
IMPLEMENTING EMBEDDED ARTIFICIAL INTELLIGENCE
RULES WITHIN ALGORITHMIC PROGRAMMING LANGUAGES

N88-2 1686 (NASA-CE- 17839 3) 3: FIPLEIYENTING EBBEDD hU
A R T I F I C I A L INTELLIGENCE R U L E S WITHIN
ALGOEXTHHIC P R O G K A M H I N G L A N G U A G E S (VAL&)

51 P 63/61 0140245
CSCL 3 9 8 IJnclas

Stefan Feyock

VAIR, INC.
Williamsburg, Virginia

Contract NAS 1- 18002
March 1908

National Aeronautics and
Space Admlnistratlon

Langley Research Center
Hampton.Vlrglnla 23665

https://ntrs.nasa.gov/search.jsp?R=19880012302 2020-03-20T06:37:13+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42832738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IMPLEMENTING EMBEDDED ARTIFICIAL INTELLIGENCE RULES

WITHXN ALGORITHMIC PROGRAMMING LANGUAGES

Problem Description

In recent years the powerful techniques offered by Artificial

Intelligence (A X) technology have gained acceptance at an

ever-increasing rate. O n the other hand. most production

software s y ~ t e m s continue to be written in traditional

programming languages which are not oriented toward AI

applications (we will refer to such languages as algorithmic

languages In the subsequent discussion). Attempts to close the

resulting gap have been provisional and system-specific in

nature. I n particular, the larger commercial A I systems have the

cayability to Interact with programs written in algorithmic

lenpueges im~llernented on the hoet machine: the non-A1 code is

typically invoked as subroutine or coroutlne i n these

~ ~ t u a t i o n s . The approach taken in the initial phase of this

project 121 was similar. A Pascal-based Prolog interpreter 151

wae modified by adding an escape predicate. a new built-in

predicate that allowed information to be passed tO/fPOm

algorithmic subroutines. While this solution allowed the

seamless integration of algorithmic language-based procedures

into Prolog (in particular the applications language interface

Page 1

of the RIM database system [l]), it also exposed a basic

limitation of this approach. A s indicated, the structure of this

system required the AI component to operate a8 the main program.

This was appropriate for the intelligent database application in

question, since Prolog can be considered to be an

ultrasophisticated database Query language with deductive

capability. It proved to be inappropriate, however, for many of

the other algorithmic language-based applications of interest:

programs involving optimization, computer-aided design,

simulation, graphics, matrix processing, and a multitude of

other applications. Many of these programs could make good use

of A I capabilities, but are not structured to run in a

subprogram mode.

The STRUTEX program [& I , a prototype system for the

conceptual d e s i g n of structures to support point loads in two

dimensions, provides an illustration as well as test vehicle for

these concepts. STRUTEX I s structured as a FORTRAN program that

accepts load, sUrf&ce, and support data from the user (provided

in part by means of a mouse), and calls AI rules to make

decisions regarding the 8upport structure appropriate to that

load. Apglic&tlon programs such as STRUTEX illustrate the

widespread need for embedded c, 1.e. the integration of A I and

algorithmic languages in a fashion that allows the AI facilities

to be called as subprograms from the algorithmic program. It is

this need that was addressed by the current phase of the

project. The results are as follows:

.

.

Page 2

4

A Prolog-based A I capability callable in embedded
mode from alyorlthmic programe was created

The developed capability was tested
in conjunction with the STRUTEX system

Since Phase 1 of this project achieved the embedding of

alzOrithmiC subprograms in an AI system, and Phase 2 embedded AI

ificilities in algorithmic main programs, the result is a product

whose two components supplement each other in a h i g h l y

synor.g;istic fashion. The addition of embedded AI capabilities t o

algorithmic programs has already been discussed; the

augmentation, however, w o r k s in the other direction as well.

Thus. the invocation or' Prolog from algorithmic language allows

Proloy t o inherit traditional control structures, in which it is

(treatly deficient. from these languages. As another example,

1'1 oattrig point operations, which are missing f r o m this

rJa!'t.tcultir Prolog impltzmentation, can be added by invoking;

& l c . o r . l thinic subprograms f r o m Prolog. Additional augmentations

CIZ*C: l i i i i i t e d only by the imagination of the programmer.

DRIGINAL PAGE IS
'g@$ POOR QUALITY

e

Page 3

T E C H N I C A L D E S C R I P T I O N

T h e goal of embedding AI facilities in algorithmic languages

was achieved in a manner technically similar to that which

achieved the integration of algorithmic languages into Prolog:

the addition of the new evaluable predicates import and export

t o Prolog. Before describing these predicates we will briefly

review the conceptually similar escape predicate, which is

described i n detail in 123.

T h e escape Predicate

The escape predicate is the heart of the Prolog/RIM

interface; moreover, we have noted that this predicate can Serve

an an interface among a variety of other systems. escape would

work as well, for example, as a Prolog/graphics package

interface, o r a LISP/RIM interface, etc. In fact, the Only

requirement appears to be lists or list-like structures in the

calling language (1 . e . the language calling the eacage), Since

otherwise the operations needed to set up and decode escape's

parameters are too cumbersome. The fact that few languages

besides those oriented toward Artificial Intelligence feature

list structures as Primitives, rather than as a construct to be

defined by the programmer, may account for the fact that the

.

Page 4

DRIGlNAL PAGE IS
DE POOR QUALITY,

escape mechanism is not a universally Implemented feature.

In YRIM. the PPOlO&/RIM integration described in C21. the

escape predicate 1s added to the Prolog side of the Interface;

i t is installed in Prolog as a new evaluable predicate.

Here is the design of the escape predicate as it was

implemented:

escape(X, Y)
A , .

I 1
I 1

+ - - - - - - - - - - - - - - - - + +- - - - - - - - - - - -+
I 1
I I

list containing result returned
Information on in this argument
operations to
b e p e r f ornied

The input list X Is expected to be a linear list of atoms

(d y t n b o l i c or numeric); the result appears bound to Y . and also

has the form of a linear list of atoms. Note that quoted strings

tire leeltlinate atoms In Prolog, 8 0 passing a list

[floatadd, ‘37.82‘, ‘-10.036’1

1s a r e a n i b l e method of implementing real addition in Prolog.

The ln ter f t i ce between Pascal and Prolog consists of a set of

i)roc(:dur’cis within the Pro log implementation that move the values

ot’ t h c tnptit list elements to a parameter buffer internal to the

l b ~ ~ s c : ~ L pro,g~’am on the Pascal side of the interface, whence they

m c i y tst- mFinipulated by the Pascal program as desired. Returning

priranieters to Prolog is the reverse of this process: the result

values tire placed in the parameter buffer, and Interface

rboutines use these values to create a Prolog list and bind It to

Page 5

the second parameter of escape. The reader is again referred to

t h e program documentation for details.

T h e format [<action-code>, <arg>, --- 1 is typical for input

pcirameter l is ts , 1 . e . pbrameters to be passed to the escape

predicate in a list bound to the first parameter. This means

t h a t the appropriate format for a Pascal program implementing

c::3cape Is a case statement on <action-code>: in other words, the

PLisctrl program is typically an interpreter interpreting commands

oL' the P o r m [<action-code>, <arg>, --- 1.

Pace 6

DmGlI’dAI; PAGE IS
DE POOR QUALITY

Invoking Prolog in Embedded Mode

c

One O Y the most important reasons embedded AI is a rare

rJhenonienon is that AI facilities are almost universally

1riipleniented tis subroutine packages written in the major A I

1unyueK:es L I S P and Prolog. Since it may be s a i d of both of

tliese languages that the syntax consists entirely of subroutine

calls. these A I Rackages have the appearance of language

ctxtensions, or even of new special-purpose languages.

The point of these observations is that embedding L I S P - or

P~oloy-based A I facilities is tant&mount to embedding the entire

I sneuage interpreter and/or run-time environment. These are

large stand-alone progranis not designed to run in subroutine

i iwdc: . a n d t h u s present formidable praoblems to the would-be user

wtho 1ntc:ndu t o invoke them f r o m non-AI programs. We htrve been

u b l c Lo clevelop techniques, however, that 6llOw the Prolop

I r i t e r p r * t l t e r ~ to interact with algorithmic grogr&ins in a m6nner

t h a t Crnplements embedded A I . This interaction is the main result

01’ the pr*es;cint research.

