensor technology is CySkin, adapted from the work in previous chapters. The
module utilized corresponds to the one previously used in Chapter 4. (see Section 4.2.1).

A sensor reading, or tactile image, from the tactile sensor corresponds to a 7-dimensional
array, where each element contains the capacitance variation value of the corresponding
taxel.
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8.2.3 Robot Control Experimental Set-up

For the purpose of this chapter, a palpation experiment consists of Ns seconds of contact
between the sensorised robot end-effector with a target phantom. To achieve this, we
manually teach the robot the location of the phantoms areas to palpate, and set the palpation
starting position with the end-effector alighted normally to the surface of the phantom organ
(Fig. 8.3a). The end-effector is thus driven downward until a touch event is detected by the
capacitive tactile sensor at its extremity, whereby the palpation experiment begins.

The parameterization of the robot control action was designed to generate point-based
exploration techniques, while maintaining freedom of wrist rotations and probing depth. The
end-effector of the robot was controlled in real-time in Cartesian coordinates, acting upon
the depth (z tool axis), Rx (rotation around the x tool axis), and Ry (rotation around the y tool
axis) axis simultaneously. Distinct sinusoidal displacements profiles are generated for every
axis, each of which is controlled by two separate parameters, thus a total of 6 parameters
were used to control the robot for each palpation procedure, i.e. Arx, Ary, Az, ωrx, ωry and ωz.
For an arbitrary axis ‘ax’, a sinusoidal displacement sax(t) over the course of the palpation
experiment is defined as:

sax(t) = Aax cos(ωaxt) (8.1)

where ‘t’ is the time, in seconds, elapsed since the start of the palpation experiment, and
Aax and ωax the axis-dependent parameters (Fig. 8.3 b,c). The achieve the displacement
profiles, a UR5 robotic arm was speed controlled at 60Hz via:

vax(t) =
∂ sax(t)

∂ t
= Aaxωax ∗ cos(ωaxt) (8.2)

where vax(t) is the axis velocity in ‘ax’ at time ‘t’. Two values for each of the six
parameters were explored, for a total of 64 different available palpation techniques. The
Z parameters were set to drive the end-effector into the flesh of the silicon at a variable
height between 2mm and 10mm, thus Az ∈ [0.002,0.01] and ωz ∈ [0.5,2]. The parameters
for the Rx and Ry rotations were set to achieve variable rotations between ±10 degrees,
thus ωrx,ωry ∈ [1,3] and Arx,Ary ∈ [− π

18 ,
π

18 ]. The rotations and depths were chosen as
the maximal achievable end-effector rotations and probing depths within all phantoms and
inclusions under examination, without achieving the saturation of the tactile sensor response.
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(a) (b) (c)

Fig. 8.3 Execution and parameterization of the robot control, and palpation trajectory. a)
Diagram of the end-effector robot control during the palpation, (b) Example robot control
strategy over time, given the parameters: Arx, Ary, Az, ωrx, ωry and ωz, (c) Corresponding
generated robot trajectory over the 3s palpation.

8.2.4 Bayesian Framework

The approach taken in this work is large scale physical experimentation, with the robot
iteratively performing many palpation experiments. The framework we propose for these
large-scale experiments has three key phases: palpation training, palpation inference and
evaluation (8.4).

During the first phase, ‘palpation training’, the robot generates sensory data by repeatedly
palpating the different inclusions with different palpation trajectories. In the second phase,
‘palpation inference’, classification processes are performed on new samples. In the final
phase, ‘evaluation’, the accuracy is determined by comparing the robot classifications to the
ground truth.

Training Phase

The palpation training phase involves the iterative execution of multiple robot palpation
experiments. Each robot experiment involves a palpation trajectory, or action Am where
Am ∈ IR6, being performed on a specific class of inclusion (Ck) in a phantom. We define
a palpation iteration as when the robot performs palpation experiments on all types of
inclusions Ck once, under a specific trajectory Am.

Data sampling

Let X be an N ×D dimensional vector, where each unique temporal tactile image for a
probed location is a D dimensional row in the matrix. A temporal tactile image is a sequence
of tactile images sampled at constant time intervals. For the purpose of the experiments
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presented in this chapter the sampling period is of 500ms. By limiting the palpation to
three seconds, we gain 35 pressure points over time, limiting the dimensionality of the data
(D = 35). The value of N increases with the number of palpation experiments. In each
reported experiment the value of N is initially 0 and for each ‘palpation iteration’ N = N +K
where K is the number of discriminative classes, or types of inclusions in the phantom to
palpate (Examples of rows of X can be visualized as heatmaps in Fig. 8.5 a-d).

Dimensionality Reduction

For dimensionality reduction we utilize the equations in 6.1, 6.2, 6.3, 6.4 and 6.5 to pass
from X to an (N ×1) matrix W, and each row in the matrix is a 1-dimensional encoding of a
tactile image sequence for a probed location. We will refer to wi as a generic projected tactile
sensor measurement of a probed location after palpation. The choice of a 1-dimensional
subspace was to enable palpation with the minimum possible information. In this context, the
robot’s action can induce the tactile information to present diversity across the 1-dimensional
subspace. The methods presented in this Chapter, however, can extend to higher dimensional
spaces.

Bayesian inference and PDFs update

For each palpation experiment on a specific phantom, the class of inclusion under palpation
(Ck) and the type of palpation action (Am) generate an observable sensor measurement wi.
The likelihood that a specific inclusion class Ck ∈C has generated the haptic observation wi

can be computed as:

P(Ck|wi,Am) =
P(wi|Ck,Am)P(Ck)

P(wi,Am)
(8.3)

where Am is a specific palpation action and P(Ck) is the prior probability of inclusion
Ck. The prior probabilities for each class can be extracted from the domain knowledge of
the task to perform. For breast cancer detection, for example, the prior probability of being
diagnosed with cancer can vary between 0.0017 and 0.0102 depending on risk factors [3],
while for the experiments within this manuscript there is an equal probability of tissues
areas with and without abnormal inclusions. To find the probability of observing wi when
performing a palpation Am on a class Ck, instead, the central limit theorem suggests that we
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Fig. 8.4 Flowchart of experimental procedure. During the palpation training phase, the robot
performs palpations Am on different types of inclusions Ck to form PDFs .After an initial
set of palpations to generate PDFs, the robot performs additional experiments to improve
its classification capabilities based on the biased Bm score. In the palpation inference phase,
the PDFs are used to perform inference on new samples. Moreover, an unbiased benefit
and a confidence level for each palpation trajectory Am can be estimated. In the evaluation
phase the performance of the robot can be evaluated if the ground truth classification of the
palpated area is known.

can approximate the findings with the probability density function p(wi|Am) defined by a
mean µ⃗k,m and a standard deviation Σk,m as:

P(wi|Ck,Am)P(Ck) ∝ p(wi|Ck,Am) =
1√

(2π)2|Σk,m|e(−
1
2 (w⃗i−µ⃗k,m)T Σ

−1
k,m(w⃗i−µ⃗k,m))

(8.4)

The evidence in the projected matrix W can thus be used to update the µ⃗k,m and Σk,m of
each class of inclusion under every exploratory palpation action, improving the estimates
with evidence from every new palpation iteration.

From this training data we can generate two key metrics which help assess the quality of a
palpation trajectory. The first metric is the ‘Unbiased Benefit Estimator’ B̂m, which provides
a measure of how useful the sensor data from a given trajectory is in performing classification
of abnormalities. In general, a good palpation trajectory leads to significantly different
sensor responses for different classes of inclusion. This can be quantitatively measured by
considering the overlap between the PDFs for the different classes of inclusions. A possible
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measure of this overlap is the Bhattacharyya coefficient [203]. The Bhattacharyya coefficient
between two probability density functions p and q is defined as:

BCoe f f =
∫ √

p(x)q(x)dx (8.5)

We use the Bhattacharyya coefficient to compute a confusion probability matrix Ψks,m for
each possible exploratory palpation Am.m ∈ M. Each element in Ψks,m is a mutual confusion
between any two classes Ck and Cs, which under the assumption of normal distributions can
be computed as:

Ψks,m =

√√√√ 2σ⃗2
k,mσ⃗2

s,m

σ⃗2
k,m + σ⃗2

s,m
e
−

(⃗µk,m−µ⃗s,m)2

4σ⃗2
k,m+4σ⃗2

s,m (8.6)

where σ⃗k,m,h is the diagonal vector of Σk,m,h. The Ψ probability confusion matrix can be used
to find the benefit of making an exploratory action Am. Based on this coefficient, we can
define a new measure of how well an action separates the PDFs for different inclusions, and
therefore how ‘beneficial’ it is for making a classification of abnormalities. This measure,
called unbiased benefit estimator (B̂m), can be computed for a specific action Am as:

B̂m =
K

∑
k

P(Ck)
2

K
∑
s

Ψks,mP(Cs)

(8.7)

and its value will be higher for palpation actions with class probability density functions with
least overlap. Ψm is the confusion matrix for action Am, but Ψks,m is a number, corresponding
specifically to the confusion under action Am of class Ck and Cs. In this context, B̂m is a very
important metrics as it can be considered as the benefit of making an exploratory action Am.
One of the unique advantages of calculating PDFs based on Eq. 8.4 is that we can also obtain
a probabilistically measure of confidence of the tactile sensor data for a specific palpation
trajectory Am. Using the PDFs, we can compute a measure of confidence based on B̂m which
indicates the amount of confusion the robot has for each palpation trajectory. This measure
of confidence, ζm, is defined as:

ζm = 1− 1

2+ e−B̂m
(8.8)

This metric has been devised as to increases monotonically when the discriminatory confusion
reduces, providing a value between 0 and 1. Higher values of ζm signify a higher confidence
of classification for all classes of inclusion under a specific trajectory. The confidence is a
fundamental metric used in this experimental framework as actions with a higher confidence
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levels signify that the PDFs for different classes of inclusion can be better separated, and
hence more accurate classification can be made. These two metrics ( B̂m and ζm ) can be used
to assist in selecting and choosing the appropriate palpation trajectories for discrimination of
abnormal inclusions in different scenarios.

Exploratory Action Identification

As the number of parameters which describe a palpation trajectory increases, there is an
exponential increase in the number of possible actions that must be searched.

We propose using Bayesian Exploration, an approach that leverages on past experiences
to improve the search of the palpation trajectory parameters. Bayesian Exploration was first
used in [64] for tactile discrimination of textures, and was later argued to be meaningful
from a neuroscientific perspective [145]. Bayesian Exploration has since been shown to aid
in several other tactile discrimination tasks [232, 274]. Fig. 8.4 illustrates how Bayesian
Exploration can be implemented to find optimal palpation actions. Bayesian Exploration
provides a method of iteratively selecting, and exploring, the most “promising” action
trajectories in a probabilistic, evidence based, manner [64].

This search requires a metric to guide the selection of actions. For this we can use
the B̂m score, which captures how favourable an action is by identifying how it minimizes
the discriminatory confusion between classes of inclusion. However, for exploration, it
is important to also bias this measure by factor which encourages exploration of new,
unexplored, trajectories. Thus, we create a biased benefit score based on B̂m as follows:

Bm = 1− (1− B̂m)
1

nm (8.9)

Where nm is the number of times action m was performed iteratively during the palpation
experiments. The biased benefits are discounted by the number of times the action has
already been performed during action exploration, to discourage excessive exploitation and
eventually encourage the explorative update of belief states under less exploited actions.

At the start, the robot is made to palpate each class of inclusion under every action once,
to gather initial experimental evidence. For each new iteration the palpating robot is then
made to palpate each class of inclusion under a specific action once more. The action to use
is chosen based on the highest scoring action under the Bm, and the belief states are updated
accordingly.
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Bayesian Inference Phase

In the second phase of the framework, Bayesian inference, the robot performs the classifi-
cation of abnormal inclusions, identifying the class of unseen sensor data obtained through
additional robotic palpations. This classification is made via Bayesian Inference, using the
PDFs generated in the palpation training phase through several palpation iterations. To
perform inference on a new tactile sample w′

i, we evaluate the sample at p(w′
i|Ck,Am), under

every Ck for a chosen action Am. The Ck of the PDF yielding the highest value will be inferred
as a class for w′

i.

C̃k = argmax{p(w′
i|Ck,Am) : k ∈C} (8.10)

where is the class estimated for Ck . This inference process is used throughout the results
section to test the abilities of different palpation trajectories, and will be referred to as
‘Bayesian inference classification’.

Evaluation Phase

In the third and final phase of the framework, evaluation, we evaluate the performance of the
classification made during the palpation training phase. This is achieved by comparing the
‘true’ class of inclusion Ck for the unseen sample, against its inferred class during phase two.
Over several iterations, we can count the number of correctly classified abnormal inclusions
as True Positives (TP), and the number of correctly classified inclusion-free areas of the
phantom as True Negatives (TN). For a total of NC classifications, or palpation inferences,
the accuracy can be formally computed as:

Acc =
T P+T N

NC
(8.11)

8.3 Results

During the process described in the previous sections, an ‘a posteriori’ probability density
p(wi|Ck,Am) of sensor evidence wi, given an inclusion Ck and an action Am is formed. Under
each palpation technique, the overlap between the probability densities belonging to different
types of inclusions is indicative of the amount of discriminative confusion the robot has, ‘a
posteriori’, under that palpation technique.

