
A bistable soft gripper with mechanically embedded sensing and
actuation for fast closed-loop grasping

Thomas George Thuruthel1, Syed Haider Abidi1, Matteo Cianchetti1, Cecilia Laschi1 and Egidio Falotico1

Abstract— Soft robotic grippers are shown to be high effective
for grasping unstructured objects with simple sensing and
control strategies. However, they are still limited by their speed,
sensing capabilities and actuation mechanism. Hence, their
usage have been restricted in highly dynamic grasping tasks.
This paper presents a soft robotic gripper with tunable bistable
properties for sensor-less dynamic grasping. The bistable mech-
anism allows us to store arbitrarily large strain energy in the
soft system which is then released upon contact. The mechanism
also provides flexibility on the type of actuation mechanism
as the grasping and sensing phase is completely passive.
Theoretical background behind the mechanism is presented
with finite element analysis to provide insights into design
parameters. Finally, we experimentally demonstrate sensor-less
dynamic grasping of an unknown object within 0.02 seconds,
including the time to sense and actuate.

I. INTRODUCTION

Soft robotic technologies have been very effective in
grasping tasks [30], [17], [31]. This is because of their
conformability to uneven and unstructured objects and their
ability to dissipate impulse forces generated during a grasp
[30]. This allowed to develop simple, mechanically adaptive
systems that excel at gripping complex objects as shown
in [3]. The field of soft robotic grippers has lately highly
diverged with emphasis on actuation technologies [4], [33],
material properties [36], [27], [23], [28], fabrication tech-
niques [44], optimal design and analysis [21], [45], [6],
gripping mechanisms [34], [12], sensing technologies [39],
[2], [29], modelling [38], [35] and innovative applications
[11], [42], [8]. Some of the current challenges in soft robotic
grippers include speed, integrated sensing and actuation
mechanism [31]. This paper provides simple solution to
the aforementioned challenges in a purely mechanical way
operating on the concept of morphological computation [25].

The actuation bandwidth of a soft gripper is determined
by the gripper material and the actuation mechanism. The
response time of the gripper can be reduced by effective
force transmission from the actuation mechanism. The fastest
reported actuation mechanism found in literature was a
simple finger with electrorheological fluid sandwiched be-
tween a grounded elastomeric skin and a charged conducting
cathode [16]. As the fluid reacts rapidly to the high voltage
source leading to a response time of 0.001 seconds. Other
works with comparable response time involving differential
pressure [19], dielectric elastomeric actuator [20], granular
jamming [1] and controlled adhesion [13], [32] could only
reach a response time of 0.1 seconds. None the less, it
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must be noted that the minimization of the gripper response
time was not the main objective of these works. This works
presents a passive grasping mechanism. Hence, the speed of
actuation is solely determined by the material properties and
the effective impedance of the gripper along the direction of
actuation.

Majority of soft robotic grippers are controlled in open-
loop without any feedback before and after contact with the
object. In these cases, they rely on certain user-provided
information on the location and strategy for successful
grasp. Embedded sensing can automate the process even
more, by providing additional information about the location,
type and physical properties of the object [40]. Embedded
sensing for pre-touch information can be used for deciding
the closing pattern [37], for detection and identification of
grasped objects [14], [15], and closed-loop control of the soft
finger [22]. However, the response rate of these sensors are
generally in the order of 100 ms [31], limited by the slow
response of the soft mechanical system and data processing
loop. Moreover, obtaining accurate distributed sensing capa-
bilities is still a hard challenge in soft robotics. In this paper,
we introduce a purely mechanical feedback system for the
closed-loop control of the soft gripper. Arguably, this would
be the fastest possible way to close the loop using contact
information.

This work introduces a soft robotics gripper with tunable
bistable properties. The bistable mechanism allows us to
store arbitrarily large strain energy in the soft system which
can then be easily released upon contact. Using this simple
mechanism we are able to demonstrate a sensor-less, pas-
sive, closed-loop grasping of unknown objects within 0.02
seconds. The mechanism also provides flexibility on the type
of actuation mechanism as the grasping and sensing phase is
completely passive. Hence, we can provide arbitrarily high
grasping forces while preserving the natural stiffness of the
gripper material. Moreover, since the open and closed state
of the gripper is a stable equilibrium point, no power is
consumed while the gripper holds an object or when the
gripper is open.

A. Bistable Mechanisms in Robotics

A bistable mechanism is a system with two stable equi-
librium points. In a conservative system this corresponds
to two local minima in the total potential energy of the
system. This property is commonly used in the design of
mechanical switches, flip-flops, etc. In robotics, bistability is
often used for reducing control complexity, for performing
fast motions, and for energy conservation. The impulse

ar
X

iv
:1

90
2.