Two factors combined to make it possible to embed Prolog in

t ~ L ~ o r l t t m l c languages, one a straightforward separate

~oi~ipllrition capability offered by many language systems, the

other a brilliant design feature devised by the Prolog

i n i p 1 emen tors .

Interpreters, regardless Of the language interpreted, tend to

have similar overall structure:. in particular, there is almost

Inevitably a main Interpretation loop having the following

general form:

loop
perform housekeeping;
process next language element;

end loop

The first factor referenced above is the VMS Pascal [6] module

feature. Prefacing a Pascal program with the keyword module

rather than program signals the compiler that the program Is a

separately compiled unit whose internal facilities (data and

subroutines) may be made available (by prepending the phrase

[global]) to other programs. Such a separate compilation

cauability, while not a part of standard Pascal, is almost

universal in modern Pascal systems running on microcomputers as

well &is mainframes. We may therefore use it with little concern

that portability and general usefulness will be compromised.

Since the Prolog interpreter can trivially be made into a

module, and since procedures within it can therefore be m a d e

available to calling programs, it is straightforward to insert a

procedure like this:

[global] Procedure test;
begin
Perform necessary housekeeping;
perform next interpreter action;

end :

which can then be called by any program that Is linked together

Page 8

with the Prolog module. The obvious question is: what is the

"next interpreter actlon"; more particularly, Is it what we want

done In order to do A I In on embedded mode? A s it stands. the

tinywer is "no", since, as Indicated above, the next interpreter

action is to "process next language element". In Prolog this

rimounts to prompting the user f o r the next Q u e r y , deducing an

t5nLiwCrr from the rulebase, and printing this answer o u t for the

user.

T h i s interactive mode is inappropriate for embedded

agplicutlons, where the AI facilities must communicate not with

a human user in interactive mode, but with the calling program.

I t i t ; at this Point that the second factor mentioned above comes

Lnto play. A s it happens, the "next interpreter action"

performed in the loop is defined not by a body of Pascal code,

b u t by Pr*o log statements that are read in by the Interpreter

u i ~ o n initltilization. These Prolog statements define (are the

tjody of') t h c Prolog procedure $top; "perform next interpreter

action" then amounts merely to causing the invocation of $top.

' I ' t h i L: :::I.inplicity of function allows us to reproduce procedure

P a g e 9

[global] p r o c e d u r e test;
var x: term: e:env;
begln

choicegoint : = 0; t housekeeping code 1
NewEnv(e, nil, 0, nil, 0); t more housekeeping code 1

t the following statement invokes PrOlOg procedure $top: 1

If togA^.proc <> nil then Goal(MakeFunc(topA, 0, nil, 0) ;

KillStacks(0); t yet more housekeeping 1
end:

The significance of the fact that the basic interpreter action

I s defined in terms of Frolog code which is read In at

Interpreter initialization time is that if we do not like what

the Interpreter does, we need not reprogram lone sections of

obscure Pascal code: changing the Prolog statements defining

$top is all that is required. This, however, is quite easy to

do, since Prolog is a high-level language. To transmit a feel

f o r what is involved, we present part of the original definition

of $top.

'$top' :- write(*?- '1. read(>(), nonvar(>o, e exec*(^).

*$exec'(end) :- !, end, nl.

'$exec'((?- end)) :- !, end, nl.

'$exec* (G) : - '$grid* (GI , ! , G.

'$exec' (G) : - G, write(I==> ' 1 , write(G1, write(* ? ') , '$ask'.

A 6 can be seen, $tog writes out the prompt I? - ' , reads the

user'a input, makes s u r e that this Input I s not solely a

Page 10

variable, and executes it by invoking Sexec on It. The

definition of $exec, in turn, follow immediately. The first two

clauses simply cause termination if the user types "end" or

"?-end*'. The last two clause6 of the definition deal with the

c e s e ~ where G does, resRectively does not, contain variables: in

cither case, G is Invoked. When no additional answers for G

exist. $exec completes, causing $top to complete as well and

t'etur-n to the interpreter loop.

For the Purposes of' implementing embedded Prolog it was

necessary to change the above definition of $top so that it

accepted data from the calling program rather than the user,

processed it as desired, and passed the results back to the

calling progr&m, rather than printing them out at the terminal

by means or a write(G). Here is the modified version of $top:

'$top* : - import()<), '$process'(X).

Ttie l i ~ i t i o l $ sign, inciaentally, is a naming; convention

dcsignatirig the procedure name as part of the interpreter loop

definition: cidherence is optional. The ' marks surrounding such

ncirncs ~ I W needed to let Prolog accept "strange" characters such

cis $ without complaint.

AS will be seen in the course of the subsequent discussion,

the procedures import(X) and export()<) transfer data from,

rt-::rgec t ively to, outside programs written in algorithmic

I ~ ~ n g u a g e s . The data in question is bound to variable X:

p r w c e c l i r r e $process(X) processes it.

The elevance and simpllc~ty of this method of deflning the

P a g e 11

interpreter loop is apparent. What is even more impressive is

the flexibility this approach yields: the code defining the

action of the Interpreter 1s available to the Prolog programmer

for modification. The power of this particular modification

which we have undertaken becomes apparent when it is noted that

the definition of $process IS to be supplied by the user, and

may do anything at all that the user desires. A s a simple test

case, the following rule definition w a s used:

'Sprocess'(X) :- write(' imported/exported ' 1 .
write(X), export (X I .

The data imported into Prolog is written on the terminal,

whereupon export returns it unchanged to the calling program.

Page 12

ORIGmAL PAGE IS
OF POOR QUALITY

The import and export Predicates

The escnpe predicate described above transfers information to

n non-F'roloR Program, which acts on it. whereupon the results

are transferred back i n t o the Prolog program. For the purposes

or t h i c work it has groved useful to breek out the primitive

components of the transfers Involved. A s indicated. import(>()

and export(X) are new evaluable (built-in) predicates that have

h e e n a d d e d to Prolog to achieve the goals of this Project.

-~ import is used to make data created externally (SAY by an

a3 fzorlthmic prozram) available to Prolog: export Passes data

b o c k to the '*outside". In both cases the data involved is bound

to the parameter of the predicate. Since they are central to the

resul ts that have been achieved. we will describe the structure

Qncl I~RI). OP these predicates in detail.

The communications interface between Proloe: and the "outside

world*' that was devised to implement those predicates is a

b r i f f e r structure that is shared by the programs that need to

c x c h n n ~ e information. In the (Zypical) case of tho STRUTEX

ny-tom A F O R T R A N program is communicating with the

(P s s c r i l -bnsf?cl) Prolog interpreter: we will E i v e the buffer

t l c c l ~ r n t i a n ~ on both sides of the interface. The Pascal

r l e c I n i - n t; I onn are:

P a g e 13

srg-i: [~oMMoN(FPCOMI)I array[ll. .maxargsl of integer:
Arg-1.: [COMMON (FPCOMR) 3 array C 1. maxargs 1 of real :
arg-s: [COMMON(FPCOMS)] arrayll. .maxargs] of alpha:

ar-g-type : [COMMON (FPCOM2)] array [1. . maxargs 1 of char:

A s can be seen, the buffer structure consists of four parallel

arrays. Array arg,type[i] contains a one-character flag

indicatinp: whether the i'th data element is of type integer

(flanRed by 'i*)* real ('r'), or string (* s ') , i.e. packed

Rrrmy[l. .alphasize] of char. If the element is an integer, it is

contained in arg-i[i]: if real, in arg-r[i], and if string, in

arR-s[I]. In the Prolog interface reals are actually Passed in

erg-n as strings. due to quirks of this particular Prolog

iinplement~tion. Array arg-r is thus not used i n STRUTEX, but

has been retained for the sake of generality.