As a consequence of the probabilistic treatment of the sensor response, it is possible to
rank the robot’s palpation techniques, favouring those actions which minimize the overlap
of different distributions, and thus the discriminative confusion of the robotic agent when



8.3 Results 135

Phantom Class
of Inclusions

Depth
of Inclusions

Number
of Inclusions

Complexity
Demonstration

Exploration
Experiments

Validation
Experiments

Total
Number

Training
Phantom 1

10mm 10mm 3 1920
(10 iterations
per trajectory)

3840
(20 iterations
per trajectory)

/ 576015mm 10mm 3
no incl. N/A 4

Training
Phantom 2

5mm 5mm 3
/

3840
(20 iterations
per trajectory)

/ 38407mm 5mm 3
Healthy N/A 4

Abdominal
Test Phantom

15mm 10mm 2
/

800
(20 iterations per trajectory)

800
no incl. N/A 2

Table 8.1 Experimental breakdown of robotic palpations and palpated phantoms. The values
in parenthesis represent the number of samples gathered by the robot for any trajectory (Am)
and class of inclusion (Ck) pair

Complexity
Demonstration

Exploration
Experiments

Validation
Experiments

Number of trajectories
attempted 64 64 20

Parameter combinations

Arx ∈ [0, π

18 ]
Ary ∈ [0,− π

18 ]
Az ∈ [0,0.01]
ωrx ∈ [0,1]
ωry ∈ [0,1]
ωz ∈ [0,0.5]

Arx ∈ [− π

18 ,
π

18 ]
Ary ∈ [− π

18 ,
π

18 ]
Az ∈ [0.002,0.01]
ωrx ∈ [1,3]
ωry ∈ [1,3]
ωz ∈ [0.5,2]

20 Highest score
trajectories from

"Exploration Experiments"

Table 8.2 Experimental breakdown of robotic palpation trajectories and parameters over
experiments.

making a classification. One such measure is the Bhattacharyya coefficient, which we use
to rank each of the possible robot actions based on the amount of discriminative confusion
observed after performing the palpation procedure.

Through Ψm a biased and unbiased benefit estimations are defined. The unbiased benefit
estimation will have a higher value for actions with class probability density functions with
least overlap. The biased benefit, instead, discounts the unbiased estimation by the number
of times the action has already been performed during action exploration, to discourage
excessive exploitation and eventually encourage the explorative update of belief states under
less exploited actions.

8.3.1 Exploring Action Complexity in Robot Medical Palpation

The first set of experiments investigates the influence of the palpation trajectory on the robot’s
ability to distinguish different classes of inclusion. We investigate how the classification
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(a) (b) (c) (d)

Fig. 8.5 Influence of the palpation trajectory to the PDFs in Training Phantom 2. The 64 robot
actions are ranked by B̂m, and Rank 0-22-43-63 (best to worst) are shown respectively in
figures (a), (b), (c) and (d). The top plots show the robot trajectory generated during palpation,
where Rx, Ry are rotations about the x-y axis and Z is the probing depth. The middle
plots show the normalized spatio-temporal tactile images generated during palpation. The
brightness corresponds to the normalised taxel values at specific time intervals (proportional
to pressure). The bottom plots show the PDFs generated from 60% of the data detailed in the
“Exploration Experiments” of Table 8.2. Here, p1 is the first principal component onto which
the original sensor data were projected.

capabilities of different palpation trajectories depend on the separation of the PDFs in sensor
space for different classes of inclusion.

In these experiments we examine 64 different palpation trajectories, and analyse how
they influence the separation of PDFs. The 64 palpation trajectories are generated through
the combination of 6 parameters which describe a trajectory. We conducted these experiment
on Training Phantom 1, performing all the palpation actions on all the different inclusion
types. For each type of inclusion and palpation trajectory, we perform the palpation 20 times,
as shown in the “Exploration Experiments” column of Table 8.2 and Table 8.1.

Fig. 8.5 shows the PDFs for four exemplar palpation trajectories, ordered with respect
to the B̂m scores. The PDFs are created via Eq. 8.4, and the unbiased benefit score B̂m is
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computed for each palpation action using Eq. 8.7. The different motion parameters result in
different palpation trajectories with very diverse PDFs. Moreover, as shown in Fig. 8.5, the
raw tactile sensor data for each class is influenced by the palpation strategy itself. Ideally,
PDFs for different inclusion classes should have minimal overlap for discrimination purposes.
The results shows how it is possible to have motion parameters, and hence trajectories, that
give rise to PDFs which are fully separated across the PCA principal component p1 for all
classes of inclusion (Fig. 8.5a). Conversely, some motion parameters lead to PDFs which are
heavily overlapped (Fig. 8.5c & d).

The figure also shows that the degree of these overlaps can be represented by using the
B̂m scores. The trajectories with less overlap (Fig. 8.5a & b) results in higher B̂m scores
whereas those with more overlap (Fig. 8.5c & d) have a far lower score. As such, the score
represents the discriminative performance of the palpation trajectory used by the robot and
can be used to compute a ranking for the different trajectories. It is also important to note
that B̂m, and thus the resulting ranking order, also indicates the degrees to which each PDF
is separated from the others, in addition to measuring the amount of overlap. For example,
although the PDFs of the 43rd and 63rd ranked actions are similarly overlapped, the former
is ranked higher because of the lower overlap between the PDFs of the 10mm and 5mm
inclusion classes.

In the next experiment, in contrast to the previous one, we compare the separation of
the PDFs for the same trajectories but across different phantoms, i.e. Phantom 1, Phantom
2, and the Abdominal Phantom. We perform this experiment to assess whether a palpation
trajectory optimized for one phantom can perform well on other phantoms.

To achieve this, we identified the best trajectories for Phantom 1, Phantom 2 and the
Abdominal Phantom, by finding the trajectory with the highest B̂m score for each phantom.
These three top-ranking trajectories, together with the resulting PDFs, are compared in
Fig. 8.6a. The experimental data used is detailed in the “Exploration Experiments” of Table
8.2 and Table 8.1. The first observation is that the optimum trajectories are significantly
different for the different phantoms. The best palpation trajectory for Phantom 1 is a counter
clockwise rotation in an almost horizontal plane, whereas that for Phantom 2 is a clockwise
trajectory with a similar amplitude. The optimum trajectory for Abdominal Phantom is
significantly different, with a clockwise rotation occurring with smaller amplitude, and a
higher palpation depth. The second observation that can be made considers the PDF overlaps.
Fig. 8.6a shows that the highest ranked actions do not show high separation of the PDFs
on the other phantoms. The best trajectory for Phantom 1, for example, does not perform
well in Phantom 2, with the action resulting in high overlaps of PDFs belonging to different
classes of inclusions. The Abdominal Phantom is a relatively easier task, in comparison
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(a)

(b)

Fig. 8.6 The figure shows the complexity of robotics palpation. The diagonal plots in (a)
show the PDFs of the best performing palpation trajectories for each phantom, while the
off-diagonal plots show PDFs of the same trajectories in all other phantoms. (b) shows the
accuracy of a Bayesian Inference classifier trained on sensor data generated via palpation
trajectories with a varying number of parameters.
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to Phantom 1 and 2, with all of three palpation strategies achieving high separation of the
PDFs. However, the trajectory ranking higher for Abdominal Phantom still achieves higher
separation of PDFs in the same phantom, while it does not perform well in Phantom 1 and
Phantom 2.

In the next set of experiments, we examine the necessity of complex trajectories for more
accurate palpation. This is achieved by comparing palpation trajectories which are described
by different number of control parameters. As each axis of motion is controlled by a specific
pair of parameters (i.e. Arx-ωrx, Ary-ωry and Az-ωz to control Rx, Ry and Z respectively),
reducing the number of parameters decreases the number of DoF, and hence the complexity
of the palpation trajectory.

To systematically vary and reduce the complexity, every possible combination of the
6 parameters is set to zero in turn. As such, each palpation strategy can have between 1
to 6 non-zero parameters. The 64 palpation trajectories defined by these parameters are
performed 10 times on all types of inclusions in Training Phantom 1, and the corresponding
tactile data is stored for evaluation. This data corresponds to tactile information from 2160
palpations; the parameter values explored and the number of experiments are detailed in the
“Complexity Demonstration” columns of Table 8.2 and Table 8.1.

To evaluate the performance of each set of motion parameters, Bayesian Inference clas-
sification is performed on the computed PDFs as previously described. The classification
inference is performed on each palpation trajectory separately, with 60% of the sampled
palpations used for training, and the remaining 40% used for testing. Fig. 8.6b shows the
average performance of the classifier for across all palpation trajectories with different num-
bers of active parameters. As illustrated in Fig. 8.6b, trajectories with one or two descripting
parameters achieve accuracy rates of 50% on average, thus little above chance (33%). With
the full employment of the 6 descriptive parameters, the generated trajectories can achieve
accuracies above 60%. As shown in Fig. 8.6b, when the dimensionality of the actions, and
hence number of motion parameters, is increased, there is up to 35% improvement in the
average classification accuracy of the robot. This justifies and demonstrates the need for
complex trajectories when performing palpation.

From this first set of experiments we can make several conclusions, which allow us to
better understand the role of the palpation trajectories to perform better soft tissue palpation.
Firstly, the correspondence between the palpation trajectory and discriminatory performance
is complex and non-linear. Slight changes in the palpation trajectory can significantly
affect the discriminatory abilities of the robot. Secondly, the optimum trajectories vary
from phantom to phantom. There is not one ‘optimum’ motion for all phantoms. Thirdly,
introducing more complex palpation trajectories allows for better action profiles to emerge,
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(a) (b)

Fig. 8.7 The figure shows the performance of a Bayesian inference classifier within the
framework developed. (a) shows the relationship between the maximum classifier accuracy
and the number of samples gathered for each palpation trajectory-class pair. (b) shows the
relationship between the developed confidence level and the number of samples gathered for
each palpation trajectory-class pair. The vertical bars in the plot illustrate the errors of the
confidence at that point

demonstrating that increasingly complex actions increase the ability to make more accurate
classification of abnormalities.

8.3.2 Bayesian Approaches for Confident Abnormality Detection

The next set of experiments examines the levels of confidence (ζm) and the experimental
accuracy (Acc) when computing the PDFs based on a different number of training samples.

In these experiments the same dataset from the previous experiments is used, where
palpation training was performed on each class of inclusion, using each action 20 times (see
“Exploration Experiment” columns of Table 8.2 and Table 8.1.

For every trajectory, we consider the data originated from palpating each class of inclusion
12 times. This data is used systematically, i.e. the first computation of the PDFs is based on
one sample of tactile sensor data per class-action pair, while the last computation of the PDFs
is based on 12 samples per class-action pair. Every time the PDFs are computed, we also
compute the benefit and the confidence as previously described. These steps are performed
on every trajectory available, and the resulting PDFs are used to compute the accuracy, as
described in the palpation inference and evaluation phase. The robot is tested on 40% of held
out sensor data, which corresponds to 8 samples for each class-action pair.
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Fig. 8.7a shows the highest accuracy of all palpation trajectories, as a function of the
number of training samples used to compute the PDFs. As the number of training samples
increases, the evidence used to build the PDFs increases, leading to the classifier performing
more accurate classification.

In Fig. 8.7b, the confidence metric is also plotted as a function of the number of samples
used for training. As expected, we can see that the confidence metric increases with the
number of training samples. The confidence, however, saturates at different values for
each phantom. These values indicate how ‘reliable’ is the classification of the robot under
a specific trajectory. This measure will first and foremost depend on the overlap of the
PDFs, which will in turn depend on the similarity of the tactile sensor data for different
classes of inclusions. In Fig. 8.7b, the robot achieves highest confidence for Phantom 1,
followed by Phantom 2 and the Abdominal Phantom in order. Phantom 1 contains relatively
large inclusions (15mm and 10mm), while Phantom 2 contains smaller, and more similar,
inclusions (7mm and 5mm).

From this we can hypothesise that the sensor data originating from Phantom 1 is generally
more diverse across the different classes of inclusions, than it is in Phantom 2. The Abdominal
Phantom reaches a lower level of confidence with respect to the two training phantoms. We
hypothesise that this is due to the higher levels of structural complexity of this phantom,
with a curved surface, separate skin layer and liver organ. Despite this lower confidence in
classification, as shown in Fig. 8.7a, the robot’s accuracy remains high.

8.3.3 Online, Rapid Bayesian Exploration: Pruning the Search Space

As shown in the first set of experiments, good palpation trajectories lead to separable PDFs
for different classes of inclusion, enabling confident and accurate classification. However,
we already identified that firstly, there is a significant benefit to using trajectories which
are described by a higher number of parameters (more DoF), and secondly, the optimal
palpation trajectories vary for each phantom. Therefore, the next set of experiments focuses
on efficiently finding these high dimensional optimal palpation trajectories for different
phantoms.



142 Action Complexity: Soft-Body Palpation

(a) (b) (c)

(d) (e) (f)

Fig. 8.8 Training comparison between Bayesian online exploration and Grid Search. Figures
(a), (b) and (c) show the maximal accuracy achieved at each training iteration by both Grid
Search and Bayesian Exploration, on a left-out validation set of 8 palpation samples for
every class of inclusion. Figures (d), (e) and (f) show the trajectories on the y-axis, ordered
based on their final B̂m rank during training both for Bayesian Exploration and Grid Search.
The color intensity for each action indicates its rank at each iteration. Bayesian Exploration
achieves a final ranking faster, bringing the robot’s trajectories to a ranked solution in at least
half the time than when training through a systematic action space search.

