142 research outputs found

    Efficient embedding of virtual hypercubes in irregular WDM optical networks

    Get PDF
    This thesis addresses one of the important issues in designing future WDM optical networks. Such networks are expected to employ an all-optical control plane for dissemination of network state information. It has recently been suggested that an efficient control plane will require non-blocking communication infrastructure and routing techniques. However, the irregular nature of most WDM networks does not lend itself to efficient non-blocking communications. It has been recently shown that hypercubes offer some very efficient non-blocking solutions for, all-to-all broadcast operations, which would be very attractive for control plane implementation. Such results can be utilized by embedding virtual structures in the physical network and doing the routing using properties of a virtual architecture. We will emphasize the hypercube due to its proven usefulness. In this thesis we propose three efficient heuristic methods for embedding a virtual hypercube in an irregular host network such that each node in the host network is either a hypercube node or a neighbor of a hypercube node. The latter will be called a “satellite” or “secondary” node. These schemes follow a step-by-step procedure for the embedding and for finding the physical path implementation of the virtual links while attempting to optimize certain metrics such as the number of wavelengths on each link and the average length of virtual link mappings. We have designed software that takes the adjacency list of an irregular topology as input and provides the adjacency list of a hypercube embedded in the original network. We executed this software on a number of irregular networks with different connectivities and compared the behavior of each of the three algorithms. The algorithms are compared with respect to their performance in trying to optimize several metrics. We also compare our algorithms to an already existing algorithm in the literature

    Path coverings with prescribed ends in faulty hypercubes

    Full text link
    We discuss the existence of vertex disjoint path coverings with prescribed ends for the nn-dimensional hypercube with or without deleted vertices. Depending on the type of the set of deleted vertices and desired properties of the path coverings we establish the minimal integer mm such that for every nmn \ge m such path coverings exist. Using some of these results, for k4k \le 4, we prove Locke's conjecture that a hypercube with kk deleted vertices of each parity is Hamiltonian if nk+2.n \ge k +2. Some of our lemmas substantially generalize known results of I. Havel and T. Dvo\v{r}\'{a}k. At the end of the paper we formulate some conjectures supported by our results.Comment: 26 page

    Embedding Schemes for Interconnection Networks.

    Get PDF
    Graph embeddings play an important role in interconnection network and VLSI design. Designing efficient embedding strategies for simulating one network by another and determining the number of layers required to build a VLSI chip are just two of the many areas in which graph embeddings are used. In the area of network simulation we develop efficient, small dilation embeddings of a butterfly network into a different size and/or type of butterfly network. The genus of a graph gives an indication of how many layers are required to build a circuit. We have determined the exact genus for the permutation network called the star graph, and have given a lower bound for the genus of the permutation network called the pancake graph. The star graph has been proposed as an alternative to the binary hypercube and, therefore, we compare the genus of the star graph with that of the binary hypercube. Another type of embedding that is helpful in determining the number of layers is a book embedding. We develop upper and lower bounds on the pagenumber of a book embedding of the k-ary hypercube along with an upper bound on the cumulative pagewidth

    Minor-Embedding in Adiabatic Quantum Computation: I. The Parameter Setting Problem

    Full text link
    We show that the NP-hard quadratic unconstrained binary optimization (QUBO) problem on a graph GG can be solved using an adiabatic quantum computer that implements an Ising spin-1/2 Hamiltonian, by reduction through minor-embedding of GG in the quantum hardware graph UU. There are two components to this reduction: embedding and parameter setting. The embedding problem is to find a minor-embedding GembG^{emb} of a graph GG in UU, which is a subgraph of UU such that GG can be obtained from GembG^{emb} by contracting edges. The parameter setting problem is to determine the corresponding parameters, qubit biases and coupler strengths, of the embedded Ising Hamiltonian. In this paper, we focus on the parameter setting problem. As an example, we demonstrate the embedded Ising Hamiltonian for solving the maximum independent set (MIS) problem via adiabatic quantum computation (AQC) using an Ising spin-1/2 system. We close by discussing several related algorithmic problems that need to be investigated in order to facilitate the design of adiabatic algorithms and AQC architectures.Comment: 17 pages, 5 figures, submitte

    On Graph Theoretical Properties of Extended Double Star Interconnection Network Topology

    Get PDF
      The Extended Double star (EDS) parallel interconnection network with a network controller (NC) is a two-level hybrid structure. It is a large-scale network with the Double star as its basic building block. EDS network has degree (n!+n+1) and diameter ⌊

    Fault-Tolerant Ring Embeddings in Hypercubes -- A Reconfigurable Approach

    Get PDF
    We investigate the problem of designing reconfigurable embedding schemes for a fixed hypercube (without redundant processors and links). The fundamental idea for these schemes is to embed a basic network on the hypercube without fully utilizing the nodes on the hypercube. The remaining nodes can be used as spares to reconfigure the embeddings in case of faults. The result of this research shows that by carefully embedding the application graphs, the topological properties of the embedding can be preserved under fault conditions, and reconfiguration can be carried out efficiently. In this dissertation, we choose the ring as the basic network of interest, and propose several schemes for the design of reconfigurable embeddings with the aim of minimizing reconfiguration cost and performance degradation. The cost is measured by the number of node-state changes or reconfiguration steps needed for processing of the reconfiguration, and the performance degradation is characterized as the dilation of the new embedding after reconfiguration. Compared to the existing schemes, our schemes surpass the existing ones in terms of applicability of schemes and reconfiguration cost needed for the resulting embeddings

    Interconnection Networks Embeddings and Efficient Parallel Computations.

    Get PDF
    To obtain a greater performance, many processors are allowed to cooperate to solve a single problem. These processors communicate via an interconnection network or a bus. The most essential function of the underlying interconnection network is the efficient interchanging of messages between processes in different processors. Parallel machines based on the hypercube topology have gained a great respect in parallel computation because of its many attractive properties. Many versions of the hypercube have been introduced by many researchers mainly to enhance communications. The twisted hypercube is one of the most attractive versions of the hypercube. It preserves the important features of the hypercube and reduces its diameter by a factor of two. This dissertation investigates relations and transformations between various interconnection networks and the twisted hypercube and explore its efficiency in parallel computation. The capability of the twisted hypercube to simulate complete binary trees, complete quad trees, and rings is demonstrated and compared with the hypercube. Finally, the fault-tolerance of the twisted hypercube is investigated. We present optimal algorithms to simulate rings in a faulty twisted hypercube environment and compare that with the hypercube
    corecore