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Abstract

We investigate the problem of designing reconfigurable embedding schemes for a 

fixed hypercube (without redundant processors and links). The fundamental idea for 

these schemes is to embed a basic network on the hypercube without fully utilizing the 

nodes on the hypercube. The remaining nodes can be used as spares to reconfigure the 

embeddings in case of faults. The result of this research shows that by carefully embed­

ding the application graphs, the topological properties of the embedding can be preserved 

under fault conditions, and reconfiguration can be carried out efficiently.

In this dissertation, we choose the ring as the basic network of interest, and propose 

several schemes for the design of reconfigurable embeddings with the aim of minimizing 

reconfiguration cost and performance degradation. The cost is measured by the number 

of node-state changes or reconfiguration steps needed for processing of the reconfigura­

tion, and the performance degradation is characterized as the dilation of the new embed­

ding after reconfiguration. Compared to the existing schemes, our schemes surpass the 

existing ones in terms of applicability of schemes and reconfiguration cost needed for the 

resulting embeddings.
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I. INTRODUCTION

The need for the embedding arises from at least two different directions. First, with 

the widespread availability of distributed memory architectures based on the hypercube 

interconnection scheme, there is an ever-growing interest in the portability of algorithms 

developed for architectures based on other topologies, such as linear arrays, rings, two- 

dimensional meshes, and complete binary trees, into the hypercube. Clearly, this ques­

tion of portability reduces to one of embedding the above interconnection schemes into 

the hypercube. Second, the problem of mapping parallel algorithms onto parallel archi­

tectures naturally gives rise to graph embedding problems. Graph embedding problems 

have applications in a wide variety of computational situations. For example, the flow of 

information in a parallel algorithm defines a program graph and embedding this into a 

network tells us how to organize the computation on the network. Other problems that 

can be formulated as graph embedding problems are laying out circuits on chips, repre­

senting data structures in computing memory, and finding efficient program control struc­

tures.

A. What is an Embedding?

The problem of mapping a graph representing the computation and communication 

needs of the program onto the underlying physical interconnection of a multiprocessor so 

as to minimize the communication overhead and maximize the parallelism is called the 

mapping problem. Bokhari [Bokh81] defines the mapping problem as the assignment of 

processes to processors so as to maximize the number of pairs of communicating pro­

cesses that fall on pairs of directly connected processors.
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In mapping problems, the guest graph G is the network topology that we are inter­

ested in simulating using a host graph H. Let Vc and VH denote the vertex sets of the 

graph G and H, respectively, and Ec and EH denote the edge sets of the graph G and H, 

respectively. An embedding f  of a graph G into a graph H is a mapping of the vertices 

of G into the vertices of H, together with a mapping of the edges of G into the simple 

paths of H such that if e = («, v) e  Ec, then f (e)  is a simple path of H with endpoints 

/ ( « )  and /(v ) . If f{e)  has length greater than one, then it has one or more intermediate 

nodes which are all nodes on the path other than the two endpoints. An embedding /  is 

isomorphic if it is injective and for each (u, v) e Ec, (/(« ), /(v ))  e EH. Throughout this 

dissertation, unless indicated otherwise the term “embeddings” will always means iso­

morphic embeddings, and the terms “embedding” and “mapping” will mean the same 

and will be used interchangeably.

B. Embeddings in a Hypercube

Various supercomputer architectures interconnecting hundreds or thousands of pro­

cessors have been proposed for many years. Prominent is the binary hypercube which 

has emerged as one of the most important network architectures for large-scale concur­

rent computers. Several different versions of concurrent computers based on the hyper­

cube architecture have been built at Intel, NCUBE, and Thinking Machines. An d- 

dimensional binary hypercube is a graph with 2d vertices labeled by integers 0, 1, ..., 

2d — 1 represented as J-bit binary strings, called address, and with edges joining two ver­

tices whenever their addresses differ in a single bit. A 3-dimensional and a 4-dimen­

sional hypercubes are shown in Figure 1(a) and 1(b), respectively. The hypercube offers 

a rich interconnection topology with high communication bandwidth, low diameter, and a 

recursive structure naturally suited to divide- and-conquer applications. More
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importantly, the hypercube supports efficient routing algorithms and can therefore simu­

late many realistic network topologies, like linear arrays, rings, 2-D meshes, higher­

dimensional meshes, trees, and pyramids. The topological properties of the hypercube 

were examined in [SaSc88],

Figure 1. (a) A 3-dimensional hypercube, (b) A 4-dimensional hyper­

cube.

It has been known for a long time that the general graph embedding problem (i.e., 

subgraph isomorphism problem) is NP-complete. It was shown that the embedding of 

general graphs into the binary hypercube is also NP-complete [AfPP85, KrVC86, 

CyKV87]. It remains NP-complete even if embedding arbitrary trees in a binary hyper­

cube [WaCo90], However, with rich interconnection structure the hypercube contains as 

a subgraph many the regular structures (i.e., rings, two-dimensional meshes, higher­

dimensional meshes, and almost complete binary trees). Most of the mapping research in 

these years have dealt with effectively simulating these regular structures in the hyper- 

cubes, [Wuay85, Bhlp85, BrSc85, Stou86, Chan88, ChCh88, Chan89a, Chan89b, 

HoJo89, HoJo90, LaWh90, Vara91].
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C. Fault-Tolerant Embeddings in a Hypercube

As the complexity and the size of computers increase, the probability of processors 

and communication links becoming faulty during the operation of the system increases. 

For this reliability reason, the consideration of fault tolerance in the system is needed. In 

particular, it is crucial that such a system be able to withstand an accumulation of faults 

among a reasonable number of its components. Even for the latest CM-5 massively par­

allel computer, an important aspect of this design is rapid diagnosis and smooth degrada­

tion in the face of component failures. Failed components in CM-5 can be logically and 

electrically isolated from the rest of the system under control of the Diagnostic Network. 

Surrounding components are instructed to ignore any and all signals from failed compo­

nents. The failed section of the system can then independently execute diagnostic tests or 

be powered down for repair or replacement, while the rest of the system continues normal 

operation [PaSt92],

For network mappings in a hypercube, embedding techniques which rely on a fault- 

free host graph break down in the presence of faults (nodes or links) in the hypercube. 

Even worse, if a fault occurs during processing, the guest graph must be reembedded 

before processing can continue. In a time-critical application or an application which 

needs a massive amount of computation time, this would not be feasible. Hence, when 

constructing network embeddings, fault tolerance should also be taken into account. 

However, in this dissertation we do not consider the usage of redundant nodes or links to 

achieve fault tolerance in a hypercube. We assume, instead, that the number of nodes and 

links in a hypercube are fixed. This is a more realistic assumption, since in many cases, 

we do not have the luxury to build a specific host machine for an application. Based on 

this assumption of fixed host, the research of fault-tolerant embeddings in a hypercube
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can be divided into two categories: static and dynamic. Static research explores the exis­

tence of network topologies in a hypercube with faulty nodes or links [WaOz90, 

ChLe91a, ChLe91b, ChCP91, WaCM91, YaTR91, WaCy92, LaZB92, TsLa93]. 

Dynamic research concerns finding intelligent strategies to map the basic network into 

the host so that reconfiguration can be easily carried out at runtime in the presence of 

faults [DeJe86, PrMe88, ChLT88a, ChLT88b, Leet90, Lijs90, BuPr90, KrHI91, 

LiMc92a, LiMc92b, USM92, PrMe92], Because of the reconfiguration nature, the 

dynamic fault-tolerant embeddings is also categorized as reconfigurable embeddings.

D. Basic Definitions and Preliminaries

1. Terminologies for a Hypercube. An ^-dimensional binary hypercube is 

denoted as d-cube or Qd. We will usually identify the vertices of the hypercube with 

their addresses. Hence u = 010110 says that the address of the vertex u is 010110. The 

y'th bit of the address of the vertex u is called jth coordinate of the vertex u. Each /- 

dimensional subcube of d-cube can be uniquely specified by its address - a bit string of 

symbols of the set 2  = {0,1,*}, where the symbol * is a don’t care symbol. Equally as 

for vertices, we will identify subcubes with their addresses. The set of all coordinates in 

which the addresses of two vertices u, v differ is denoted S (u,v). Two vertices u, v on 

the hypercube is adjacent along the jth coordinate if 8 (m,v) = {j}. A walk on the hyper- 

cube is an alternating sequence of vertices and coordinates v0, c ,, vj, • , v„_j, c„, vn 

beginning and ending with vertices, in which £(v,-,,v,) = {c,}.

A path of the hypercube is specified completely by listing the 1 vertices V0, • • •, 

Vl in order. For example, on the 3-cube, a list might be



6

000,001,011,010, 110, 100, 101, 111.

Ignoring the starting vertex, a more compact notation is to list in order only the coordi­

nate places in which the change occurs. In the example cited, one would obtain 

<3,2,3,1,2,3,2>. This L-tuple of coordinate places will called the transition sequence 

[Gilb58] (or coordinate sequence [Doug77]) for the path. In a similar way, a cycle or an 

embedding of a ring in the hypercube may be represented by a transition sequence.

According to [Gilb58], two cycles, C and C', are of the same type if and only if one 

of the k \permutations of coordinates changes the transition sequence of C into the transi­

tion sequence of C. Hence two cycles with transition sequences <1,2,3,1,2,3> and 

<3,2,1,3,2,1>, respectively, are o f the same type. Although there are tremendous num­

bers of cycles, it suffices to consider one of each type. The canonical form of the coordi­

nate sequence adopted in this dissertation, is to label the coordinates in the order of their 

frequency of occurrence. Where coordinates are equally frequent, we will normally label 

them according to their first appearance in the sequence, with the start of the sequence 

chosen to make the 2*-digit number as small as possible. However, there are circum­

stances where a different ordering is more convenient for emphasizing a particular char­

acteristic, and an alias may also be given.

| P | where P is a path on the hypercube denotes the length (number of links) of P. 

For paths Pu P2, • • • on the hypercube, T(PX) and . . . )  denote the transition 

sequence for Pl and the concatenation of transition sequences for paths Px, P2, •••, 

respectively. r(i, j , ...) denotes a permutation on digits
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2. Embedding Terminologies. In this dissertation, we will use the notation to 

denote a length-/: ring, and the notation Rk —* = to denote an embedding of a

length-/: ring in a d- cube, where S is the binary label of the starting node (0 for 00- • 0) 

and V  is the transition sequence of the embedding. For instance, the embedding of a 

length-12 ring in a 4-cube in Figure 2 is referred as /?12 — 0 |

<1,2,3,1,2,4,1,2,3,1,2,4>. Throughout the figures in this dissertation, we will use directed 

arcs on the hypercube to denote a ring embedding.

Figure 2. An embedding of a length- 12 ring in a 4-cube.

Let /  be an embedding function which maps a guest graph G into a host graph H. 

IVd denotes the cardinality of the set Vc . Some terminology related to the mapping prob­

lem is formally defined as follows.

The expansion of the mapping is the ratio of the size (in number of nodes) of the host

graph to that of the guest graph, that is, %Tr (If the embedding is injective, then the
r  cl

expansion is a measure of processor utilization).

• The edge dilation of edge ( i j )  e Ec is dist(f(i),f(j)).  The dilation of the mapping

is max(dist(f(i),fO')), V(z', j)  e  Ec . The average edge dilation is .
\e g\



8

X  dist(f(i), f(j))- (The dilation issues of an mapping represents the communi- 

cation delay between the communication nodes).

• The congestion of an edge e'e  EHis the cardinality of (e e  E(G): e' is in path

f{e)}  That is, X  |e'nE/(e)|. The congestion of the mapping is
Eg

max { X  1e 'n £ y (eJ), Ve' e EH. The average congestion of the mapping is simi-
ee£c

larly defined.

• The max-load is the maximum number of nodes in G that are mapped to a node in 

H. Max-load = 1 if the mapping is one-to-one.

It should be noted that unit dilation implies unit congestion. Thus the class of dila­

tion-1 embeddable graphs in a hypercube is a proper set of the class of congestion-1 

embeddable graphs. If each node of the guest graph is mapping to a distinct node of the 

host, the slow-down due to nearest neighbor communication in the original graph being 

extended to communication along paths is a function of the length of the path (i.e., edge 

dilation) and the congestion of the edges on the path.

E. What Follows

We had considered hypercubes, embeddings in a hypercube, fault-tolerant embed­

dings in a hypercube, and some terminologies related to embedding. The remainder of 

this dissertation is organized as follows:
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• In Chapter II, we discuss previous research of fault-tolerant ring embeddings in a 

hypercube. We briefly mention some approaches of existing schemes and their 

results and then discuss some limitations of these schemes. The chapter is con­

cluded with the introductions of the ideas of our proposed schemes which will be 

discussed in more detailed in Chapter IV, V, and VI.

• In Chapter III, first, we summarize the failure model that we deal with in our pro­

posed schemes. Second, an existing simple distributed reconfiguration algorithm is 

described and supplied with an example. We conclude this chapter with a formal 

definition of a reconfiguration step which we use for evaluating the performance of 

a reconfigurable embedding scheme.

• In Chapter IV, we present the algorithm of our first proposed scheme, the DC 

scheme, which efficiently embeds even length rings in a hypercube with small 

expansion and recovery cost. Some characteristics and performance comparison, in 

terms of issues of expansion and recoveiy cost, of this scheme with others is 

addressed in this chapter.

• In Chapter V, we present another scheme, the ModifiedJDC scheme, which is an 

enhanced version of the DC scheme. The algorithm and the characteristics of the 

Modified_DC scheme, and the performance comparison with the DC schemes are 

included in this chapter.

• In Chapter VI, we explore the possibility of finding a general scheme to construct 

1-step recoverable embeddings. We propose a composition method to systemati­

cally construct such embeddings for rings of length < (3/4)2d in a d-cube. Formal 

proof is given to show the correctness of our approach. The two special embedding 

cases of a length-10 ring in a 4-cube and a length-22 ring in a 5-cube are shown to 

be no 1-step recoverable embeddings existent.
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• In Chapter VII, we describe a sufficient condition for the non-existence of 1-step 

recoverable embeddings of rings > (3/4)2“* in a d-cube.

• In Chapter VIII, we apply our reconfigurable ring embedding schemes to an appli­

cation, the protein sequence comparison, in a parallel computer. We show that with 

our reconfigurable embedding schemes, the total running time for the fault-tolerant 

system of parallel protein sequence comparison will take less time than those with 

other fault-tolerant approaches.

• Finally, in Chapter IX, we discuss some related issues and open problems, and state 

some further research relating to the dynamic fault-tolerant embeddings in a hyper­

cube.



II. F A U L T -T O L E R A N T  R IN G  E M B E D D IN G S  IN

A  H Y P E R C U B E

l l

The ring is widely used for variety of applications [Lium78, Same85, IpSS86, 

KuRR88, GoVa89, BHGS90, GaPS90, SeYv91, Leig92]. For instance, Gaussian elimina­

tion for dense systems on the ring is discussed in [Same85], an implementation of parallel 

depth-first search on the ring is presented in [KuRR88], and a data redistribution algo­

rithm which aims at dynamically balancing the workload of image processing algorithms 

on the ring is introduced in [SeYv91]. The ring is essentially a linear array with a wrap­

around connection between the first and last processor. Thus, algorithms which are 

designed for the linear array are also suitable for the ring.

The linear array and the even length ring can be easily mapped in a hypercube with 

the binary reflected Gray code [SaSc88]. However, when take into account fault toler­

ance, the mapping problems of rings in a hypercube become non-trivial, and some of the 

related problems are even shown to be NP-complete [ChLe91b], For our research, we 

have chosen the ring as the guest graph of interest, and consider fault-tolerant ring 

embeddings in a hypercube. Note that, the wrap-around mesh contains the ring as a sub­

graph, so the schemes of constructing fault-tolerant embeddings in a hypercube can also 

be applicable to the mesh. In this chapter, we will discuss several existing fault-tolerant 

embedding schemes for rings in a hypercube, and state the approaches of our proposed 

schemes.
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A. Static Fault Tolerance

Several static fault-tolerant ring embedding schemes in a hypercube have been intro­

duced in [ChLe91a, ChLe91b, LaZB92]. Basically, the research in this area emphasizes 

exploring efficient strategies to embed rings in a hypercube with faulty nodes or links, 

and characterizing the scenarios of faults such that the successful construction of the em­

bedding is possible.

Chan and Lee [ChLe91a] proposed a simple distributed fault-tolerant algorithm, 

RING_1PFT, to embed a ring in a hypercube with faulty nodes. This distributed algo­

rithm implies the assumption of only local knowledge of faults rather than global knowl­

edge with each processor having knowledge of the status of only its immediate neighbors. 

It is shown that RING_1PFT will successfully construct a ring of length in a rf-cube 

with no faults occurring, and a ring of length - 2  in a d-cube with one fault occurring. 

Moreover, the RING_1PFT is able to tolerate more than one fault in some circumstances.

Theorem 2.1: [ChLe91a] Let an embedding of a ring of length 2d in a d-cube be denoted 

as a sequence of nodes, (v,, v2, • • ■ , v2d). RING_1PFT will successfully construct a ring 

of length at least 2d- 2 /  in a d-cube with /  faults if and only if, for any pair of faults v, 

and Vj, i < j,  of the embedding, either j  - i > 3, or j  = + 1 and is even.

Latifi, Zheng, and Bagherzadeh [LaZB92] considered the problem of dilation-1 

embedding of rings of length 2d in the d -cube with faulty links. If consider maximizing 

the processor utilization, the above problem reduces to finding a fault-free Hamiltonian 

circuit consisting of all nodes in a faulty hypercube. It is known that a rf-cube contains
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Vdll\ link-disjoint Hamiltonian circuits [A1BS87]. This implies that at least one Hamilto­

nian circuit can be specified with any set of no more than (Ld/2j - 1) faulty links being 

present in the network. These three authors presented a centralized algorithm, 

FIND_PERM2, that can always find a fault-free Hamiltonian circuit in a d-cube in 0(d2) 

time if there are no more than {d-2) faulty links present. FIND_PERM2 outperforms the 

existing fault-tolerant ring embeddings based on link-disjoint Hamiltonian circuits with 

twice as many faulty links present.

