307 research outputs found

    Sensores de fibra ótica para arquiteturas e-Health

    Get PDF
    In this work, optical fiber sensors were developed and optimized for biomedical applications in wearable and non-intrusive and/or invisible solutions. As it was intended that the developed devices would not interfere with the user's movements and their daily life, the fibre optic sensors presented several advantages when compared to conventional electronic sensors, among others, the following stand out: size and reduced weight, biocompatibility, safety, immunity to electromagnetic interference and high sensitivity. In a first step, wearable devices with fibre optic sensors based in Fiber Bragg gratings (FBG) were developed to be incorporated into insoles to monitor different walking parameters based on the analysis of the pressure exerted on several areas of the insole. Still within this theme, other sensors were developed using the same sensing technology, but capable of monitoring pressure and shear forces simultaneously. This work was pioneering and allowed monitoring one of the main causes of foot ulceration in people with diabetes: shear. At a later stage, the study focused on the issue related with the appearance of ulcers in people with reduced mobility and wheelchair users. In order to contribute to the mitigation of this scourge, a system was developed composed of a network of fibre optic sensors capable of monitoring the pressure at various points of the wheelchair. It not only measures the pressure at each point, but also monitors the posture of the wheelchair user and advises him/her to change posture regularly to reduce the probability of this pathology occurring. Still within this application, another work was developed where the sensor not only monitored the pressure but also the temperature in each of the analysis points, thus indirectly measuring shear. In another phase, plastic fibre optic sensors were studied and developed to monitor the body posture of an office chair user. Simultaneously, software was developed capable of monitoring and showing the user all the acquired data in real time and warning for incorrect postures, as well as advising for work breaks. In a fourth phase, the study focused on the development of highly sensitive sensors embedded in materials printed by a 3D printer. The sensor was composed of an optical fibre with a FBG and the sensor body of a flexible polymeric material called "Flexible". This material was printed on a 3D printer and during its printing the optical fibre was incorporated. The sensor proved to be highly sensitive and was able to monitor respiratory and cardiac rate, both in wearable solutions (chest and wrist) and in "invisible" solutions (office chair).Neste trabalho foram desenvolvidos e otimizados sensores em fibra ótica para aplicações biomédicas em soluções vestíveis e não intrusivas/ou invisíveis. Tendo em conta que se pretende que os dispositivos desenvolvidos não interfiram com os movimentos e o dia-a-dia do utilizador, os sensores de fibra ótica apresentam inúmeras vantagens quando comparados com os sensores eletrónicos convencionais, de entre várias, destacam-se: tamanho e peso reduzido, biocompatibilidade, segurança, imunidade a interferências eletromagnéticas e elevada sensibilidade. Numa primeira etapa, foram desenvolvidos dispositivos vestíveis com sensores de fibra ótica baseados em redes de Bragg (FBG) para incorporar em palmilhas de modo a monitorizar diferentes parâmetros da marcha com base na análise da pressão exercida em várias zonas da palmilha. Ainda no âmbito deste tema, adicionalmente, foram desenvolvidos sensores utilizando a mesma tecnologia de sensoriamento, mas capazes de monitorizar simultaneamente pressão e forças de cisalhamento. Este trabalho foi pioneiro e permitiu monitorizar um dos principais responsáveis pela ulceração dos pés em pessoas com diabetes: o cisalhamento. Numa fase posterior, o estudo centrou-se na temática relacionada com o aparecimento de úlceras em pessoas com mobilidade reduzida e utilizadores de cadeiras de rodas. De modo a contribuir para a mitigação deste flagelo, procurou-se desenvolver um sistema composto por uma rede de sensores de fibra ótica capaz de monitorizar a pressão em vários pontos de uma cadeira de rodas e não só aferir a pressão em cada ponto, mas monitorizar a postura do cadeirante e aconselhá-lo a mudar de postura com regularidade, de modo a diminuir a probabilidade de ocorrência desta patologia. Ainda dentro desta aplicação, foi publicado um outro trabalho onde o sensor não só monitoriza a pressão como também a temperatura em cada um dos pontos de análise, conseguindo aferir assim indiretamente o cisalhamento. Numa outra fase, foi realizado o estudo e desenvolvimento de sensores de fibra ótica de plástico para monitorizar a postura corporal de um utilizador de uma cadeira de escritório. Simultaneamente, foi desenvolvido um software capaz de monitorizar e mostrar ao utilizador todos os dados adquiridos em tempo real e advertir o utilizador de posturas incorretas, bem como aconselhar para pausas no trabalho. Numa quarta fase, o estudo centrou-se no desenvolvimento de sensores altamente sensíveis embebidos em materiais impressos 3D. O sensor é composto por uma fibra ótica com uma FBG e o corpo do sensor por um material polimérico flexível, denominado “Flexible”. O sensor foi impresso numa impressora 3D e durante a sua impressão foi incorporada a fibra ótica. O sensor demonstrou ser altamente sensível e foi capaz de monitorizar frequência respiratória e cardíaca, tanto em soluções vestíveis (peito e pulso) como em soluções “invisíveis” (cadeira de escritório).Programa Doutoral em Engenharia Físic