In the next set of experiments we compare the Bayesian Exploration approach with a
benchmark, a grid-based search method. For this comparison we perform palpation on all
phantoms. The data utilized for these experiments is detailed in the “Exploration Experiment”
columns of Table 8.2 and Table 8.1. When using this Bayesian Exploration framework,
the robot first palpates each class of inclusion once with every possible action. This is
unavoidable, as it allows a PDF to be generated for each inclusion-action pair. This initial
gathering of evidence allows the Bayesian Exploration process to then start (Fig. 8.4).

In this exploration process, all palpation trajectories are ranked using the biased Bm score.
The action which has the highest Bm score is then used to palpate each class of inclusion
once, and the PDFs are updated with the new tactile information. This corresponds to one
iteration of the Bayesian Exploration framework. The Bm score is then computed again and
used to select the next palpation trajectory to test, with the steps then iteratively repeated. To
evaluate each iteration of the exploration process, we take the top scoring action at that time,
as defined by the unbiased benefit score , and use this action perform Bayesian Inference. The
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inference is performed on 40% of unseen data from ‘Exploration Experiments’, and provides
the robot with the ‘best accuracy’ for every iteration of the exploration process. Importantly,
the top scoring action is selected by the unbiased benefit score , as we want to find the
top performing action which is purely based on the ability to separate the PDFs in sensor
space. As a benchmark, the results from the grid-search method is also presented. During
grid-search, contrarily to Bayesian Exploration, the action is selected based on a breadth-first
parametric search, with the rest of the experiments performed in the same manner.

It important to note that although under Bayesian Exploration it is first necessary to
initially palpate every inclusion via each action available, our hypothesis is that by using
Bayesian Exploration the robot will ultimately need less training (and therefore palpations)
to reach a good perceptual understanding of each inclusion under touch. The initial evidence,
in fact, should drive further collection of tactile information prioritizing only the actions
which lead to less confusionary states.

We compare the performance of these methods by considering the number of ‘palpation
iterations’ necessary to train the robot. As previously described, a ‘palpation iteration’
involves the palpation of all classes of inclusions Ck under a specific action Am. The action
Am is here iteratively selected through Bayesian Exploration or Grid-Search. As shown in
Fig. 8.8 a-c, Bayesian Exploration achieved its highest performance after around only 60
iterations in both training phantoms. On the Abdominal Phantom this took approximately 7
iterations. Conversely, grid based systematic search performed poorly, finding equally good
palpation strategies after 150 palpation iterations on the training phantoms, and 23 iterations
on the Abdominal Phantom

In Fig. 8.8 d-f, the intensity of the color shows the final ranking of the actions based
on The figure shows how this ranking is ‘unstable’ for grid search, i.e. the ranking keeps
changing throughout the experiments, before reaching the final rank. Bayesian Exploration,
however, induces a stable ranking much sooner, where the final ranking of trajectories is
found much earlier on in the experiments.

By applying Bayesian exploration, and leveraging the ranking provided by the score, the
actions which best separate the PDFs across different classes of inclusions are preferentially
explored. By using this exploration technique, the robot can efficiently search a high
dimensional parameter space. This complex high dimensional action space has previously
been demonstrated to be necessary for accurate classification of abnormal inclusions in soft
tissues. From these results we can observe that by using Bayesian exploration, the time taken
to find the optimal strategy is halved in comparison to a systematic grid search.

Finally, after performing Bayesian Exploration, we can report the final accuracy of the
entire framework across all palpated phantoms. As previously explained, this is computed as
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ACCURACY %
highest (average)

15mm
vs NA

10mm
vs NA

8mm
vs NA

5mm
vs NA

15mm
vs 8mm
vs NA

10mm
vs 5mm
vs NA

Training Phantom 1 0.944 (0.462) 0.778 (0.394) 0.740 (0.412)
Training Phantom 2 0.889 (0.438) 0.833 (0.387) 0.778 (0.423)
Abdominal phantom 1.0 (0.85)

Table 8.3 Highest and average classification accuracies achieved by the palpation system
when training the Bayesian classifier on 14 samples of each class of inclusion and testing on
6 unseen samples.

the accuracy achieved on 40% of unseen palpation samples from each phantom. Table 8.3
reports the final highest test accuracy observed after training. Since the hypothesis in this
paper hinges on the postulate that appropriate palpation trajectories can aid in abnormality
detection via palpation, we also report the average accuracy across all attempted palpation
trajectories in Table 8.3.

Notably the system is capable of achieving over 80% accuracy when discriminating
between 5mm inclusions and no inclusions. On the Abdominal Phantom, the robot achieves
100% accuracy when discriminating between 15mm inclusions and no inclusions. Moreover,
the highest performing motion strategies outperform the average performance of any one
action by approximately a factor of two in almost all scenarios, confirming and emphasizing
the need for appropriate palpation trajectories during abnormality detection.

8.4 Discussion

Medical palpation is an impactful preliminary diagnosis tool which is performed widely
by primary care physicians. However, it is considered extremely challenging for a robot to
perform due to the complexity of the interactions. The interactions between the palpation
device and the human body are non-linear; the complexity of the action space and the
interactions is significant, and potentially infinite; and the solutions are different for every
‘patient’. Thus, to gain a more insightful understanding of this problem we need to go
beyond typical robotic approaches, including modelling and optimization. In this work, we
perform large scale physical experiments to understand how increasingly complex palpation
trajectories affect the sensory information that is gained, and thus the ability to make accurate
classification of abnormal inclusions. The framework presented in this work (Fig. 8.4) allows
for the fast exploration of a high dimensional action space, which arises from the palpation
of soft bodies. The framework identifies palpation strategies that allow for a confident
classification of the presence, or absence, of abnormal inclusions. The identified palpation
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strategies have been shown to enable the confident detection of abnormal inclusions as small
as 5mm in diameter (Table 8.3).

Through this experimental approach to palpation we have furthered out understanding
of palpation. We have identified that increasing the complexity of the palpation trajectory
improves the robot’s classification capabilities. In addition, we have shown that slight changes
in the trajectory, or the patient, significantly affect the performance. This demonstrates that
the optimum palpation trajectory must be found or identified for each patient through physical
experimentation; this mirrors the method in which human practitioners find the best palpation
motion for each patient. To make intelligent decisions in this non-linear highly complex
space, we have demonstrated how a probabilistic Bayesian approach allows for accurate and
efficient search and decision making. This gives us insights into how to process and make
decisions based on the sensory evidence. In the light of these experiments, one remaining
question lies with the parameterization of the palpation trajectories. The explored parameters,
in fact, are still based on human design and intuition, and as such, they are limited. In
future scenarios the parameterization and trajectories would ideally emerge from the haptic
interaction with the soft tissue itself.

The coupling between motion and sensory data goes beyond simple optimisation of
the sensory data through motion optimization. The motion also affects the dimensionality
reduction of the sensory data obtained providing additional benefits and improving the ability
of the system to build a strong belief knowledge base. This approach starts to explore beyond
the optimisation of sensory data, but rather the augmentation of the robot’s understanding of
its sensory perception, and the role it plays in exploring and building beliefs about the world.
This is an exciting research direction and should be investigated further.

Going forwards, this knowledge is important in several ways. In the long-term, we can
use the methods to develop ‘robot doctors’ who can perform accurate and confident diagnosis.
The framework development provides a starting-point for the experiment procedure for such a
robot. However, to achieve this it is necessary to find appropriate ways to perform knowledge
transfer across patients or phantoms. In the short term, we can use this understanding of the
process to help with the train and teaching of doctors. We can also apply the methods and
approaches to other similar problems, where the Bayesian treatment and large-scale physical
experiments would further our understanding of the problem at hand.

In this work we focused on problems which are typically ‘challenging’ for human doctors
and push our sense of touch to the limit. Developing a robotic system which could outperform
humans in this diagnosis and enable identification of inclusions at an earlier stage, would be
highly impactful. Robotic technologies have the advantages of high sensitivity, repeatability,
precision, and perfect memory and recall. Using our increased understanding of palpation, it
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may be possible to further explore and optimize motion strategies, and intelligently learn and
reason to push the boundaries on what can be detected.

The role of Bayesian Exploration, in this context, goes beyond simple exploratory action
decision-making, but hinges on the perceptual understanding, by the robot practitioner, of
the experienced tissue abnormalities, and the exploitation of said experience to improve
exploration and decision-making. Going forward, we believe it is necessary to find appro-
priate ways to perform knowledge transfer, which restore some of the robot’s beliefs about
abnormalities from training to more complex testing phantoms, and that go beyond the
transfer of learned palpation techniques. Exploring techniques for adapting and updating
the believes for a new patient or phantom without requiring any additional training would
increase the potential applicability of the work.

In this chapter we show how complexity in the action space can be beneficial for the
conditioning of the soft interactions arising from the robot and its environment. This is
an important part of the sensory-motor conditioning in SoMComp. This chapter has also
shown how it is possible to bypass some of the limitations imposed in the previous chapters.
More specifically, how to efficiently search the action space for high dimensional action
parametrization, and how to achieve complex trajectories through the combination of only 6
parameters of motion. The discretization of the parameters to perform search, however, is
still an issue. The next chapter introduces a method to take information conditioning through
actions one step forward, and how to employ complexity in the actions to achieve human-like
interactions with a piano instrument.





Chapter 9

Action Complexity: Expressive Piano
Playing

In the last two chapters the topics of tactile perception in the context of sensory-motor
coordination were treated, the action was purposefully devised to augment the perceptive
capability of the robot, and perform accurate tactile diagnosis. The sense of touch is extremely
suited to show how morphology and action can influence sensory perception, since it is
characterized by the physical interactions which give rise to the stimuli themselves. However,
the sensing treated in SoMComp is not limited to tactile sensing, instead, it refers to any
sensing modality which captures information which the robot can directly influence. In this
Chapter we choose to show results over a different sensing modality, such as hearing. We

Reference Publication

This chapter was adapted from a Journal article titled “Gaussian Process Inference
Modelling of Dynamic Robot Control for Expressive Piano Playing” [226], pub-
lished in the journal PlosOne in 2020. The article was written in collaboration with
Dr Fumiya Iida and Ms Cheryn Ng, and proposes a mathematical framework to use
jointly optimize both the morphology and the action of a robot to improve on discrim-
ination tasks. Dr Fumiya Iida contributed with the conceptualization of the topics,
design of the experiments and the writing of the article. Ms Cheryn Ng is the co-first
author of the paper, and contributed with the robot control, experiment execution, data
analysis and paper writing. As co-first author in the article, my contribution includes
conceptualization of the topics, the design and execution of the experiments, the robot
control, the formulation of the mathematics for the framework, data analysis and the
writing of the article.
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move away from the classification scenarios shown until now, towards a regression-learning
problem instead, where a robot learns how to perform key-strokes on piano keys to approxi-
mate the playing of notes according to different playing styles. Like previously, large-scale
physical experimentation is used to show how a robot can find complex actions which
appropriately condition the soft interactions between the environment and the robot.
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9.1 Introduction

Since the dawn of robotics there has been an interest in making machines perform artistic
and creative tasks in a human-like manner [139]. Music instrument playing, in particular, is
an important challenge, because the skills necessary to play music from physical instruments
are often beyond state-of-the-art robotics technologies, while the attempt to mimic musicians
would give us insights into the artistic nature of humans [242].

Piano, among others, is a complex instrument with rich and complex acoustics, which
is difficult to master even for humans after many years of training. The production of rich
expressive sounds requires appropriate key-press trajectories with a suitable mechanical
apparatus. A key-press event, as performed through a finger by a human musician, can
therefore not be seen from the point of view of the finger, or the instrument, in isolation.
Rather the action of the finger and the instrument is coupled, where the dynamics of the
piano are linked to the bio-mechanics and neuromuscular dynamics of the pianist, and their
coupling produces rich and complex acoustic energy radiating from the soundboard [74, 94].

Previous attempts to reproduce piano playing by robots mainly focused on two aspects:
the mechanical actuation of the fingers and the algorithms for finger motion planning across
keys. A large variety of actuation mechanisms was proposed by using DC motors [117],
servomotors [260, 281], pneumatic cylinders [109, 141], and tubular solenoids [61]. These
actuation mechanisms were then integrated to various control and planning architectures,
such as hard-coded motion paths [281], optimal path planning algorithms [61, 117, 136, 260],
and more advanced algorithms including collision avoidance [117, 136].

Although these robotics studies demonstrated impressive accuracy and speed for complex
music playing, very little attention has been paid to the understanding of delicate embodied
interactions of players and instruments for expressive sound generation. So far [94, 138]
have analysed the importance of dynamic interactions for expressive playing, but it is still
largely unknown how music expressions can be systematically analysed and understood.
Generally speaking, expressive piano playing is a manifold problem involving the dynamics
of the instrument, note arrangement in music instructions (sheet musics), and player’s action,
and we are not able to independently investigate each of these components in isolation as
they are mutually related to each other [74].

The problem addressed in this paper is therefore the development of a method to systemat-
ically analyse the relationship between these three components, by employing a state-of-the-
art digital piano, robot arm platform, and a statistical computational tool based on Gaussian
Process (GP) inference. For a systematic analysis and comprehensive understanding of the
landscape of this framework, we employed a minimalistic approach where we consider 10
basic playing styles, expressed by a single note, with a finger performing key-presses on
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a piano instrument. As exemplified in later sections, even with this simplified setup, the
systematic understanding of expressive piano playing is nontrivial.