Theorem 2.2: [LaZB92] FIND_PERM2 identifies a characterization of a Hamiltonian 

cycle in a d-cube with as many as (d  -2 )  faulty links.

The problem of finding Hamiltonian circuits in hypercubes with faulty links was 

considered earlier by Chan and Lee in [ChLe91b]. In partial answer the question of the 

existence of a Hamiltonian circuit in a hypercube with faulty links, Chan and Lee showed 

the following. First, they proved the following theorem and showed the result of this the­

orem is optimal.

Theorem 2 3 : [ChLe91b] In a d-cube with < link faults, where each node is inci­

dent to at least two non-faulty links and d <3, for any node 5, there exists a fault-free 

Hamiltonian circuit from S to itself.

Second, they showed that the problem of determining whether a J-cube with an 

arbitrary number of link faults has a Hamiltonian circuit is NP-complete.
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Theorem 2.4: [ChLe91b] Given a d-cube with faulty links, the problem of finding if this 

faulty d-cube contains a Hamiltonian circuit comprised of only nonfaulty links is NP- 

complete.

B. Dynamic Fault Tolerance

Several reconfigurable ring embedding schemes used to recover from faults as well 

as maintain the quality of the embedding have been introduced [PrMe88, ChLT88a, 

ChLT88b, Leet90, LiMc92a, LiMc92b, LiSM92]. The basic idea of these schemes is to 

leave certain nodes in a hypercube as spare nodes (i.e., nodes not the image nodes of the 

embedding) for later recovery usage. This leads to the inevitable question: Given a ring, 

what is the smallest hypercube that should be chosen to accommodate the ring, and how 

many nodes in a hypercube should be saved as spare nodes in order to achieve efficient 

recovery? The fault recovery efficiency of an embedding should take both recovery cost 

(i.e., how many steps needed) and the performance degradation (i.e., dilation and conges­

tion) into account. Since this efficiency depends heavily on the initial embedding, the 

research of dynamic fault-tolerant embedding focuses on deriving intelligent initial 

embeddings which facilitate the processing of reconfiguration with minimal recovery cost 

and performance degradation.

1. Previous Approaches. Chen, Liang, and Tsai [ChLT88a] proposed an initial mapping 

scheme, Mapping I, which can embed rings of length 2 to - 2  in a d-cube and tolerate 

one single faulty node. Their scheme attempts to maximize the length of rings that can 

be embedded in a hypercube. Hence, the cost of recovering one single fault of their 

scheme is sometimes very large (i.e., O (d2since a long reconfiguration may be 

required to eventually absorb the fault.
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Theorem 2.6: [ChLT88a] The embeddings constructed by Mapping I can tolerate any 

single faulty node.

Chen, Liang, and Tsai [ChLT88b] then proposed other initial mapping schemes, 

Mapping II and Mapping III, for certain length of rings such that the embeddings can be 

recovered from one single faulty node within one step. The rings which are applicable to 

Mapping II and Mapping III are lengths of 2*M and (3/4)2rf, respectively.

Theorem 2.7: [ChLT88b] The embeddings constructed by Mapping II and Mapping III 

can tolerate any single faulty node and recover the fault within one step.

In the same year, Provost and Melhem [PrMe88] also proposed a simple scheme to 

embed a ring of length (3/4)2^ in a d?-cube such that any simple fault can be tolerated.

Theorem 2.8: The proposed ring embedding scheme in [PrMe88] can tolerate any single 

faulty node and recover the fault within one step.

Later work by Lee [Leet90] constructed a ring embedding in a hypercube to tolerate 

any single fault within only one reconfiguration step. Basically, Lee’s idea is to embed 

rings in a hypercube such that spare nodes are always close to failed nodes whenever 

reconfiguration occurred. Lee’s scheme increases the size of the embedding hypercube 

necessary to accommodate the embedded rings. For instance, using his scheme a ring of 

length 16 will be embedded in a 6-dimensional hypercube to achieve efficient recovery 

ability. Although the recovery cost of this scheme is always minimum (i.e., 1), the num­

ber of wasted nodes in a hypercube is quite large. In terms of node utilization (i.e.,
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expansion), Lee’s scheme is not efficient.

2. Our Approaches. By comparing the schemes in [PrMe88, ChLT88a, ChlT88b, 

Leet90], that there are trade-offs between the issues of expansion and efficient recovery 

for a dynamic fault-tolerant embedding scheme. With this observation, we propose our 

first scheme which is a simple strategy, but reaches a good compromise between the 

trade-off of expansion and efficient recovery issues. Our scheme is based on the idea of 

divide-and-conquer and thus, we call it the DC scheme. By treating a ring as a path with 

the same starting and ending point, the DC scheme recursively divides the embedded path 

and the embedding subcube into half until all the divided subcube are 3-cube. For the 

DC scheme, a 3-cube will be treated as a basic embedding unit and used for embedding a 

partial portion of the ring. With the divide-and-conquer approach, the DC scheme guar­

antees that spare nodes will be almost evenly scattered over the 3-cubes of the embedding 

hypercube. This important feature gives the DC scheme with efficient recovery ability 

since a faulty node will have more chances to be replaced by a proper spare node that 

resides in the same subcube as the faulty node. That is, without often propagating the 

fault from one subcube to another for recovery, the DC scheme tends to use less steps to 

recover a single fault. It is shown that the average expansion for the DC scheme is 1.58, 

and the average number of reconfiguration steps needed is 1.3. Moreover, within 3 

reconfiguration steps, any single fault in the embedding can be recovered (i.e., 3-step 

recoverable). The algorithm of the DC scheme and the performance comparison with 

other schemes will be discussed in details in Chapter IV.

The second scheme that we proposed is an enhanced version of the DC scheme. We 

designate the second scheme as the Modified_DC scheme. The main difference between 

the Modified_DC scheme and the DC scheme lies in the addition of the embedding
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sequence permutations in the Modified_DC. The embedding sequence of the Modi- 

fied_DC scheme is generated by permuting some partial portions of the embedding 

sequence generated by the DC scheme. We show that with such permutation the Modi- 

fied_DC achieve better recovery ability: the average number of reconfiguration steps 

needed is 1.1 steps, and any single fault can be recovered within 2 steps if the dimension 

of the hypercube > 5. The algorithm of the Modified_DC scheme and the performance 

comparison with the DC schemes are discussed in Chapter V.

Since we have derived the DC scheme and the Modified_DC scheme which are 

3-step recoverable and 2-step recoverable, respectively, it is natural that we explore the 

problem of finding dynamic fault-tolerant embedding schemes which are 1-step recover­

able. For simplicity, throughout this dissertation, we use 1SRE to denote the phrase 

“ 1-step recoverable embedding” . First, we define what a 1-step recoverable embedding 

is, and then, propose an efficient scheme to systematically construct 1 SRE’s of length-/: 

rings in ^-cubes where k is even, 6 < k < (3/4)2d, and 3. Our scheme is based on the 

following conjecture: If there exists a 1SRE of a length-/:! ring in a and a 1SRE

of a length-/^ ring in a J-cube, then there exists a 1SRE of a length-(/:i + ) ring in a

(d + l)-cube. We then show that the conjecture above is provable. In fact, a 1SRE of a 

length-(Z:] + k2)ring in a (d + l)-cube can be obtained by directly combining a 1SRE of a

length-/:! ring in a cf-cube and a 1SRE of a length-/^ ring in a d-cube with some modifi­

cation. A formal proof is given to show the correctness of our approach. The algorithm 

and the proofs are given in Chapter VI.
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III. Failure Model and Reconfiguration Algorithm

It is easy to see that Rk is embeddable to Qd if and only if there exists a subgraph in 

Qd which is isomorphic to Rk. So, the idea of reconfiguration is to maintain a fault-free 

subgraph in Qd that is isomorphic to Rk. The failure model used in this dissertation fol­

lows the one in [YaHa86]. In this model, each node in a hypercube has a unique state, 

and the system is in an operational state if and only if all the distinct states exist. A fault 

will cause the missing of a state, and the system should be able to perform a distributed 

reconfiguration via the local operations of faulty free processors until the missing state is 

recovered. The reconfiguration algorithm that we used is first described in [ChLT88a]. 

For the completeness of this dissertation, we will summarize the fault model in [YaHa86] 

and the reconfiguration in [ChLT88a] in this chapter.

A. Failure Model

Every node of Qd is given a state: active , inactive or spare state, or faulty 

state. Active states are denoted by the labels where k is the length of the ring

embedded. Inactive or spare states are denoted by 0, and faulty states are denoted by -1. 

The state of Qd is the 2rf-tuple S(a0, x  ̂ ■ • ■ , j^ - i) = (S(*0), S(*i), • • •, 5 (jc2<*_i)) where 

S(X() is the state of node x( in Qd.Figure 3 shows an example of the above state assign­

ments of embedding an R6in a £)3. Suppose the initial state of Q3 is 5(0, 1, 2, 3, 4, 5, 6, 

7) = (1, 2, 6, 5, 0, 3, 0, 4). The guest graph R6 and the embedding in the host graph Q3 

with every node labeled with its state is shown in Figure 3(a) and 3(b), respectively. As 

indicated by the arrowed lines, <23 contains a subgraph isomorphic to R6.
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(a) (b)

Figure 3. (a) The guest graph R6. (b) The embedding in the host 

graph £3 with every node labeled with a state.

A fault F(S(xj)) happens if Qd has no active node in state ) corresponding to a

node of Rk. For example, if the node Oil of the Q3 in Figure 3(b) becomes faulty, the 

state of the Q 3 will become to S(C3) = (1, 2, 6, -1, 0, 3, 0, 4) and state 5 is replaced by 

state -1. Thus, fault detection will be based on the identification of a missing state of the 

k possible active states. It is assumed that reliable fault diagnosis mechanisms are avail­

able if a node becomes faulty [MeMa78, ArGr81, Bhat83]. To ensure correctness, each 

active node periodically tests itself or is tested by a watchdog processor. If it is faulty, its 

state changes to -1. We also assume that the links of a hypercube are faulty-free and only 

one single faulty node can be present in the system, and the recovery actions are assumed 

faulty-free.

B. Reconfiguration Algorithm

Let node a, be an active node with state / in an embedding. For every active node 

at, t = 1, 2, • • • , k in an embedding of length-/: rings in a hypercube, node a, saves and 

updates the work environment of node a(l+l)modk periodically, and is responsible for 

detecting and recovering the fault F((f + 1) mod k). When active node a(+1 becomes
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faulty (i.e., fault F(t + 1)), active node a, will detect this fault and act as a local supervi­

sor to invoke following reconfiguration actions:

1) Compute b = XOR(a,, aH,, a,+2) (i.e., nodes , a,, a,+1, and a,+2 constitute the 

four nodes of a 2-D plane of hypercubes).

2) Change the state of node bto t + 1, and assign the work environment of node a,+1 

to node b (i.e., we will denote this step as node a(+, » node b).

3) Let the previous state of node b to be S(b If S(b)old = 0 (i.e., spare state) then 

the recovery is done; otherwise, a propagated fault F(S(b)old) is issued and the 

reconfiguration continues.

The XOR operation above denotes the bitwise exclusive on binary numbers. We 

shall call the above algorithm the xor-reconfiguration algorithm. Now, let’s consider an 

example for the xor-reconfiguration algorithm. Figure 4(a) shows the original fault-free 

embedding of an R]0 in a Q4. A fault F(5) occurring in node 0110 is shown in Figure 

4(b). Since node 0111 with state 4 is responsible for detecting and recovering the fault 

F(5), it will eventually detect the fault and begin to act as a local supervisor. Then, with 

X0F(O111, 0110, 1110) = 1111 and S ( l l l l )  * 0, the action of node 0110 » node 1111. 

activated and a propagated fault F(7) is issued. The consequence of above actions is 

shown in Figure 4(c). Similarly, node 1110 with state 6 detects the propagated fault F(7) 

and computes that XOF(1110, 1111, 1101) = 1100. Since S(1100) = 0, the action of node 

1111 » node 1100 activated and finally the reconfiguration is done. The embedding after 

recovery is shown in Figure 4(d).
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0000( 1)

0011(3) 0111(4)

(a)
1000(10)

1111(7)

ojt8)

'  1110(6)

(c) (d)

Figure 4. (a) The embedding (F 10 to Q4) with no faulty nodes, (b) The fault 

F(5) occurs, (c) Active node 1111 recovers F(5) and a propagated fault F(7) is 

issued, (d) Spare node 1100 recovers F(7) and the reconfiguration is done.

The cost of recovering one single fault is measured by the number of states changed 

of fault-free nodes (i.e., spare to active or active to spare) during the reconfiguration 

actions. For example, to recover the fault F(5) in the embedding in Figure 4(a), the sys­

tem experiences following replacing sequence: node 0110 » node 1111 » node 1100. 

There are two states changed of fault-free nodes (i.e., node 1111 changed from state 7 to 

state 5 and node 1100 changed from state 0 to state 7), so we will say that it costs 2 steps 

to recover the fault in this case. Now, we can have the following definition.

Definition: A system with an embedding scheme and a reconfiguration algorithm is t- 

step recoverable if the system can recover any single fault by changing the states of at 

most t fault-free nodes.
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Since, in this paper, when we mention a reconfiguration algorithm we mean the xor- 

reconfiguration algorithm. For convenience, in the following we shall say an embedding 

is t-step recoverable instead of saying the system with an embedding scheme and a 

reconfiguration algorithm is f-step recoverable.
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IV. THE DC SCHEME: 3-STEP RECOVERABLE
EMBEDDINGS

In this chapter, we present the algorithm of the DC scheme which is based on the 

idea of divide-and-conquer to efficiently embed even length rings in a hypercube to 

achieve small expansion and recovery cost. The characteristics of the scheme and the 

performance comparison with others will also be addressed in this chapter.

A . The A lgorith m

The algorithm of the DC scheme of embedding an even length-fc ring in a d-cube is 

following:

Procedure DC_SCHEME (k , d )  I*d > 4, (7/8)2°'“' < k <  (7/8)2^ */

begin

p : = k /2 -  1
Rk -> Q d  =0\Concate( PATH (p, d - \  ), < < / > , PATH(p,

end

Procedure PATH ( / / ,  d') /* p '  +  1: path length, d': size of a subcube */

Const d \  = l , d 2 = 2 , d i = 3 , d 4 = l , d 5 = 2 ,d 6 = l 

begin

if d '  = 3 then return (< d \ t d2, • • • , d p- >) 

else begin

A := PATH (L ~ 2 — J > d ' - \ )

B := PATH ( T 1, d'-  1)

C := Concate (A, < d '>, B)
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return (C) 
end 

end

According to the algorithm above, at most six links (i.e., • • • , in a 3-cube of

the embedding d-cube will be included in the transition sequence of an embedding. 

Therefore, at most seven nodes in a 3-cube will be in active state and at least one node 

will be in spare state. So, with the DC scheme, the largest and smallest rings that can be 

embedded in a d-cube is (7/8)2d (i.e., leave one spare node in each 3-cube) and 

(7/8)2‘/_1 + 2, respectively. The function Concate in the algorithm concatenates sets of 

sequences together to form one sequence (i.e., Concate (< 1, 2 >, < 1, 2, 3 >) = < 1, 2, 1, 

2, 3 >.

10000 11000

Figure 5. An embedding of a length-18 ring in a 5-cube.

Example: Consider embedding a length-18 ring in a 5-cube with the DC scheme. Trac­

ing the algorithm we first have /?1 8 Q5 = 0 | (PATH(8, 4), < 5 >, PATH(8, 4), < 5 >). 

Since the divided subcube is not a 3-cube, PATH(8, 4) is split to two parts, PATH(3, 3) 

and PATH(4, 3). Then, we got PATH(3, 3) = < 1, 2, 3 > and PATH(4, 3) = < 1, 2, 3, 1 >. 

So, at last PATH(8, 4) = < 1, 2, 3, 4, 1, 2, 3, 1 >, and we have the final embedding
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Qs s  0 | < 1, 2, 3, 4, 1, 2, 3, 1, 5, 1, 2, 3, 4, 1, 2, 3, 1, 5 >. This final embedding is 

depicted in Figure 5 as in arrowed lines).

The transition sequences of embedding rings from lengths 8 to 20 in a hypercube 

with the DC scheme are given in Table I.

Table I. Total transition sequences of embedding various rings 

with the DC scheme.

Ring Total transition sequence of the embedding

8 1 2 3 4 1 2 3 4

10 1 2 3 1 4 1 2 3 1 4

12 1 2 3 1 2 4 1 2 3 1 2 4

14 1 2 3 1 2 1 4 1 2 3 1 2 1 4

16 1 2 3 4 1 2 3 5 1 2 3 4 1 2 3 5

18 1 2 3 4 1 2 3 1 5 1 2 3 4 1 2 3 1 5

20 1 2 3 1 4 1 2 3 1 5 1 2 3 1 4 1 2 3 1 5

B. C h aracter istics  o f  the R esu ltin g  E m bedd ings

Definition: With the DC scheme, each 3-cube of the embedding ^-cube will contribute 

one of the following sequences to the transition sequence of the embedding: < 1, 2 >, < 1, 

2, 3 >, < 1, 2, 3, 1 >, < 1, 2, 3, 1, 2 >, and < 1, 2, 3, 1, 2, 1 >, and we will denote these 

3-cubes as Q\, Q\, Q\, Q\,and Q\, respectively.
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Theorem 4.1: The DC scheme can tolerate any single fault.

Proof: We consider the fault recovery in a here. The sim ilar proof can be applied  

to the cases for Q'3, i = 2 , 3 , 5 ,  or 6.

____ 3 Jf-A

i

/

Figure 6. A 3-cube with the transition sequence < 1,2, 3,1 >.

A Qj with node labels is given Figure 6 . Nodes with labels beginning with letter ’A’ are 

in active state, and nodes with labels beginning with letter ’S’ are in spare state. By 

applying the xor-reconfiguration algorithm, the following facts can be easily verified:

1) The action A2 » S, will recover the faulty node A2.