04
89

6v
1 

 [
cs

.R
O

] 
 1

3 
Fe

b 
20

19



I. Adding prestressed 
layer to the gripper

II. Adding the ‘ring’ 
to the bend gripper

Fig. 1: Fabrication process of the bistable gripper.

forces generated when the bistable mechanism transitions
through the snap-through region has been used for propul-
sion [24], [5]. Recently, a soft bistable vale mechanism
was described for soft actuators [26]. Dielectric actuators
are often used with bistable mechanisms for light weight,
large displacement applications [43], [10]. A number of
designs for bistable gripping has also been proposed over
the years [41], [18], [9]. However, these mechanisms are
based on bistablity of their individual fingers and hence do
not provide the high conformability required from a soft
gripper. Additionally, their snap-through energy cannot be
tuned desirably which makes embedded mechanical sensing
challenging. We present a design methodology for creating
fully soft bistable grippers. The simple mechanism preserves
all the conformability of a soft gripper and provides new
paradigms for field of soft sensing.

II. MANUFACTURING

The fabrication of the bistable gripper begins with molding
of the base soft gripper (Figure 1). The mold for the base
gripper was 3D printed. The base gripper was made from
a silicone elastomer (Dragon Skin 30, Smooth-On Inc.).
Then the chamber inside the gripper was sealed with a thin
bottom layer of the same material. Simultaneously, a thin
layer of another silicone elastomer (Ecoflex 30, Smooth-On
Inc.) was cured, stretched in all directions and clamped. The
base gripper was then attached to the strained layer using
a silicone adhesive (Sil-Poxy, Smooth-On Inc.) (Figure 1).
The tube for pneumatic actuation was also added during this
period. The pneumatic chamber is only kept for fine tuning
the two equilibrium states of the final mechanism which will
be described later. For this work, we do not use any active
actuators.

Once the pre-stressed layer was bonded, the clamp on the
stretched layer was removed. The causes the gripper to bend

uniformly and reach its new equilibrium position. A thin
layer of silicone elastomer (Ecoflex 30, Smooth-On Inc.) was
then cut into strips, rolled around and bonded to obtain the
ring. This ring was wrapped on the gripper and bonded using
the silicone adhesive Figure 1). To destabilize the open state
of the bistable mechanism, the ring can be trimmed, which
reduces its stored elastic energy. To increase the gripping
force, additional rings can be added similarly.

III. THEORY

The working principle of the proposed bistable gripper is
described in this section. Bistability arises when a system has
two stable equilibrium states. These states would correspond
to two local minima of the potential energy. Hence, our
objective is to develop a soft gripper with two stable equilib-
rium states. The first state should correspond to the gripping
configuration with the lowest stored potential energy (For
higher forces) and a stable open configuration with a small
snap-through energy. This allows the gripper to transition
from the open state to the closed state with very low injection
of energy into the system. To understand the design of our
proposed mechanism, we first model the mechanism as two
independent systems and combine them using the principle
of superposition (See figure 2). The fingers of our mechanism
can be modelled as elastic beams and the ringed system
can be modelled as thin elastic bands. All the analysis is
presented in two dimensions for easy visualization.

Ignoring the contribution of gravitational energy the steady
state potential energy of a beam with bend angle θ would be
the stored elastic strain energy :

U =
Mθ

2
=
θ2EI

2L
∝ θ2 (1)

Where M,E, I, L is the applied moment, Youngs Modu-
lus, moment of inertia and the length of the beam. Adding
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Fig. 2: Elementary model of the gripper working principle.

a uniformly pre-stressed element to the beam shifts the
equilibrium configuration of the beam (Figure 2). This shift
in equilibrium position can also be achieved through the
manufacturing process with appropriate molds. Our manufac-
turing process reduces the complexity and size of the finger
mold, but adds an additional step in the pre-straining process.

U ∝ (θ − θ0)2 (2)

To increase the force applied by the gripper, we can
increase the pre-stress added to the system. If higher forces
are required with the same bend angle, the Youngs Modulus
of the base material can be increased accordingly.

Considering the ringed system independently by ignoring
the elastic contribution of the bent beam and considering
only its kinematic contribution, the ring has two low energy
states. This occurs at the two mirror states in which the ring
has its initial radius. Hence, in a way, the ring mechanism
is bistable by itself and would have two stable bend angle
configurations θ1−, θ1+ (Figure 2). Combining these two sys-
tems, using the principle of superposition, provides us with
a bistable mechanism with our required behavior. Tuning of
the strain energy curves can be achieved by playing with the
parameters of the pre-stress mechanism, the ring mechanism
and the material properties. We summarize them here and
using finite element analysis.