For this challenging problem, this paper argues that the relationship between the mo-
tor control of a player and the corresponding expressive auditory output on the piano is
intrinsically nonlinear, thus specific treatments are necessary when designing and analysing
motor control of piano players. The expressive piano playing is known to be analysable by
the MIDI format of music sound representations, in which expressive sounds are related
to the velocities of piano key-pressing and interval times between them. Based on this
framework, we will extend the analysis to robot control to show the non-linearity of the
relationship between expressions and a player’s motor control. The identification of this
nonlinear nature of piano playing is particularly important in order to understand players’
(bio)mechanical dynamics, control, and learning processes. In this context, the mechanical
dynamics (impedance) of players’ fingers, arms and hands are important. Additionally, linear
regression methods may not be flexible enough to cope with the nonlinear dynamics of
this system, and other nonlinear control optimisation (learning) processes become instead
necessary.

In the past, humans have been shown to learn and make decisions with processes akin
to Bayesian inference, above all in tasks involving sensory-motor control [125]. It is in this
context that we propose a fully probabilistic GP-based framework to capture the relation-
ship between the piano music and key-press events that generated it. Advantages of this
approach include a mathematically meaningful measure of uncertainty in key-press trajectory
prediction. While these implications are valid for both human and robot players, it would be
particularly interesting for designers of piano playing robots, because a hard-coded linear
mapping of motor control would not be sufficient for human-like playing of piano but an
integrative view of morphology and sensory-motor control become more valuable in the
context of dexterous manipulation tasks [227, 229, 232].

This paper is structured as follows. Section 9.2 reports the methods in this Paper, including
the GP-based Learning framework in Section 9.2.1, and the robotic experimental set up in
Section 9.2.2. In Section 9.3 we report the results of this work. Finally, in Section 9.4 a
discussion and a conclusion are provided.
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9.2 Methods

9.2.1 Learning Framework

The framework developed for this work aims to capture the relationship between piano
key-press events and the corresponding piano sound outputs, thus optimizing the robot’s

(a)

(b)

Fig. 9.1 Adaptive piano playing diagram, including (a) the GP-based framework developed
and (b) the model relationship between robot key-press and piano sound outputs.

key-press trajectories for different styles, through a single demonstration. Much like a
human player, the robot can perform key-presses on a piano, observe the resulting music
output, and then explore its own action space and the consequences of its actions through
sound feedback (Fig. 9.1). The music styles chosen for the experiments are commonly
used in piano playing to evoke different musical expressions. Two types of fundamental
musical parameters governing musical events are explored, articulation and dynamics, for
which a musical event is typically a single note or phrase of notes. Music articulations
shape the attack, decay and length of an event, while dynamics determine the loudness
of an event relative to the entire passage. Articulation methods tenuto, staccatissimo and
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(a)

(b)

(c)

Fig. 9.2 The set-up for the experiments. In the figure, (a) shows robotics set up, including a
schematic of the robot connection to a processing unit and the musical instrument, while (b)
shows the 3D finger used for piano playing.

staccato were chosen for the experiment for their relevance to the piano instrument and
suitability for monophonic (single-note) playing. The styles of f ortissimo/ f f (very loudly)
to pianissississimo/pppp (extremely softly) were instead chosen for their dynamic range.
These playing styles introduce a wide range of music which require very diverse types of
key-press action to be performed on the instrument.

Linear Models

The first set of models are Linear models, capturing the relationship between the detected key-
press piano sounds and their corresponding robot key-press actions. Fig. 9.1a and Fig. 9.1b
show a qualitative diagram of the framework in the context of these experiments. For each
key-press let v⃗ be the dv dimensional vector of control parameters utilized for the robot
control, and o⃗ the do dimensional vector of the corresponding sound outputs. An in-detail
explanation of the parameterization of the robot control and the sound output is irrelevant to
the learning framework, and will be provided in later sections.

For notation’s sake we will impose x= o⃗ and y= v⃗i. In this context, v⃗i is a one dimensional
vector, corresponding to one dimension of the control action parameters (Fig. 9.1b). The
following equations will be repeated for every control action dimension, thus i ∈ [1, ..., dv],
where dv = 5 for the duration of the experiments.

For the Linear models we impose x′ = [x 1] and :

y = w⃗x′ (9.1)
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where w⃗ is a do +1 dimensional vector of weights capturing the relationship between the
sound outputs and the control parameter v⃗i under consideration. The values for w⃗ are
approximated by a Least Square fit.

Gaussian Process Framework

In the past, humans have been shown to learn and make decisions with processes akin to
Bayesian inference, above all in tasks involving sensory-motor control [125]. In contrast
to the linear models, a GP-based framework is used to capture the relationship between the
sound produced by the piano and the robot control of the key-press generating it [271]. Given
key sound observations x, generated by noisy robot-controlled key-presses y, the relationship
of sound output to motor control can be captured by:

y = f (x)+ ε where ε ∼ N (0,σ2
y ) (9.2)

i.e. the noisy key-press by the robot control are assumed to have a Gaussian process prior
and be drawn from:

y = f (x)∼ GP(m(x),k(x,x′)+δpqσ
2
y ) (9.3)

where the mean is m(x) = 0, and the covariance of any two noisy observations yp and yq is:

cov[yp,yq] = k(xp,xq)+δpqσ
2
y (9.4)

where xp and xq are the inputs to the corresponding observations, and δpq = I(p = q). The
relationship between y and x in Eq. 9.3 is thus dictated by how any two musical outputs
co-vary in terms of their generating key-press trajectory. The covariance of any two points
is governed by Eq. 9.4, and thus the choice of the kernel is here important. We build on a
linear kernel, and account for non-linearities in the relationship of x and y by a Radial Basis
Function Kernel, thus:

k(xp,xq) = xpxqσ
2
f e(−

||xp−xq||2

2l2
) (9.5)

where σ2
f and l are hyperparameters which decide the magnitude of influence of adjacency

when evaluating the function at any one point. From [165], we can write the mean µ∗ and
variance Σ∗ for any new test audio input X∗, prior inputs X and generating observed control
key-press y as:

µ∗ = k(X ,X∗)
T K−1

y y (9.6)
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Σ∗ = k(X∗,X∗)− k(X ,X∗)
T K−1

y k(X ,X∗) (9.7)

where Ky = k(X ,X)+σ2
y IN , to account for the noisiness of the observations.

Finally, it is desirable not to manually pick the hyperparameter σ2
f and l of the covariance

function. We therefore perform model selection by initializing the σ2
f and l to 1 and

iteratively minimizing the negative marginal log likelihood − log p(y|X) over 100 training
steps as implemented in [157].

The equations described can capture the relationship between any sound output parameter
v⃗i and control input o⃗. In this paper dv = 5 and do = 4, thus five 4-dimensional Gaussian
Processes are built to automatically capture the relationship between the sound output and
robot key-press control.

9.2.2 Experimental Set-Up

For the experiments we use a UR5 robotic arm, equipped with a custom end-effector (Fig. 9.2a
and Fig. 9.2c). The music instrument is a Kawai Es8 Digital Piano, which provide the
possibility to retrieve event-based, MIDI audio messages when a key is pressed. An audio
message is generated when one of two events is detected: a key press or a key release. For
every pair of detected MIDI message, four variables are going to be relevant for the purpose
of the experiments in this paper, namely: the velocity of the key-press, the time the key
was held down, the velocity of the key release and the wait time before performing the next
key-press; the four variables will be referred to on_velocity, hold_time, o f f _velocity and
wait_time for the remainder of the experiments.

Finger Design

The finger was designed to be the simplest end-effector to allow the UR5 robotic arm to
perform single key-presses on a standard piano. The finger is a 80mm×15mm cylindrical
attachment, with a flat origin and a rounded finish, to perform key-presses at various stroke
angles without compromising the area of contact (Fig. 9.2c). The finger was 3D-printed
using FilaFlex, a Thermoplastic Polyether-Polyurethane elastomer (TPE) filament of shore
hardness 82A2, and thus it presents some room from flexing and bending.

2https://recreus.com/en/12-filaflex-original-82a
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(a) (b)

Fig. 9.3 The robot control, including (a) an illustration of a robotic key-stroke, and (b) the
hybrid sinusoidal control designed for the experiments.

9.2.3 Robot Control

The robot was controlled in Cartesian coordinates at ≈ 125Hz, acting upon the Z and Rx
tool axis simultaneously, to generate the desired contact between the end-effector and piano
key for a key-press. A hybrid sinusoidal displacement profile was generated for the Z axis,
parameterized in both amplitude and frequency, while an angle of rotation about the finger
tip was chosen for the Rx axis, Thus a total of 5 parameters were used to control the robot for
each key-press experiment (dv = 5), i.e. Rx, f1, f2, t1, t2 (Fig. 9.3b).

For the Z axis of motion, a sinusoidal displacement over the course of the key-press is
defined as:

sz(t) =


0 if 0 < t ≤ Ta

1
2Az[cos(2π f1

2 (t −Ta))−1] if Ta < t ≤ Tb

−Az if Tb < t ≤ Tc

−1
2Az[cos(2π f2

2 (t −Tc))+1] if Tc < t ≤ Td

. (9.8)

where

Ta = t1 , Tb = t1 +
1
f1
,

Tc = t1 +
1
f1
+ t2 , Td = t1 +

1
f1
+ t2 +

1
f2

Here, ‘t’ is the time, in seconds, elapsed since the start of the touch experiment and Az defines
the amplitude of the generated sinusoidal displacement for the key press, and it is here set to
32mm throughout the experiments. Additionally, a parameter Rx sets the angle of rotation of
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the end-effector, between 0◦ and 90◦ throughout the experiments (Fig. 9.3a). The X axis of
motion controls the robot’s ability to shift key along the piano as it plays different notes. The
control on the X axis is achieved through:

si(t) =

1
2Ai[cos( 2π

2t1
t)−1] if 0 < t ≤ Ta

Ai if Ta < t ≤ Td

(9.9)

i ∈ {Rx,x}

where Ax = kdnk, kd represents the key-width and nk is the number of keys between the
previous and current key. The standard modern piano keyboards are designed with white
keys 23.5mm wide, thus we set kd = 23.6, taking into account the gap between keys.

The choice of parametrization is here important. The sinusoidal displacement at the
beginning and at the end of the key-press were chosen to provide a smooth robot trajectory
of key-press and key-release, which could be affected by simple amplitude and frequency
parameters. The t1 and t2 parameters were instead introduced to allow the robot to directly
influence the times of key-press and key-change. Our choice of parameters was also to induce
a strong correlations between the control parameters and piano MIDI outputs, as later shown.

The following sections will explore how different control parameters can approximate
different playing styles, and how these may be learned online through sound feedback.

9.3 Results

In the following sections we wish to understand the delicate embodied interactions of players
and instruments for expressive sound generation. We first show how expressive piano playing
is a manifold problem, involving the dynamics of the musical instrument, note arrangement,
and player’s action. Here, we show that the relationship between motor control and piano
is intrinsically non-linear. We will further show the viability of the GP-based framework
developed in capturing the non-linear dynamic relationship of this system, and its advantages
with respect to simpler linear regression methods. Finally, the optimized controllers for 10
different playing styles are compared with the performance of an expert human player.

9.3.1 Robot key-press control to sound feedback

In the first set of experiments we investigate the relationship between the robot control param-
eters and the generated sound outputs following the robot key-press control. This analysis is
based on observations on a large-scale set of over 3125 key-press experiments performed
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(a) (b)

(c) (d)

(e) (f)

Fig. 9.4 The sample raw data corresponding to the MIDI sounds registered by the piano and
the control parameters generating the key-presses execution, averaged over 10 trials.
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with the set-up described in the previous section. Fig. 9.4 shows example relationships
between the MIDI parameters of on_velocity and o f f _velocity with the control parameters
of f1, f2, and Rx. From Fig. 9.4a, it is possible to see how the on_velocity increases as the
robot control’s f1 parameter increases, while all other control parameters are kept constant.
However, the normalized value of on_velocity saturates at ≈ 0.4 regardless of an increase in
f1 from 6.6 Hz. Beyond a frequency threshold of 6.6 Hz, any higher imposed frequencies in
the key-press control appear indistinguishable by the piano key’s velocity-sensitive trigger
sensor. The piano key trigger has not reached its velocity sensing saturation, as we observe
from Fig. 9.4e that at other finger rotation angles (Rx), the normalized on_velocity values
are able to reach up to ≈ 0.8 compared to the saturation at ≈ 0.4 previously observed at
f1 = 6.60 Hz. It is likely that this is in part due to the elasticity of the finger, which is capable
of flexing and bending to some degree, combined with the sinusoidal parameterization of
key-press trajectory. Both the finger’s make and the choice of action parameterization for the
robot key-press control, in fact, induce slight changes in both the stiffness and contact point
of the finger with respect to the stroked key during a key-press, with higher angles inducing
higher degrees of stiffness in the end-effector.

We observe a similar trend between f2 and o f f _velocity in Fig. 9.4c and Fig. 9.4d. The
normalized o f f _velocity detected by the piano increases as the f2 parameter is increased in
the robot control, while all other control parameters are kept constant. However, the value of
o f f _velocity saturates at values of f2 frequencies of ≈ 6.6Hz. Beyond a frequency threshold
of 6.6Hz, higher release velocities are indistinguishable by the trigger.

