277,887 research outputs found

    On properties of modeling control software for embedded control applications with CSP/CT framework

    Get PDF
    This PROGRESS project (TES.5224) traces a design framework for implementing embedded real-time software for control applications by exploiting its natural concurrency. The paper illustrates the stage of yielded automation in the process of structuring complex control software architectures, modeling controlled mechatronic systems and designing corresponding control laws, simulating them, generating control code out of simulated control strategy and implementing the software system on a (embedded) computer. The gap between the development of control strategies and the procedures of implementing them on chosen hardware targets is going to be overcome

    Model based code generation for distributed embedded systems

    Get PDF
    Embedded systems are becoming increasingly complex and more distributed. Cost and quality requirements necessitate reuse of the functional software components for multiple deployment architectures. An important step is the allocation of software components to hardware. During this process the differences between the hardware and application software architectures must be reconciled. In this paper we discuss an architecture driven approach involving model-based techniques to resolve these differences and integrate hardware and software components. The system architecture serves as the underpinning based on which distributed real-time components can be generated. Generation of various embedded system architectures using the same functional architecture is discussed. The approach leverages the following technologies – IME (Integrated Modeling Environment), the SAE AADL (Architecture Analysis and Design Language), and Ocarina. The approach is illustrated using the electronic throttle control system as a case study

    Efficient Simulation of Structural Faults for the Reliability Evaluation at System-Level

    Get PDF
    In recent technology nodes, reliability is considered a part of the standard design ¿ow at all levels of embedded system design. While techniques that use only low-level models at gate- and register transfer-level offer high accuracy, they are too inefficient to consider the overall application of the embedded system. Multi-level models with high abstraction are essential to efficiently evaluate the impact of physical defects on the system. This paper provides a methodology that leverages state-of-the-art techniques for efficient fault simulation of structural faults together with transaction-level modeling. This way it is possible to accurately evaluate the impact of the faults on the entire hardware/software system. A case study of a system consisting of hardware and software for image compression and data encryption is presented and the method is compared to a standard gate/RT mixed-level approac

    Object-oriented development

    Get PDF
    Object Oriented Development (OOD) is one of the extremely few software development methods actually designed for modern Ada language, real-time, embedded applications. OOD is a significant improvement over more traditional functional decomposition and modeling methods in that ODD: Better manages the size, complexity, and concurrancy of today's systems; Better addresses important software engineering principles such as abstract data types, levels of abstraction, and information hiding; Produces a better design that more closely matches reality; Produces more maintainable software by better localizing data and thus limiting the impact of requirements changes; and Specifically exploits the power of Ada. OOD is further explored in detail

    On Introducing Built-In Test for Software Components in AADL Models

    No full text
    International audienceThis paper presents preliminary ideas to include a kind of built-in self-test for systems embedded software components. The study promotes contract-based testing applied to AADL modeling of hardware/software systems. The aim is first to help evaluating the testability of software components embedded in such systems, and next to improve the integration step, especially in the context of COTS design and development. We introduce an architecture to include a generic test system inside an AADL model, and then test specifications to handle the testing process. The paper exposes the main ideas of the proposed approach and its modeling but no implementation work. Next stage is an implementation work to assess the feasibility and the benefits of the proposed approach

    The DevOps Goes to the Embedded System

    Get PDF
    Lately, DevOps has been widely discussed in various papers, in addition the industry has implemented it to be a solution for developing and distributing software for general purposes. However, the application of DevOps to embedded systems is still quite difficult, and there is still lack of paper to discuss it. The purpose of this study is to explore the DevOps approach in developing embedded systems. The method used in this research is to use the Object-Oriented Software Engineering approach. Various tools used to support the development of embedded systems include Visual Paradigm, Quantum Modeling. The results explain that DevOps can be applied in the development of embeded systems through Forward and Reverse Engineering. Forward engineering includes analysis, design of the class, design of the state machine, design of coding, generate code, uploading some codes into board. While reverse engineering is reverse from forward engineering. However, the applying of DevOps is not still one stop services. It is signed by the displacement of tools when doing state-machine design, there is a shift in the use of tools, from the visual paradigm to quantum modeling

    Integrated Design Tools for Embedded Control Systems

    Get PDF
    Currently, computer-based control systems are still being implemented using the same techniques as 10 years ago. The purpose of this project is the development of a design framework, consisting of tools and libraries, which allows the designer to build high reliable heterogeneous real-time embedded systems in a very short time at a fraction of the present day costs. The ultimate focus of current research is on transformation control laws to efficient concurrent algorithms, with concerns about important non-functional real-time control systems demands, such as fault-tolerance, safety,\ud reliability, etc.\ud The approach is based on software implementation of CSP process algebra, in a modern way (pure objectoriented design in Java). Furthermore, it is intended that the tool will support the desirable system-engineering stepwise refinement design approach, relying on past research achievements ¿ the mechatronics design trajectory based on the building-blocks approach, covering all complex (mechatronics) engineering phases: physical system modeling, control law design, embedded control system implementation and real-life realization. Therefore, we expect that this project will result in an\ud adequate tool, with results applicable in a wide range of target hardware platforms, based on common (off-theshelf) distributed heterogeneous (cheap) processing units

    Cross-factor analysis of software modeling practices versus practitioner demographics in the embedded software industry

    Get PDF
    Software-intensive embedded systems have evolved to be essential tools of our lives. To cope with growing complexities in embedded software industry, software modeling and model-driven engineering (MDE) have become popular for design, development and testing of these systems. However, the usage of models in embedded software industry and the relevant practices usually vary since challenges, requirements and purposes differ among systems as well as among sectors. To understand the state-of-the-practice of software modeling in embedded systems industry, we designed and conducted a world-wide survey, which accepted 627 responses from 27 different countries. The goal of this paper is to present our work built on this survey to better understand and characterize the cross-factor analysis of software modeling versus practitioner demographics, e.g., degree of using software modeling versus target sectors of the products

    Prototype of Fault Adaptive Embedded Software for Large-Scale Real-Time Systems

    Get PDF
    This paper describes a comprehensive prototype of large-scale fault adaptive embedded software developed for the proposed Fermilab BTeV high energy physics experiment. Lightweight self-optimizing agents embedded within Level 1 of the prototype are responsible for proactive and reactive monitoring and mitigation based on specified layers of competence. The agents are self-protecting, detecting cascading failures using a distributed approach. Adaptive, reconfigurable, and mobile objects for reliablility are designed to be self-configuring to adapt automatically to dynamically changing environments. These objects provide a self-healing layer with the ability to discover, diagnose, and react to discontinuities in real-time processing. A generic modeling environment was developed to facilitate design and implementation of hardware resource specifications, application data flow, and failure mitigation strategies. Level 1 of the planned BTeV trigger system alone will consist of 2500 DSPs, so the number of components and intractable fault scenarios involved make it impossible to design an `expert system' that applies traditional centralized mitigative strategies based on rules capturing every possible system state. Instead, a distributed reactive approach is implemented using the tools and methodologies developed by the Real-Time Embedded Systems group.Comment: 2nd Workshop on Engineering of Autonomic Systems (EASe), in the 12th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems (ECBS), Washington, DC, April, 200
    corecore