2) The action A3 » S2 will recover the faulty node A3.

3) The action A4 » S, will recover the faulty node A4.

Then, how about fault recovery for nodes A, and A5? For these two nodes, we need to 

consider the connection of this Q\ with neighboring 3-cubes. Due to the divide-and- 

conquer approach of the DC scheme, a Q$ will connect only to a Ql, Q\, or Q\.

For As, we consider the following cases:



27

1) The (£  is connected to a Q\as in Figure 7(a). Then, the action A5 » A2 » 5, will 

recover the faulty node A5.

2) The Q\ is connected to another Q%as in Figure 7(b). Then, the action A5 » A2 » 

Sl will recover the faulty node A5.

3) The Q\ is connected to a Q\ as in Figure 7(c). Then, the action A5 » A2 » S\ 

will recover the faulty node A5.

Figure 7. (a) The Q$ connects to a (b) The Q \  connects to 

another Q3. (c) The Q* connects to a

For A], we consider the following cases:

1) A <23 is connected to the Q\ as in Figure 8(a). Then, the action A] » S'[ will 

recover the fault in Aj.

2) Another Q\ is connected to the Q\ as in Figure 8(b). Then, the action A, » »

5] will recover the fault in A ,.
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3) A Ql is connected to the Q\ as in Figure 8(c). Then, the action » Sj will 

recover the fault in A] .

Figure 8. (a) A Q\ connects to the Q\. (b) Another Q\ connects 

to the Q\. (c) A connects to the

Thus, for each possible faulty node Au • • •, A5 in the the system with the xor- 

reconfiguration algorithm is able to recover it. □

Lemma 4.1: Applying the DC scheme to construct embeddings. If all the 3-cubes in the 

embedding d-cube result in one of the following 3-cube: Q ’̂s, or Qf’s, then the 

embedding can recover any single fault in 1 step.

Proof. This lemma can be verified by a similar proof technique to that of Theorem 4.1. □

Lem m a 4.2: To embed a length-24*-1 or (3/4)2^ rings in a d-cube ( d >4) with the DC 

scheme, the 3-cubes in the embedding d-cube will all be Ql and Ql, respectively.

Proof. To embed an even length-/: ring in a d-cube, the DC scheme divides the ring into 

two k/2 paths (containing k/2nodes), and then embeds these two paths in two

(d — l)-cubes. The ring embedding is done by connecting these two embedded paths
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together with two links of dimension d.

Here, we show an induction proof to the case of (3/4)2rf.

Induction base: For d = 4 (i.e, embed an in a Q4), the DC scheme will come 

out the embedding, Rn —> Qa, = 0 I < 1 ,2, 3, 1, 2, 4, 1, 2, 3, 1, 2, 4 >, such that both 

3-cubes of the embedding 4-cube are Q\.

Induction hypothesis: Assume for d = m(i.e., embed an /?(3/4)2™ in a m-cube) the 

lemma holds. This implies that the DC scheme will embed a path of length 

(3/4)2"'_1 in a (m-l)-cube such that the 3-cubes of the embedding (m-l)-cube are all

e l

Induction step: Consider the case for d = m + 1 (i.e., embedding an 3/4)2"+1 in a

(/n+l)-cube). Following the DC scheme, the original embedding problem reduces 

to embed two paths of length (3/4)2m in two m-cubes. With the recursive nature of 

the DC scheme, the original embedding problem further reduces to embedding four 

paths of length (3/4)2m-1 into four (m -  l)-cubes. By the induction hypothesis, the 

DC scheme will embed each of these four paths in a (m -  l)-cube and the 3-cubes of 

the embedding (m -  l)-cube are all Q\. By connecting these four embedded paths 

together with two links of dimension m and two links of dimension of + 1, the DC 

scheme forms an embedding, R(2"+1-2'̂ ') —» Q<m+o» such that all 3-cubes in the 

embedding (m + l)-cube are (21s.
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Figure 9 provides an example to clear the idea in the induction step above. The two dot­

ted lines among 3-cubes in Figure 9 represent dividing the ring embedding into several 

path embeddings.

Figure 9. An example of dividing a ring embedding to several 

path embeddings.

A similar proof can be used to show case 2d~x. □

Theorem 4.2: With the DC scheme, the embeddings of length-(3/4)2rf or length-2d_l 

rings in a d-cube (d > 4) can recover any single fault in 1 step.

Proof: Directly from Lemma 4.1 and Lemma 4.2. □

Theorem 4.3: With the DC scheme, the embeddings of any even length rings in a d-cube 

can recover any single fault within 3 steps.

Proof. Intuitively the more spare nodes exist in a 3-cube, the greater chance system can 

recover any single fault in less steps. Therefore, we will consider the fault recovery of 

the worst situation such that every 3-cube of the embedding hypercube is Q% (one spare 

node in every 3-cube). Figure 10 depicts the partial portion of the connection among
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Figure 10. Partial portion of the connection among Q3’s.

By applying the xor-reconfiguration algorithm, we obtain the following results:

1) The action A, » A'6' » A'l» 5,' will recover the faulty node A,.

2) The action A2 » Sj will recover the faulty node A2.

3) The action A3 » A7 » A2 » 5̂  will recover the faulty node A3.

4) The action A4 » S] will recover the faulty node A4.

5) The action A5 » A7 » A2 » S\ will recover the faulty node A5.

6) The action A6 » A4 » 5! will recover the fault in A6,

We have shown that in the worst case any single fault in the embedding constructed by 

DC scheme can be recovered within 3 steps. Similar proof can be applied to other cases ( 

Q'3, i = 2, • • • , 5). Since for other cases there will be more spare nodes in 3-cubes, we 

claim that overall the system needs at most 3 steps to recover any single fault. □
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Lemma 4.3: Embedding a length-/: ring in a d-cube with the DC scheme. If there exist 

p Q '̂s in the embedding d-cube, then there will be 2 active nodes which need 2 steps 

for recovery when they become faulty.

Proof. Consider the three connection cases in Figure 7. In these three cases, A, and A\ 

are the two nodes which need 2 steps for recovery. The case in Figure 7(b) needs further 

consider about what the second Q\ connects to. Again, by following the proof technique 

in Theorem 4.1, it can be seen that there are two more nodes in the second which need 

2 steps for recovery. So, if there are p £$’s in an embedding d-cube, by considering the 

3-cube to which each Q\ is connected, there will be 2 nodes that need 2 steps for recov­

ery when they become faulty. □

Lemma 4.4: Embedding a length-/: ring in a d-cube with the DC scheme. If there exist 

Qj’s in the embedding d-cube, then there will be 3 active nodes which need 3 steps for 

recovery and 2 qnodes which need 2 steps for recovery when they become faulty.

Proof. This lemma can be verified by a similar proof technique to that of Lemma 4.3. □

Theorem 4: Embedding a length-/: ring in a d-cube with the DC scheme. If 3-cubes of 

the embedding d-cube consists of p Qt’s and q <2 f ’s, then we can conclude that:

. There are 3 qactive nodes needing 3 steps for recovery when they become faulty.

. There are 2 (p + q) active nodes needing 2 steps for recovery when they become 

faulty.

. There are r -5 q  -  2pactive nodes needing 1 step for recovery when they become 

faulty.
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Proof. Directly from Lemma 4.1, Theorem 4.3, Lemma 4.3, and Lemma 4.4. □

C. P erform an ce  C om parison

For convenience, we shall designate the embedding scheme in [ChLT88a] as 

Tasi’s_ l, the embedding scheme in [ChLT88b] as Tasi’s_2, and the embedding scheme, 

LI, in [Leet90] as Lee’s. In this section we compare the performance among Tsai’s_l, 

Tsai’s_2, Lee’s, and the DC scheme. Several parameters are used to characterize a recon­

figurable embedding scheme:

1) The number of faults tolerated.

2) The dilation and the average dilation of the original embedding and the recovered 

embedding.

3) The expansion and the average expansion of the original embedding and the 

recovered embedding.

4) The average recovery steps and the maximum recovery steps needed for recover­

ing one single fault.

Since all four schemes assume one fault occurring, they all tolerate one fault only. 

All four schemes achieve dilation-1 original embedding and dilation-1 recovered embed­

ding. So the parameters left over to distinguish different schemes are: expansion and 

recovery step issues. In this dissertation, we use the following measures: expansion, 

average_expansion, average_recovery_steps, and maximum_recovery_steps to compare 

the performance of different embedding schemes. Average_expansion is the average of 

expansions of embedding some certain ranges rings in those hypercubes of the least 

required size by each embedding scheme. Average_recovery_steps is the average steps



34

needed to recover one single fault, when consider embedding some certain lengths of 

rings in the least required hypercubes (the sizes of the hypercube needed will be 

depended on the embedding scheme chosen). Maximum_recovery_steps is the maximal 

numbers of steps required to recover one single fault, when consider embedding some 

certain lengths of rings in the least required hypercubes.

Since Tsai’s_2 is an embedding scheme which deals only with rings of lengths 

(3/4)2** and 2**_1. We will divide the performance comparison into two groups. In the 

first group, we compare the performance of Tsai’s_2, Lee’s, and the DC scheme of 

embedding rings of length (3/4)2** and 2**_l in hypercubes of the least required sizes by 

each scheme. In the second group, we compare the performance of Tsai’s_l, Lee’s, and 

the DC scheme of embedding rings of length *  (3/4)2** and 2**_1 for > 4  in hypercubes 

of the least required sizes by each scheme.

Table II demonstrates the performance measures in the first group. For rings of 

length (3/4)2** and 2**-1, all three schemes is 1-step recoverable, and both Tsai’s_2 and the 

DC scheme have smaller numbers in average_expansion and expansion than those of 

Lee’s. Table III and Table IV demonstrate the performance comparison in the second 

group with rings < 100 and < 1000, respectively. It can be seen that Tsai’s_l has the 

smallest values both in average_expansion and expansion among those of three schemes, 

however, the average_recovery_steps and maximum_recovery_steps of Tsai’s_l are 

much larger than those of two other schemes. Moreover, for length constraints from 100 

to 1000, the average_recovery_steps and the maximum_recovery_steps of Tsai’s_l 

almost increase 10 times. So, generally, Tsai’s_l is not an efficient recovery scheme. 

Lee’s has 1-step recoverable ability. However, from Table III and Table IV, we can easily
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see that the average_expansion and expansion o f  Lee’s are the largest among those o f  

three schemes. In terms o f processor utilization, Lee’s embedding scheme is inefficient. 

As w e mentioned, there is trade-off between the issues o f expansion and recovery for a 

fault-tolerant embedding scheme. From Table II, 3, and 4, we can conclude that the D C  

schem e reaches a very good compromise between the trade-off of expansion and efficient 

recovery.

Table II. Comparison among different schemes for embedding 

rings of length k in hypercubes of the least required sizes by 

each scheme, where k < 1000, k = or (3/4)2</, and £ 4.

Average

Expansion

Average

Recovery

Steps Expansion

Maximum

Recovery

Steps

Tsai’s_2 1.67 1 2.0 1

Lee’s 2.76 1 4.0 1

DC 1.67 1 2.0 1

Table III. Comparison among different schemes for embedding 

rings of length k in hypercubes of the least required sizes by 

each scheme, where k < 100, k/ 2d~l or (3/4)2d, and 4.

Average

Expansion

Average

Recovery

Steps Expansion

Maximum

Recovery

Steps

Tsai’s_l 1.47 10.8 1.94 49

Lee’s 2.77 1 5.12 1

DC 1.58 1.3 2.2 3



Table IV. Comparison among different schemes for embedding 

rings of length k in hypercubes of the least required sizes by 

each scheme, where k  ̂ 1000, k *  2 d~l or (3 /4 )2 d, and 4.
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Average

Expansion

Average

Recovery

Steps Expansion

Maximum

Recovery

Steps

Tsai’s_l 1.39 96 1.99 499

Lee’s 2.93 1 5.3 1

DC 1.64 1.27 2.28 3

Note that with a simple change to the DC scheme which permutes the embedding 

sequences generated by the DC scheme, the system with this updated version of the DC 

scheme and the xor-reconfiguration algorithm can recover any single fault in 2 steps. The 

proof, however, is involved and the interested readers are referred to [LiMc92b].

D . C on clu d in g  R em ark s

In this chapter we present a general scheme based on the idea of divide-and-conquer 

that efficiently embeds even length rings on hypercubes with small expansion and recov­

ery cost. It is shown that the average expansion for the proposed scheme is 1.58, and the 

average number of recovery steps is 1.3. Moreover, within 3 steps the system applying 

the proposed embedding scheme is able to recover any single fault. Compared to other 

embedding schemes that result in either large expansion or great recovery cost, our pro­

posed embedding scheme performs better.
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V. THE MODIFIED_DC SCHEME: 2-STEP 
RECOVERABLE EMBEDDINGS

In this chapter, we present an enhanced version of the DC scheme, the 

scheme, to efficiently embed even length rings in a hypercube to have small expansion 

and recovery cost. The characteristics of the scheme and the performance comparison 

with the DC scheme will also be addressed in this chapter.

A . T h e A lgorithm

Before we discuss the algorithm of the Modified_DC scheme, we need one more 

definition.

Definition: Let < d,, d2, ■ • • , dk >be the transition sequence of an embedding of a 

length-/: ring in a d-cube. Any partial but connective portion of the transition sequence, 

< dh dM , • • • , d;_j, dj >where i> 1 and j< k, will be designated as partial transition 

sequence of the embedding. Subscripts ’ L'or ’ R' will be appended to a partial transition 

sequence of the embedding (i.e., < dx,d2, • • • >i or < dj, d2, • • • >H) to symbolize the 

result of the left or right portion of the division processing. The subscripts are just for 

denotation, and < d ,, d2, • • ■ d, > l = < d x, d2, • • • d, >* = < d lt d2, • • • d,>.

The algorithm of the Modified_DC scheme of embedding an even k length ring in a

d-cube is following:
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Procedure MODIFIED_DC_SCHEME (k, d) !* 4 and (7/8)2d_1 < k <  (7/8)2rf */ 
begin

p  : =  k ! 2 - \

S:=PATH(p, d-1 , ’L’)
if > 5 then begin

if -  2rf < k < -  2dthen
8 8

Change all < 1,2, 3,1 > Kin S to < 2 , 1 , 3 , 2  >

6 , 7 ,
elseif — 2d < k £  -2 "  then 

o o
Change all < 1 ,2 ,3 ,1 ,2 ,1  > Rin 5 to< 2 ,1 ,3 ,2 ,1 ,2  > 

end

Rk —■► Qd = 0 I Concate (S, < d>, 5, < d>)
end

Procedure PA77/ ( / / ,  cf', h') /* p '+ l :path length, d': subcube size, and = ’L’ or ’/?’

*/

Const J] — 1, ^2 = 2, d2 ~ 3, d$ — 1, d$ ™ 2, d^ — 1 

begin

if (J' = 3) then

if  (h' = 'L') then

return (< du d2, ■ • ■, dp->L)

else return (< d }, d2, • • •, >*) 

else begin

/e/r := PA7H( L ],d'-\,’L’)

right := PA77/ ( T 1 , </'-l, ’/?’) 

return (left, < J' >, right)

end

end
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The function Concate in the algorithm concatenates several partial transition 

sequences together to form one larger partial transition sequence or a transition sequence 

(i.e., Concate (< 1, 2 >, < 1, 2, 3 >) = < 1, 2, 1, 2, 3 >). Again, the largest ring and the 

smallest ring that can be embedded in a d-cube with the Modified_DC is the same to 

those for the DC scheme.

Basically, the Modified_DC scheme differs from the DC scheme by the addition of 

permutation to some partial transition sequences (i.e., some partial transition sequences < 

1, 2, 3, 1 > will be permuted to < 2, 1, 3, 2 > and some partial transition sequences < 1 , 2 ,  

3, 1, 2, 1 > will be permuted to < 2, 1, 3, 2, 1 , 2  >). We will show later that with such 

simple permutation, the recovery efficiency of the resulted system can be better 

improved.

Example: Consider using the ModifiedJDC scheme to embed a length-18 ring in a 

5-cube. First, we have S = PATH (8, 4, ’ L').Since the divided subcube is not a 3-cube, 

PATH (8,4 , ’L’) is  split to two parts, PATH(3, 3, and PATH (4, 3 ’/?’). Then, PATH 

(3, 3, ' L') = < 1, 2, 3 >l ,PATH( 4, 3, ’/?’) = < U 2, 3, 1 >*, and ( 8, 4, ’L’) =

< 1, 2, 3 >L, < 4 >, < 1, 2, 3, 1 >R. Since (4/8)25 = 16 < 18 < (6/8)25 = 24, the partial 

transition sequence < 1, 2, 3, 1 >Rin Sis permuted to be < 2, 1, 3, 2 >. So, — = 0 

I Concate ( < 1, 2, 3 >, < 4 >, < 2, 1, 3, 2 >, < 5 >, < 1,2, 3 >, < 4 >, < 2, 1, 3, 2 >, < 5 >) 

* 0  1 < 1 ,2 ,  3, 4, 2, 1, 3, 2, 5, 1, 2, 3, 4, 2, 1, 3, 2, 5 >. This embedding is shown in Fig­

ure 11 (i.e., denotes as arrowed lines).
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Figure 11. Embedding a ring of length 18 in a 5-cube with the 

M odified_DC  scheme.

With the Modified_DC scheme, the transition sequences of the embeddings of 

length-16, 18, • • ■, 28 rings in a 5-cubes are shown in Table V.

Table V. Total transition sequences of embedding various rings in 

a 5-cube with the M odified_DC  scheme.