The non-linear relationships between Rx and audio parameters on_velocity and o f f _velocity
respectively are harder to capture as there are additional factors at play. As the finger’s ma-
terial is non-stiff material, and given its elongated structural composition, key-presses at
different angles may vary the finger’ stiffness, as the generated forces derived from the
key-press may be more or less normal to its longest side.

The non-linear relationships observed are also not representative of those observed at
other constant variable values. This is illustrated by comparing Fig. 9.4a and Fig. 9.4b for
which all constant robot control variables are the same except for Rx = 20◦ for the data in
Fig. 9.4a and Rx = 30◦ for that in Fig. 9.4b: there is a less significant plateau observation
of on_velocity in the latter as the value continues to increase gradually to 0.8 at f1 = 10.9
Hz. This is likely because at the higher rotation angle, the depth at which the piano key is
electronically triggered corresponds to a different point along the gradient of the sinusoidal
curve in Fig. 9.3b, causing a velocity difference that is distinguishable by the trigger as
f1 increases. Other factors may also contribute to this difference, such as the different
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(a) Iteration 1 (b) Iteration 3 (c) Iteration 4 (d) Iteration 5 (e) Iteration 6

Fig. 9.5 The GP-based exploration fit over different iteration steps when running the frame-
work with simple f 1 control on the on_velocity parameter.

mechanical properties of the finger at different rotation angles and the differing point of
contact of the finger on the key.

Similarly when comparing Fig. 9.4c and Fig. 9.4d, which plot the data obtained from
setting Rx = 60◦ and 70◦ respectively, we observe a more significant plateau between
f2 = 7.7 Hz and f2 = 9.8 Hz in the latter figure, where the velocity change due to f2 is
indistinguishable by the key trigger.

The analysis of the raw data shows the complexity, multi-dimensionality and non-linearity
of problem at hand, where the physical interaction of the robot’s finger and the piano
instrument is quantified experimentally.

9.3.2 Gaussian Process based Framework analysis

As shown in the previous section, the relationship between the control parameters and
resulting note musical outputs is both non-linear and multivariate dependent. Gaussian
Processes can capture both the non-linear nature of the relationship between the inputs and
outputs, and the dependence across parameters.

In the second set of experiments it is shown how the GP-based framework developed
can approximate a parametric fit during training. We initially thus ignore the complexity of
multivariate fits and run the framework by optimizing a single control parameter with respect
to one MIDI output. We chose a control parameter and MIDI output which should show
some degree of correlation, e.g. f1 and on_velocity, and run the algorithm to train the robot
over 12 key-press, or iterations. Fig. 9.5 shows the algorithm at 5 different stages within the
12 iterations. As shown in the figure, for each parametric value attempted by the robot, the
uncertainty of the fit at that point collapses, and is later related to the variance of the fit at that
point. By iteration 6, the robot has found a fit over almost the whole controllable parameter
space. At this point, the GP model trained on the same samples can be used to inference the
control necessary to reproduce a wanted MIDI output.
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(a) Digital

(b) Human

Fig. 9.6 The 10 different playing styles addressed in this work. (a) The playing styles
generated by MuseScore digital score writer, and (b) the play styles as played by the human
player. The variance between the MIDI parameters shows the fundamental differences
between the various styles.
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In the next set of analysis we now consider all parameters, i.e. five 4-dimensional GP
models are fit, to capture the relationship between the 4-dimensional MIDI audio piano
outputs and each of the 5 control parameters. At each iteration, we use Equation 9.6 on
the five 4-dimensional GP models, to choose controls to approximate each of the playing
styles shown in Fig. 9.6a. We use MuseScore3, a digital score-writer computer program that
supports MIDI output, to generate each playing style, and the resulting sound output. The
actual sound outputs generated by the inferred control can then be compared to the MIDI
outputs to reproduce, and an error can be computed by:

errors =
√

(⃗oinv,∗− o⃗s,midi)T (⃗oinv,∗− o⃗s,midi) (9.10)

where o⃗inv,∗ is the MIDI output generated by applying the inferred control µinv,∗ of the inverse
model, and o⃗s,midi is the reference MIDI output for the playing style under consideration.

We compare the robot note error over the 10 different playing styles when learning
through the GP-based framework developed, against a linear fit of the x− y parameters
in Section 9.2. In both cases the robot searches the space of each control parameter in a
breadth-first grid-search fashion, with a parametric discretization of each parameter into 5
equally spaced values. The robot searches each parameter combinatorially, so a total 3125
key-press are performed to incrementally train the linear and GP models. Fig. 9.7a shows
the sound errors of testing key-presses on the piano, after testing the fits every 30 training
key-press iterations. For each testing epoch, the robot is made to test each playing style 3
times for the linear model, and three for GP-based framework, bringing the total number
of experiments to 9375 piano key-press for both training and testing, with a split of 50%
and 50% respectively. From Fig. 9.7a it is clear how the GP-based framework developed is
capable of outperforming the simpler linear model, bringing the lowest error to 0.0747 MIDI
units as opposed to 0.117. More interestingly, the GP-based framework reaches convergence
after approximately 1000 iterations, a factor of three times smaller than the time necessary
to approximate the playing styles by the linear models. The limitations of the linear model,
in this setting, follow the relationships observed in Fig. 9.4, where the control parameters
showed a non-linear effect on the MIDI outputs. This non-linearity captures the reality of
key-press experiments with an elastic finger, where the dynamics of the collisions of the
finger and the piano key, with respect to the generated output, can at best be approximated,
but not truly captured, with simple linear relationships.

Fig. 9.7b sheds some light into the limitation of robotic piano playing with a set up
analogous to our own. The robot, in fact, is incapable of matching the key-press velocity
necessary to approximate each playing styles, when learning off sound feedback through

3https://musescore.org/en
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(a)

(b)

Fig. 9.7 The comparison between the Linear and GP fits to approximate 10 different piano
playing styles. (a) The testing Error over 3125 training key-press, and (b) the average testing
error by play-style, for the best validating epoch during training for the linear and GP models
respectively.
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Fig. 9.8 The final predictions, after 3125 learning epochs, of the required control parameters
for 10 different playing styles. The Confidence intervals are shown as normalized predictive
variance, and show the predictive uncertainty of the GP model.
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simple linear models. The GP-based framework outperforms the linear models by a larger
margin in 8 out of 10 playing styles. The framework results better suited in capturing duration
relationships between target temporal patterns and control key-stroke dynamics, additionally
to highly accurate control on slow-speed downward key-strokes, effectively reaching lower
MIDI errors for the styles of normal, tenuto, staccatissimo, staccato, mp, p, pp and pppp.
The Linear model results capable of better capturing the relationship between high speed
robot control for downward key-press actions, regulated by f1, and target louder sound
outputs, finally achieving better performance in the styles of f f and f . The difference in
performance for the styles of f and f f can be explained by the intrinsic tendency of the
linear model to overestimate the levels of downward velocities required to achieve high
on_velocity outputs. The downward velocity levels, regulated by f1, can in fact be observed
to saturate at certain levels in Fig. 9.4a and Fig. 9.4b, levels which depend mainly on the
finger angle to the piano key. The linear model will not be able to capture the on_velocity
plateau, overestimating downward key-stroke velocities, but effectively achieving louder
outputs for the f and f f styles.

Fig. 9.8 shows the control parameter values attempted by the robot as generated from the
GP model prediction. It is clearly shown that for playing styles normal, tenuto,staccatissimo
and staccato, control parameters Rx, f1 and f2 have very similar values, at approximately
60◦, 8.5Hz and 4.5Hz respectively. The control parameters t1 and t2 vastly vary across
these playing styles, showing variations within 0.5s, and indicating a large contribution of
these in the playing style’s unique characteristics. On the other hand, for playing styles
f f , f ,mp, p, pp, pppp, the change in dynamics, which clearly defines these playing styles’
unique characteristics, is largely contributed by control parameters Rx, f1 and f2, with ob-
served changes of the magnitude of 15°, 6Hz and 3Hz respectively. Moreover, an invaluable
advantage of the GP framework proposed is the uncertainty estimation. Analogously to
the prediction computation through Eq. 9.6, we use Eq. 9.7 to compute the uncertainty,
or variance, of a control when attempting to generate a target sound output. In Fig. 9.8,
the uncertainties are shown in terms of normalized variance for each prediction, to better
visualize the plot trends. From the figure it is clear how the robot results more confident in
generating both rotations and downward velocities. Temporal parameters (controlled by t1
and t2) and upward velocities (controlled by f2) result somewhat harder to grasp over the
different playing styles. The high uncertainty over t1, t2 is indicative of one of two factors:
one, that the grid-search parametric exploration of t1 and t2 did not attempt any combination
which was close to perform any of the playing styles accurately, and thus no ample evidence
is present for the inferred control parameters; two, the robot wait time control through t1
and t2 shows high degrees of variability in terms of the actual wait time outcome. Given
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further results shown in Section 9.3.3, the first case is more likely. The f2 parameter is also
not capable of achieving full control of piano key-release velocities. This is likely due to the
dynamics of the piano key-release action, which limits the speed at which each key springs
back to its original position after a key-press. For higher key-lift velocities performed by
the robot, and controlled by f2, then, the detected velocity of a key release by the piano will
eventually saturate.

9.3.3 Human vs Robot Piano Playing

Finally, we investigate the ability of the robot to perform the 10 different playing styles in
Fig. 9.6a as compared to an expert human pianist. We use the controllers optimised by the
GP-based framework developed. The human performer is a veteran pianist with 15 years of
history in piano playing. Upon listening to the sound output the pianist is made to reproduce
the note on the piano. We collect 10 different key-press samples at 40 beats per minute (BPM)
or 1 key-press every 1.5s, performed 4 times by the human pianist, for each playing style, so
as to have an idea of the playing variation within each style. The resulting normalised MIDI
output from the pianist’s playing is shown in Fig. 9.6b. We let the robot perform according to
the µinv,∗ (Eq. 9.6) extracted for each playing style after learning through 3125 iterations, log
the resulting o⃗inv,∗ from the robot playing and o⃗human,∗ from the human player, and compute
errors with respect to the computer generated MIDI for each playing styles.

Fig. 9.9 compares the human and robot’s normalized error performance for each play-
ing style. Fig. 9.9a shows the error of the human and robot’s performances in terms of
on_velocity. The performances of the robot and the human are highly similar for most
playing styles, on average within 0.05 normalized error units from each other for all playing
styles. The GP-optimized robot’s errors are 0.05 and 0.03 units higher than the human player
at f f and f as the robot is unable to achieve equally high downward velocity required for
the loud playing. On the other hand, the robot’s errors are lower at mp, p, pp and pppp,
with error differences ranging from 0.05 to 0.02 normalized units. The precise motion
control at low velocities achieved by the robot is, in fact, capable of precisely approximate
soft key-presses, which the robot optimizes with respect to the reference MIDI target style.
Fig. 9.9b shows the differences between the human player and the MuseScore generated
playing styles in terms of o f f _velocity. Due to an innately more dynamic and highly varied
key release motion by the human player, the human tends to show a diverse range of release
velocities, with errors of up to 0.4 normalized units. The robot, on the other hand, has low
variance and error across all play styles due to its consistent speed control for key releases. In
Fig. 9.9c we compare the human and the robot performance over the wait_time parameter, i.e.
the time necessary to wait between key-presses for each playing style. Surprisingly, the robot
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(a) on_velocity error (b) o f f _velocity error

(c) wait_time error (d) hold_time error

(e) Total error

Fig. 9.9 The Comparison of the playing score of the robot optimized to play the 10 different
playing styles after 3125 learning epochs, a human player playing the same, and the computer
generated outputs.
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playing error results higher than the human of 0.1 to 0.4 normalized units in most playing
styles, as it is unable to play a melody consistently at 40 BPM with the required waiting time
between notes. This is likely due to the inherent delays in the robot’s online control when
switching commands between key-presses, a consequence of the chosen parameterization
and robot key-press control in the experiments, while the human player has a good grasp of
rhythm and plays each note at consistent intervals. The robot performs more consistently
than the human player in terms of hold_time error, with errors lower than 0.1 normalized
units across playing styles as shown in Fig. 9.9d, due to the precise clock control during the
holding phase of the key-press. In terms of wait_time and hold_time, the human player’s
style errors are higher than the robot’s for tenuto, staccatissimo,staccato and f f , with error
value differences varying from 0.1 to 0.5 normalized units. The timing of these articulation
styles are exaggerated by the human for greater impact and variation in expression, thus
deviating further from the MuseScore generated ground truth. Also note that the error for
wait_time and hold_time (Fig. 9.9c and Fig. 9.9d) show similar trends for the human player,
due to the aforementioned good grasp of rhythm; there is no delay between notes and a
longer wait_time is always compensated by a shorter hold_time for that note played. On the
other hand, the robot’s delays between key-press commands are strongly reflected only in the
wait_time error. Finally, the overall normalized error by play-style shown in Fig. 9.9e shows
an interesting picture. After 3125 learning epochs, the robot is able to perform similarly
to the human player for normal, tenuto and pppp playing styles, with normalized error
differences lower than 0.01 units. The robot achieves lower errors ranging from 0.1 to 0.4
normalized units for the syles of staccatissimo, staccato and f f , largely due to its accurate
o f f _velocity, wait_time and hold_time performance. The robot, however, performs with
errors between 0.1 and 0.2 normalized units higher than the human player for the styles of f ,
mp, p, and pp, largely due to its poor wait_time performance.

