375,472 research outputs found

    Embedded intelligence for electrical network operation and control

    Get PDF
    Integrating multiple types of intelligent, mulitagent data analysis within a smart grid can pave the way for flexible, extensible, and robust solutions to power network management

    Implementing embedded artificial intelligence rules within algorithmic programming languages

    Get PDF
    Most integrations of artificial intelligence (AI) capabilities with non-AI (usually FORTRAN-based) application programs require the latter to execute separately to run as a subprogram or, at best, as a coroutine, of the AI system. In many cases, this organization is unacceptable; instead, the requirement is for an AI facility that runs in embedded mode; i.e., is called as subprogram by the application program. The design and implementation of a Prolog-based AI capability that can be invoked in embedded mode are described. The significance of this system is twofold: Provision of Prolog-based symbol-manipulation and deduction facilities makes a powerful symbolic reasoning mechanism available to applications programs written in non-AI languages. The power of the deductive and non-procedural descriptive capabilities of Prolog, which allow the user to describe the problem to be solved, rather than the solution, is to a large extent vitiated by the absence of the standard control structures provided by other languages. Embedding invocations of Prolog rule bases in programs written in non-AI languages makes it possible to put Prolog calls inside DO loops and similar control constructs. The resulting merger of non-AI and AI languages thus results in a symbiotic system in which the advantages of both programming systems are retained, and their deficiencies largely remedied

    AI curriculum for european high schools: an embedded intelligence approach

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUGXunta de Galicia ; ED431G 2019/0

    Advances towards a General-Purpose Societal-Scale Human-Collective Problem-Solving Engine

    Full text link
    Human collective intelligence has proved itself as an important factor in a society's ability to accomplish large-scale behavioral feats. As societies have grown in population-size, individuals have seen a decrease in their ability to activeily participate in the problem-solving processes of the group. Representative decision-making structures have been used as a modern solution to society's inadequate information-processing infrastructure. With computer and network technologies being further embedded within the fabric of society, the implementation of a general-purpose societal-scale human-collective problem-solving engine is envisioned as a means of furthering the collective-intelligence potential of society. This paper provides both a novel framework for creating collective intelligence systems and a method for implementing a representative and expertise system based on social-network theory.Comment: Collective Problem Solving Theory and Social-Network algorith

    Sensor function virtualization to support distributed intelligence in the internet of things

    Get PDF
    It is estimated that-by 2020-billion devices will be connected to the Internet. This number not only includes TVs, PCs, tablets and smartphones, but also billions of embedded sensors that will make up the "Internet of Things" and enable a whole new range of intelligent services in domains such as manufacturing, health, smart homes, logistics, etc. To some extent, intelligence such as data processing or access control can be placed on the devices themselves. Alternatively, functionalities can be outsourced to the cloud. In reality, there is no single solution that fits all needs. Cooperation between devices, intermediate infrastructures (local networks, access networks, global networks) and/or cloud systems is needed in order to optimally support IoT communication and IoT applications. Through distributed intelligence the right communication and processing functionality will be available at the right place. The first part of this paper motivates the need for such distributed intelligence based on shortcomings in typical IoT systems. The second part focuses on the concept of sensor function virtualization, a potential enabler for distributed intelligence, and presents solutions on how to realize it

    Embedded expert system for space shuttle main engine maintenance

    Get PDF
    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES)

    Tumult and turmoil : privacy in an ambient world

    Get PDF
    Ambient Intelligence (AmI) and ubiquitous computing allow us to consider a future where computation is embedded into our daily social lives. This vision raises its own important questions. Our own interest in privacy predates this impending vision, but nonetheless holds a great deal of relevance there. As a result, we have recently conducted a wide reaching study of people’s attitudes to potential AmI scenarios with a view to eliciting their privacy concerns. The approach and findings will be discussed
    • …
    corecore