T h i n storege scheme optimizes simplicity and portability at

the expense of space: to add an unforeseen data type, we need

simply add the declaration

arg-u: [COMMON(FPCOMU)] array[l..maxargs] of unforeseen-type:

and decide on a character flag to denote it. Since the number of

d ~ t a elements to be passed will generally be moderate (maxargs

In ciirrcntly set to 10). allocating unused space is well worth

the snvjnns in complexity that result over a scheme using data

over1 nys produced by EQUIVALENCEing. The phrases

[COMMnN(FPC@M*)] in the above declarations indicate to the

compiler that the storage to be allocated to t h e s e data

ntructures is to be a COMMON area that will be shared by other

programs; FPCOM* names the COMMON area in which this data
c

Page I b

striictiire is to be placed. The FORTRAN side of the interface

lookc like thie for integer data:

INTEGER intval(maxargs)
 CHARACTER*^ argtype(maxargs)
COMMON /FPCOM2/ arstype
COMMON /FPCOMI/ intval

and nnalogously for the real and string buffers.

Information Transfer

W e will now describe how information flows into and out of

these buffers on both sides of the interface. The interface

operates et8 follows:

when 8 FORTRAN program wishes to invoke embedded Prolog. it

p1.aces the information to be passed to Prolog in the buffer(s)

of the corresponding type. with the appropriate flag in the f l a g

buffer. Subroutines to perform this placement i n a uniform and

modulnr manner are provided, and will be discussed below. Once

the data to be transferred has been placed, the subroutine call

CALL TEST

invokes the (global) procedure test within the Prolog

interpreter. thus invoking $top. as discussed above. On the

Prolog side, a call to import will retrieve the data stored in

the shared buffer structure, bind it to the parameter of import,

and make it available to the Prolog rules. If there is data to

be pnnsed back, procedure export places it in the buffer

Page 15

structure on t h o Prolog e i d e .

Here is a listing of subroutine pushstr, which is used by the

FORTRAN procrammer to place string data In the buffer structure

for transmittal to Prolog:

SUBROUTINE pushstr(sarg)
implicit none
integer alfalength, maxargs
PARAMETER (alfrlength = 8, maxargs = 2 5)

character* (*) sarg
character*(alfalcngth) strnic
INTEGER no-of-rrrs
character*l arctypc(maxargs)
common /fpcom2/ aretype
common no-of-rrgs
character*(alfalength) strval(maxargs)
common /fpcomo/ strval

strng = sarg
no-of-arcCs = no-of-argo + 1
strval(no-of,rrgs) = strng
argtyge(no-of,args) = 's'
RETURN
END

A B cen be seen, this routine places its argument in the

RRRroPriatc buffer array, sets the type flag to ' s ' , and updates

no-of-args. the number of arguments inserted so far. To

transmit the string 'Hello', for example, the Programmer would

write

CALL PUSHSTR('Hell0')

The routines for inserting integer and real arguments into the

buffer structure are analogous. Here is a complete sequence

corresponding to a typical parameter setup:

Page 16

NO-OF-ARGS - 0
C A I , L FIJSHSTR(' color')
CAL,L PUSHSTR (' red ' 1
C A L L PUSHSTR('volume' 1
CALI, P U S H R E A L (' 1 6 . h7')
C A L I , FTJSHSTR('amount '
CAL.1, PUSHSTR(100)
C A L L TEST

Whnt happens to these parameters on the Prolog side depends on

the pnrticular rules which the user has provided as definition

o f $process.

A s cnn be seen. the interface is rather straightforward on

the F O R T R A N side, the perhaps most unaesthetic element being the

requlrcment to initialize NO-OF-ARGS to 0. Means of obviating

this regulrcment exist and were considered. but the cure proved

w o r s e than the disease in every case.

The Prolog Side of the Interface

From the programmer's point of view, the Prolog side of the

1 ntorf'ncr? is irreducibly simple. Suppose the above sequence of

c n l Is he? heen mnde: the call to TEST then causes $top to be

nctlvntrd. which in turn causes $process to execute, which does

w h n t c v c r the (Prolog) programmer has programmed. If a Prolop:

rule n e e d s access to the parameters, an invocation of imgort(X)

docr, J I , : after completing, the parameter X will be hound to the

1 L r . t .

[color. red. volume, '16.07'. amount, 1001

Page 17

which can then be used by the Prolog program as needed.

The implementation of import and export is easily described.

Two procedures, Doimport and Doexport, were written to act as

handlers for these constructs. A s indicated above, Doimport

collects the data from the buffer structure (and counts the

elements transmitted), converts them into Prolog atoms, collects

these atoms into a Prolog list, and finally binds this list to

the argument of import. Doexgort doe6 the inverse: its argument

must be bound to a list of Prolog atoms. These atoms are pulled

off the list one by one. Their data type is determined, they are

converted to the corresponding buffer structure type (integer.

real or string), and inserted in the buffer structure.

Page 18

Callins Program Control of Embedded Prolog

W e have described how information can be passed from FORTRAN

to ombedded Prolog and accessed by the invoked Prolog rules. The

nature of Prolog. however, makes it easy for the calling program

to exert considerable control over the processing performed on

the Prolog side. If the Prolop. rules are set up correctly, any

clc?.sircd Prolog procedure to be Invoked can be specified from the

FORTRAN side. In fact, since Prolog can interpret the passed

data. a virtual interface of any desired design can easily be

created. The one we have designed I s simple and powerful, but w e

cmghnsizc that it is o n l y one of an infinite number of

pon.ol3 b 1 1 i t -1 es.

Our interface design is based on the observation that there

are two basic operations that can be performed in Prolog:

invocation of a Prolog procedure, and updates of the Prolog

datnbase. It can be maintained that the database updates are

themselves merely procedure calls to the assert and retract

procedures. This is correct, but updates are conceptually

sufflciently distinct to deserve their own classification. Our

$process procedure therefore expects the data being passed to it

to t)c in one of two possible list formats:

[assert, <predicate>, <arguments>]

Page 19

L

an=

[call, <function>, <arguments>]

Thua. suppose the list passed f r o m FORTRAN to Prolog is

[assert, P. a, b. c]

Then the Prolog procedure call

assert(p(a,b,c))

is executed. Similarly, passing the list

[call, f. x . Y , z] causes call(f(a,b,c)) to be executed,

invokinp f (a,b. c) as Prolog procedure.

ilerc? nre the Prolog statements that create this interface:

'Sprocess'(X) : - X = [assert Y] , ! , F =.. Y. assert(F).
/* e.E. if X = [assert, f, a, b. c]*

An assert(f(a,b,c)) I s executed */
*Sprocess'(X) : - X = [call I Y],!, F =.. Y, call(F).
/* e . g . if x = [call, f, a], a call(f(a))

is executed */
'$groceEs*(X) : - write(* imported/exported ' 1 .

/* this last definition can be expanded
write(X), nl, exporto(). nl.

to c lo whatever 1s desired with X */

Page 20

A Case Study: STRUTEX

The embedded AI facilities we have developed are being tested

and applied in STRUTEX, a prototype knowledge-based system for

the conceptual design of structures to support point loads in

two dimensions.

A s presently constituted, STRUTEX combines a database, a

knowledge base. and a graphics display into a prototype

knowledge-based system. The program simulates an engineer.

bcglnning work on a new project with a blank piece of pager. and

a discussion with his manager. T h e graphics screen plays the

part of the blank piece of paper, with a text area f o r dialogue

between the manager and engineer.

The user inputs data about the load, such as number of loads,

t y p e of load (e.g. gravity load), the load magnitude. and

s i m i l a r information. A mouse I s used t o position the load on

thc gcreen. The u s e r then inputs data about the support surface,

nirch n s position with respect t o load, whether OL’ not it is a

p o j n t . nurface. and the area of a non-point surfsce. The mouse is

n ~ n J n uncd to display the midpoint of the support surface, and

the proKrnm calculates the length of the surface and the

dictnnce from the surface t o the load point(s). Finally the

u e e r spec1f-le.s whether or not the support must be lightweight.

A l l of this data is stored in the database (RIM).