Rings Total transition sequence of an embedding

16 1 2 3 4 1 2 3 5 1 2 3 4 1 2 3 5

18 1 2 3 4 2 1 3 2 5 1 2 3 4 2 1 3 2 5

20 1 2 3 1 4 2 1 3 2 5 1 2 3 1 4 2 1 3 2 5

22 1 2 3 1 4 1 2 3 1 2 5 1 2 3 1 4 1 2 3 1 2 5

24 1 2 3 1 2 4 1 2 3 1 2 5 1 2 3 1 2 4 1 2 3 1 2 5

26 1 2 3 1 2 4 2 1 3 2 1 2 5 1 2 3 1 2 4 2 1 3 2 1 2 5

28 1 2 3 1 2 1 4 2 1 3 2 1 2 5 1 2 3 1 2 1 4 2 1 3 2 1 2 5

B . C h aracter istics  o f  the R esu ltin g  E m b ed d in gs

Corollary 5.1: To embed rings in a 4-cube with the Modified_DC scheme, the
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embeddings generated are 3-step recoverable in worst case.

Proof : According to the algorithm of the DC scheme and that of the Modified_DC 

scheme, both schemes will produce the same transition sequences for embedding rings in 

4-cubes. These embeddings in 4-cube are,

► G4 =  0 I <  1, 2, 3 , 4 ,  1 ,2 ,  3 , 4  >

R\o —̂ <24 = 0 I <  1 ,2 ,3 , 1,4, 1 ,2 ,3 , 1 ,4 >

*12 -> f t  ■ 0 I < 1, 2, 3, 1. 2 ,4 , 1, 2, 3, 1, 2, 4 >

Ru-> Q4 = 0 1 < 1, 2, 3, 1, 2. 1, 4, 1,2, 3, 1,2, 1, 4 >

It is easy to check that both embedding R% —» Q4 and Rn » are 1-step recoverable, 

R\o f t  is 2-step recoverable, and /?14 —* Q is 3-step recoverable. □

For now on, the rest of this chapter deals with embeddings in a d-cube, where d >  5.

Definition: Using the ModifiedJDC scheme, each 3-cube of the embedding hypercubes 

may contain one of the following partial transition sequences: <1 >, < 1, 2 >, < 1, 2, 3 >,

< 1, 2, 3, 1 >, < 2, 1, 3, 2 >, < 1, 2, 3, 1, 2 >, < 1, 2, 3, 1, 2, 1 > and < 2, 1, 3, 2, 1, 2 >.

We will use following notation to denote a 3-cube in embedding hypercubes,

Q\ : a 3-cube contains partial transition sequence < 1 >.

Q\ : a 3-cube contains partial transition sequence < 1, 2 >.

Q\: a 3-cube contains partial transition sequence < 1, 2, 3 >.

Q\ : a 3-cube contains partial transition sequence < 1, 2, 3, 1 > or < 2, 1, 3, 2 >.

Q\a 3-cube contains partial transition sequence < 1, 2, 3, 1, 2 >.

Q l : a 3-cube contains partial transition sequence < 1,2, 3, 1, 2, 1 > or
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< 2 , 1 , 3 ,  2 ,1 ,  2 >.

Lem m a 5.1: Embed a length-ifc ring in a d-cube with the Modified_DC scheme, (i) if k = 

(5/8)2*, then all the 3-cubes in the embedding d-cube will be (ii) if  k = (7/8)2*, then 

all the 3-cubes in the embedding d-cube will be Q\.

P roof: This lemma can be verified by a similar proof technique (i.e., induction proof 

based on the size o f the embedding hypercube) to that o f Lemma 4.2 in Chapter IV. Intu­

itively thinking, with the divide-and-conquer nature o f the Modified_DC scheme, the 

embedding of a (5/8)2* length ring in a d-cube will have 5 consecutive active nodes on 

each 3-cube o f the embedding d-cube. According to the previous definition, these 

3-cubes with 5 consecutive active nodes must contains the partial transition sequence < 1, 

2, 3, 1 > or < 2, 1, 3, 2 >. A similar argument can also be applied to the case o f a 

length-(7/8)2* ring. □

Lem m a 5.2: Embed a ring o f length k in a d-cube with the Modified_DC scheme, (i) if  

(7/8)2*_1 < k < (5/8)2*, then the possible combination o f 3-cubes in the embedding d- 

cube are: all Q l  all Q l (g  with Q l  and Q\ with Q l  (ii) if (5/8)2* < k < ('7/8)2*, then 

the possible combination o f 3-cubes in the embedding d-cube are: all Q l  all Q l Q\ with 

(g , and (g  with Q l

P roof: This follows directly from Lemma 5.1 and the algorithm o f the Modified_DC 

scheme. Note that, it is impossible to have the combinations o f 3-cubes like all Q\, all 

g ,  and Q\ with Q l  since for these combinations the length of rings embedded will be < 

(7/8)2*_1. □
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Lemma 5 3 : Embed a length-it ring in a d -cu b e  with the M o dified_D C  scheme, where 

(7/8)2d_1 < k < (5/8)2d and d£ 5, the embedding generated is 1 -step recoverable.

P ro o f  : According to Lemma 5.2, this theorem can be divided to several cases to prove it 

based on the combination of the 3-cubes in the embedding d-cube (i.e., cases for all 

all Q%, Q\ with Q], and Q% with (23). Here, we only consider the case that all 3-cubes are 

(?3, and show that the system can recover any single fault in 1 step. A similar proof can 

be applied to other cases to show that in those cases the system is also 1-step recoverable.

We further divide the case for all Q% to two subcases: one case for fault happens in a 

Q% with partial transition sequence < 1, 2 ,3 , 1 >, and the other case for fault happens in a 

Q% with partial transition sequence < 2 ,1 , 3, 2 >.

Case I : Fault happens in a with the partial transition sequence < 1, 2, 3, 1 >. 

Figure 12 shows the connection pattern for such a (>3 with < 1, 2, 3, 1 > to other Q\'s in 

the embedding d-cube. In Figure 12, nodes with labels beginning with are in active 

state, and nodes with labels beginning with are in spare state. By applying xor- 

reconfiguration algorithm, it is easy to see the following facts:

1) The action: A( » 5" will recover the faulty node A].

2) The action: A2 » Sj will recover the faulty node A2.

3) The action: A3 » S2 will recover the faulty node A3.

4) The action: A4 » Stwill recover the faulty node A4.

5) The action: As » 5, will recover the faulty node A5.
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Figure 12. Connection pattern of a (23 (i.e., with partial transi­

tion sequence < 1, 2, 3, 1 > ) with other s.

Thus, for each possible faulty node in any Q* with the partial transition sequence < 1 ,2 ,  

3, 1 >, the faulty node can be recovered in 1 step.

Case I I : A fault happens in a with the partial transition sequence < 2 , 1, 3, 2 >. 

Figure 13 shows the connection pattern for such a with < 2, 1, 3, 2 > to other in 

the embedding J-cube. In Figure 13, nodes with labels beginning with are in active 

state, and nodes with labels beginning with are in spare state. By applying xor- 

reconfiguration algorithm, it is easy to see the following facts:

1) The action: 5 , » 5"will recover the faulty node Bx.

2) The action: B2 » Si will recover the faulty node B2.

3) The action: Z?3 » S2 will recover the faulty node B3.

4) The action: BA » S, will recover the faulty node B4.

5) The action: Bs » S\ will recover the faulty node Bs.
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Figure 13. Connection pattern of a (i.e., with partial transi­

tion sequence < 2, 1, 3, 2 >) with other Q^’s.

Thus, for each possible faulty node in any Q3 with the partial transition sequence < 2, 1, 

3, 2 >, the faulty node can be recovered in 1 step. □

Lemma 5.4: Embed a length-A: ring in a d-cube with the Modified_DC scheme, where 

= (6/8)2d, the embedding generated is 1-step recoverable and all the 3-cubes in the 

embedding d-cube are Q%.

Proof: In Chapter IV, we have shown that to embed a ring of length (6/8)2d in a d-cube 

with the DC scheme, the embedding generated are 1-step recoverable, and all the 3-cubes 

in the embedding d-cube are <2̂  (i.e., with partial transition sequence < 1, 2, 3, 1, 2 >). 

Comparing the algorithms of the DC scheme and the Modified_DC scheme, it can be 

checked that both schemes will come out the same transition sequence for embedding of 

a length-(6/8)2rf ring in a d-cube. Therefore, the lemma follows. □

Lem ma 5.5: Embed a length-A: ring in a d-cube with the ModifiedJDC scheme, where 

(5/8)2d < k < (7/8)2J, k*{6l'Z>)2d, and d > 5, the embedding generated is 2-step recover­

able.

Proof: Using the similar proof technique to that of Lemma 5.3. □
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Theorem  5.1: Embed rings in d-cubes, d£ 5, with the M odified_D C  scheme, the embed­

dings generated are 2-step recoverable in worst case.

P roof: Directly from Lemma 5.3, Lemma 5.4, and Lemma 5.5. □

C. P erform an ce C om parison

In this section, we compare the performance between the D C  scheme and the M odi- 

f ie d _ D C  scheme.

Table VI. Comparison of recoverability between the D C  scheme 
and the M odifiedJDC  scheme for dimensions of embedding 
hypercubes > 5.

{ d ' t  5) D C  scheme M odifiedJDC  scheme

(7/8)2*_1 < <(4/8)2* 1 -step recoverable 1 -step recoverable

(4/8)2* < k <(5/8)2*2-step recoverable 1-step recoverable

(5/8)2* < k <  (6/8)2* 2-step recoverable 2-step recoverable

k  = (6/8)2* 1-step recoverable 1-step recoverable

(6/8)2* < k <  (7/8)2* 3-step recoverable 2-step recoverable

In Table VI we compare the recoverability between the system with the D C  scheme 

and the system with the M o d ified _ D C  scheme. It can be seen that the system with the 

M odified ,_D C  scheme has better performance than that with D C  scheme. Overall, the 

system with the D C  scheme is 3-step recoverable and the system with the M o d ified _ D C  

scheme is 2-step recoverable.
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Corollary 5.2: Embed a length-/: ring in a d-cube with the Modified_DC scheme, if 

(7/8)2**-1 < k < (5/8)2** or k = (6/8)2**, then all the k active nodes in the embedding will 

need 1 step for recovery when they become faulty.

Proof: Directly from Lemma 5.3 and Lemma 5.4. □

Corollary 5.3: To embed a length-/: ring in a d-cube with the Modified_DC scheme, 

where (5/8)2** < k <(6/8)2**, if there exists p Qj’s with partial transition sequence < 1, 2, 

3, 1 > and q (T^s with < 2, 1, 3, 2 > in the embedding d-cube, then there are 

active nodes which need 2 steps for recovery and k -  -  q) active nodes which need 1

step for recovery when they become faulty.

Proof: According to Lemma 5.2, Lemma 5.4, and the algorithm of the ModifiedJDC 

scheme, embed a ring of above length constrain in a d-cube with the ModifiedJDC 

scheme, the resulting combination of 3-cubes in the embedding d-cube is with Q\. 

That is, the embedding d-cube consists of only and C^’s. The possible connection 

patterns among these Q '̂s and ^ ’s are follows,

Case (i) A Q\ with < 1, 2, 3, 1 > connecting to a Q\ with < 2 , 1, 3, 2 > as in Figure 

14(a). In Figure 14(a), the recovery processing for active nodes Ax and A10 are 

undecidable yet (i.e., need more information) and the rest of the active nodes can be 

recovered in 1 step. To discuss the recovery processing for nodes and A10, we 

need to further consider about what kinds of 3-cubes connecting to the with < 1, 

2, 3, 1 > in Figure 14(a) and what kinds of 3-cubes that the same Q% connecting to. 

However, those possible connections will fall into the five cases that we discuss 

here.
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Case (ii) A Q $ with < 1, 2, 3, 1 > connecting to a as in Figure 14(b). In Figure 

14(b), the active nodes A5 and A6 can be recovered in 2 steps, the recovery process­

ing for active nodes A, and Anare undecidable yet, and the rest of the active nodes 

can be recovered in 1 step.

Case (iii) A Q% with < 2 , 1, 3, 2 > connecting to a < 1» 2, 3, 1 > as in Figure

14(c). In Figure 14(c), the recovery processing for active nodes A{ and A )0 are 

undecidable yet, and the rest of the active nodes can be recovered in 1 step.

Case (iv) A Q\ connecting to a Q\ with < 1, 2, 3, 1 > as in Figure 14(d). In Figure 

14(d), the recovery processing for active nodes A] and Au are undecidable yet, and 

the rest of the active nodes can be recovered in 1 step.

Case (v) A Ql connecting to a Q\ as in Figure 14(e). In Figure 14(e), the recovery 

processing for active nodes Ax and An are undecidable yet, and the rest of the 

active nodes can be recovered in 1 step.

So, in these five connection cases, only case (ii) results in 2-step recoverable active 

nodes. Hence, to count the number of active nodes which are 2-step recoverable, we 

need only to count the number of Qfcs with < 1,2, 3,1 > which connect to Q^’s. That is,

The number of 2-step recoverable nodes

= 2 x (the number of Q '̂s with < 1, 2, 3, 1 > that connect to <2̂ ’s )
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= 2 x (subtracting the number of 0^’s with < 1, 2, 3, 1 > that connect to 0^’s 

with < 2 ,1 , 3 ,2  > from the total number of 03 with < 1,2, 3,1 > )

= 2 x  (subtracting the number of Q%'s with < 2 , 1, 3 ,2  > from the total number of 

0  ̂ with < 1, 2, 3 ,1  > )

= 2 X ( p - q )□

Figure 14. (a) A 0* with < 1, 2, 3, 1 > connecting to a 03 with <2, 1, 3, 2 >. 

(b) A 03 with < 1, 2, 3, 1 > connecting to a 0 3 . (c) A 0^ with < 2,1, 3, 2 > con­

necting to a Q*with < 1, 2, 3, 1 >. (d) A Q 3 connecting to a 0^ with < 1, 2, 3, 1 

>. (e) A 0* connecting to a 0 j.

Corollary 5.4: Embed a length-/: ring in a d-cube with the Modified_DC scheme, where 

(6/8)2rf < k < (7/8)2rf, if there exist p 0 j ’s with partial transition sequence < 1, 2, 3, 1, 2, 

1 > and q 03 ’s with < 2, 1, 3, 2, 1, 2 > in the embedding d-cube, then there are 2 6

active nodes which need 2 steps for recovery and k - 2 p - 6 q  active nodes which need 1
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step for recovery when they become faulty.

Proof: This corollary can be verified by a similar proof technique to that of Corollary 

5.3. □

Now, we use the results from the Corollary 5.2, Corollary 5.3, and Corollary 5.4 to 

compare the performance between the DC scheme and the Modified_DC scheme with the 

same criteria: average expansion, maximum expansion, average recovery steps, and max­

imum recovery steps, which are described in Chapter IV. The result of this comparison is 

given in Table VII.

Table VII. Comparison of the performances of the DC scheme 

and the ModifiedJ>C scheme for embedding rings of length k in

d-cubes such that d >5, (7/8)2d_1 < (7/8)2**, and

k < 1000.

Schemes

Average

Expansion

Maximum

Expansion

Average

Recovery

Steps

Maximum

Recovery

Steps

DC 1.64 2.28 1.3 3

ModifiedJDC 1.64 2.28 1.1 2

From Table VII we can see that the average expansion and the maximum expansion 

of both embedding schemes are the same, since both schemes impose the same length 

constrain, (7/8)2**_1 < k  <(7/8)2**, on rings that are embeddable in d-cubes. Note that, 

for the system with the Modified_DC scheme the average number of recovery steps 

needed to recover one single fault is 1.1, and it is 1.3 to the case of the DC scheme. 

Again, this shows the performance improvement of the ModifiedJDC scheme over the
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DC scheme.

D. C on clu d in g  R em arks

In this chapter, we have presented the Modified_DC scheme which is an enhanced 

version of the reported DC scheme for rings embedded in hypercubes. It is shown that 

with some simple permutations of partial transition sequences, the system with the Modi­

fied J )C  scheme turns out to have better performance, in term of recoverability and aver­

age number of recovery steps needed, than that with the DC scheme. Overall the Modi­

fiedJDC scheme is 2-step recoverable and needs average 1.3 steps to recover one single 

fault when the dimension of the an embedding hypercube is > 5.
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V I. 1 -S T E P  R E C O V E R A B L E  E M B E D D IN G S

An embedding is 1 -step recoverable if any single fault occurs the embedding can be 

reconfigured in one reconfiguration step such that the new embedding is still a ring of the 

original length. ISRE’s are most interesting because of their efficient reconfigurability 

due to faults. In this chapter, we present an efficient method to systematically construct 

such embedding. Our scheme is based on a composition idea by which a 1SRE in a given 

dimension hypercube is formed by combining two ISRE’s in two lower dimension hyper­

cubes. We show that to embed a length-/: (even) ring in a d-cube where 6 £ <! (3/4)2J

and d t3, our scheme will guarantee finding a 1SRE, provided such an embedding 

exists. Compared with other existing schemes for constructing ISRE’s, our scheme sur­

passes them in terms of applicability of the scheme and the expansion of the resulting 

embeddings.

A basic condition derived from the topological properties of the hypercube for a 

given embedding to be a 1SRE is described as follows.

Corollary 6.1: Let â , a2, • • •, ak be the listing in order of the k active nodes for an

embedding of a length-/: ring in a d-cube, and let A = {a{, , ,, ak}. This

embedding will be a 1SRE if and only if,

{^xor I &xor ~ XOR{m0{j mo(j ), 1 — ) o  0

Proof: It will be clear that the above condition is a sufficient condition for the existence 

of a 1SRE. However, we need to discuss about the condition being a necessary one.
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Figure 15 shows a partial portion of an embedding (i.e., denotes in arrowed lines) in 

a 2D plane of a hypercube. at, aM, al+2, and s represent the addresses of four nodes in a 

2D plane of a hypercube. According to the topological properties of hypercubes, XOR( 

ah aM , al+2) = sand there exist only 2 node-disjoint shortest paths from node at to node 

al+ 2 (u, —> al+ ] —» al+2 and at —> s ai+2) since the Hamming distance between nodes at 

and a /+2 is 2 [SaSc88]. With the definition of recovery step, we know that node .v is the 

only node that can be used to recover the node aM in 1 step. So, node s must be in spare 

state if the faulty node aM need to be recoverable in 1 step. Since a 1SRE means any 

single faulty node must be recovered in 1 step, ever)' node with address 

XOR( at a(( mod k) + ,, a((<+1) mod k) + i), 1 < / < k,needs to be in spare state. We conclude

that condition (1) is also a necessary condition for the existence of a 1 SRE. □

«/+i

O-----
A

o - - -

ai+2

I
I

— -6
s

Figure 15. A partial portion of an embedding in a 2D plane of a 

hypercube.