If θ1− is higher in magnitude than θ0, the applied forces
will increase accordingly with the corresponding shift in the
equilibrium position. By increasing the magnitude of θ0 or
by reducing the magnitude of θ1− or by reducing the Youngs
Modulus of the ring material, the stability of the open state
can be reduced. The same can be achieved by reducing the
thickness/width of the ring. In other words, we have to reduce
the stored elastic energy in the isolated ring mechanism. The
morphology and non-linear material properties of the gripper
also plays a role in the bending profile, speed and force.
Numerical validation of our hypotheses is shown in the next
section.

IV. FINITE ELEMENT ANALYSIS

Finite element analysis (FEA) of a geometrically simpli-
fied model of the gripper is performed to study the effect
of different design parameters. Primarily we study the effect
of the finger curvature (or pre-strain), the ring geometry and
placement on the gripping force, snap-through energy and the
time to close. Our interests lie on the relative potential energy
values of the stable open-state and the unstable transition
peak with respect to the base potential energy value at the
stable closed state (Figure 2)

The simplified model of the gripper used for the FEA
is shown in figure 3. All the FEA is performed on AN-
SYS. The elastomer sample (Yeoh) material is used for the
whole structure. The pre-strain energy obtained from our
manufacturing process is not modelled for simplicity. If the
material exhibited linear elastic properties, this assumption
does not affect the relative potential energy values. In other
words, both the pre-strained bent finger and a molded bent
finger would be equivalent in performance. However, due to
the nonlinear properties of an elastic material, there will be
differences among the two. We do not model the pneumatic
chambers for our analysis too.

Fig. 3: Geometry of the gripper used for the FEA.

Four cases of morphological changes were studied with
respect to the original morphology. The cases were : placing



the ring higher (towards the base), placing the ring lower
(towards the tip), reducing the thickness of the ring, and
increasing the curvature of the fingers (from 0.20cm−1 to
0.25cm−1). The point of this study is to develop design
criterion’s for shaping the gripper properties.

Static analysis of the model was performed and the total
strain energy in the structure was calculated for each cases.
First, all the models were provided multi-dimensional dis-
placement constraints that brought the gripper to the open
stable state (Figure 4). Then, one-dimensional ramped forces
were applied to the ring as shown in figure 4 until the
gripper reached the closed stable state again. Stabilization
is turned on near the unstable equilibrium point for better
convergence and it is ensured that the total stabilization
energy is significantly less than the total strain energies for
validity of the results.

Fig. 4: Loading constraint applied on the finite element
model to study the static strain energy dependencies on the
design parameter.

The total strain energy values for each design cases are
shown in Figure 5. Placing the ring higher, as expected,
reduces the stored elastic energy at the open state and hence
reduces the snap-through energy. This is because the radius
of the ring reduces as it is displaced higher and hence the
opposing forces that the ring provides at the open state
reduces. At the closed state, the curvature of the finger
and stored strain energy remains the same, however, the
effective stiffness of the gripper will reduce and hence would
apply lesser gripping forces with respect to the original
morphology. Placing the ring lower, conversely, increases
the strain energy at the open state and the snap-through
energy and the gripping forces. Assuming all the three
designs transition around the same configuration, the time
for the gripper to close should be inversely proportional to
the equivalent stiffness of the mechanism (As the motion is
completely passive, the time to close should be inversely

proportional to the natural frequency of the mechanism).
Therefore, the mechanism with lower ring placement would
close the fastest.
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Fig. 5: Strain energy estimates obtained from the FEA for
the design parameters of concern. Snap-through energy is
calculated as the difference between the unstable state strain
energy and the open stable state strain energy.

Reducing the ring thickness (by half) reduces the stored
potential energy at the open state and the snap-through
energy, however, not so significantly. Therefore, the ring
thickness or width could be final parameter to be adjusted
to fine tuned for higher precision (As demonstrated in the
experimental section). Increasing the curvature of the beam
increases the potential energy of the open state, but reduces
the snap-through energy. For our manufacturing technique
this can be achieved by increasing the pre-strain amount. As
the curvature of the gripper increases, the gripping forces
would also increase as the gripper would be displaced by a
higher amount, for a fixed object size, when compared to the
original morphology. So by increasing the beam curvature
and accordingly displacing the ring lower, we can arbitrarily
increase the gripping force while maintaining the same snap-
through energy. This would result in a decrease in the closing
time also. It must be noted that we are ignoring all the
dynamic effects like damping and momentum which would
also affect the closing speed.