9.4 Discussion and Conclusion

We investigate the ability for a robot to play the piano according to 10 different playing
styles, like a human player. We propose a GP-based framework for the robot to incrementally
model the relationship between the control actions, to the resulting sound output, and learn
appropriate controllers to play according to each music style. We show that the relationship
between control and sound is non-linear in nature, and that different control parameters are
not independent with respect to the generated note from the corresponding key-press. The
GP-based model can faithfully capture the relationship between control and generated music
output, outperforming simpler linear model.
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To be able to play different playing styles faithfully it is necessary for the robot to explore
its action space, so to find appropriate key-press for each style. The resulting combinatorial
explosion in parametric search presents itself as an issue. A second advantage of the proposed
GP-based framework is its ability to quickly converge to appropriate controllers for each
style. In fact, we observe the GP convergence to be a factor of 3-times faster than linear
models, with respect to the learning of the playing styles considered in this work.

The main limitation of the approach lies with the drawbacks of GP modelling. As
the model takes into account every single sample to compute the fit, it can eventually be
computationally expensive to fit the control to MIDI relationship. This, can in part be
obviated by methods which do not need a full kernel representation, and by the dismissal of
points far away in time with a sliding learning windows [258].

Finally we compare the ability of the robot to approximate each of the playing styles,
with respect to an expert human player. We show the comparison sheds some light to several
interesting aspects of robotic piano playing. The robot is capable of performing comparatively
to the human player in the syles of normal, tenuto,staccato and pppp, largely due to the
precise control at low speeds, and clock waiting times. The human-player, however, exhibits
a much more dynamic and varied playing, which allows them to achieve lower style error to
the MuseScore generated playing styles in f f , f ,mp, and p. These styles, in fact, require
higher downward key-press speeds and dynamic playing.

The dynamic and varied behaviour exhibited by the human player is one of the many
advantages complex tools like human hands can possess. Partly, the lack of dynamism
is indeed due to the stiffness and simplicity of the robotic end-effector. With the advent
of soft-robotics and continuum robots, however, these limitations can be revoked, and the
next generation of robots might indeed be able to move away from stiff and hard-robotics
solutions, towards a softer human-like touch [42, 97]. These experiments shed some light
into the limitations of robotic-piano playing, and the issues to be faced when attempting to
go beyond monotonic piano playing.

This work has further shown how the complex actions play a fundamental role in deter-
mining the quality of the soft interactions arising between the robot end-effector (finger)
and a piano instrument. One limitation of the current approach lies in the parameterization
of the robot control action as well as the design of the morphology parameters. As the
morphology and control parameters were ultimately human designed, the fully automation
of robot morphing and control is still a far goal. Future work should focus on releasing
some of the constraints and biases imposed by human design and aim at automating the
generation of solutions, which can be pruned and assessed probabilistically with the proposed
framework. A second important issue lies with the dismissal of the concepts introduced in
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Chapter 6, where in these experiments the finger design and finger properties were set be-
forehand. Within the concepts expressed in SoMComp, both morphology and action co-exist
to allow the robot to condition the physical stimuli appropriately for learning. A framework
which jointly considers both morphology and action is then necessary to fully embrace these
concepts. The next chapter will investigate the development of one such framework.



Chapter 10

Morphology-Action Co-Optimization:
Complex Tactile Object Feature
Recognition

In Chapter 6, we show how the making of the body has a fundamental role in shaping the
information extracted from the world. The shape of the sensor, the material it is made of, as
well as its location in the robot body, all contribute to extracting particular information from
the world while filtering out others. In Chapter 7 we have shown how appropriate actions
can allow the robot to condition the physical stimuli at will. In both Chapters it is also shown
how there is a particular morphology as well as a particular action which allow the robot to
solve a specific task. The actions of the robot however, heavily depend on the morphology of

Reference Publication

This chapter was adapted from an article titled “Efficient Bayesian Exploration
for Soft Morphology-Action Co-Optimization” [232], published in the 3rd IEEE
International Conference on Soft Robotics (RoboSoft 2020). The article was written in
collaboration with Dr Perla Maiolino and Dr Fumiya Iida and proposes a mathematical
framework to use jointly optimize both the morphology and the action of a robot to
improve on discrimination tasks. Dr Fumiya Iida and Dr Perla Maiolino contributed
with the conceptualization of the topics, design of the experiments and the writing of
the article. As first author in the article, my contribution includes conceptualization
of the topics, the design and execution of the experiments, the robot control, the
formulation of the mathematics for the framework, data analysis and the writing of the
article.
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the robot itself, as with a different body the robot must behave differently to achieve similar
results in a task. Conversely, if a robot were to be given limiting motor constraints to solve a
particular task, then there must be a morphology that is optimal for the robot’s achievement
of its goals through the limiting motion. The idea of morphology & motor-coordination
iterative optimization is born from the need of the two paradigms to co-exist in a theory
where they can improve concurrently. This chapter shows one such way to achieve the joint
optimization of both morphology and action, and merges the two into a unique theory via
Bayesian Exploration.
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10.1 Introduction

10.1.1 Mophology-Action Co-Optimization

In the light of the experiments in Chapter 7 and Chapter 8, let’s envision a scenario where a
robot is placed in front of a soft phantom, containing hard inclusions of different types in
various locations. In this scenario, an initial probing end-effector, equipped with a tactile
sensor, could be designed and used for probing the phantom during the experiments. Like
in previous chapters, the robot could find the motion strategy which allow the information
retrieved from the tactile sensor to be most discriminative amongst different types of hard in-
clusions. Upon finding the motion strategy which maximizes the structure of the information,
it is then possible to look at the taxel activation pattern to discriminate which taxels were
more or less useful in the discrimination. The morphology can then be redesigned to better
capture the discriminative taxel activation pattern observed. Repeating the experiments with
the new morphology generates a new optimal motion strategy. At this point, it is possible to
re-iterate, and stop only when a convergence of motion strategy vs. morphological design is
observed. Algorithm 1 shows the pseudo-code for the morphology & motor-coordination
iterative optimization concept in the example of robotics palpation.

Initialize probing end-effector design;
Probe the phantom;
Find optimal motion strategy;
while not converged do

Re-design probing end-effector based on taxel activation;
Probe the phantom;
Find optimal motion strategy;

end
return Morphology & motion strategy;

Algorithm 1: Morphology & motor-coordination iterative optimization

Convergence could here be when, for example, the observed most discriminative taxels
observed do not change in two consecutive experiments. The probing end effector re-design
could instead be both physical, e.g. a probe shape or material change, virtual, e.g. select the
location and number of taxels most appropriate for the interaction at each given time, or a
combination of both. In this Chapter we focus on the co-optimization of morphology and
action together, discarding the ordering constraints imposed in algorithm 1.
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10.1.2 Bayesian Exploration for Morphology-Action Co-Optimization

As previously explained, the sensor morphology and action control in robots can affect the
characteristics of the sensed stimuli, and consequently the way in which robots ‘perceive’ the
world [137, 171]. In this context, the intelligent use of (changing) morphology and control
can be fundamental in aiding sensory perception tasks, like object discrimination [106, 227].

To date, the role of sensor morphology and action in encoding and categorizing touch
stimuli remains a significant challenge. The interpretation of the sensor signals to discriminate
between a set of stimuli or to perform object recognition has relied mainly on supervised
machine learning techniques [72, 113, 252], burdening solutions with the need of expensive
computation and large amount of labelled data. In Chapter 6 it was shown how through the
use of elastomeric filters as an interface layer between a tactile sensor and the environment,
it was possible to perform complex object discrimination with simple clustering analysis,
voiding the need for complex learning procedures, and offloading part of the task resolution to
the body. The concept of changing morphology has previously been explored [159, 205, 216],
mainly in the context of growth. Here, however, we focus on driving the change in sensor
morphology and action through sensory perception, thus endowing the robot with the ability
to autonomously explore its own morphing and motor control abilities and adapt to different
categorization tasks.

The main contribution of this chapter is to propose a conceptual framework where,
through the use of Bayesian Exploration, a robotic agent is capable of exploring the per-
ceptual tactile consequences of both changing sensor morphology and robot control action
concurrently. Bayesian Exploration has previously been proposed in [64], and applied for
accurate identification of textures and objects in [274]. In this work, additionally to the robot
control action, the framework also accounts for the parametric exploration of the robot’s soft
morphing abilities, to improve detection in complex tactile object discrimination scenarios.
To demonstrate this approach, we have developed a set of 8 objects presenting three main
surface feature differences, i.e.: geometric (edged vs. non-edged), texture (smooth vs. rough)
and elasticity (stiff vs. soft) (Fig. 9.2).

Firstly, we show how without appropriate morphology, discrimination is often highly
non-linear or impossible. Secondly, we show that through the developed framework, the
robot is capable of reason probabilistically about the consequence of its own actions, as well
as its own morphology, to its sensory perception. The robot is thus capable of meaningfully
search its own morphing and action abilities, and avoid the need for expensive systematic
search methods. To our knowledge, this is the first application of Bayesian Exploration to
enable morphing based on sensor stimuli, and marks a step towards the creation of robots
capable of using morphology to actively aid in discrimination tasks.
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Fig. 10.1 Flowchart of the developed framework.

The chapter is organized as follows: In Section 10.2 we describe the methods in this
chapter, including the implemented morphological Bayesian Exploration procedure in Section
10.2.1, the sensor technology in Section 10.2.3 and the set-up for the experiments in Section
10.2.2. In Section 10.3 the experimental results are presented. Finally, Section 10.4 we
provide a discussion and a conclusion.

10.2 Methods and Experimental Set-up

10.2.1 Morphological Bayesian Exploration framework

Bayesian Exploration is an iterative procedure, which can drive the exploration of the robot’s
morphing and action parametric space within a pre-set task. The proposed framework is
comprised of 4 stages: data sampling, dimensionality reduction, Bayesian inference and
update of beliefs, and exploratory action identification (Fig. 10.1). In the last phase, the
Bayesian exploratory action identification algorithm implemented is an extension of the one
first proposed in [64], to account for morphology exploration during experiments.

Data Sampling

Let X be an (N×D) matrix, where each unique D dimensional row in the matrix is a sequence
of tactile images for a touched object, sampled at a constant time interval. The value of N is
initially 0 and for each ‘experiment iteration’ N = N +K where K is the number of classes,
or object features to discriminate against.
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Dimensionality Reduction

After gathering tactile evidence for different objects and obtaining the tactile image sequences
matrix X , Principal Component Analysis is used to reduce the dimensionality of the high
dimensional spatiotemporal touch evidence.

After obtaining the tactile image sequences matrix X, like in previous chapters we
use equations 6.1, 6.2, and 6.3 to create a scatter matrix S of X, and factorize it into
matrices Q and Λ. Similarly to Chapter 6, the Q matrix is such that each column q j

corresponds to an eigenvector of S, and each element λ j j in the diagonal matrix Λ is its
corresponding eigenvalue. Furthermore, we proceed to form a 2D projection matrix P with
the two eigenvectors corresponding the the two highest eigenvalues in Λ, and use equations
6.4 and 6.5 to form an (N ×2) matrix W, where each row in the matrix is a 2-dimensional
encoding of a tactile image sequence for a touched object. Similarly to chapter 6, reducing
the number of dimensions is beneficial in maintaining only the relevant information for object
discrimination. In this context, one dimension might be too low to capture the separation of
classes across the 8 different objects, while dimensions higher than 3 might not induce robust
clusters (due to the fluctuations of the tactile sensor response over time across experiments).

Bayesian inference and update of beliefs

As the robot touches an object, the type of surface under touch C, the type of robot control
action A and the sensor morphology H generate an observable sensor measurement wi. The
likelihood that a specific surface Ck ∈C has generated the haptic observation wi can thus be
computed as:

P(Ck|wi,Am,Hh) =
P(wi|Ck,Am,Hh)P(Ck)

P(wi|Am,Hh)
(10.1)

Hh is a particular morphology and Am is a specific touch control action. According to the
central limit theorem we can approximate the conditional probability of observing wi, with
the probability density function p(wi|Ck,Am,Hh), defined by a mean µ⃗k,m,h and a covariance
matrix Σk,m,h:

P(wi|Ck,Am,Hh)P(Ck) ∝ p(wi|Ck,Am,Hh) =
1√

(2π)2|Σk,m,h|
e−

1
2 (⃗x−µ⃗k,m,h)

T Σ
−1
k,m,h(⃗x−µ⃗k,m,h)

(10.2)

We will refer to the set of densities for all morphology-action pairs as the belief state of the
robot
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As the robot forms a belief state, it is possible to perform Bayesian inference with respect
to a specific morphology-action pair by simply evaluating a new, unseen, sample w j under
the Gaussian densities p(wi|Am,Hh), for each object under that morphology-action pair. The
Gaussian with the highest density at w j is the most probable class for the unseen sample
under consideration.