It is easy to check that the embedding in Figure 2 is, in fact, a 1SRE, since any pos­

sible faulty node in the embedding can be recovered by spare nodes 0010, 0101, 1001, or 

1110 in 1 step (e.g., faulty node 0001, 0111, or 1000 can be recovered by spare node 

0010). It can also be verified that the condition in corollary 6.1 is satisfied for this 1SRE.
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A . A  C om position  M eth od

In this section, we discuss a composition method to systematically construct ISRE’s 

for embedding a length-/: (even) ring in a d-cubes, where 6 < k <  (3/4)2rf and d > 3. Our 

scheme is based on the following idea: if there exists a 1SRE of length-/:, ring in a d- 

cube and a 1SRE of a length-/:2 ring in a d-cube, then there exists a 1SRE of a 

length-(/:, + k2) ring in a (d + l)-cube.

Lemma 6.1: For odd length rings and rings with length less than 6, there are no ISRE’s 

in hypercubes.

Proof: It is shown that there are no cycles of odd length in hypercubes in [SaSc88], 

therefore, no odd length rings can be embedded in hypercubes. Since the shortest cycle 

in a hypercube has length 4, a length-2 ring cannot be embedded in hypercubes. For a 

length-4 ring in a hypercube, the embedding must constitute the 4 nodes of a 2-D plane of 

the hypercube, and it is easy to see that such embedding is not a 1SRE. □

Lem m a 6.2: If there exists a 1SRE of a length-/: ring in a d-cube, then there exists a 

1SRE of a length-/: ring in a (d + l)-cube.

Proof: The proof is trivial. Just leave one d-cube unused, and the same 1SRE of a ring 

in a d-cube is also a 1SRE of a k length ring in a (d + l)-cube. □

Lem m a 63: If there exists a 1SRE of a length-/:, ring in a d-cube and a 1SRE of a 

length-/c2 ring in a d-cube, then there exists a 1SRE of a length-(/:1-i-/:2) ring in a 

(d + l)-cube.
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Proof'. First, we present a compositional method to form a 1SRE of a length-(fc,+&2) ring 

in a (d + l)-cube from two existing ISRE’s of length-fc, and length-fc2 rings in a d-cube. 

Let the two existing 1 SRE’s be

R k[ ~̂Qds  O l c x i . y i . Z L  •••  >, and

Qd =  0 1 < x 2, y 2,

By swapping some coordinates in the transition sequence of Qd, we can have the

first three coordinate places of both transition sequences be the same. For example, if 

Q d -  0 I < 1, 2, 3, 1, 2, 4, • • ■ > and Rkl —> Qds  0 I < 1, 4, 3, • • • >, then we have Rkl 

—J► Q d s  0 I < 1, 4, 3, 1, 4, 2, • • • > after the swapping (exchange 2 and 4). Then, we 

change the starting node of the new Rkl —» Qdto be 0 ® 2V3_1 (© : the bitwise-XOR oper­

ation). So, we have

Rk ,^ Q d  = 0 © 2V2 1 ■■■ >, and 

Rk2-^Qd = 0 1 < z2, • • • >

such that both embeddings remain 1 -step recoverable.

Figure 16. A transition sequence for —> Q ( d+\) by composing

two transition sequences of Rk Qd and Rk̂ —>
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To form a transition sequence for a 1SRE /?(*,+*2) —> i>, we simply replace the

first y2 coordinate place in both transition sequences for Rk{ — Qd and Rkl Qd with 

d + 1 coordinate place, and then combine these two transition sequences together. This 

processing is depicted in Figure 16. Thus, we have

R*,+*2 Qd+i = 0 1 < jt2, 1, z2, ' • •» *2> <*+\, z2, • • • >

Second, we need to show that the embedding —> cited is a 1SRE. Figure 

17 will help us to explain this proof more clearly. Figure 17(a) and 17(b) depict the par­

tial portions of Rkl —» Qd and Rki —» Qd, respectively. Figure 17(c) depicts the R(*,+*2) 

—> Q(rf+j), constructed by following the composition method. Note that, nodes s, and s2 

in Figure 17(a) and nodes s3 and s4 in Figure 17(b) must be spare nodes. For /?(Jt|+*2) —» 

Q(d+i) in Figure 17(c), all the active nodes except nodes a,,, a,3, and ai4 remain to be 

1-step recoverable as they are in Rk] —> Qd and Rk2 —> Qd. And, all the spare nodes in 

Rkl Qd and Rk2 Qd remain to be spare nodes as they join in /?(*,+*2) — (2W+1). 

Thus, we need only to check the recovery processes for nodes ai{, a,-2, a,3, and a,4 for ver­

ifying the 1-step recoverability for R(k]+k2) i>- Since active nodes al]( a,-2, a,-3, and

a,-4 can be recovered by spare nodes s3, s4, su and s2 in one step, respectively, this (̂*,+*2) 

—̂ Q(d+i) is n 1SRE. D
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Figure 17. (a) Partial portion of /?*, —> 0 © 2y2 1 I < * 2, Z2.

• • • >. (b) Partial portion of R*2 -» Q</ s  0 I < *2* Z2> ' * * >• (c)

*̂,+*2 -» (2d+i composed from /?*, -» and R*2 -* Q d .

Example: By using the composition method in Lemma 6.3, we demonstrate the construc­

tion o f a 1SRE of a length-20 ring in a 5-cube by two smaller ISRE’s, Rg —» Q4 = 0 I < 1, 

2, 3, 4, 1, 2, 3, 4 > and Rn —* Qa = 0 I < 1, 4, 3, 1, 2 ,3 ,1 , 4, 3, 1, 2, 3 >. With the chang­

ing of starting node and swapping the elements in the transition sequence, we have Rg 

<24 = 0 0  23 I < 1, 4, 3, 2, 1,4, 3, 2 > and R12 -> Q4 = 0 I < 1,4, 3, 1, 2, 3, 1, 4, 3, 1, 2, 3 

>. Deleting two coordinate-4 places and combining the two sequences together by 

adding two coordinate-5 places, we have R2o = 0 I < 1, 5, 3, 2, 1, 4, 3, 2, 1, 5, 3, 1, 

2, 3, 1, 4, 3, 1, 2, 3 >, which is a 1SRE. Fig. 18 depicts such construction of a 1SRE.



58

Figure 18. (a) 1SRE R8 -» Q4 == 0 © 23 I < 1,4, 3, 2,1,4, 3, 2 >. (b)

1SRE R n- 4  Q a =  0  I <  1, 4, 3, 1, 2, 3, 1,4, 3, 1, 2, 3 >. ( c )  1SRE R20 

-» fi5 s  o I < 1,5, 3,2.1, 4, 3,2, 1, 5,3, 1, 2, 3, 1,4, 3, 1, 2, 3 >.

Lemma 6.4: There exists a 1SRE of a length-6 ring in a 3-cube.

Proof: The embedding, R6 Q3 = 0 I < 1,2, 3,1, 2, 3 >, is 1-step recoverable. □

Lem ma 6.5: There are ISRE’s of length-6, 8, and 12 rings in a 4-cube, but no 1SRE of a 

length-10 ring in a 4-cube.

Proof: The proof is divided into following cases:

Case I. According to Lemma 6.2 and Lemma 6.4, For a length-6 ring, —> = 0

I < 1, 2, 3,1, 2, 3 > is a 1SRE (Lemma 6.2 and Lemma 6.4).

Case n . For a length-8 ring, Rs-4  Q4 = 0 I < 1,2, 3 ,4 ,1 ,  2, 3, 4 > is a 1SRE.
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Case HI. For a length-12 ring, by using the composition method in Lemma 6.3, we 

can construct a 1SRE by combining two ISRE’s of —» e  0 I < 1, 2, 3, 1, 2, 3 

>. We have Rn-*  Qa = 0 I < 1,4, 3 ,1 ,2 ,  3 ,1 ,4 ,  3,1, 2, 3 >, which is a 1SRE.

Case IV. For a length-10 ring, an easy computer program was used to enumerate all 

possibilities, and we found out there is no IRE for a length-10 ring in a 4-cube. □

Lem m a 6.6: For length-6, 8, 10, • • •, 18, 20, and 24 rings, there are ISRE’s in a 5-cube, 

but no 1SRE of a length-22 ring in a 5-cube.

Proof: The proof is divided into the following cases:

Case I. For length-6, 8, and 12 rings, there are ISRE’s in a 5-cube (Lemma 6.2 and 

Lemma 6.5).

Case II. For a length-10 ring, the embedding /?,0 -+ 0 I < 1, 2, 3, 4, 5, 1, 2, 3,

4, 5 > is a 1SRE.

Case III. For length-14, 16, 18, 20, and 24 rings, there are ISRE’s in a 5-cube. 

These ISRE’s are shown in Table VIII.

Case IV. For a length-22 ring, the composition method does not work, since 22 = 12 

+ 10 and there is no 1SRE of a length-10 ring in a 4-cube. A computer program was 

used to enumerate all possibilities, and it shows there is no 1SRE of a length-22 ring 

in a 5-cube. □
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5-cube

60

E m b e d d i n g s C o n s t ru c t ed  f rom

* 1 4  - »  QsK 0 1 <  !• 5 ,  3,  4 ,  1 , 2 ,  3,  4 ,  1, 5 . 3 , 1 , 2 .  3 > ^ 6  C?4’ ^ 8  Q a

* 1 6  —» Q s s  0  1 <  1- 5 < 3 . 4 . 1 ,  2 .  3,  4 ,  1, 5,  3.  4 , 1 , 2 . 3 , 4  > * 8  Q a<*8  Q a

* 1 8  - >  Qs*0 1  <  1 . 5 , 3 , 1 , 2 , 3 .  1 , 4 ,  3.  1 . 2 , 3 .  1 . 5 . 3 , 1 , 4 ,  3  > * 6  Q a' * 1 2  ~^

*20 ~ * QsE 0  1 <  1 , 5 , 3 ,  1 , 2 ,  3 ,  1 , 4 ,  3 , 1 , 2 ,  3,  1 , 5 , 3 ,  2 , 1 , 4 , 3 , 2 > * 8  Q a’ * 1 2  Q a

* 2 4  - * ( ? 5 s O I <  1 . 5 ,  3,  1 . 2 , 3 ,  1 , 4 .  3,  1 . 2 , 3 .  1 , 5 , 3 .  1 , 2 ,  3 ,  1 , 4 , 3 ,  1 , 2 , 3 > *12 -*  Q a' * 1 2  ~ *

Lem ma 6.7: For length-6, 8, 10, • ■ • , 44, 46, and 48 rings (i.e., rings of length k, 6 

(3/4)26), there are 1 SRE’s in a 6-cube.

Proof: The proof is divided into the following cases:

Case I. For length-6, 8, • • •, 20, and 24 rings, there are 1 SRE’s in a 6-cube (Lemma 

6.2 and Lemma 6.6).

Case II. For length-22, 26, • ••, 44, and 48 rings, there are ISRE’s in a 6-cube 

(Lemma 6.3). Summary of constructing these ISRE’s is given in Table IX.

Case III. For a length-46 ring, the composition method does not work, since 46 = 

24 + 22 and there is no 1 SRE for a length-22 ring in a 5-cube. However, the follow­

ing embedding comes out,

*46 -»  Qt = 0 I < 1, 2, 3, 1 ,2 ,4 ,1 ,2 ,  3,1,  2, 5 ,1 ,2 ,  3, 1,2, 4, 1, 2, 3,1,  6,
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3,4, 1,2, 4, 1, 5,4, 3, 5 ,1 ,2 ,5 ,1 ,  3 ,4 ,1 ,  3,2, 5,1, 6, 5 >,

which is a 1 SRE.

Table IX. Summary of constructing ISRE’s of length-22, 26, • • • 

44 and 48 rings in a 6-cube

Embeddings Constructed from Embeddings Constructed from

R 22 * 1 0  Qs. 12 ~ i ► Qs Rib Qb R 18 “ * Qs. R\8 Qs

Rib R n  Qs. Qs R n  Qb R\% Qs. R 20 Qs

R n R u  Qs. Qs R40 Qb R20  ~ *  Qs. R 20 Qs

R 30 R ] 4 Q s .  R\b Qs R42 Qb ^ 1 8  Qs. R ta ► Qs

R y i Q t R\b Qs. R\b Qs R44 —■► Qb R20 Qs. R 24 Qs

R 34 Qb R\b Qs. R n  Qs R48 Qb R24 - *  Qs. ~ *  Qs

Theorem 6.1: There exists a 1SRE of a length-/: (even) ring in a d-cube, where 6 < 

(3/4)2d and d >3, except when /:=10 with d=4, and 22 with d-5.

Proof: We use an induction proof based on the size of d to prove this theorem.

Induction base: For d = 3, d = 4, d = 5, and = 6, the theorem follows based on

Lemma 6.4, Lemma 6.5, Lemma 6.6, and Lemma 6.7, respectively.

Induction hypothesis: Assume the theorem follows when = 6. That is, there

exists a 1 SRE of a length-/: ring in a m-cube, where 6 < (3/4)2m.

Induction step: = + 1
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Case I: 6 < it £ (3/4)2m. According to induction hypothesis and Lemma 6.2, 

there exists a 1SRE of a length-/: ring in a (m + l)-cube.

Case II: (3/4)2m < k <  (3/4)2(m+1). Since k is even, we have + k2, where 

/:, and k 2 are even, and 6 < k] <(3/4)2m and 6 (3/4)2"'. By the induc­

tion hypothesis there exists a 1SRE of a length-/:, ring in a m-cube and a 1SRE 

of a length-/^ ring in a m-cube. By using the composition method in Lemma 

6.3, we can construct a ISRE of a length-/: ring in a (m+ l)-cube with these 

two smaller ISRE’s. L)

B. Complexity and Comparison

The running time complexity of our schemes for embedding a length-n ring in the 

hypercube is approximately about

T(n) = 2T(n) + c,

and we have T(n) = 0(rc). So, the running time complexity of our scheme is polynomial 

to the length of the ring embedded.

The comparison of our scheme to the existing schemes for ISRE’s (i.e., 

[ChLT88b,Leet90,PrMe88]) is described as follows. Basically, the lengths of rings that 

are applicable to other schemes in [ChLT88b,PrMe88] are very restricted, since both 

schemes are designed for embedding rings of lengths 2d~] and (3/4)2rf only in a d-cube. 

It is shown that for rings of such lengths both schemes have efficient ways to construct 

ISRE’s, however, they are not able to construct ISRE’s of rings of other lengths. Com­

pared with the schemes in [ChLT88b,PrMe88], our scheme can be applied to more rings 

of different lengths.
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Unlike the schemes in [ChLT88b,PrMe88], the scheme in [Leet90] can construct 

ISRE’s of any even length ring in the hypercube. However, the trade-off for such excel­

lent performance is that the resulting 1 SRE’s are of large expansion (the ratio of the size 

(in number of nodes) of the embedding hypercube to that of the embedded ring). For 

many case, the scheme will embed a ring in a hypercube that is one dimension larger than 

is necessary in order to achieve efficient reconfiguration due to faults. For example, a 

length-16 or length-20 ring will be embedded in a 6-cube by the scheme , although a 

5-cube is enough to accommodate the ring. Compared with the scheme in [Leet90], our 

scheme has better performance in terms of the processor utilization of the resulting 

ISRE’s.

We summarize the comparison of our scheme to other existing schemes for con­

structing ISRE’s in Table X.

Table X. Comparison among schemes for constructing ISRE’s

Schemes Applicability to the ring Expansion of resulting ISRE’s

[ChLT88b] Rings of length 2 d~] and (3/4)2rf 

in a d -cube

-

[PrMe88] Rings of length (3/4)2^ in a <i-cube -

[Leet90] All even length rings Large expansion in many cases

Our scheme Rings of length from 6 to (3/4)2d 

in a d -cube

Smaller expansion than that for [8]
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C. Tw o Sp ecia l C ases

In this section, we will formally show that there is no existence of ISRE’s for the 

two embedding cases: a length-10 ring in a 4-cube and a length-22 ring in a 5-cube.

1. A Necessary and Sufficient Condition. Note that, not every list of digits is the coor­

dinate sequence of a cycle. A typical list, such as <1,2,1,3,2,3,1,3,1>, represents a way of 

wandering along lines of the cube graph, possibly visiting some vertices more than once. 

The observation leads simply to the following result.

Theorem 6.2: [Gilb58] A k-tuple T = <r,, t2, • • • , = 1, • • • , is the transition 

sequence of a cycle of a d-cube if and only if every one of the blocks of length 1, • • • , or 

k -  1 contains some digit an odd number of times while T itself contains every digit an 

even number of times.

In the following we will consider a necessary and sufficient condition for a fc-tuple 

T -<tj, t2, • • • , 1k> t) = 1, • • •, dnot being the transition sequence of a 1SRE.

Corollary 6.2: Let W = v0, c,, v,, c2, • • • , vk ck, v* be a walk on the hypercube. Two 

distinct vertices v, and v;- (/ < j)on W are adjacent along the pth coordinate if and only 

if the block cM ,c(+2, • • • , Cj(the coordinates between v, and Vj along IV) contains digit 

p an odd number of times and other digits all even numbers of times.

Proof: By thinking each coordinate change as a bit-flipping processing from "0" to " 1" 

or " 1" to "0" on the z'th coordinate, this lemma clearly follows. □
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Theorem 6.3: A *-tuple T = <f,, t2,• • •, tk> t, = 1, • • ■ ,dis no a transition sequence of

a 1SRE of a length- kring in a d-cube if and only if one of the following conditions is 

true,

(1) For some block th • • • , t j where j  -  i + 1 < every digit in it is repeated an 

even number of times.

(2) For some block t h tM, • • • , r(+m_,, ti+m ( is even) where tM = it contains 

digit q an odd number of times and each other digit an even number of times.