V. EXPERIMENTAL RESULTS

Two sets of experiments are conducted to validate our
concept of the bistable soft gripper. The first one is the task of
autonomously grasping a dynamic unstructured object using
the concept of mechanical embedded sensing. The second
set of tests are performed to demonstrate the soft grippers
ability to grasp static objects of varying shapes and hold them
without further energy requirements. For all the experiments,
the gripper is manually reset to its open stable state. The
actuation is completely passive using only the stored elastic
energy for motion.

A. Embedded sensing and grasping

The transition of the gripper from the open stable state
to the closed stable state happens by applying a minimum
required force to the system in the right direction. The
direction of the force should be in the direction as shown
in figure 4. For our tests, we obtain this from the reaction
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Fig. 6: Gripper prototype and demonstration of the gripper’s ability to grasp objects of different shape and size

forces acting on the gripper when a object comes in contact
with the face of the gripper (see figure 7). The results
are analyzed visually using a 960 frames per second video
footage. The time elapsed from physical contact of the object
and the complete closure of the gripper is 0.021 seconds (See
supplementary video).

0/960 sec

20/960 sec

5/960 sec

12/960 sec6/960 sec

13/960 sec

Fig. 7: Autonomous object detection and closing

To demonstrate the ease in tuning the gripper properties
through physical modifications, we modify the original grip-
per to have very low snap-through energy. We do this by
manually clipping the ring width, so that the stored strain
energy in the open stable state reduces as shown in figure
5. We reduce the width until the gripper activates just by
gravitational forces (See figure 8). As the equivalent stiffness
of the gripper reduces by trimming the ring width, the time
to close increases, as predicted. So for this case, the time to
close is between 0.03-0.04 seconds.

By modifying the geometry of the gripper and the manip-
ulator to which it is attached to, other sensor-less grasping

strategies can be investigated. Conversely, the bistable prop-
erties of the gripper can be easily inverted to make the open
state more stable. Hence, by tuning the snap-through energy
opening of the gripper can be autonomously achieved by just
controlling the orientation of the gripper base.

0/120 sec 1/120 sec 2/120 sec 3/120 sec 4/120 sec 5/120 sec

Fig. 8: Tuning the snap-through energy so that the gripper
closes just by gravitational forces

B. Grasping objects

As the gripper is made solely using a soft elastomeric
material and the ring structure lies outside the gripping
surface, all the advantages of a completely soft gripper is
applicable to our design. The gripping forces applied by the
arm can be tuned using the methods prescribed using the
FEA. The minimum size of the object grasped is dependent
on the pre-strain in the finger and the pre-strain (if any) in the
ring. In short, it depends on the final curvature (shape) of the
finger in the closed state. Figure 6 shows the various objects
the gripper can hold. Note that no energy is consumed once
the gripper reaches the closed-state and can therefore can
hold the object indefinitely.

VI. CONCLUSION

This paper presents the design and development of a
bistable soft gripper for sensor-less dynamic grasping. The
mechanism is an operative demonstration of the concept of



morphological computation or embodied intelligence. This
is shown for the task of closed-loop control of a fully soft
gripper. All the sensing and control required for closed-
loop control is mechanically embedded. Hence, for the
given material properties, we can achieve one of the fastest
possible closed-loop reactive grasping strategy. Other closed-
loop strategy will be slowed down because of the delays
involved in transferring and processing the sensor signals
added with the delays involved in actuating the actuation
mechanism. Predictive grasping strategies, on the other hand,
could provide faster responses, however, they involve more
complexities. Due to the passive nature of closing actuation,
the natural compliance of the gripper material and structure
is preserved during a grasp [7]. As the mechanism requires
external power only for opening the gripper, the bistability
in the mechanism is highly desirable for energy efficiency.
No power is used for sensing, transitioning, grasping and for
staying open. As there is no energy conversion/transfer from
the actuator to the soft mechanism (it is elastically stored in
the elastomer), the release of energy during closure is also
highly energy efficient.

We present design heuristics using simplified models
for the proposed soft gripper that allows the user to tune
basic gripper properties like snap-through energy, grasping
forces and closing time. However, our analysis is based on
static forces assuming passive motion dynamics. Dynamic
properties like inertia and damping would also affect the
passive grasping characteristics. Another area of concern is
the increased induced creep in the elastomeric material due
to the pre-strain in the mechanism. This can be avoided
by an appropriate starting mold (as shown in the FEA),
nonetheless, it restricts the margin for tuning the gripper
properties.

Future works include alternate designs for the gripper that
have more complex passive closing behaviors aimed towards
autonomous grasping as well as manipulation. This would
require numerical or analytical dynamical studies on different
finger and ring geometries. The gripper is brought to the open
stable state manually in this work. Actuation mechanisms
that can perform this task must be investigated for automating
this process. Tendon driven mechanism that run along the
four arms is a potential solution.
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