Page 21

Tho knowledge base i s then executed to determine the type of

support (e . g . beam or truss) that is required. This

dct~rinination is based on knowledge about the relationship

bCt.wcon the support surface and the load and data in the

c la tnbnr ,~ . Here is a Frolog rule typical of those c~iled in

c?mbr?ddcd mode by the FORTRAN-based STRUTEX program:

/*
R b c n m support is appropriate if the support surface
location is below the load, the surface 8.rea is large,
And the support is not known to be lightweight

*,’

The program computes the coordinates of the members of the

silppoi’t, which are also entered into the database. If there is

R slnn1.e l o a d Pojnt and the support type is 8 truss, then a

de~(.crnil.nntion is made of whether or not bracing is needed by

chr*(.kInp: thr? ratios of the member lengths against the loading

coti(1I t Ion?:. If there are multiple load points and t h e support

t y p e I:: a truss. then the user designs an initial. t r u s s guided

by rccornmendntions from the knowledge base. Features of the

(1 - s . i p:n n r e checked against the knowledge base and

recommendations for improvements are made. T h e E e iterations

cont.lnuc until the user is satisfied with the design. Each new

R I I P P O P ~ Js displayed o n the graphics screen.

Pane 22

The FORTRAN/Prolog Interface

We will now examine the interface used to call the embedded

r i i l v bnsc-. from FORTRAN. The FORTRAN main program component of

STRTJTIrX is structured so that requirements for services such as

Krnphlcs support. RIM database accesses, or calls to embedded AI

Pncil F t J c s , are satisfied by CALLS to handler subroutines. These

h n n c l l c r s have the logical structure of case statements (although

F O R T R A N must, of course, simulate this effect by meanc of I F s or

c o m p u t p d GOTOs): thus invocations of these handlers have as

pnrnmr-t crs R numeric code indicating the particular service

rcqulrcd. plus the specific information required to perform that

f:crvlc*e. T h o name of the handler for the embedded knowledge base

Jn 1:135:EC; R listing of KBXEC may be found in Appendix 1.

Th- followinE FORTRAN statements define the interface among

:;TJ>lITEX , t h e graphics handler, and t h e RIM database handler:

ommm FAG% IS
OF POOR QUALITY

c

P a g e 23

I M P L I C I T REAL*8 (A-H, 0-2)
CHARACTER*8 PLOADT. SURFLC, SUPTYP, SUPPWT
CHARACTER*8 SURFT,CHOICE,BRCTYP,CHBRAC,SIDES
CHARACTER*lO TEMP
CIiARACTER*$O STRING
COMMON/LOADC/PLOADN,PLOADT.PLOADX.eLOADX,~LOADY,HLOAD,VLOAD,DIST
COMMON/SURFC/SURFLC, SURFXS, SURFYS, SURFXE, SURFYE, SURFA,

COMMON/SUFPC/SUPPNO, SUPTYP, SUPPWT, SUPPXS, SUPPYS. SUPPXE,

COMMON/SHRCOM/NPTS. NTOTSP, PIXPER. XSECT. YSECT, SURFT,
€?L.OAD, RSRFAC, RSUPRT. RATIO, CIIBRAC, BRCTYP. SIDES. SIDDIF

C O M M O N / M E M X Y / S M E M N O (l O O) , X S (l O O) , ~ ~ ~ l O O) , Y S ~ l O O) , Y E (l O O ~
DIMENSION ARLOAD(7),ARSURF(8),ARSUPP(8)
EQUIVALENCE (ARLOAD(1). PLOADN), (ARSURF(l),SURFLC),

1. SURFXM, SURFYM

1 SUPPYE. SUPDIS

1

1 (ARSUPP(l),SUPPNO)

T h P s 1.1 bseque n t stat emen t s :

integer alfalength. maxargs
PARAMETER (alfalength = 8 , maxargs = 10)

CHARACTER*(alfal.ength) strval(maxargs)
character*l argtype(maxargs)

in tc scer no-of-args ! f o r sharing with the
common no-of-args ! stacking routines onIy

common /fpcoms/ strval
COMMON /f pcom2/ argtype

define the FORTRAN/Prolog communications interface, which has

tJJeP1l described previously. We will describe the action of KBXEC

P o r A typ ica l invocation of the handler:

f: II:;E KNOWLEDGE B A S E TO DETERMINE HOW DIAGONALS
c: A R E Tn IIP, DRAWN BETWEEN MEMBERS OF A TRUSS
c: n Y CHECKING LENGTH OF TWO ADJACENT SIDE MEMBERS

C A L L KBXEC(2,MDIST,TDIST,ALPHA)

The z-ction o f KBXEC code executed as a result of this Call is: *

Page 211

DNGINAL PAGX IS
'01 EOOR QUALITY

c:
C DETERMINE HOW DIAGONALS ARE TO BE DRAWN
C BETWEEN MEMBERS OF A TRUSS
c

T I P (TOPT. EQ. 2) THEN
no-of-args = 0
call pushstr('assert')
cnll pushstr('dist1')
c ~ l l pushreal(tdist)
call test

no-of-args = 0
c a l l pushstr('assert')
c n l l pushstr('dist2')
call pushreal(hdist1
cnll test

no-of-args = 0
c n l l pushstr('cal1')
c a l l pushstr('cmpside8') ! activate compare-sides rule in Froloe:
cnll. test

c n l l cc('u',strval(l),SIDES)
rend(strva1(2),'(F8.2)')SIDDIF

E N D 1 F

T h e c o c l ~ segment

cnll pushstr('assert')
cell pushstr('dist1')
call pushreal(td1st)

c n t ~ z c r : thp character strings "assert" and "distl". as well as

the rcnl number tdist, to be inserted into the interface buffer.

The nuhzcquent line:

call test

I i r v o l ! c . r : t I I ~ Pro1 O R roil t tnc? test, which. as 1 ndlc.?ted earlier,

!: I r n f) l y 1 3 ~ 1 , lvntcs the P r o l o p : interpreter on the goal (PrOlOR

p r . c (l I ~ n t ~ cnll) $top. Recall that $top is defined as

'$top' : - import(X). '$process'(X).

Page 25

to KBXEC as floating-point Parameter) was 3.5. The Import

predicate assembles the arguments passed in the interface buffer

into a Prolop list:

[assert. distl, '3.5'1

and binds it to X. (Note that the real number 3.5 has been

automatically converted to a Prolog string. The reason for this

will be set forth in the subsequent discussion of real

arithmetic operations in Prolog.) Finally, $process is activated

with this value of X as argument.

A s discussed above, the action of $process when encountering

a list beginning with the atom "assert" is to invoke the call

assert(distl('3.5'))

which inserts the predicate distl('3.5') into the Prolog

database.

The subsequent code sequence similarly causes

dlst2(<value of hdist>)

to be inserted. Finally, the sequence

call pushstr('cal1')
call pushstr('cmpside8') ! activate compare-sides rule in Prolog
cal L test

causes execution of the Prolog procedure call(cmpsides). defined

as follows:

/* Rule COMPARE-SIDES: IOPT = 2 */
cmgsldes :- distl(Dl), dist2(D2), !,

retract(distl(Dl)), retract(distZ(D2)).
fminus(D1, D2. Siddif). fabs(Siddif, DiPfa).
fdiv(Diffa. D1, Pcdifl), fdiv(D1ffa. D2. PcdifZ),
C86tUff(PCdifl, Pcdif2).

Page 26

A S is evident, this rule looks up the values of distl and disti!

in the Prolag database, binds the results to D1 respectively D2,

and deletes the current distl and dlst2 entries from the

database. The procedure csstuff is then called with arguments

:Dl - D21/D1 and :D1 - D2:/D2. Note that since this particular

Prolog implementation lacks floating-point arithmetic, such

operations must be performed by calls to pr0CedUreS such as

fminus, which are defined in terms of the escape predicate,

which in turn invokes FORTRAN code. We thus have FORTRAN

invoking embedded AI rules, which in turn can invoke FORTRAN

code: such invocations can chain indefinitely.

The csstuff procedure is defined as

csstuff(X, Y) :- export([equal,Siddif]).

The first rule for csstuff Stipulates that if X > 0.1 or

Y > 0.1, then the character string 'notequal' and the numeric

value of Siddif are to be inserted into the interface buffer:

otherwise, the string 'equal' and Siddif are inserted.

With completion of procedure csstuff, procedures cmpsides.