(3) For some block th tM , • • • , , ti+m(m is even) where = , it contains

digit q an odd number of times and each other digit an even number of times.

Proof: (1) is clearly implied by corollary 1. Here we consider only (2) and (3).

For the fc-tuple T = </,, t2, • • • , tk> t { = 1, • • • ,  d,we construct a walk W = v0, 

v x, t2, ••• , v*_j, tk, v*. on the hypercube by following T as the sequence of coordinates. 

The choice of v0 is arbitrary.

Let tj = p. If the condition (2) above is true for T, then the block ti+2, • • • , 

(without /, = p and tM = q) contains digit p an odd number of times and each other digit 

an even number of times. According to Corollary 6.2, vl+1 and then are adjacent 

along pth coordinate. The situation is depicted in Figure 19. Thus, vM , vf- and vl+1, and 

v(+m constitute the four vertices of a 2-D plane of the hypercube, and T can not be the 

transition sequence of a 1SRE.
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Figure 19. Some block th tM , • • •, tl+m ( is even) where f,+1 = 

q of the transition sequence of an embedding contains digit q an 

odd number of times and other digits even numbers of times.

Let h+m-  P• If the condition (3) above is true for T, then the block tt, ,

(without = q and ti+m = p) contains digit p an odd number of times and each other 

digit an even number of times. According to Corollary 6.2, v(+m_2 and vf_, then are adja­

cent along /?th coordinate. The situation is depicted in Figure 20. Thus, v,_,, v, and v,+1, 

and vhm constitute the four vertices of a 2-D plane of the hypercube, and T can not be the 

transition sequence of a 1 SRE.

t
Figure 20. Some block t,-,• • ■ , ti+m_{, t(+m (m is even) where 

ti+m-i = q of the transition sequence of an embedding contains 

digit q an odd number of times and other digits even numbers of 

times.
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If T is not the transition sequence of a 1 SRE, then there must be some v, on W 

which is not 1-step recoverable. That is, there exist some vx_i, v ,, v ^ ,  and vy on W 

such that vy = XORIv,.,, v„  v,*,), and v,_,, vx+), and vv constitute the four vertices

of a 2-D plane of the hypercube.

Case (1): x < y (i.e., y  = x + m, m >0). Let x = and and let tj = p and 

/(+1 = q. Since vM, v,-, v,+1, and v(+m form a 2-D plane and v,_, and v( are adjacent 

along pth coordinate (/,• =p), v/+] and v/+„, must be also adjacent along the /7 th  coor­

dinate. According to Corollary 6.2, the block /,+2, tM, • • ■, then contain digit p 

an odd number of times and each other digit an even numbers of times. Hence, the 

block th r,+), • • •, tl+m contain digit q an odd number of times and each other digit an 

even number of times. Note that, m is even since the number (/ + + 1 = + 1

is odd.

Case (II): y < x (i.e., x  = y + m, m> 0). Let = / -  1 and x = i + m -  l, and let 

= pand ti+m.j = q. Since v1+m_2, vl+m_,, v,+m, and v,_, form a 2-D plane and v1+m_! 

and v(+m are adjacent along /7th coordinate (ti+m =p), v,+m_2 and V/_! must be also 

adjacent along the pth coordinate. According to Corollary 6.2, the block th • • •

, ti+ m - 2  then contain digit p an odd number o f times and each other digit an even 

number o f times. Hence, the block th tM, • • • , contain digit q an odd number 

o f times and each other digit an even number of times. Note that, m is even since 

the number (/ +  m) -  / +  1 =  m +  1 is odd. □ 2

2. Change Numbers. Let Tbe a coordinate sequence and let N*, = 1, • • •, be the

number o f  appearances o f the digit k in T. Nk will be called the kth change number o f T. 

For instance, the transition sequence <1,2,3,1,2,4,1,2,3,1,2,4> has the change numbers 

4,4,2,2. The change numbers o f any other sequence T  o f  the same type as T are just a



68

rearrangement of /V1( • • •, Nd. Hence a comparison of change numbers often suffices to 

prove two transition sequences to be of different type. There are, however, many exam­

ples o f transition sequences of different type but having the same set of change numbers.

Note that, the transition sequences of embeddings of a specific length ring in a given 

size hypercube can be classified into groups based on their change numbers. Clearly, 

many of these sets of change numbers are not feasible for ISRE’s. By using the change 

numbers to systematically consider the possible transition sequences for ISRE’s, we can 

more easily show that there is no ISRE’s for some embedding cases. Let )

denote the number of partitions of n into M parts, each of which is even and does not 

exceed N. It turns out the number of possibly feasible sets of change numbers for the 

transition sequences of all ISRE’s of a length-/: ring in a d-cube is bounded by the num­

ber, Pe^_k/3],d,k). However, there is no existing closed form for Pe(N, M,n), and it

seems to be very difficult to generate such a closed form [Andr76].

In counting partitions the order is unimportant, so there are three different partitions 

of 6 with 3 parts: 4+1+1, 3+2+1, and 2+2+2. On the other hand, in counting the number 

of solutions of an equation, order is important since the integers represent different vari­

ables. Therefore the number of positive integer solutions of a:, + + 6 is not 3, but

f 5 \
= 10. Let Se(N, M, n) denote the number of positive solutions of + + • • • +

v2/

= n where Xj is even and < N. Clearly Pe(N, M,n) < Se(N, M,n), so we can used the 

closed form for Se(N, M, n) to derive a asymptotic formula for Pe(N, M, n).

Corollary 6 3 : [JaTh90] The number of positive integer solutions of ^  + + -----t- xM =

n + (M -l)''
n is
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Corollary 6.4: [JaTh90] The number of positive integer solutions of x, + h-----+ =

n where at least one £ N is
< n ~ N )

• M.

According to the previous definition, S) is the number of positive even 

integer solutions of the equation

jc) + x24 h xM = n,X! is even,2  < ^

n , N
=> y, + y2 + • ■ • + = -  1 < y, <, —

n N
=* Z\ + z 2 + --- + zM = -  -M,0<Zi<-- l .

With Corollary 6.3 and Corollary 6.4 we have

Se(N, Mn) =
fn >-  -  M + (M -  

2

5 -

n N \+ l ) - ( - - l ) '
■M

/! > 1 f

2
n
— -  M

U  ) \

n
2

A

i — < T - "

•M

( j - M ) !  (A/ — !)! ( M - l ) ! « f - | ) - ( M - l ) )
•M
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( M - l ) ! {M - 1 ) !
■M

= 0 (nM)

Therefore we have Pe(N, M , n ) - 0  ( nM). So, given a length-/: (even) ring and a d- 

cube, the number of sets of change numbers we need to consider is bounded by the num­

ber Pei k / 3 i  d, k) = Peik/3JJ log k \  k) = O (*r'°8*1).

In the following of this paper, when we consider a specific set of change numbers, 

we will then consider only one transition sequence for each type of embeddings.

3. Proof of the Non-Existence of ISRE’s. In this section, we will use the necessary and 

sufficient condition for a k-tuple not being a transition sequence of a 1SRE and the idea 

of change numbers to show that there is no 1SRE of a length-10 ring in a 4-cube and a 

length-22 ring in a 5-cube.

Theorem 3: There is no 1SRE of a length-10 ring in a 4-cube.

Proof: Consider any embedding of length / which contains no pair of active nodes which 

differ in all four coordinates. Complementing all four coordinate places changes this 

embedding into a new disjoint one. Then 21 < 16. It follows that every embedding of a 

length-10 ring in a 4-cube contains such a pair of “diametrically opposite” nodes. The
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embedding can be cut into two paths ,P, of length 4 and ° f  length 6, joining these 

nodes.

Note that 4,2,2,2 is the only possible set of change numbers of a transition sequence 

for an embedding of a length-10 ring in a 4-cube. Hence, ]) and T(P2) must be 

t(l,2,3,4) and i( 1,1,1,2,3,4), respectively. Let T(P}) be <1,2,3,4>, then the possible pat­

tern for T(P2) is 1,_,1> where represents digits 2,3, and 4. Clearly, T(P2) con­

tains the block "1,_,1" which satisfies (2) or (3) of Theorem 6.3. □

Lemma 6.8: There is no 1SRE of a length-22 ring in a 5-cube with change numbers of its 

transition sequence being 6,6,6,2,2.

Proof: Assume that there is a transition sequence Tj for a 1SRE of a length-22 ring in a 

5-cube and T, has change numbers 6,6,6,2,2. According to the "structure" of the change 

numbers, the configuration of this 1SRE must be like the one depicted in Figure 21.

Figure 21. An configuration of an embedding with change num­

bers 6,6,6,2,2 for its transition sequence. P(j = 0,1, denotes 

the portion of the embedding resident in the subcube ij***.



72

Let Py defined as in Figure 21. Note that, if | | £ 6 then some active nodes of the

1SRE in the subcube i j* * *  can not be recovered in one step. Since l^ool +  l^o. 11 1 +

| Pj0 1 = 18, we have 3 < | Py \ < 5and Assume that | Pqq | + 1 P0i I ̂  I I + 1 Pio I-

Case (I): | P«> I + I *>oi I = H>. Thus, | Poo I =  I ^oi I =  5. Let 7X/>oo) be <1,2,3,1,2>. 

Then, !T(P01) must also be <1,2,3,1,2> since T(P0]) cannot begin with digit 2 

because of the resulting block "2,4,2" or digit 3 because of the resulting block 

"1,2,3,1,2,4,3". Thus T, can be

< 1, 2 , 3 , 1, 2 , 4 , 1, 2 , 3 , 1, 2 , 5 , 3 , 3 , _, 3 , _, 3 ,5  >

where represents some digit among 1,2,or 4. This can not be a transition 

sequence for a 1SRE because of the portion "3,_,3".

Case (II): | Poo I + I Poi I = 9. Let | Pqq \ = 5 and | P01 I = 4, and let T(Poo) be

<1,2,3,1,2>. Then, T(Poi) must be <1,2,3,1> for the same reason indicated in case 

(I). Thus, T] can be

< 1, 2, 3, 1, 2, 4, 1, 2, 3, 1, 5,3---------3,_ ,_ ,  3,_ ,_ ,  3,5 > .

This T ! can not be a transition sequence for a 1SRE because of the portion 

"4,1,2,3,1,5,3, ...,3,5" consisting of digit 3 odd number of times and other digits all 

even numbers of times.

Therefore, we have a contradiction. □

Lem m a 6.9: There is no 1SRE of a length-22 ring in a 5-cube with change numbers of its 

transition sequence being 6,6,4,4,2.

Proof: Assume that there is a transition sequence Tx for a 1SRE of a length-22 ring in a 

5-cube and 7j has change numbers 6,6,4,4,2. According to the "structure" of the change 

numbers, the configuration of this 1 SRE must be like the one depicted in Figure 22.
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Figure 22. An configuration of an embedding with change num­

bers 6,6,4,4,2 for its transition sequence. = 0,1 and l =

1,2, denotes the portion of the 1SRE resident in the subcube

ij

Let P'ij i , j  = 0,1 and / = 1,2 defined as in Figure 22. Note that, if  | | + 1 > 5 ,

then some active node of the 1SRE in the subcube ij*** can not be recovered in one step. 

So, | P)j | + 1 Pjj | < 4. The possible patterns for and where | | + 1 Py | = 4 are as fol­

lows.

• P j  = P; = < l , 2 ) , <  1,3), or <2,3)

• Pjj = <1,2,3), and Pj = <1), <2), or <3)

• Pjj = <1,1,2,3), <1,2,2,3), or <1,2,3,3), and = 0 .

Let P0 denotes the path starting from Pqi and ending with Pjj,, and let Pj denote the 

path starting from P^ and ending with P2U as shown in Figure 22. Since | Poi I + 1 J’oi I -  4 

and | Poo | £ 5, we have | P0 | £ 11. Similarly, | Pj | < 11. Without loss of generality, we 

assume that|P0 |£ | P i  [
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Case (I): | P01 = 11.

(i) T(P0)contains digit 1 odd number of times and other digits all even numbers of

times. T(P0) and T(P^) then must be <1,1,1,2,2,2,2,3,3,4,4) and

<1,1,1,2,2,3,3,4,4), respectively. The feasible T(P:) may be

< 1 ,_ ,_ ,1 ,_ ,_ ,1 ,_ ,_ >

^ _, 1,_, _, 1,_»_, i ^

The first and third ones above contain the block "_,_,1,_,_,1,_,_" with digits 1, 2, 

3, and 4 all even numbers of times. The second one with the block 

"_.1,_,_,1,_,_,1,_" satisfies (2) or (3) of Theorem 6.3.

(ii) 7XP0) contains digit 3 odd number of times and other digits all even numbers of

times. T(P0) and T(P{) then must be <1,1,1,1,2,2,3,3,3,4,4) and

<1,1,2,2,2,2,3,4,4), respectively. The feasible T{PX) may be

^ 1,_, _, 1,_, _, 1,_, 1 ^ ,

which consists the block "1,_,1" satisfying (2) or (3) of Theorem 6.3.

(iiilTCPo) contains digits 1, 2, and 3 all odd numbers of times. T(P0) and TCP,) 

then must be <1,1,1,2,2,2,3,3,3,4,4) and <1,1,1,2,2,2,3,4,4), respectively. The 

feasible T(P0) may be

< 3 ,2 ,4 ,1 ,2 ,3 ,1 ,2 ,4 ,1 ,3  >

< 4 , 1 , 2 , 3 , 1 , 2 , 4 , 3 , 1 , 2 , 3 > .

However, the first one above contains the block "3,2,4,1,2,3,1,2,4" and the sec­

ond one contains the block "1,2,3,1,2,4,3", and both satisfy (3) of Theorem 6.3.
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Case (II):|P0 |= 10.

(i) T(P0) contains digits 1 and 3 odd numbers of times and other digits even odd 

numbers of times. T(P0) and T(PX) then must be <1,1,1,2,2,3,3,3,4,4) and 

<1,1,1,2,2,2,2,3,4,4), respectively. The feasible T(P0) may be

< 4 ,1 ,3 ,2 ,1 ,3 ,4 ,1 ,3 ,2 >

< 2 ,1 ,3 ,4 ,1 ,3 ,2 ,1 ,3 ,4 > .

Other patterns like <3,4,1,3,2,1,3,4,1,2> (with the block "4,1,3,2,1,3,4,1,2"), 

<4,1,2,3,1,4,3,1,2,3> (with the block "4,1,2,3,1,4,3,1,2"), and

<2,3,4,1,2,3,1,4,3,1> (with the block "2,3,4,1,2,3,1,4") which satisfy (1) or (2) of 

Theorem 2 need not be considered. The feasible T(P]) may be 

<2,_,_,2,_,_,2,_,_,2>, hence, the feasible T, may be

< 4 , 1, 3, 2, 1, 3, 4, 1, 3, 2, 5, 2,_ , _, 2, _, _, 2, _, _, 2,5 >

< 2 , 1 , 3 , 4 , 1 , 3 , 2 , 1 , 3 , 4 , 5 , 2 , 2 , 2, _, _, 2, 5 > .

The first one above contains the block '"2,5,2" and the second one contains the 

block "4,1,3,2,1,3,4,5,2", thus, both satisfy (3) of Theorem 6.3.

(ii) r ( /50) contains digits 1 and 2 odd numbers of times and other digits even num­

bers of times. Both r ( P 0) and r (Pj) then must be <1,1,1,2,2,2,3,3,4,4). The 

feasible T(P0) may be

< 4 ,1 , 2 , 3 , 1 , 2 , 4 , 1 , 2 , 3 >

< 3 , 1 , 2 , 4 , 1 , 2 , 3 , 1 , 2 , 4 >

Other patterns like <...,4,1,2,3,1,2,4,3,...> (satisfies (1) of Theorem 6.3),

<...,4,1,2,3,1,2,4,1,3,...> (satisfies (2) or (3) of Theorem 6.3),

<1,2,4,1,2,3,1,4,3,2> (containing the block "4,1,2,3,1,4,3,2"),

<2,4,1,2,3,1,4,3,2,1> (containing the block "4,1,2,3,1,4,3,2"),



<4,1,2,3,1,4,2,1,3,2> (containing the block "4,1,2,3,1,4,2,1,3") need not be con­

sidered. Thus, the feasible Tx may be

< 4,1,2,3,1,2,4,1,2,3,5,4,1,2,3,1,2,4,1,2,3,5 >
< 4 ,1 ,2 ,3 ,1 ,2 ,4 ,1 ,2 ,3 ,5 ,3 ,1 ,2 ,4 ,1 ,2 ,3 ,1 ,2 ,4 ,5 >

< 3 ,1 ,2 ,4 ,1 ,2 ,3 ,1 ,2 ,4 ,5 ,3 ,1 ,2 ,4 ,1 ,2 ,3 ,1 ,2 ,4 ,5  > .

However, the first one above containing the block "3,5,4,1,2,3,1,2,4", the second 

one containing the block "3,5,3", and the third one containing the block 

"4,1,2,3,1,2,4,5,3" all satisfy (3) of Theorem 6.3.

Therefore, we have a contradiction. □

Lemma 6.10: There is no 1SRE of a length-22 ring in a 5-cube with change numbers of 

its transition sequence being 6,4,4,4,4.

Proof: Assume that there is a transition sequence for a 1SRE of a length-22 ring in a 

5-cube and T] has change numbers 6,4,4,4,4. According to the "structure" of this change 

numbers, the configuration of this 1SRE must be like the one depicted in Figure 23(a).
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Figure 23. (a) An configuration of an embedding with change numbers 

6,4,4,4,4 for its transition sequence. P i , j  = 0,1 and denotes the 

portion of the 1SRE resident in the subcube ij***. (b) P 1 and P2.

Let Py i,j = 0,1 and / = 1,2 defined as in Figure 23. We will only consider the case 

where T(P^) = T{P^X) = <1,2>, and other cases can be easily proved by following the 

same technique used here.