Exploratory action identification

We use Bayesian Exploration to identify the exploratory morphology-action pair necessary
to update the beliefs of the robot [64]. The estimate of the morphology and the control
action which is most likely to discriminate best amongst different object features is the
one which minimizes the discriminatory confusion amongst all possible classes under a
specific morphology-action pair. One possible measure of confusion between probability
density functions is the amount of overlap between them. Like previously we use the
Bhattacharyya coefficient [203] to compute a confusion probability matrix Ψks,m,h for each
possible exploratory action control A and morphology H. Each element in Ψks,m,h is a mutual
confusion between any two classes Ck and Cs, and can be computed as:

Ψks,m,h =
∫ √

p(wi|Ck,Am,Hh)p(wi|Cs,Am,Hh) (10.3)

To make the computation possible within the framework we assume normal probability
densities in the belief state, reducing the computation to:

Ψks,m,h =

√√√√ 2σ⃗2
k,m,hσ⃗2

s,m,h

σ⃗2
k,m,h + σ⃗2

s,m,h
e
−

(⃗µk,m,h−µ⃗s,m,h)
2

4σ⃗2
k,m,h+4σ⃗2

s,m,h (10.4)

where σ⃗k,m,h is the diagonal vector of Σk,m,h. The Ψ probability confusion matrix can be used
to find the benefit of making an exploratory action Am with a sensor morphology Hh. We
define two different benefit estimation equations: an unbiased benefit estimation B̂m,h, and a
biased exploratory benefit estimation Bm,h. The unbiased benefit estimation for action Am

and morphology Hh can be computed as:

B̂m,h =
K

∑
k

P(Ck)
2

K
∑
s

Ψks,m,hP(Cs)

(10.5)
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And its value will be higher for control actions with class probability density functions with
least overlap. The ‘confusion’ of using a sensor morphology Hh when making an exploratory
action Am is thus B̂m,h. Furthermore, we define the biased benefit estimation as:

Bm,h = 1− (1− B̂m,h)
1

nm,h (10.6)

where 1
nm,h

is the number of times the robot used morphology Hh and action Am to touch the
objects during experiments. The biased benefits are discounted by the number of times the
morphology-action pair has already been performed during action exploration, to discourage

(a) Robot set-up

(b) Designed objects and object properties.

Fig. 10.2 Experimental set-up for Morphology-Action Co-Optimization.
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excessive exploitation and eventually encourage the exploratory update of belief states under
less exploited morphology-actions. The equations and scores where modified to account fort
he co-optimization of, not only the action, but also the morphology of the robot.

10.2.2 Experimental Set-Up

We set up experiments to allow the robot to improve its feature discriminative abilities by
co-optimizing morphology and robot control action. The touch experiments were performed
using a UR5 robot arm, equipped with a probe sensorised with a capacitive tactile sensor array
(Section 10.2.3). Fig. 10.2 shows the experimental setup developed for both the experiments.
To modify the sensor morphology, three different dielectric elastomeric layers were explored,
each 3D printed with VeroBlack PolyJet Rubber, and presenting a thin circular layer of 2mm,
as well as conical protrusion, spaced 2mm from each other, and with varying height of 0mm,
3mm and 5mm (Fig. 10.2a).

We thus create a set of 8 objects, differing in three sets of features. Fig. 10.2b shows the
objects designed for the experiments. Each object is circumscribed by a 20mm×20mm×
30mm cuboid, while we simulate roughness by reproducing 3mm protrusion spaced at 2mm
onto the object’s top surface. Following the object design it is possible to classify the objects
over three sets of different salient features, i.e.: round vs edged objects, objects with rough
vs smooth surfaces, and stiff vs non-stiff. The non-stiff objects (objects 0, 2, 4, 6 Fig. 10.2b)
were 3D printed with VeroBlack rubber. The stiff objects (objects 1, 3, 5, 7 Fig. 10.2b) were
3D printed with rigid PLA material.

Each touch experiment consisted of 2 seconds of contact between the sensorised robot
end-effector with a target object. We manually taught the robotic arm the x-y location of each
object within its work-space, and set the robot starting position with the end-effector aligned
normally to the upper surface of the objects. The end-effector was thus driven downward
until a touch event was detected by the capacitive tactile sensor at its extremity, whereby
the touch experiment would begin (Fig. 10.3a). The robot was controlled in Cartesian
coordinates at ≈ 60Hz, acting upon the X, Y and Z tool axis simultaneously. Distinct
sinusoidal displacements profiles were generated for every axis, each of which was controlled
in amplitude and frequency parameters, thus a total of 6 parameters were used to control the
robot for each touch experiment, i.e. Ax, Ay, Az, ωx, ωy and ωz (Fig. 10.3a).

The Ax, Ay, ωx and ωy parameters were set to allow the robot to rub the surface of the
objects on a 10mm radius from the center, thus Ax = 3, Ay = 3, ωx ∈ [−0.0025,0,0.0025]
and ωy ∈ [−0.0025,0,0.0025].
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(a) Robot Action Diagram. (b) Experimental Tasks.

Fig. 10.3 Robot control action and experimental tasks.

Parameters Test Acc. (%)
(Avg. Test Acc.)

Task1 Action Control
Ax = 3, ωx = 1
Ay = 3, ωy =−0.0025
Az = 1, ωz = 0.001

80 %
(31.1 %)

Morphogy 5mm

Task 2 Action Control
Ax = 3, ωx = 1
Ay = 3, ωy =−0.0025
Az = 1, ωz = 0.001

100%
(47.2%)

Morphogy 3mm

Task 3 Action Control
Ax = .05, ωx = 1
Ay = 1, ωy = 1
Az = 1, ωz = 0.001

75%
(29.81%)

Morphogy 3mm

Table 10.1 The table shows the highest test accuracy achieved through the best performing
morphology-action pairs after gathering 10 sample evidence of three object for each task
category, and testing on 10 tactile samples for a new object.
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10.2.3 Sensor Technology

To endow the robot with tactile sensing ability we mount a capacitive tactile sensor, developed
in [152, 154] to a custom 3D printed end-effector. The sensor has been integrated into a
number of existing robotic systems which exploit sensory-motor co-ordination [229, 230].
The utilized module has a layered structure consisting in a Flexible Printed Circuit Board
(FPCB), a dielectric layer and conductive lycra which act as common ground plane for all
the taxels and constitute the second plate of the capacitor. The FPCB hosts 7 tactile elements
(Taxels), corresponding each to the first plate of a capacitor, and a Capacitance to Digital
Converter (CDC AD747 from Analog Devices). The sensor technology and architecture is as
described in Chapter 4.

10.3 Results

10.3.1 Morphology and Action for Object Classification

We assess whether any meaningful filtering can be performed by changing sensor morphology,
so to be able to classify each object based on the three tasks: round vs edged objects,
objects with rough vs smooth surfaces, and stiff vs non-stiff objects. Systematic touch
experiments are performed by varying the robot morphology and action control via every
possible action-morphology pair. Each experiment is performed 10 different times, to provide
sample evidence for the density distributions in the robot belief state. We can thus test the
ability of the robot to classify objects based on the respective task features by forming
the density distributions on three of the objects within each feature set, and performing
Bayesian inference (Section 10.2.1) on a random left-out object within it. Table 10.1 shows
the accuracy achieved for all attempted discriminative tasks. The best morphology-action
pairs can achieve accuracy higher than 75% on all tasks.

More interestingly, without an appropriate combination of morphology and motor control,
it is almost impossible to discriminate objects based on their geometrical, surface roughness
or stiffness properties, as shown by the average performance per task by any one pair.
Fig. 10.4 shows the ranked morphology-actions with respect to the unbiased B̂m,h benefit
estimator for Task 2, roughness identification. The figure shows the relationship between the
probability densities formed in the robot belief state, under the developed framework. Highly
ranked morphology-action pairs (e.g. Rank 0 and Rank 1) show Gaussian distributions which
more easily discriminate between different features, while lower ranked pairs present more
distributional overlap, and thus higher degrees of discriminative confusion. Interestingly,
although action control can reduce the distributional overlap, the morphology ultimately
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Fig. 10.4 The robot belief state after 200 iterations for Task 2 (Roughness Identification),
under 6 different morphology-action pairs.

enables accurate classification (e.g. the distributions of pair Rank 5 vs. pair Rank 0). Varying
the morphology, in fact, ‘filters’ the tactile response [227], inducing sensory differences
between objects of varying surface roughness, and enabling discrimination. Fig. 10.5 shows
the ranked morphology-action pairs after approximately 200 iterations on Task 2. The
distributional differences between highly and lowly ranked motion are evident within the row
sensor data, with morphology-action pairs inducing the sensor data for objects of different
classes to be increasingly more distinct (e.g. Rank 0 vs. Rank 26).

10.3.2 Morphological Bayesian Exploration

We test the Bayesian Exploration framework for morphology-action optimization by running
non-systematic experiments and comparing the results to the previous findings. Under
the Bayesian exploration framework, the robot is made to touch each object under every
morphology-action pair only once, to form an initial belief state. From then on, the robot
decides which morphology-action pair to gather additional evidence for, based on the biased
estimator (Bm,h). Fig. 10.6 shows the maximal accuracy achieved by the robot during
the systematic and Bayesian exploratory experiments. The figure shows how Bayesian
exploration consistently outperforms the systematic search over the robot morphology-action
parameters, finding good configurations in about half the time necessary to systematic
methods.
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Fig. 10.5 The ranked morphology-action pairs after approximately 200 iterations on Task 2.
Row A shows the action control employed by the robot. Row B shows example raw time
series sensor data for each class within Task 2, where the taxels (x-axis) show brighter or
darker shades over time (y-axis) depending on the sensed pressure. Finally, row C shows the
2D Gaussians in the belief state of the robot under each action-morphology ranked pair.

The fast configuration finding is due to the confusion-driven exploration based on sensor
evidence. Assuming distributional consistency amongst sensor values generated under the
same conditions, the robot will make informed decisions on which evidence to gather to
discriminate the objects with the least amount of confusion at each iteration. The lower
accuracy values per task in Table 10.1 Section 10.3.1 suggest the possibility of overfitting on
the objects under touch. Early stopping through cross validational methods can here be used
to halt robot training and prevent overfitting.

Fig. 10.6 The figure shows the highest running accuracy for robot throughout the experiments
on each task. The developed Bayesian exploration framework consistently out-performs
systematic search of morphology-action parameters.
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10.4 Discussion and Conclusion

The importance of morphology and sensory-motor coordinated action has been emphasized
in the past few decades. In this work, we proposed a Bayesian Exploration framework
for a robot to co-optimize the morphology and robot control action to perform object
discrimination based on salient features. We show that appropriate control action can aid in
object discrimination tasks [227]. More radically, we show that morphology is necessary to
enable classification in complex scenario, as it is the case for tactile roughness estimation
with our sensor. The appropriate morphing of the dielectric layer, in fact, induces the sensor
response to the touching of rough and smooth surfaces to be easily classifiable through
Bayesian inference methods. Depending on the employed sensor morphology, instead,
almost independently from the control action, the extreme overlap of sensor evidence makes
discrimination poor, if not impossible at times.

The Bayesian Exploration framework allows for a reduction in the exploration of param-
eters, and thus facilitates the real-world parametric exploration of the robot morphing and
action capabilities. We show that the robot is capable of finding good morphology-action
configurations in approximately half the time necessary to systematic search approach, for
each of the attempted tasks.

This chapter is the last of a set of chapters involving the employment of morphology and
action to influence the ability of the robot to learn, and perform particular tasks. As such,
the chapter combines both morphology and action into a unique framework where neither
would be able to solve the task at hand, but the combination of both can achieve the desired
results. This approach, however, has several limitation. One, for example, is the necessity
of parametrization and discretization, mentioned in previous chapters. Another lies in the
temporal equity of morphology and action changes. As both are allowed to change at the
same time, progress can only be made by exhaustive search of both until a good joint solution
is found. Additional benefits might be achieved by inducing changes in morphology and
action in different temporal timescales. More details of these issues and future directions
will be provided in the next chapter.



Chapter 11

Conclusion and Future Work

11.1 Conclusion

Abandoning the rigidity constraints imposed in the robotics of the previous century, Soft
Robotics suggests a new way of thinking about robotics systems. Leveraging on the possi-
bility of achieving new bodily properties and behaviours, soft robots must learn to leverage
on the complexity of their own body, and the underlying complex interactions with the
environment surrounding them, to their advantage. This complexity can be leveraged via
the use of learning processes, however learning must be grounded in the real world, where
learning processes depend first and foremost on the quality of the physical stimuli arising
between the soft system-environment interactions. Throughout the Chapters in this thesis
we have discussed four principles, which constitute Soft Morphological Computation (SoM-
Comp), i.e.: Soft Morphology, Soft Actuation, and Soft Sensing and Soft Proprioception.
These principles allow a robot to structure the sensory stimuli purposefully, so as to improve
perception and learning.

After demonstrating a use case of complexity in the soft interactions between a robot
and its environment in Chapter 3, we treat the principle of soft proprioception in Chapter
4. A robot, like a biological organism, must have an idea of bodily self, or otherwise
knowledge of the properties of its own body (Soft Proprioception), so to be able to influence
its perceptual information. Soft Proprioception becomes a core part of SoMComp, where
with the knowledge of its own body as well as its own actions, the robot can appropriately
condition the physical stimuli, arising form the interaction with the environment, to its
advantage. In other words, to perform SoMComp Soft Proprioception is first necessary. Soft
Proprioception, however, must not necessarily be bestowed upon the robot by human design.
But rather the robot can achieve Soft Proprioception autonomously, and use this at later stages
within the framework of SoMComp. In the chapter we propose a sensorization method to
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achieve proprioception via tactile sensor arrays, without a known model. The robot, although
initially without knowledge of its own body, can achieve proprioception through movement
akin to ‘twitching’ in infants, where random jerky motions reinforce the robot understanding
of its own body given sensor evidence. We show the method is precise and reliable, but
further issues relate to scaling to larger systems, with even more complex dynamics.