    Recent Innovations in Footwear and the Role of Smart Footwear in Healthcare—A Survey

    Get PDF
    © 2024 The Author(s). Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Smart shoes have ushered in a new era of personalised health monitoring and assistive technologies. Smart shoes leverage technologies such as Bluetooth for data collection and wireless transmission, and incorporate features such as GPS tracking, obstacle detection, and fitness tracking. As the 2010s unfolded, the smart shoe landscape diversified and advanced rapidly, driven by sensor technology enhancements and smartphones’ ubiquity. Shoes have begun incorporating accelerometers, gyroscopes, and pressure sensors, significantly improving the accuracy of data collection and enabling functionalities such as gait analysis. The healthcare sector has recognised the potential of smart shoes, leading to innovations such as shoes designed to monitor diabetic foot ulcers, track rehabilitation progress, and detect falls among older people, thus expanding their application beyond fitness into medical monitoring. This article provides an overview of the current state of smart shoe technology, highlighting the integration of advanced sensors for health monitoring, energy harvesting, assistive features for the visually impaired, and deep learning for data analysis. This study discusses the potential of smart footwear in medical applications, particularly for patients with diabetes, and the ongoing research in this field. Current footwear challenges are also discussed, including complex construction, poor fit, comfort, and high cost.Peer reviewe

    End-user assessment of an innovative clothing-based sensor developed for pressure injury prevention: a mixed-method study

    Get PDF
    This study aimed to evaluate a clothing prototype that incorporates sensors for the evaluation of pressure, temperature, and humidity for the prevention of pressure injuries, namely regarding physical and comfort requirements. A mixed-method approach was used with concurrent quantitative and qualitative data triangulation. A structured questionnaire was applied before a focus group of experts to evaluate the sensor prototypes. Data were analyzed using descriptive and inferential statistics and the discourse of the collective subject, followed by method integration and meta-inferences. Nine nurses, experts in this topic, aged 32.66 ± 6.28 years and with a time of profession of 10.88 ± 6.19 years, participated in the study. Prototype A presented low evaluation in stiffness (1.56 ± 1.01) and roughness (2.11 ± 1.17). Prototype B showed smaller values in dimension (2.77 ± 0.83) and stiffness (3.00 ± 1.22). Embroidery was assessed as inadequate in terms of stiffness (1.88 ± 1.05) and roughness (2.44 ± 1.01). The results from the questionnaires and focus groups’ show low adequacy as to stiffness, roughness, and comfort. The participants highlighted the need for improvements regarding stiffness and comfort, suggesting new proposals for the development of sensors for clothing. The main conclusions are that Prototype A presented the lowest average scores relative to rigidity (1.56 ± 1.01), considered inadequate. This dimension of Prototype B was evaluated as slightly adequate (2.77 ± 0.83). The rigidity (1.88 ± 1.05) of Prototype A + B + embroidery was evaluated as inadequate. The prototype revealed clothing sensors with low adequacy regarding the physical requirements, such as stiffness or roughness. Improvements are needed regarding the stiffness and roughness for the safety and comfort characteristics of the device evaluated.The 4NoPressure project was co-financed by the Operational Program for Competitiveness and Internationalization (COMPETE 2020) under the PORTUGAL 2020 Partnership Agreement, with support from the European Regional Development Fund (ERDF), reference number POCI-01-0247- FEDER-039869

    A novel elastic sensor sheet for pressure injury monitoring: design, integration, and performance analysis