$process. and $top complete as Well. With the completion of

$top. control is returned to the FORTRAN calling program. In

this case, the code executed immediately after returning is

call cc('u',strval(l),SIDES)
read(strval(2),'(F8.2)')SIDDIF

Page 27

Recall that the arrav strval is the one of the three parallel

interface buffer arrays in which string values are returned from

Prolog. The FORTRAN procedure converts from upper to lower

case letters or back: in this case the string in strval(1)

(which w a s ' e q u a l ' or 'notequal') is converted to capitals and

the result t3tOred in FORTRAN variable SIDES. cc is needed

because names with initial capitals designate variables in

Prolog: names beginning with lower-case letters denote

constants. Similarly, the real number value (returned In string

form) of Siddlf is converted to floating point representation

via an internal read, and the result stored in FORTRAN variable

SIDDIF. This completes proceasing of option 2 on part of KBXEC,

and control returns to the caller.

Implementation of Floating Point Operations

Since the University of York Prolog interpreter [5]

emphRsizes simplicity, floating-point operations are not

implemented. The STRUTEX operation, however, recluires such

operations at every turn. The ease with which floating-point

operations were added to Prolog is indicative of the flexibility

and simplicity of the interface that has been constructed.

Here are the Prolog rules defining floating-point operations:

L

Page 28

flt(Fl,F2) :- escaPe(~l,Fl.F2],[lt]).
fle(F1,FZ) :- escaPe([l,Fl,F2], [le]).
feq(Fl,F2) :- escaPe([l,Fl,F21, [esl).
f ge (F1, F2 : - escape ([I, F1, F21, [gel 1.
fgt (Fl, F2 1 : - escape(11, F1, F21, [gtl 1.
fplus(F1. F2, R) :- escape([2.Fl.F2], [RI).
fminus(F1, F2.R) :- escaPe(~3,Fi,F21, [R]).
ftimes(F1, F2.R) :- escape([U,Fl.F2], [R]).

fabs(F,R) :- escape([6,Fl, [RI).
fdiv(Fl,F2 tR) : - escape([S,Fl,FZI, [R]).

A s is evident, each of these operations invokes the escape

predicate. Appendix 3 reproduces the subroutine IFACE, which

implements the case statement which is invoked by escape. To

illustrate its operation, w e will consider the will consider the

rule for floating less-than:

flt(F1,FZ) :- escape([l,Fl,F21, [It]).

A typical call to the RrOCedUre appears thus:

flt('3.29'. '-2.6')

Recall that floating-point numbers are represented in string

format. This Call invokes

which causes the arguments 1, '3.29'. and '-2.6' to be Placed in

the interface buffer as usual. A 8 is generally the case, the

first argument (the "1") is a command code: the following line

of IFACE cCises on this code:

goto ~ 1 0 0 , 2 0 0 , 3 0 0 . 4 0 0 , 5 0 0 , 6 0 0) , lntval(1)

Recall that intval is the part of the interface buffer that

h o l d s integer arguments. Since intval(1) contains the 1 that was

transmitted. control is transferred to statement 100 in IFACE.

The statements

Page 29

100 read(strval(2). * (Fa. 2) *)rl
read(strval(3). *(F8.2)*)r2

transform the real values, which are in the string

represen tat ion required by Prolog, to floating-point

representation, and store them in variables rl and r2. The

subsequent statements test the relationship between these

values:

IF (rl .et. r2) THEN
strval(1) = *gt*

ELSE IF (rl .eq. r2) THEN
strval(1) = 'eq'

ELSE IF (rl . It. r2) THEN
E L S E IF (rl .le. r2) THEN

ELSE IF (rl .=e. r2) THEN

else

END IF
no-of-args = 1
argtype(1) = ' 8 '

strval(1) = *It*

rctrval(1) = *le*

strval(1) = *=e*

print *, ' *** COMMAND CODE 2: WEIRD ARGS. NOT ORDERED*

goto 3000

Since rl = 3.29 and r2 = -2.6, it is evident that *Et* will be

Rtored in strval(1). This string i s returned to Frolog and made

Into R list. [gt], which becomes the second (output) argument of

escnpe. Since, however, this invocation of escape had [lt] a8

second argument, and [lt] does not match [st], the invocation

fails. This is, of course, the desired result, since 3.29 Is not

less than -2.6.

An obvious question that might arise on examination of the

floatlnsK-Point comparisons is why all of them were assigned the

same action code, i . e . 1. The answer is that this was not a

compelled choice: choosinp: a separate action code for each

comparison is a f e a s i b l e alternative. Design of the appropriate

IFACE FORTRAN code is left as an exercise for the interested

reader: it is our opinion t h a t the given design results i n

somewhat cleaner code.

Operatlons such as f1t(FleF2) are predicates that operate by

testing their operands and succeeding or failing. depending on

the outcome. Operations such as fplus (floating-point plus),

however, must produce results. The natural w a y to implement such

operations is as functions. Prolog syntax, however. does not

allow for functions: all procedures are subroutines. Values must

therefore be returned bound to an output parameter rather than

to the function name. Thus, to add 1.0 and 1.0, and print out

the result. we would write

f plus (* 1.0 ' , ' 1.0 * . X) , write (X 1.

causing a '2.0' to be written out. The principle of operation of

the definition of fplus in terms of an escape predicate is

similar to that of flt: Appendix 3 provides details.

We have presented a complete dissection of a typical

invocation of embedded AI rules from a FORTRAN program, and

demonstrated how these rules could invoke FORTRAN code in turn.

Processing for the other options is analogous. A s can be Seen.

the cal.line and return sequences are stereotyped and rather

straightforward; programming with embedded AI rules expressed in

Prolog thus becomes sufficiently straightforward to serve as a

etandard programming technique for algorithmic applications.

Power of Embedded Prolog

The STRUTEX rules reproduced in Appendix 2 correspond in

their effects to the C L I P S 131 rules used by the STRUTEX version

described in [a] . It is natural to pose questions regarding the

relative and absolute power of Prolog rules.

Strictly speaking, CLIPS and Prolog are equivalent, since

both system8 can implement a Turing machine. From the

ProRrammer's point of view, however, it is fair to say that

Prolog i s significantly more powerful than CLIPS. Most of the

features of C L I P S , such as the built-in rule base, are present,

or at least can be easily simulated, in Prolog. In addition,

Prolog has a powerful deductive capability based on resolution.

This capability is central to the capabilities of Prolog, and is

not matched by any feature of CLIPS.

Prolac ie, of course, an extremely powerful etand-alone

programming language in its own right. Its capabilities are

RufPicientlY impressive to have caused it to be chosen as the

language of Japan's fifth-generation project, as well as being

the dominant AI language in Europe. It suffers, however, from

severe deficiencies in the area of control structures, since all

control flow in Prolos is based on backtracking rule

application. While this is natural for certain applications, it

can become an extremely unnatural way to program in situations

requiring more traditional control structures such as while and

- d o loops.

One of the most significant results of the present research

is that it imposes the control structures provided by the

traditional calling language on Prolog. A s is clear from the

calls to embedded rules we have examined, such invocations can

be enclosed within loops, if statements, or whatever other

construct the calling lansuage offers. Programming in Prolos is

thus brought. PerhaRS for the first time, into the realm of

general-purpose algorithmic programming.

.

Page 33

CONCLUSION

A method for embedding Artificial Intelligence capabilities

based on Prolog rules has been reported. The techniques

developed were applied to the STRUTEX program, a prototype

system for the conceptual de8ign of structures to support point

loads in t w o dimensions. The Prolog-based rules proved to be

more expressive and powerful than the original C L I P S version:

mmreover, needed features such as real arithmetic were easily

supplied by means developed in the initial phase of this

project. The approach developed should be applicable to a wide

variety of algorithmic languages, since our implementation

presupposes only the existence of a straightforward separate

compilation capability, as supplied by the algorithmic language

orocessing systems of most modern machines.

A t least as significant a result I s the imposition of control

structures provided by the algorithmic calling language on

Prolog. Thia superposition eliminates much of the difficulty

which Prolog programming poses, thus making this powerful AI

tool available to the alnorithmic proprammer.

REFERENCES

1. BCS RIM Version 6 User Quide, Boeins Commercial Aircraft
Company: Central Scientific Computing Complex Document 2-3,
NASA/Langley Research Center, May 1985

2. Feyock, S., Implementation of Artificial Intelligence Rules
in a Data Base Management System, NASA Contractor Report
1780118, VAIR, INC. , February 1986.

i 3. Riley, G., C. Culbert and R. Savely, "CLIPS: an Expert System
Tool for Delivery and Training", Proceedings of the Third
Conference on AI for Space Applications, November 1987.