After introducing the concept of morphology and its importance in achieving appropriate
manipulation of soft and delicate objects in Chapter 5, in Chapter 6 we discuss the concept
Soft Morphology. One of the two principal ways to condition soft interactions in SoMComp,
in fact, relies on the ability of the robots of the future to change their bodily properties.
Changes can here be of countless types, growth, tool use or body-parts replacements are
all examples of possible such changes. In Soft Robotics, changes in stiffness, elasticity, or
changes due to heating, deterioration or self-healing, can all contribute to bodily changes
a robot should take into consideration. But if changes within the body of a robot are
unavoidable, and indeed necessary, then why not change bodily properties purposefully
to aid in solving required tasks? The paradigm of Soft Morphology revolves around the
concept that morphology can influence sensory stimuli before such stimuli reach any classic
information processing stage, and that this influence can be useful for computation. In the
chapter we use unsupervised methods to show how morphological computation can indeed
aid in sensory perception. We thus show how a complex tactile classification task can be
performed with simple unsupervised clustering methods, if appropriate changes are induced
in the tactile apparatus. This goes against common approaches in the field, where more and
more complex machine learning techniques are used to solve complex problems. Complexity
in the computation, here, is instead off-loaded to the body itself. The brain, in this case,
would be free to instead resolve higher cognitive tasks.

In Chapter 7 and 8 we treat the topic of Soft Actuation. In fact, changes in the morphology
of an agent are not the only way to influence physical stimuli. If once the morphology changes,
the stimuli are influenced accordingly, it is also true that the way a robot acts in the world
also has a similar influence. Another powerful mechanism thus comes from the physical
interaction between a robot and the environment the robot is situated in, as well as itself. In
Chapter 7 and Chapter 8 we take into consideration a complex tactile sensory perception
task, i.e. medical palpation. A robot is thus made to palpate a silicon phantom organ with
hard spherical shaped inclusions as small as 5mm in diameter. To enable the robot to perform
classification it is necessary for the robot to autonomously find a palpation strategy capable
of enhancing its own tactile sensing capabilities to perform the task at hand. In Chapter 7 we
show how coordinated action, indeed, influences sensory perception and enables palpation.
In Chapter 8 we also show how complex actions are necessary to condition information
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appropriately in complex scenarios. Moreover, we devise a probabilistic framework for a
robot to explore high dimensional action spaces efficiently, based on sensor evidence. It
is therefore the sensory perception itself which drives the robot to change its interaction
strategy, and ultimately efficiently find a motor action capable of enhancing perception to
solve the palpation task.

In Chapter 9 we move away from classification to show how the concepts can be used
instead in a regression case. Here, a robot is made to approximate 10 different playing
styles via appropriate key-stroke interactions with a piano instrument. The complexity of
the interactions between a non-rigid finger and the instrument, to produce complex and
dynamic music pattern is a complex one, but it is addressed by a proposed probabilistic
framework, based on Gaussian Processes modelling. The framework can capture the complex
relationship between the music patterns and the complex key-stroke actions generating them,
affectively allowing the robot to out-perform a seasoned human player on 4 out of 10 styles,
and perform comparatively on 2 additional styles. The work further addresses the concept of
action for perception, where perception is now sound-feedback, the action is continuous, and
the task is regression, and not classification.

Finally, we merge together the two concepts of Soft Actuation and Soft Morphology in
Chapter 10, further addressing the problem of high-dimensional space search. If it is true
that a robot should be able to change its own bodily properties according to the task to solve,
then its interaction strategy with the environment and itself must change with the changing
body, else the improvement achieved through the changes in one may be hindered by the
inflexibility of the other. It is here that we propose a probabilistic approach to efficiently
reason about the changes in perception due to both changes in the morphology and the action
strategy employed by the robot to solve a perception task. We focus on tactile perception for
the discrimination of objects based on salient features. The chosen features are shown to be
otherwise undetectable if not by appropriate changes in both morphology and action, and the
efficient autonomous exploration of both.

11.2 Future Work

The concept of SoMComp proposed in this thesis hinges on the idea that if a robot has an
idea of bodily self (soft proprioception), then the robot should change its bodily properties
(soft morphology) or actions (soft actuation) to actively affect the soft interactions arising
within its environment. These changes, in turn, influence each other, and thus a continuous
morphing and development is iteratively necessary to achieve stable optimal behaviours. The
chapters throughout this thesis have shown how it is possible to intervene at the level of soft
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interactions, to induce statistical regularities in the stimuli to make the resolutions of the
robot task simpler, faster or more robust. Like shown in core use-cases, the appropriate use
of these concepts through the developed frameworks can improve, and indeed enable, robots
to solve complex tasks, requiring augmented sensory capabilities or complex post-processing
and learning paradigms. Several directions are interesting whilst considering each of the
principles proposed in this thesis.

11.2.1 Ubiquitous Proprioception

Soft Proprioception is set to be the necessary, if not sufficient condition for SoMComp to take
place. In Chapter 6, for example, proprioceptive knowledge included robot kinematics and
the properties of the soft filters. In chapter 7, Chapter 8 and 10 kinematics and knowledge of
the end-effector properties were necessary to devise appropriate actions to achieve SoMComp.

As such, achieving proprioception in Soft Robotics is fundamental. The physical dynam-
ics of soft materials is such that simulation is hard, and often impossible. In Chapter 4, a
model-free sensorization approach was proposed to achieve proprioception of a continuum
soft robot, and tactile sensing was used as the main technology towards this goal. The
approach proposed, however, was also limited because it did not consider any bodily physical
constrain. For example, let’s take a similar scenario where the soft continuum robot had been
composed by several sections, each similar to the one described for the experiments. The
tendons actuating the continuum soft robot would be more in number, each pulling a section
at different heights within the finger. In this scenario, the complexity would have been high
enough that perhaps only several tens of hours of continuous “motor bubbling” would have
achieved an appropriate mapping between the end-effector position and the tactile images
retrieved at the base of the finger. Moreover, sensors at different levels would most likely be
necessary to discriminate between complex robot poses.

One of most significant ways to obviate these issues is by appropriately combine model
free and model-based methods, to both leverage on human knowledge of the laws of the world
through models, and the flexibility of model-free approaches, where the model themselves
are moulded based on sensory evidence, and can change and adapt over time. In the Soft
Robotics of the future it is also going to be fundamental to achieve ubiquitous proprioception,
where sensing is distributed redundantly throughout the body of soft robots, and learning can
be used to self-organize the physical stimuli to achieve proprioception at different scales. To
achieve ubiquitous proprioception, it is necessary to make progress in several areas. Firstly, it
is necessary to design sensors capable of coexisting in soft structures, and which can stretch
and bend at will. Much research has been done in this direction, as detailed in Chapter 2.
However, technologies are yet to reach a breakthrough, where seamless integration of sensors
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within a soft body is possible. Secondly, it is necessary to merge model-based and model-free
control schemes into a unique framework. In this framework, proprioception should benefit
from human design, by embedding human knowledge within a model, however the model
should change over time, as dictated by an ‘online’ learning framework.

11.2.2 A Comprehensive Theory of Robotic Learning

The concept of SoMComp is a powerful tool, one which can improve robot learning by taking
embodiment into account. The way we have discussed the achievement of this goal, however,
is through the conditioning of physical stimuli by the robot, while leveraging on existing
learning frameworks to achieve the robot task.

One of the most significant step forwards from this, is the development, instead, of a
comprehensive theory of learning in robotics. This theory should embrace embodiment as
the means through which the information can be conditioned appropriately for learning. The
closest existing framework is perhaps reinforcement learning, where the robot actions and
repercussions in the world are considered. Reinforcement learning, however, does not often
consider the physical embodiment of the robot, where morphology and soft interactions
have a deeply rooted effect on the quality of the physical stimuli the robot can perceive. A
comprehensive theory of learning would embed the SoMComp concepts within the learning
loops, where the robot is concurrently thinking about “how to do a task” (traditional learning),
and “what to do to learn it better”(SoMComp).

A concept related to this theory concerns learning timescales. If it is possible for a robot
to change its morphology, as well as its action, to condition information appropriately, then it
is not necessarily true that these changes must happen concurrently. In fact, it is possible
that a change in morphology alone would improve the ability of the robot to perform a task,
while the same morphology with an additional change in action would worsen it. In Chapter
10 this was obviated by Bayesian Exploration, which would eventually be exhaustive in its
search for new jointly optimal action-morphologies. In a more generic scenario, however,
it might be necessary to induce temporal differences in the learning of morphology and
actions. For example, in robotic manipulation it may be more ‘expensive’ to change the
physical characteristics of a body (i.e. change the viscosity of the fingertips), while a change
in grasping action would be less ‘expensive’. The robot could improve grasping of an object
by learning on two different timescales. The first, a faster timescales where changes in action
dictate immediate benefits from robot grasping. The second, a slower timescales where small
morphological changes are induced in the manipulator to aid the action change. This would
allow changes in the morphology to co-exist with changes in grasping action, and neither to
influence each other negatively.
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Finally, general object grasping and manipulation is one problem where the concepts
of SoMComp can be most useful. This is mainly because of the physical soft nature of the
interactions arising in real-world grasping scenarios, and for the need of using appropriate
morphology and action to achieve appropriate grasping.

11.2.3 Limitations and Future Remarks

Moving forward, it is important to consider several factors to make progress in this area of
research. Two of the biggest limitations of current frameworks, including the ones described
in this thesis, are the need for both parametrization and discretization of continuous domains.
We have encountered this throughout the chapters. In Chapter 6, for example, the properties
of the ‘soft’ filter to use for tactile object discrimination needed to be first parametrised in
width, and then discretized into specific widths to explore. In Chapter 7 and 8 the robotic
trajectories needed to be parametrized along the axis of motion of the robot, and the search
over each parameter was performed over discrete values of the same. In Chapter 10 both the
properties of the dielectric used and the action strategy needed to be designed appropriately,
parametrized and searched discretely. The automatic design and parametrization is an
important future research topic, one which would allow systems to adapt their morphology
and action appropriately without, or with minimum, human intuition and intervention. To this
extent, several research directions are relevant, including, for example, Evolutionary Robotics.
This current directions and future limitations of this research direction were discussed at
length in Chapter 2.

11.2.4 Additional Work Beyond This Thesis

Several related publications could have been included in this thesis. The content of each
chapter was chosen mainly to keep the content succinct while providing a rounded accounted
of the concept of SoMComp and its applications. Additional publications include [86], [101],
[99] and [233].

In [86], we propose a method to sensorize a soft phantom for the purpose of medical
palpation. This method is shown to be able to locate the point of contact, as well quantitative
information about the palpation trajectory employed, including the force applied, and the
type of trajectory (e.g. rotational or normal). A sensorized phantom can take the concepts
treated in this thesis one step further, where the optimization of trajectories is not egocentric,
i.e. related only on the robot’s perception of self, but also on the perception of the states
of entities around the robot. This is analogous to a medical practitioner adjusting their
palpation technique based on the body language of the patient, which may experience pain
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or discomfort. As a co-author in the paper my contribution included data collection, robot
control for multi-axis palpation strategy, and paper review. The article is forthcoming in
Journal IEEE Transactions on Robotics.

In [99] we provide approaches to solve real-world problems by using morphology and
the robot’s bodily properties as the means through which to achieve progress. The accounts
provided in the paper are the results of our entry to the “World Robotics Summit”, an
international robotics competition held in Tokyo in 2018. In the article we describe several
new ways to approach common hard problems. For example, we show how to achieve robot
picking, placing, manipulation and use of small objects, such as screws, by taking advantage
of the adhesion properties of some viscous materials (e.g. grease). As co-author in the paper
my contribution included the participation to the competition, the design and implementation
of the learning and vision technologies for the competition, data collection, data analysis and
article writing. The article was published in the Journal Intelligent Service Robotics.

In [101], we provide a review of current trends in the area of agricultural robotics and
focus on future technologies which can revolutionize the field. This is with particular focus
on the difficulties of this area, mainly due to the soft interactions arising in harvesting, and
post-harvest manipulation in agricultural settings. In this context, soft robotics technologies
may be key in achieving compliance, avoid damage and perform these tasks appropriately,
and as such, SoMComp can be key to achieving appropriate robotics solutions. The article
is a forthcoming book chapter in a field robotics book to be published by Elsevier. As a
co-author in the review chapter my contributions include the design of the chapter structure,
and the writing of the chapter.

Finally, in [233] we propose a method to achieve self-supervision in robotics, by exploit-
ing the dynamics of the objects within the field of vision of the robot. A human operator
is made to act upon the object in a conveyor belt, by removing any one object based on
a specific property. The robot can observe the conveyor, and upon human intervention
automatically assess human intention, and take over the selection process for the objects.
One of the set-backs of the methods used in some of the chapters in this thesis lied with
the need of humans to provide explicit supervision. This is a common problem in Machine
Learning as well. This work focuses on technologies to move away from supervised learning
to technologies which instead take into account the world surrounding the robot, such that
self-supervision is possible.
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