    Get PDF
    This study presents the SENSOMATT sensor sheet, a novel, non-invasive pressure monitoring technology intended for placement beneath a mattress. The development and design process of the sheet, which includes a novel sensor arrangement, material selection, and incorporation of an elastic rubber sheet, is investigated in depth. Highlighted features include the ability to adjust to varied mattress sizes and the incorporation of AI technology for pressure mapping. A comparison with conventional piezoelectric contact sensor sheets demonstrates the better accuracy of the SENSOMATT sensor for monitoring pressures beneath a mattress. The report highlights the sensor network’s cost-effectiveness, durability, and enhanced data measurement, alongside the problems experienced in its design. Evaluations of performance under diverse settings contribute to a full understanding of its potential pressure injury prediction and patient care applications. Proposed future paths for the SENSOMATT sensor sheet include clinical validation, more cost and performance improvement, wireless connection possibilities, and improved long-term monitoring data analysis. The study concludes that the SENSOMATT sensor sheet has the potential to transform pressure injury prevention techniques in healthcare.This work was carried out under the SensoMatt project, grant agreement no. CENTRO-01-0247-FEDER-070107, co-financed by European Funds (FEDER) by CENTRO2020.info:eu-repo/semantics/publishedVersio

    Fiber Bragg Gratings as e-Health Enablers: An Overview for Gait Analysis Applications

    Get PDF
    Nowadays, the fast advances in sensing technologies and ubiquitous wireless networking are reflected in medical practice. It provides new healthcare advantages under the scope of e-Health applications, enhancing life quality of citizens. The increase of life expectancy of current population comes with its challenges and growing health risks, which include locomotive problems. Such impairments and its rehabilitation require a close monitoring and continuous evaluation, which add financial burdens on an already overloaded healthcare system. Analysis of body movements and gait pattern can help in the rehabilitation of such problems. These monitoring systems should be noninvasive and comfortable, in order to not jeopardize the mobility and the day-to-day activities of citizens. The use of fiber Bragg gratings (FBGs) as e-Health enablers has presented itself as a new topic to be investigated, exploiting the FBGs’ advantages over its electronic counterparts. Although gait analysis has been widely assessed, the use of FBGs in biomechanics and rehabilitation is recent, with a wide field of applications. This chapter provides a review of the application of FBGs for gait analysis monitoring, namely its use in topics such as the monitoring of plantar pressure, angle, and torsion and its integration in rehabilitation exoskeletons and for prosthetic control

    Correlating the Effect of Dynamic Variability in the Sensor Environment on Sensor Design

    Get PDF
    This dissertation studies the effect of biofluid dynamics on the electrochemical response of a wearable sensor for monitoring of chronic wounds. The research investigates various dynamic in vivo parameters and correlates them with experimentally measured behavior with wound monitoring as a use case. Wearable electrochemical biosensors suffer from several unaddressed challenges, like stability and sensitivity, that need to be resolved for obtaining accurate data. One of the major challenges in the use of these sensors is continuous variation in biofluid composition. Wound healing is a dynamic process with wound composition changing continuously. This dissertation investigates the effects of several in vivo biochemical and environmental parameters on the sensor response to establish actionable correlations. Real-time assessment of wound healing was carried out through longitudinal monitoring of uric acid and other wound fluid characteristics. A textile sensor was designed using a simple fabrication approach combining conductive inks with a polymeric substrate, for conformal contact with the wound bed. A −1 cm−2, establishing the applicability of the sensor for measurements in the physiologically relevant range. The sensor was also found to be stable for a period of 3 days when subjected to physiological and elevated temperatures (37oC and 40oC) confirming its relevance for long-term monitoring. A direct correlation between sensor response and the dynamic parameters was seen, with the results showing a ~20% deviation from the accurate UA reading. The results confirmed that as a consequence of these parameters temporally changing in the wound environment, the sensor response will be altered. The work develops mathematical models correlating this effect on sensor response to allow for real-time sensor calibration. The clinical validation studies established the feasibility of UA measurement by the developed electrochemical sensor and derive correlations between the wound chronicity and UA levels. The protocols developed in this work for the design, fabrication, and calibration of the sensor to correct for the dynamic in vivo behavior can be extended to any wearable sensor for improved accuracy

    Review on Smart Electro-Clothing Systems (SeCSs)

    Get PDF
    This review paper presents an overview of the smart electro-clothing systems (SeCSs) targeted at health monitoring, sports benefits, fitness tracking, and social activities. Technical features of the available SeCSs, covering both textile and electronic components, are thoroughly discussed and their applications in the industry and research purposes are highlighted. In addition, it also presents the developments in the associated areas of wearable sensor systems and textile-based dry sensors. As became evident during the literature research, such a review on SeCSs covering all relevant issues has not been presented before. This paper will be particularly helpful for new generation researchers who are and will be investigating the design, development, function, and comforts of the sensor integrated clothing materials
    corecore