Let Vj and v2 be two endpoints of Px0] and v\ and v2 be two endpoints of Pqi • Let 

P 1 and P2 be the path from V] to v, and the path form v2 to v2, respectively. P 1 and 

P2 are shown in Figure 23(b). Assume | P 11 > |

(I) ^(V],Vi) = {3}. H P 1) then must contain digit 3 odd number of times and other 

digits even numbers of times. P(P^o) cannot end with digits 1 and 3 because of 

the resulting blocks "1,4,1" and "3,4,1,2, T(P]),\,2" (consisting all digits even 

numbers of times). P(P^o) cannot begin with digits 2 and 3 for the same rea­

son. Moreover, the situations where T(PIq) ending with digit 2 and P(P^o) 

beginning with digit 1 cannot exist together because of the resulting block 

"2,4,1,2,4,1". Hence, the feasible P(P^ may be <2> and <3,2>, and other
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possibilities like <1,2>, <1,3,2>, or <_,1,3,2> all result some block of 7, satis­

fies (2) of Theorem 6.3. Similarly, the feasible 7 (Pqo) may be <1> and <1,3>.

Thus, we have | | + 1 P ô | <i 2 and | Pj, | + 1P?, | < 2, and ^  J) \P}j\+\Pl\ < 12 <
*=o j=o

14.

(II) ^ (v„v i )  = {1,3}.

(a) T\Plo,P]ol,Plu ) = <1,1,1,2,2,3). Then, 7*(P?lfP?0,Pgo) = *(1.3,33), and 

some block (i.e., "3,4,3" or "3,5,3") of 7 (P 2) must satisfy (2) of Theorem 

6.3.

(b) 7*(Pio,Poi.Pn) = < 1 ,U ,3,3,3). Then, = <1,2,2,3). 

Thus, P(Pio) = 7(Pj,)  = 7 (7 } ,)  = <1,3), and at least one of 7(P?,), 

T(P20), and 7(P^o) contains digit 2. By drawing in pictures we can tell 

that the embedding can not be a 1SRE if T(P]j) is <1,3) and 7(P?) con­

tains digit 2.

(c) 7*(Poo P ^ P } , )  = <1,2,2,3,3,3). Then, 7*(P?„P?0,P ^ ) = <1,1,1,3). This 

case has the similar situation as case (a).

( I I I )  (vj, v{) = {2,3}. Note that, 7 (P | , )  cannot end with digits 3 and 1 because of

the resulting blocks " 2 ,7 (7 ')" (consisting of digit 3 odd number of times and 

other digits ever numbers of times) and "1,5,1", respectively. 7 (P 2,) cannot 

begin with digit 2. Moreover, if T{P2U) begins with digit 1, then | P{, | will be 

forced to be zero. The feasible ^(Pjj) and 2,) then may be

. T(P2j) = <3,2> and T(P\ ,) = <3,2>, <2>, or o  

. T(P2U) = <3,2,1> and 7(Pj,)  = <2>, or o

. 7 (P 2,) = <3,1,2> and 7(P}]) = o
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. 7'(/>j,) = <3> and r (P |,)  = <3,2>, <2>.

Similarly, the feasible T(Pq0) and T{Pq0)may be

. TiPw) = <3,2> and T(P§0) = <3,2>, <2>, or o  

. r(Pjo) = <3,2,1 > and TXPoo) = <2>, or o  

. 7\/>io) = <3,l,2>and7XP^) = o  

• r(Poo) = <3> and T(P^) = <3,2>, <2>.

2
(a) Sd^ool + I^nt) = 8. Then, digit 2 will have to appear six times in T}.

1=1

2
(b) E W  + l^nD = 7. Then, digit 2 will have to appear five or six times in Tx.

i=i

2
(c) X(]Pool+|Pnt) = 6. Then, the only possible situation is that T(P2U) = AP^,)

/=i

= <1,2,3) and APoo) = A P ’n) = <>. Since T(P]) contains odd numbers 

of digits 2 and 3, A^!o) must be <1,1), <3,3), or <1,1,3,3). Clearly, the 

transition sequence of P{0 satisfies (1) of Theorem 6.3.

<d) Z « o l+ |P '„ D  =  5. T h e n , i i | / > H + | P f j £ 1 3 < 1 4 .
i=l 1=0 j=0

(IV) J(vj, v{) = {1,2,3}. The situation is similar to (I). That is, | Poo I I Poo I — 2 and 

| />', | +11* |S  2, and £  £  |/>{|+|Pg|S 12 £  14.
i=0 j=0

Therefore, we have a contradiction. □
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Theorem 6.4: There is no 1SRE of a length-22 ring in a 5-cube.

Proof: Clearly, the change numbers with numbers £ 8 can not be the change numbers of 

the transition sequence for a 1SRE of a length-22 ring in a 5-cube. Hence, the only three 

possibilities of the change numbers are 6,6,6,2,2, 6,6,4,4,2, and 6,4,4,4,4. However, 

according to Lemma 6.8, Lemma 6.9, and Lemma 6.10, there is no transition sequences 

of a 1SRE of a length-22 ring in a 5-cube with these three sets of numbers, there is no 

1 SRE of a length-22 ring in a 5-cube. □

D . C on clu d in g  R em arks

We present a composition scheme to systematically construct ISRE’s of length-/: 

(even) rings in d-cubes, where 6 < k <(3/4)2d and d >3.  The composition method 

builds up a larger 1SRE by combining two ISRE’s in two lower dimension hypercubes. 

The scheme is base on the proved theorem: If there exists a 1SRE of a length-yt) ring in a 

d-cube and a 1SRE of a length-/^ ring in a d-cube, then there exists a 1SRE of 

length-^! + k2) ring in a (d + l)-cube. So, we can systematically build up large ISRE’s 

by combining two one-dimension smaller ISRE’s. build up large ISRE’s

Compared to other schemes for constructing 1 SRE’s which are either applicable to 

rings of limited lengths [ChLT88b,PrMe88] or resulting in large expansion of their 

embeddings [Leet90], our scheme has more applicability to rings of different lengths, and 

the resulting ISRE’s are of small expansion.
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V n . A  S U F F IC IE N T  C O N D IT IO N  F O R  T H E  N O N -E X IS T E N C E  

O F  1-S T E P  R E C O V E R A B L E  E M B E D D IN G S

In this section, we discuss a sufficient condition for the non-existence of a 1SRE of 

a length-/: (even) ring in a J-cube where k > (3/4)2** and 3. The sufficient condition 

is based on the idea: no spare node can serve more than d — 1 active nodes when k > 

(3/4)2d.

Definition : Let at, aM , and a)+2 be three hypercube nodes with consecutive active states 

on a 1SRE, and s be the label of a spare node where = XOR(a,,

(1) The spare node s will be referred as the 1-step recovery spare node for active 

node ai+l in the 1 SRE.

(2) Nodes s,ah aM, and ai+2 will constitute the four nodes of a 2-D plane of the 

hypercube. This 2-D plane will be referred as a 1-step recovery hyperplane 

(1SRHP) with respect to s, and denoted specifically as [ 5 , ah aM, ai+2]

Lemma 7.1: For a 1SRE, it is impossible to have more than two ISRHP’s (with respect 

to the same spare node) that intersect on a hypercube link with the spare node as one end­

point.

Proof: Suppose there exists a valid 1SRE where three ISRHP’s with respect to the same 

spare node intersect on a link with the spare node as one endpoint. Figure 24 shows such 

a situation where three ISRHP’s, [s,ah, ah, [s, ah, a,6, ah], and au, a (J],

intersecting on the hypercube link (s, ai}). By definition of 1SRHP, the three hypercube 

links, (a,2, ah), (ah, au), and (a,3, a,6), must all be the image links of the embedding.



82

This is a contradiction. □

Figure 24. Three ISRHP’s with respect to intersect on the 

edge {s,ah).

Theorem 7.1: For a 1SRE in a d-cube, each spare node can serve as a 1-step recovery 

spare node for at most d active nodes.

Proof: According to Lemma 7.1, the best recovery case for a spare node is that each 

hypercube link incident to it is contained in exactly two ISRHP’s with respect to it. Such 

a situation is depicted in Figure 25. □

link-/j

Figure 25. Each hypercube link incident to the spare node s is 

contained in exactly two ISRHP’s with respect to s.
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Lem ma 7.2: If [5, a(|, a,2, a,3] and [5, a i2, a l4, a i} ] are two ISRHP’s with respect to spare 

node sin a 1SRE, then a t{, al2, a iya t4, a isor a l} , a,3, a tl must be contained in the

active node listing (in order) of the 1 SRE.

Proof: According to the definition of 1SRHP, [s, atl, ] is a 1SRHP with respect to 

s if ai{, a,2, a/3 or a,3, al2, ais contained in the active node listing of the 1SRE. Simi­

larly, a,3, ai4, ais or aif, a,4, ai} must also be contained in the active node listing of the 

1SRE. Thus, by combination, a,r  ai2, ■ • ■ , ais or al}, al4, , at{ must be contained in 

the active node listing of the 1SRE. □

Lem ma 13:  For a 1SRE of a length-fc ring in a cube, if a spare node serves for d 

active nodes as a 1-step recovery spare node, then k = 2d.

Proof: From Fig.23, we can see that if a spare node serves for d active node as 1-step 

recovery spare node, then each hypercube link incident to this spare node must be con­

tained in exactly two ISRHP’s with respect to this spare node. Such a situation is 

depicted in Figure 26 where is a spare node, n, (in active state) are neighbors to s, and

o.i are active nodes which use s as 1-step recovery spare node. Then, according to 

Lemma 7.2,

, (2], /I2, 02, ^3’

^2’ a2> 03> ^4,

» &d—1’ d̂* &d' 1̂

must be all contained in the active node listing in order of the 1 SRE. Since the combina­

tion of these sublists forms a cycle of active nodes (i,e, ax, • • ■ , ad, n,), the length

of this cycle must be equal to the length of the ring embedded. That is, □
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| «2

Figure 26. A spare node s is used for d active nodes as 1-step 

recovery spare node.

Theorem 7.2: For a 1SRE of a length-/: ring in a d-cube where k > (3/4)2d, each spare 

node can serve as a 1-step recovery spare node for at most d — 1 active nodes.

Proof: Since (3/4)2rf > 2d for d >3, according to Theorem 7.1 and Lemma 7.3 to embed 

a length-/: ring in a d-cube as a 1SRE where k > (3/4)2d, a spare node can serve for at 

most d -  1 active nodes as 1-step recovery spare node. □

Theorem 7.3: There is no 1SRE of a length-((3/4)2rf + (even) ring in a d-cube, if

2d 2d 
T ~ 7 <f-

Proof: As a consequence of Theorem 7.2, if the number of the total number of spare 

nodes multiplying d -  1 is less than the total number of active nodes, then some active 

nodes will not be able to be recovered in one step. That is, if the following inequality is

satisfied,
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2d 2d
* * T ~ ~ d < q '

the embedding is not a 1 SRE. □

By Theorem 7.3, we have the summary of those lengths for rings having no ISRE’s 

in a d-cube in Table XI.

Table XI. Rings of length > (3/4)2rf and < 2 d having no ISRE’s in a d-cube

d
2 d 2 d 

T ~ ~ d
Lengths of rings having no ISRE’s in a d-cube

4 12 0 14

5 24 1.6 26, 28, 30

6 48 5,3 54, 56, 58, 60, 62

7 96 13.9 110,112, 114,..., 126

A sufficient condition for the non-existence of 1 SRE’s for rings of length > (3/4)2^ 

in a d-cube is also addressed in this chapter. Clearly there exists a gap between (3/4)2J 

and the lower bound of lengths for rings having no ISRE’s in a d-cube, d > 6 (Table IV), 

and the size of the gap increases as d increases. It remains an open problem to diminish 

the size of the gap by either improving the lower bound for non-existence of ISRE’s or
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extending the (3/4)2** bound for the existence of ISRE’s. Experimentally, we have deter­

mined there exist ISRE’s of rings of length > (3/4)2** in large -cubes, however, there 

seems to be no algorithmic technique to construct those ISRE’s.



VUI. APPLICATION TO THE PROTEIN SEQUENCE
COMPARISON
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In this chapter, we discuss applying our reconfigurable embedding schemes to an 

active research problem in molecular biology, the protein sequence comparison, which is 

applied by modem biologists to attempt to understand the semantics of DNA and the 

function and structure of proteins. We discuss several possible ways to extend the exist­

ing parallel protein sequence comparison system [LaMe88] to a fault-tolerant one. For 

the fault-tolerant system, if one processor becomes faulty during the computation, the 

entire system can still function correctly. We compare the performances, in terms of 

fault-tolerant system running time, of different fault-tolerant approaches. The simulation 

results show that in most cases the systems with our fault-tolerant embedding schemes 

(for 2SRE’s and ISRE’s) have better performance than those with other fault-tolerant 

approaches. The results show a good validation of our embedding methods.

A . P rob lem  o f  Protein  Seq u en ce  C om p arison

One of the central questions of molecular biology is the discovery of the semantics 

of DNA. Just knowing the syntax, that is, the sequence, tells the biologist little. The 

biologist must understand the biochemical functions of the DNA. To understand the 

semantics, one needs to know the relationship between DNA and proteins. Proteins are 

sequences made from 20 different amino acids. A piece of DNA can be encode for a pro­

tein. Since proteins are responsible for important biochemical functions within a living 

cell, a fundamental question of the biologist is to determine what proteins do.
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There are many approaches one could take to uncover the semantics of proteins. An 

approach that has proved to be both tractable and valuable is searching for sequence 

homologies or similarities. This approach exploits the mechanism of evolution as well as 

the underlying physical laws for atomic interactions. Thus a central computational prob­

lem in biology is the attempt to discover common structure among sets of sequences: 

given a large collection of DNA or proteins determine those sequences that are close in 

the sense of evolution, and further determine their common structure. From this 

approach, research can begin to make important strides into understanding the semantics 

of DNA and the function and structure of proteins [LiMW89]. One of the first successes 

for this approach was the discovery of similarity between some cancer-causing genes and 

proteins such as human growth factors.

An aspect of the search for evolutionary structure of DNA and proteins is the 

immense size of the problems. As we will soon see, the basic computations involved in 

comparing even two sequences are quite non-trivial. However, the amount of biological 

material that must eventually be searched is very large. The essence of the problem is 

that given a set of proteins sequences, efficient alignment-matching algorithms are 

needed that can deal elegantly with insertion, deletion, substitution, and even gaps in the 

series of sequence elements. One way of measuring the optimality of an alignment is by 

computing a score based on a matrix of weights reflecting the similarity between pairs of 

sequences. In some situations a penalty is subtracted for each gap introduced. Such a 

score can be computed by a dynamic programming algorithm in time proportional to the 

product of the lengths of the sequences.
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B . T h e D ynam ic P rogram m in g

The subsequence matching problem can be formulated as follows:

Given two sequences A, B, of symbols chosen from a same domain 

A = (fl),fl21 • • • » B — , £>2* • • • *

find the subsequences

A =  O/j, . . . ,@tx)i ® — ’

where 1 < /j < / 2 < '" < h ~ n>

which maximize the comparison function C (A ', BO- C can depend on the symbols air 

bjk in A ' and B' and on the numbers of symbols in A and B which are omitted between 

successive symbols in A' and B' (gaps).

For such comparison functions, one can use a dynamic programming algorithm to 

determine the best subsequence match for a given pair of sequences A, B in serial time 

O(mn) where n and m are the length of the sequences A and B. This dynamic program­

ming algorithm can best be understood by considering the matrix

CryS = max

fO
Cr_ltJ_, + D(ar, bt )

C r- u  +  8

- Cr,s-i + g

where the gap constant g < 0 , and Dis a correlation function between single elements 

[LaMe88].
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A parallel version of the dynamic programming algorithm is quite straightforward to 

derive [EdWa87]. Since computing the value of Cr>J only depends on knowing the values 

of Cr. itS, Cf'S-i, and Cr_1(J_ |, we see that all of the elements on one anti-diagonal of the

matrix can be computed simultaneously if the values along the two previous anti­

diagonals are known. That is, for a fixed value of t, the matrix elements C,_s<s can be 

computed simultaneously for all s provided that they are known for / -  1 and t -  2. Thus, 

one can parallelize the above algorithm by computing successive anti-diagonals of the 

matrix Crs on successive time steps. This is represented schematically in Figure 27. The 

algorithm requires n + m -  1 time steps and m processors to compare proteins of length m 

and n.
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Processor #
0 1 2 3 m-1 m

Figure 27. Diagram indicating activity of processor i at time 

step t .  If 1 < t  — p  < n ,then processor i  computes at

step t .  Otherwise, the processor is inactive.

C . Im p lem en ta tion  o f  P a ra lle l P rotein  S eq u en ce  C om parison

A parallel version of protein sequence comparison based on the idea of dynamic 

programming was implemented on the data parallel CM-2 Connection Machine 

[LaMe88]. We will briefly describe the implementation in this section. Later (in the next 

section), we will use this implementation as a base to extend it to fault-tolerant versions 

of parallel protein sequence comparison system.
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The implementation of the parallel protein sequence comparison in [LaMe88] is 

summarized as follows. Since the CM-2 has far more processors than most proteins have 

amino acids, it is possible to perform the dynamic programming algorithm on many pro­

teins at the same time. To this end, the proteins in the chosen data base are first sorted by 

length and then partitioned sequentially into set such that the total number of amino 

acids in the proteins of each Sd is as large as possible but is less than or equal to the total 

number of processors available in the CM-2. The proteins in each set Sd are then com­

pared in parallel to the entire database, one protein at a time. If M is the total number of 

such sets Sd, and K is the total number of proteins in the database, then the basic struc­

ture of the serial part of the program to compare all pairs of proteins is:

for d = 1 to Mdo

set up Sd on CM-2 

for k = 1 to Kdo

compare in parallel all proteins in Sd to 

retrieve results and store on front end

where setting up Sd involves laying out the amino acids in the proteins in Sd in linear 

fashion into the memory of the processors with the CM-2 configured as a linear array 

(each processor holds one amino acid, we designate this acid as "source acid"). The inner 

loop which compares Sd to Pk is implemented using the parallelized dynamic program­

ming algorithm described in previous section. Thus, on each pass through the inner loop, 

all the proteins in Sd will be compared simultaneously with some protein which we 

will designate henceforth as a "target protein".
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The code for the inner loop now proceeds as follows:

{initialization}

Left[i] < -  0

Diag[i] <— 0 

Now[i] 0 

Cmax[i] <— 0 

Tgt[i]<- 0 

//[ /]  0

{compute score matrix C) 

for / = 1 to T(d, Pk) do begin 

T gt[i]* -T g t[i-\]

if H[i] = 1 then Tgt[i)<- Pk{t)

Diag[i] <r- Left[i]

Left[i)<- Afow[i -  1]

Mnv[i] <— max{ 0, Le/?[/]+&, Afow[/]+g, Dzag[/]+D(SD[/], 7gf[i]) } 

Cwuzx[z] <— max{ Cmax[i], Now[i] } 

Backup[t] <— M>w[z] 

end { for }

Cmax[] max-scan( Cmax[]), with segmentation //[]

Algorithm notes:

1. The variables, Now, Left, and Diag, are used to compute score matrix C. The rela­

tive positions for these three variables in the matrix C is shown in Figure 28.
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diag

left'

now

Figure 28, The relative positions for variable Now, Left, and 

D ia g  in the matrix C.