,

11. Rogers, J., S. Feyock and J. Sobieski, STRUTEX: A Prototype
Knowledge-Based System for Initially Configuring a Structure
to Support Point Loads in Two Dimensions, submitted to AIEE
3, Lo8 Angeles.

5. Spivey, J., Portable Proloe User's Guide, Dept. of Computer
Science, University of York, Heslington, York, England,
October 1983.

6. "Programming In VAX FORTRAN". Document AA-D030D-TE, Software
Version V11.0, Digital Equipment Corporation, Maynard, MA,
September 19811.

STRUTEX Rules

'$proccss'(X) :- X = [assert Y],!, F =.. Y, assert(F1. /* e.g. If X = [assert, f , a, b, cl.
an asstrt(f(a,b,c)) is executed */

'$process'(X) : - X = [call Yl,!, F =.. Y , call(F).
/* e.g. if X = [call, f, a, b, cl.

a call(f(a,b,c)) is executed */
'$process'(X) :- write(* imported/exported '1 ,

/* this last definition can be expanded
write()<), nl, export(><), nl.

to do whatever I s desired with X */
flt(Fl,F2) :- escape([l,Fl,F2], [lt]).

fle(Fl,F2) : - cscape([l,Fl,F2], [le]).

feQ(F1, F2 1 : - escape ([l, F1, F21, [eu] 1.

f ge (F1, F2) : - escape (11, F1, F2 I , [gel 1.

f et (F1 , F2 : - escape ([1, F1, F21 , [gt 1 1 .

fplus(F1, F2. R) : - escape(12, F1, F21, CRI 1.

fminus(Fl,F2,R) : - escape([3,Fl,F2], [Rl).

ftimes(Fl,F2,R) : - escape([4,Fl,F21, [RI).

fdiv(Fl,F2.R) : - escape([5 , F1, F21, CRI 1

fabs(F,R) :- escape(16, Fl, [Rl I.

.

. /* application program starts here */

/*rule BEAM; I O P T = 1 */
sURROI?t :- beam, !, assert(support(beam)), export(Cbeam1).

support :- truss,!, assert(support(truss)), export([trussl).

.

Pace 16

beam :- surflc(s1de). surfa(point).

beam :- surflc(slde), surfa(larse), not(suppwt(1ight)).

beam :- surflc(be1ow). surfa(po1nt).

warn :- surflc(bel0w). surfa(1arge). not(suppwt(l1eht)).

beam :- 8UrflC(abOVe), surfa(polnt), not(ploadt(g1)).
,; jf-"

nOt(SllPpWt(1ight)).

/* Rule TRUSS */
truse :- (surflc(s1de) : surflc(below)),

surfa(large), suPpwt(l1ght).

/* Rule STRING */
string :- surflc(above), plOadt(g1).

/* Rule BRACE-TYPE: IOPT = 0 */
brCetyPe : - alpha(AlRhaval),!,dobracetype(Alphaval).

dobracetYpe(Alyhave1) : - flt(Alphava1, '40.0'). !,
assert(tYpeofbrace(v) 1, export([V I) .

/* Rule COMPARE-SIDES; IOPT = 2 */
cmpsldes :- distl(Dl), dlst2(D2). !,

retract(dlstl(D1)). retract(dist2(D2)),
Pminus(D1, D2. Siddlf). fabs(Sidd1f. Diffa),
fdiv(D1ffa. D1, Pcdifl), fdiv(D1ffa. D2. Pcdif2).
cSstUff(Pcdif1, Pcdif2, Siddif).

~sstufP(X. Y , Slddlf) : - (fgt(X. '0.1') ; fgt(Y. 'Ool')),
export ([notequal, Siddif I 1.

csstuff(X, Y , Siddif) :- export([equal,Siddif] 1.

/* Rule BRACE-CORRECT for triangles: IOPT = 33 */
brcorrtr : - triok(Alpha), !, retract (trlok(A1pha)),

tPiokstuff(A1pha).

trlokstuff(A) : - flt(A, '15.0'). exgort([small, 'O.O']).

triokstuf f (A) : - fgt (A , ' 120.0' 1, export ([large, * 0.0 ' I 1.

trlokstuff(A) : - export([good, '0.0'1).

/* Rule BRACE-CORRECT; IOPT = 3 */
brcorrqd :- quadok(Alpha),!, retract(quadok(A1pha)).

aokstuff (Alpha).

gokstuff(~) :- flt(~, '15.0'1, export(Csmal1, * O . O ' J) .

qokstuff(A) :- fpt(A, '75.0'1, export([large, '0.0'1).

qokstuff(A) :- export([good, '0.0'1).

/* Rule BRACING: IOPT = 5 */
bracing : - xnl(N1). dist(D), toleranc(Tol),!,

f div (Temp, To1 , R) , f d l v (N1, D, Temp) ,
(fgt(Ratio, '1.0') -> Brace = yes : Brace = no),
assert(ratio(Rat1o)). assert(brace(Brace)),
export([Brace, Ratio] 1 .

f abs (R , Rat l o ,

/* Rule EXPLANATION: IOPT = 8 */

reasons : - surflc(slde),
write(' The support surface is to the side of the loads.'),nl.

reasons : - surflc(below),
write(* The support surface is below the loads.'),nl.

reasons : - surf lc (above),
write(' The support surface ie sbove the loads.'),nl.

Page 38

r e s n o n s :- eurfm(lmrse),
write(* The support surface io not a point.'),nl.

reasons :- s u p p w t () o ,
(X - light ->

write(' The support surface must be lightweight.')
: write(* The eupport can be heavy.')). nl.

reasons :- ploadt(vl),
write(* There are only vertical loads.*),nl.

reasons :- ploadt(g1).
write(' There are only gravity loads.'),nl.

reasons : - plOadt (61) ,
/' / write(* There are only Bideways loads.*),ni.

/'

/" reasons : - plOadt(gz3) ,
$2 write(* There ie a combination of gravity and sideways loads.'),

nl.

reasons : - ploadt (vs) ,
write(' T h e r e is a combination of vertical and sideways loads.'),
nl.

Appendix 2

Embedded AI Calling Routine

SUBROUTINE KBXEC(IOPT, HDIST, TDIST, ALPHA)
C
C THIS SUBROUTINE INTERFACES WITH THE KNOWLEDGE BASE
C STRINGS ARE ASSERTED AND CLIPS IS EXECUTED
C

IMPLICIT REAL*8 (A-H, 0-Z)
CHARACTER*8 PLOADT, SURFLC, SUPTYP, SUPPWT
CHARACTER*8 SURFT, CHOICE, BRCTYP, CHBRAC, SIDES
CHARACTERa10 TEMP
CHARACTERx80 STRING
COMMON/LOADC/PLOADN, PLOADT , PLOADX, PLOADY, HLOAD. VLOAD, DIST
COMMON/SURFC/SURFLC,SURFXS,SURFYS,SURFXE,SURFYE,SURFA,

1 SURFXM, SURFYM

1 SUPPYE, SUPDIS

1

COMMON/SUPPC/SUPPNO, SUPTYP, SUPPWT, SUPPXS, SUPPYS, SUPPXE,

COMMON/SHRCOM/NPTS,NTOTSP,PIXPER,XSECT,YSECT,SURFT,
RLOAD,RSRFAC, RSUPRT, RATIO, CHBRAC, BRCTYP, SIDES, SIDDIF

COMMON/MEMXY/SMEMNO(lOO),XS(lOO),XE(lOO),YS(lOO),YE(lOO)
DIMENSION ARLOAD(7),ARSURF(8),ARSUPP(8)
EQUIVALENCE (ARLOAD(l),PLOADN).(ARSURF(l),SURFLC).

1 (ARSUPP(~),SUPPNO)

integer alfalength, maxargs
PARAMETER (alfalength = 8, maxargs = 10)

CHARACTER*(alfalength) strval(maxargs1
character*l argtype(maxargs)

integer no-of-args ! for sharing with the
common no-of-args ! stacking routines only

common /fpcoms/ strval
COMMON /fpcom2/ argtYOe

C
C INITIALIZE THE KNOWLEDGE BASE AND LOAD THE RULES
C

IF(I0PT. EQ. 0) THEN
no-of-arss = 0

do i = 1. maxargs
arptype(1) = * *

end do
END IF

Page 110

C
C DETERMINE THE TYPE OF SUPPORT THAT IS REQUIRED
C

IF(IOPT. EQ. 1) THEN
no-of-args = 0
call pushstr('as8ert')
call pushstr('p1oadt')
call pushstr(p1oadt)
call test

no-of-arss = 0
call pushstr('assert')
call pushstr('surf1c')
call pushetr(surf1c)
call test

no-of-ares = 0
call pushstr('assert')
call Rushstr('suppwt')
call PUShStr(SUppWt)
call test

no-of-ares = 0
call Pushstr('assert')
call Pushstr('surfa')
call Dushstr(surft)
call test

no-of-ares = 0
call Pushstr('cal1')
call PUshStr('support')
call test

call cc('u'. strval(1). suptyp)
C TRANSFER RESULT TO sugtyp(1). CAPITALIZING THE LETTERS

C
C DETERMINE HOW DIAGONALS ARE TO BE DRAWN
C BETWEEN MEMBERS OF A TRUSS
C

ENDIF

IF(I0PT. EQ. 2) THEN
no-of-args = 0
call pushstr('assert')
call pushstr('dist1')
call gushreal(tdi8t)
call test

ne-of-args = 0
call ~ushstr('assert')
call pushstr('dlst2')
call Rushreal(hdist)
call test

Page 111
i
f
1

C

C
C
C
C
C

C

C
C
C
C
C

C

no-of-args = 0
call puehetr('cal1')
call puahstr('cmps1des')

call t e s t
ACTIVATE COMPARE-SIDES RULE IN PROLOG

DETERMINE IF BRACING CORRECT FOR QUADRILATERALS
IF ALPHA < 15 THEN BRACING IS NOT CORRECT
I F ALPHA > 75 THEN BRACING IS NOT CORRECT

I F (IOFT. EQ. 3) THEN
no-of-args = 0
call pushstr(*assert*)
call pU8hStr('qUadOk*)
call pUShreal(a1pha)
call test

no-of-args = 0
call pUShStr(*Call*)
call gushstr(*brcorrqd')

call test
ACTIVATE BRACE-CORRECT RULE IN PROLOG

call c c (* u * * strval(l),CHBRAC)
read(strval(2),*(F8.2)')RATIO

ENDIF

DETERMINE IF BRACING CORRECT FOR TRIANGLES
I F ALFHA e 15 THEN BRACING IS NOT CORRECT
IF ALPHA > 125 THEN BRACING IS NOT CORRECT

IF(IOPT. EQ. 33) THEN
no-of-args = 0
call pushstr('assert'1
call pushstr(*triok*)
call pUShFeal(a1Pha)
call test

no-of-args = 0
call pushstr(*call*)
call pushstr(*brcorrtr*)

call test
ACTIVATE BRACE-CORRECT RULE IN PROLOG

call c c (* u * , strval(l).CHBRAC)
read(strval(2),*(F8.2)')RATIO

Page 112

E N D I F
C
C DETERMINE T Y P E O F P R A C I N Q
C I F ALPHA QE 110 DEQREES THEN 2 T Y P E IS C H O I C E
C I F ALPHA LT 110 DEGREES THEN V T Y P E IS C H O I C E
C

I F (I O P T . EQ. 11) THEN
no-of-args = 0
cfill pu&hstr('assert')
call gushstr('a1pha')
call pushreal(a1pha)
call test

no-of-args = 0

call pushstr(*brcetype*)
c A C T I V A T E BRACE-TYPE RULE I N PROLOG

call test

Call pUshStr('Cal1')

E N D I F
C
C DETERMINE I F BRACING IS NEEDED
C

I F (I O P T . EQ. 5) THEN
no-of-arcs = 0
call pushstr('assert')
call pushstr('to1eranc')
t o 1 = 100.0
call pushreal(to1)
call test

no-of-args = 0
call pushstr('8ssert')
call eushstr('xn1')
call pushreal(hd1st)
call test

no-of-args = 0
call pushstr('assert')
cnll pushstr('dist*)
call pushreal (tdie t
c a I 1 test

no-of-args = 0
call Puehstr('ca1l')
call pushstr('bracing')

c A C T I V A T E BRACING RULE I N PROLOG
call test

P a g e 113

e r l l ce(*u', s t r v a l (l) , ~ ~ B R A C)
r~~r(strvrl(Z),*(P8.2)*)RATIO

I W D X F
C
C DETERMINE NODES I N A T R I A N G L E
C

I F (IOIP. EQ. 6) THEN
d o I = 1. ntotsp
no-of-args = 0

call puShotr(* eSEert *)
call pushstr('c1emntno')
call puohreal(smemno(i))
call pushreal(xE(i))
call pushreal(ys(1))
call pushreal(xe(1))
call PUEhre&l(Ye!(i))
call te8t

end do
no-of-arc. = 0
C&ll
call

C ACTIVATE
call

E N D I F
C

puahstr('cal1')
puohstr('findtr1')
F I N D - T R I A N G L E R U L E I N PROLOG
te.t

C W R I T E EXPLANATION O F C H O I C E S
C

I F (I O P T . EQ. 8) THEN
no-of-args = 0
call pU8hStr(*call*)
call pushstr(*explain*)

call test
C ACTIVATE E X P L A N A T I O N R U L E IN PROLOG

E N D I F
RETURN
END

subroutine cc(code, fromstr, tostr)
charactera1 code
character*(*) fromotr, tOStr
intccer tolen, 1, 8COde. Zcodel blgacode, bigzcode

acode = lchar(*a*)
zcode = lchar(*z*)
blgacode = lchaf(*A*)
blgzcode = ichar('2')
tolcn = len(tostr1
do i = tolen
tostr(i:i) = * *

end do .

P a g e 04

,
/'

I f (code .eq. * u t .or. cede .eq. 'TJ') then
do i = 1, len(fromstr)
if (i .et. tolen) goto 1000
if (ichar(fromstr(i:i)) .ge. acode

& .and. (ichar(fromstr(i:i)) .le. 2code))then
tostr(1:i) = char(ichar(fromstr(i:i)) - 32)
tostr(i:i) = fromstr(i:i)

else

end if
end do
end if

if (code .eq. '1' .or. code .eq. 'L') then
do i = 1, len(fr0mstr)
if (i .et. tolen) goto 1000
if (ichar(fromstr(i:i)) .se. bieacode

& .and. lchar(fromstr(1:i)) .le. b1gzcode)then
tostr(1:l) = char(lchar(fromstr(1:i)) + 32)

tostr(i:i) = fromstr(i:l)
else

end if
end do
end If

1000 return
end

SUBROUTINE pUShlnt(i8rg)
implicit none
integer alfalength, maxargs
PARAMETER (alfaleneth = 8 . maxares = 25)

INTEGER intval(maxares), iarg, no-of-arm3
character*l argtype(maxarg6)
common /fpcomZ/ argtype
common no-of-arps
common /fpcomi/ intval

no-of-args = no-of-ares + 1
intval(no-of-args) = iarg
argtype(no,of-args) = * i *
RETURN
END

SUBROUTINE pushreal(rarg)

PARAMETER (alfalength = 8, maxargs = 25)
C implicit none

REAL rare, realval(maxarg6)
INTEGER no,of-args
character*l argtYue(maxargs)
character*(alfalength) strval(maxarg8)
common /fpcoms/ strval

common /fpcomZ/ argtype
common no-of-ares
common /f pcomr/ realval

no-of-args - no-of-args + 1
reslval(no,of,args) - rarg
r e a d (s t r v a l (n o - o f - a r s s) . ") r a r g
argtype(no,of,ares) = ' 8 ' ! reals get passed as strings
RETURN
END

S U B R O U T I N E pushstr(sarg)
implicit none
inteser alfalength, maxargs
PARAMETER (alfalength = 8 , maxarss = 25)

character*(*) sars
character*(alfnlength) strng

INTEGER no-of-args
character*l argtype(maxargs1
common /fpcomZ/ argtype
common no-of-args
character*(alPalength) strval(maxargs)
common /fpcoms/ strval

strng = sarg
no-of-args = no-of-arss + 1
strval(no,of,arge) = strng
argtype(no-of-args) = ' e '
RETURN
E N D