2. The amino acids from the target protein will be sent from the front end to the Con­

nection Machine memories one per time step. They will shift across a variable Tgt 

(as pipeline form), and thus be aligned with the amino acids sequences held in the 

SD variable, so that the comparison can be performed.

3. T(d, P k) is the time needed to compare to a target protein Pk, which is equal to 

the length of the longest protein in Sd plus the length of Pk.

4. The variable H is used to mark the beginning of each protein in a ) is equal

to 1 if processor i contain the first amino acid of a protein in and 0 otherwise. 

The variable SD holds a source amino acid.

5. All assignment statements are assumed to be carries out in all processors, unless oth­

erwise indicated.

6. Assignment statements involving data in different processors are accomplished using 

linear array communication.

7. Assume that Pk(t) = 0, for t > l(Pk).

8. The evaluation of the function D(SD[i], Tgt[i]) was implemented using an indirect 

table lookup, where the 5-bit byte SD[i] and Tgt[i] are concatenated into a 10-bit
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word used as an offset into a locally stored table. Setting £>(0, ) = D(a, 0) = 0 for 

all a ensured that the values of C computed in processor during “inactive” time 

steps of were less than the maximum valid of C computed in the same processor dur­

ing the same comparison. Thus, it was not necessary to explicitly determine which 

processors were active at each time step.

D . S evera l F au lt-T olerant A pproaches

Before we discuss several fault-tolerant approaches to the system of parallel protein 

sequence comparison, we discuss how to design a model of the total running time of the 

entire system in order to compare the performance of different fault-tolerant approaches. 

We will make use of the following variables in the model: •

• AT is the total number of proteins in the data base.

• Mis the total number of such sets Sd.

• Lis the length of a protein. Here, we assume every protein in the data base has the 

same length.

• N  is the total number of processors ( N = is a positive integer), and let f (N)

be the number of active processors involved in the computation.

• W, the work-load of each processor, is equal to the number of source amino acids 

held by each active processor. We assume that every active processor hold the 

same number of source amino acids.

• Let the time for a processor executing one iteration of the innermost loop (i.e., for t 

= 1 to T(d,Pk) do begin ...) at the condition of = 1 be Tcomm + Tcomp, where
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Tcomm and Tcomp are the communication time and computation time needed, respec­

tively.

• Let the time of completing one reconfiguration step be Tx_rcfg.

With the implementation of the system of parallel protein sequence comparison and the 

variables defined above, our model of the running time of the entire fault-tolerant system 

is described as follows:

• The size of the set is I V  *  A 

L
That is, such many proteins will be com­

pared to one target protein simultaneously.

M, the total number of sets Sd, is
K

W * /(A 0  
L

• The time for comparing proteins in a set Sd to a target protein is

(Tcomm + W Tcomp) * (L + L -  1)

• The total running time for the parallel protein sequence comparison system in a 

fault-free situation is about

T f f  = (Tcomm + W  * T comp)  * (21 -  1
K

W * f 
L

The total running time for a fault-tolerant version of the protein sequence compari­

son system (tolerate one fault) is about
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T  l-FT~ 8 ( T  FF) +  * T’l

where gis a function on TFF which depends on what kind of fault-tolerant

approach applied, and cis a constant.

We assume that the communication model in a hypercube is circuit switching. For 

this model, a hardware communication circuit between two communicating nodes must 

be established before communication begins, and a link of the circuit is released at a time 

after the last bit of the message is transmitted. We, therefore, define the communication 

time needed for two communicating nodes in a hypercube as follows,

tcomm ~  tcong t  hops

=  { cong +  +  (/Z +  1 ) r ' p +  •S']

where t comm is the time needed to send an 5-byte message from one node to another. For 

the circuit switching model, if a circuit cannot be established because a desired link is 

being used by other packets, the circuit is said to be blocked. Here we assume that when 

a circuit is blocked, the partial circuit may be tom down, with establishment to be 

attempted later. t cong here denotes the waiting time for reestablishment. Note that, if the 

mapping of the linear array in a hypercube is dilation-1, then it will be congestion-1 also 

and no edges of a hypercube will be contained in more than one mapping linear array 

edge. That is, if the mapping is dilation-1, t cong, the communication delay due to conges­

tion, will be zero, is the ideal communication time between two communicating 

nodes such that the edge congestion of the desired circuit between these two nodes are all 

one. The value of t hops is determined by the five terms: h ,  Tp ' ,  and 5, where is

the communication latency, h  is the hops between the two communicating nodes, is 

the processing time required at a router, r, is the time needed to transmit one byte of data, 

and 5 is the size (in bytes) of message sent. According to the algorithm of parallel
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protein sequence comparison, each processor in the linear array will send messages to its 

right neighbor twice; therefore, Tcomm = 2* tcomm = 2 *  + thops).

Here, we compare the total running time for five different fault-tolerant versions of 

parallel protein sequence comparison system. These five different fault-tolerant 

approaches are:

1. Remapping & Rerunning: When a fault occurs, simply reconstruct the linear 

array (remain dilation-1) and rerun the entire program again. On average this 

approach will take about one and a half times of the fault-free running time. The 

total running time for this approach is about,

tcong = 0

thops Ts +  ( 1  "(■ 1 ) t  p +  T/iS

Tcomm — 2  * {tcong thops')
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Tx-ft = 1.5 * [ (Tcomm + W * Tcomp) * (2
K

W * (N 1)
L

] + T\-rcfg

2. Graceful Degradation: Let all the nodes in a hypercube do the computation. If a 

fault occurs, simply assign the faulty node’s work to its neighbor on its right and 

continue the processing. In this situation, the computation load of this right neigh­

bor will be increased double, while its communication load will be remain the 

same. It is possible that the desired path from the faulty node’s left neighbor to the 

faulty node’s right neighbor be congestion-2 (then tcong *  0); however, here we 

assume that this path has congestion-1. The total running time with this approach 

is about,

tc o n g  =  0

tliops~ Ts  +  ( 1  +  l ) T 'p  +

Tcomm — 2  *  (.tcong +  thops)

Tx-ft = (Tcomm + 2 * W * Tcomp) * ( 2 L- \ )  * K *
K

W * ( N -  1) 
L

+ Tl-rcfg

3. One D esignated Spare Node: In the beginning, select one designated spare node 

and let the rest of nodes all do the computation. If a node becomes faulty during 

processing, just replace this faulty node with this designated spare node. For this 

approach, it is very possible that the length (or hops) of the desired path from the 

left or right neighbor of the faulty node to the designated spare node is equal to the 

dimension of the embedding hypercube, and, moreover, the desired path is
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congestion-2. These factors (number of hops and congestion) have to take into 

account for calculating the communication time. From the algorithm of parallel 

protein sequence comparison, we can derive that tcong is equal to r* + (1+1) r'p + 

t , S ,  which is the time for sending 5-byte message from one node to its neighbor, 

and the ideal elapsed time of a link from being used to being released. For simplic­

ity, we also assume that the path from the faulty node’s left neighbor to the desig­

nated spare node and the path from the designated spare node to the faulty node’s 

right neighbor are edge-disjoint. The total running time for this approach is about,

tcong = + (1 + + r,5

t h  ops =  4 (^ 8 2  1 )̂  p  +

 ̂ comm — 2 * (.tcorig "t" thops')

Tx-rr = (Tcomn, + W * T* (2L -  1) * K *
K

W * (N -  1) 
L

+ TX-rcfg

4. 1-SRE: Using the 1-step recoverable embedding scheme to construct the linear 

array, then running the program on it. In this case, three quarters of the nodes in a 

hypercube will be involved in the computation, and any one single fault can be 

recovered within one reconfiguration step. The total running time for this approach 

is about,

tcong ~  0

thops ~ p  + Tf5

Tcomm — 2 * ( tco + thops)
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Ti-rr = (Tcomm + W * Tcomp) * (2 L -  1)
K

W * -  N 
4

+ Tt-rcfg

5. 2-SRE: Using our 2-step recoverable embedding scheme to construct the linear 

array, then running the program on it. In this case, seven eights of the nodes in a 

hypercube will be involved in the computation, and any one single fault can be 

recovered within 2 reconfiguration steps. The total running time for this approach 

is about,

^cong ~  0

thops = p T /S

Tcomm — 2  *  Ocon g h i  ops)

Tx-ft = (Tcomm + W * * ( 2 L - \ ) * K *
K

W * -  N
____ 8

+ 2 * r ,.,rcfg

Along with the communication model assumption (i.e., circuit switch), the parame­

ters that we choose for comparing the five different fault-tolerant approaches are 

described as follows.

The dimension of the hypercube is 16
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. K = 5000 (proteins)

. L = 200 (amino acids)

. xs = 233 (ji sec)

. Tp' = 3.4 (psec)

. x, — 0.38 (psec)

.5  = 4 (bytes)

• Tcomp about 50 (p sec)

. Ti-rCfS is about 600 (p sec)

The comparison results for five different fault-tolerant approaches with W, the work 

load of each processor, equal to 1,2, 3, and 4, are given in Table XII, XIII, XIV, and XV, 

respectively.

Table XII. The total running time for five different fault-tolerant 

systems of parallel protein sequence comparison with IV =  1.

Fault-Tolerant Approach Total Running Time (sec)

Remapping & Rerunning 25502.804

Graceful Degradation 18597.870

One Designated Spare Node 35663.578

1-SRE 22314.954

2-SRE 19127.104



Table XIII. The total running time for five different fault- 

tolerant systems of parallel protein sequence comparison with 

W = 2.
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Fault-Tolerant Approach Total Running Time (sec)

Remapping & Rerunning 13948.402

Graceful Degradation 10894.935

One Designated Spare Node 18629.790

1-SRE 12786.036

2-SRE 10461.303

Table XIV. The total running time for five different fault-tolerant 

systems of parallel protein sequence comparison with =  3.

Fault-Tolerant Approach Total Running Time (sec)

Remapping & Rerunning 11359.051

Graceful Degradation 9368.202

One Designated Spare Node 14570.842

1-SRE 8834.819

2-SRE 7572.703



Table XV. The total running time of five different fault-tolerant 

systems of parallel protein sequence comparison with W =  4.
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Fault-Tolerant Approach Total Running Time (sec)

Remapping & Rerunning 8171.202

Graceful Degradation 7043.468

One Designated Spare Node 10112.895

1-SRE 6809.335

2-SRE 6809.364

From these four tables, w e  can see that our schem es (1-SR E  and 2-SR E ) w ill always 

outperform  the fault-tolerant approaches, Rem apping & Rerunning and O ne D esignated  

Spare N od e. N ote that, for W =  1 and W  = 2, the G raceful Degradation has better perfor­

m ance than our schem es. This is because in the original algorithm  o f  the parallel protein  

sequence com parison, the com putation tim e needed (i.e ., 50 //sec) in the inner m ost loop  

is m uch sm aller than the com m unication tim e needed (i.e ., 2 4 1 .3 2  //sec ) in the sam e loop. 

W hen W  =  1 and 2, the com m unication tim e still m uch dom inate the total tim e needed  

for the inner m ost loop. H ow ever, when the value o f  W  increases, the dom ination situa­

tion changes, and the com putation tim e becom es the more important factor for decid ing  

the total tim e o f  the inner m ost loop. W e claim  that for W  is large, our schem es w ill have 

better perform ance than the G raceful Degradation. The fo llow in g  theorem  supports our 

claim .

T h eo rem  8.1: W hen W, the work load o f  each processor, increases, our schem es (1-SR E  

and 2-SR E ) tend to have better performance than the G raceful Degradation. That is, the 

total running tim e o f  the fault-tolerant parallel protein sequence com parison system  with  

our approaches w ill take less tim e than that with G raceful Degradation.
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Proof. We consider the ratio of the total running time of the fault-tolerant system with 

Graceful Degradation to that with our 1-SRE approach, when —» «>.

Note that.

limW-*oo
K

W * (N 1)
L

= 1 and lim
K

5
W  * -  N  

4
L

= 1

So, we have,

T\~ft for Graceful Degradationlim -------------------------------------------
T i-ft for 1 -  SRE

= lim
W-voo

(Tcomm+ 2* W *  Tcomp) * (2
K

-rcfg
W * ( N -  1) 

L

(Tcomm +  W *Tcomp)*K*' K
+  -rcfg

W  * -  N  
4

L

= limW->oo
(2L - / ) * A T * ( 2 * W *  Tcomp) 

(2 L - l ) * K * ( W * T comp)

=  2

Since the ratio is > 1, we show that the Tx_jj- for Graceful Degradation is larger than 

T^pj for our approach for 1-SRE, when W<». □
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EX. OPEN PROBLEMS AND PROPOSED RESEARCH

In this chapter, we discuss some related open problems which have direct relevance 

to the topics of the preceding chapters, and state several proposed work for further 

research.

A. G ap  b etw een  E xisten ce and  N on-E xistence o f  IS R E ’s

In Chapter VI, we described a composition approach to systematically construct 

ISRE’s for rings < (3/4)2rf. While in Chapter VII, we introduced a sufficient condition 

for the non-existence of ISRE’s for rings > (3/4)2d. However, the composition approach 

and the sufficient condition do not cover all the rings. There is a gap between the rings 

with ISRE’s and without ISRE’s, since for some rings > (3/4)2rf the existence of ISRE’s 

in a d-cube is undecidable. The size of the gap increase as the dimension of the embed­

ding hypercube grows. However, while the dimension of the hypercube grows, the num­

ber of spare nodes grow also, and it becomes more possible to find some ISRE’s for rings 

> (3/4)2rf in a d-cube since there are more spare nodes to choose for recovery. So, for 

higher dimensional cubes, the breaking of the length limitation, (3/4)2^, for ISRE’s is 

possible. Currently, we have found a 1SRE of a length-386 = (3/4)29 + 2  ring in a 

9-cube, and this implies finding more ISRE’s in higher dimensional hypercubes is possi­

ble. However, there seems to be no algorithmatic technique to describe the pattern of 

such ISRE’s in a higher dimensional hypercube. Meanwhile a stronger sufficient condi­

tion for the non-existence of ISRE’s is also needed.
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B. M u ltip le  N ode Faults

Liang and Tsai considered the problem of multi-failure fault-tolerance of hyper­

cubes in [LiTs90]. In their paper, new reconfiguration algorithms were proposed to real­

locate the function of failed nodes to spare nodes, and two types of multiple faults were 

considered, clustered faults (a connected sequence of active nodes fail simultaneously) 

and concurrent faults (more than one segments of nodes fail at the same time). With the 

new reconfiguration algorithm, they investigated the the multi-failure reconfigurability of 

two proposed fault-tolerant embedded rings, Mapping II and Mapping III in [ChLT88b].

Our schemes described in Chapter IV, V, and VI which are designed for tolerating 

one single fault, will, in many cases, tolerate more than a single fault. For example, it can 

be shown that our scheme for ISRE’s (in Chapter VI) can tolerate 2 (sequential) faults if 

the Hamming distance of the 2 faulty nodes is 1, 3, or > 5. We conjecture that our 

scheme for ISRE’s can also tolerate multiple faults (> 2) if the Hamming distance of any 

pair of faulty nodes is 1, 3, or > 5. We could characterize and enumerate all multiple- 

fault scenarios that can be handled by our single-fault embedding schemes; however, it 

would be more satisfying to guarantee the tolerance of multiple faults. To accomplish 

this, a more complicated reconfiguration algorithm which also accommodates the existing 

xor-reconfiguration algorithm is needed.

C. S in g le  and M u ltip le  L ink  F au lts

Not only nodes may be faulty, also links between processors in hypercubes are sub­

ject to become faulty. Since there are more number of edges ( ) than that of nodes
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(d2rf_1) in a hypercube, it is predictable that the reconfigurable embedding schemes 

assuming faults in links only will tolerate more number of faults than those assuming 

faults in nodes only.

By treating one of the active nodes incident to the faulty link faulty, our proposed 

embedding schemes in Chapter IV, V, and VI are also able to tolerate one single faulty 

link. A result better than (3/4)2d should be achievable for successfully constructing 

ISRE’s to tolerate one single faulty link. Similar to the case of multiple node faults, we 

can characterize and enumerate all multiple-fault scenarios that can be handle by the sin­

gle-fault scheme, as well as generate new schemes for tolerating multiple faults.

D . C on jectu re  o f N P -com p leten ess

Although in Chapter VI we derive a composition method to systematically construct 

ISRE’s for rings of lengths < (3/4)2rf in a d-cube, the existence of ISRE’s for some ring 

of lengths > (3/4)2d in a d-cube (d > 6) is unknown. It is easy to see that the general 

problem of finding ISRE’s: Given an even integer k and an integer d, is there a 1SRE of 

a length-k ring in a d-cube? is in NP since we can guess an embedding and check it eas­

ily in polynomial time [GaJo79]. However, the problem is remained being a conjecture 

of NP-completeness although much effort was put into by us trying to show it.
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