Page 116

Appendix 3

8

Implementation of Real Arithmetic

SUBROUTINE I F A C E

Implicit none
integer alfalength, maxargs
PARAMETER (alfalength = 8 , maxargs = IO)

CHARACTER*(alfalength) strval(maxargs)
INTEGER intval(maxarg8)'
REAL realval(maxargs)
character*l argtype(maxargs)

integer no-of-ares ! for sharing with the
common no-of-args ! stacking routines only
integer i
real rl. rZ

common /fpcomi/ intval
common /fpcomr/ realval
common /fpcoms/ strval
COMMON /fpcom2/ argtyge

no-of-arrzs = maxargs
DO i=1, maxargs

IF (argtype(i) .eq. ' ') THEN
no-of-args = I - 1
got0 102

END IF
END DO

102 continue ! loop exit target
C PRINT *, 'iface: no-of-args = * ,no,of-args
C W e expect the first arg to be a command code

100 read(strval(2). '(F8.2)')~-1

C print *, ' rl = ',rl, ' r2 = ', r2

R o t o (100,200,300,h00,500,6OO),~ntval(l)

read(strval(3).'(F8.2)')r2

IF (rl .gt. r2) THEN
strval(1) = 'gt'

ELSE IF (rl .eg. r2) THEN
strval(1) = 'eq'

ELSE IF (rl .It. r2) THEN

ELSE IF (rl . le. r2) THEN strval(1) = 'lt'

strval(1) = 'le'

Page 117

200

C

c

300

C

1100

C

500

C

600

C

ELSE IF (rl . B e . r2) THEN

e l s e

END IF
no-of-args = 1
rsrKtype(1) = * s *

strval(1) = *ge*

print *. * *** COMMAND CODE 2: ARGS NOT ORDERED'

goto 3000

read(strval(2). '(F8.2)')rl
read(strval(3). *(F8.2)*)r2

wr i t e (s t rval (I.) . * (F8.2) *) r 1 + r2
no-of-args = 1
ergtype(1) = * s *

Roto 3000

print *. * ri = *,rl. * rz = * . rz. ' sum = ' , r1+r2

print *, * * ! s k i p a line

read(strval(2). *(F8.Z)*)rl
read(strval(3) . * (F8.2) ')r2
write(strval(1). * (F8.2) *) rl-r2
no-of-args = 1
arRtype(1) = ' 8 '

Roto 3000
print *, * * ! skip a line

read(Rtrval(2). *(F8.2)*)rl
read(strval(3). * (F8.2) *)r2
write(strval(l),*(F8.2)*)rl*r2
no-of-ares = 1
argtype(1) = * s *

g o t o 3000
print *, * * ! s k i g a line

read(strval(2). *(F8.2)*)rl
read(strval(3). *(F8.2)*)r2
write(strval(1). * (F8.2) *)rl/r2
no-of-args = 1
argtype(1) = * s *

goto 3000
print *, * * ! Skip a line

read(strval(2). *(F8.2)*)rl
write(strval(1). * (F8.2) *)abs(rl)
no-of-args = 1
argtype(1) = * s *

goto 3000
print *, * * ! skip a line

Page 48

3000 do i- no-of-area+l, maxarqa
argtype(i1 - ' *

end d o

end

P a g e l lg

ORIGINAL PAGE IS
OF POOR QUALITY

Report Documentation Page
- ____

1 . iiiiiioil No I 2. Govcrnnient Accession No.

NASA CR- 178393 I
1

4 . 11111! dlltl SIlIItItit!

Itttpletiient i n g Elitbedded A r t i f i c i a l I n t e l 1 igence
Rules W i t h i n A l g o r i t h m i c Prograriiming Languages

Ste fan reyock

V A I H , I n c .
176 K i n q s p o r t D r i v e
W i l l ianisburg, VA 23185

N a t i o n a l Aeronaut ics and Space A d m i n i s t r a t i o n
l a n g l e y Research Center
Hariipton, VA 23665-5225

- ~ _ _ _ _ _ _ _ _ _ ~ _ _ _ _ ~
17 S i) i i w o r i i i (l A g i w ~ y N,iiiio dntl Atldress

- _. _ _ _
15 Siii)i)i(itii(,rit,iiy Notes

3. Recipient's C;itaiog No.

5. Report Date

March 1988
-
6 Perforrniriy Organirdtion Code

___. - .__ ~ ~

8 Performing Organization Report No

~ _ ____ - ~

10 Work Unit No

506- 43-4 1- 0 1
11 Contract or Grmt No

N A S l - 18002
~

13. Type of Report and Period Covered

_ _ _
C o n t r a c t o r Repor t

14. Sponsoring Agency Code

ILangley Technical Mon i to r : James L . Rogers

~~~ _ _  
IO Al)-.ttqii t 

( u s u a l l y  FORTRAN-based) a p p l i c a t i o n  programs r e q u i r e  t h e  l a t t e r  t o  execute 
s ( ~ l w r t i t c ~ l y  t o  r u n  a s  a subprogram o r ,  a t  b e s t ,  as a c o r o u t i n e ,  o f  t h e  A I  system. 
tiitlily c a s c ~ ,  t h i s  o r g a n i z a t i o n  i s  unacceptable;  i n s t e a d ,  t h e  requi rement  i s  f o r  an 
A I  f a c i l i t y  t h a t  runs i n  embedded mode; i .e . ,  i s  c a l l e d  as subprogram by t h e  
d l )p l  i c a t i o r i  proyraiii. Th is  paper descr ibes  t h e  des ign  and implementat ion o f  a 
Prolocj-based A I  c a p a b i l i t y  t h a t  can be invoked i n  embedded mode. The s i g n i f i c a n c e  
o f  t h i s  system i s  twofo ld :  
deduc t ion  f a c i l i t i e s  makes a power fu l  svmbol ic  reasoninq mechanism a v a i l a b l e  t o  

Most i n t e g r a t i o n s  o f  A r t i f i c i a l  I n t e l l i g e n c e  ( A I )  c a p a b i l i t i e s  w i t h  non-AI 

I r  

( 1 )  P r o v i s i o n  o f  Prolog-based symbol-manipulat ion and 

a p p l i c d t i o n s  prograrris w r i t t e n '  i n  non-AI" languages. 
and non-procedural  d e s c r i p t i v e  c a p a b i l i t i e s  o f  Pro log ,  which a l l o w  t h e  user  t o  
d e s c r i b e  t h e  problerti t o  be so lved,  r a t h e r  than t h e  s o l u t i o n ,  i s  t o  a l a r g e  e x t e n t  
v i t i a t e d  b y  t h e  absence o f  t h e  s tandard c o n t r o l  s t r u c t u r e s  p r o v i d e d  by o t h e r  
languages. Embedding i n v o c a t i o n s  o f  Pro log  r u l e  bases i n  programs w r i t t e n  i n  non-AI 
lanquaqes riiakes i t  p o s s i b l e  t o  p u t  P r o l o g  c a l l s  i n s i d e  DO loops and s i m i l a r  u s e f u l  
c o n t r o l  c o n s t r u c t s .  The r e s u l t i n g  merger o f  non-AI and A I  languages thus  r e s u l t s  
i n  d sy i i ib io t i c  systeiti i n  which t h e  advantages o f  b o t h  programming systems a r e  r e -  

(2)-The power o f  t h e  d e d u c t i v e  

ta ined,  and t h e i r  d e f i c i e n c i e s  l a r q e l + - r  dp&- -__-- - - 
1 / Kuy Wi~tl.; (Strcj(#ostc*tl I )y Atrtliorls~~ 1 Distribution Statement 

Knowledge base 
Pro1 og 
A l q o r i  th in ic  language 
A r t  i f i c i  a1 I n t e l  1 i gence 

1 
NASA FORM 1626 OCT 86 

Uncl ass i f i ed - Unl i m i  t e d  
Sub jec t  Category 61 

-__I- 
20 SvLuri& Classif (of this page) 

U n c l a s s i f i e d  

21 No of pages 2 2 P n c e  -1 50 1 A03 


