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IMPLEMENTING EMBEDDED ARTIFICIAL INTELLIGENCE RULES 

WITHXN ALGORITHMIC PROGRAMMING LANGUAGES 

Problem Description 

In recent years the powerful techniques offered by Artificial 

Intelligence ( A X )  technology have gained acceptance at an 

ever-increasing rate. O n  the other hand. most production 

software s y ~ t e m s  continue to be written in traditional 

programming languages which are not oriented toward AI 

applications (we will refer to such languages as algorithmic 

languages In the subsequent discussion). Attempts to close the 

resulting gap have been provisional and system-specific in 

nature. I n  particular, the larger commercial A I  systems have the 

cayability to Interact with programs written in algorithmic 

lenpueges im~llernented on the hoet machine: the non-A1 code is 

typically invoked as subroutine or coroutlne i n  these 

~ ~ t u a t i o n s .  The approach taken in the initial phase of this 

project 121 was similar. A Pascal-based Prolog interpreter 151 

wae modified by adding an escape predicate. a new built-in 

predicate that allowed information to be passed tO/fPOm 

algorithmic subroutines. While this solution allowed the 

seamless integration of algorithmic language-based procedures 

into Prolog (in particular the applications language interface 
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of the RIM database system [l]), it also exposed a basic 

limitation of this approach. A s  indicated, the structure of this 

system required the AI component to operate a8 the main program. 

This was appropriate for the intelligent database application in 

question, since Prolog can be considered to be an 

ultrasophisticated database Query language with deductive 

capability. It proved to be inappropriate, however, for many of 

the other algorithmic language-based applications of interest: 

programs involving optimization, computer-aided design, 

simulation, graphics, matrix processing, and a multitude of 

other applications. Many of these programs could make good use 

of A I  capabilities, but are not structured to run in a 

subprogram mode. 

The STRUTEX program [ & I ,  a prototype system for the 

conceptual d e s i g n  of structures to support point loads in two 

dimensions, provides an illustration as well as test vehicle for 

these concepts. STRUTEX I s  structured as a FORTRAN program that 

accepts load, sUrf&ce, and support data from the user (provided 

in part by means of a mouse), and calls AI rules to make 

decisions regarding the 8upport structure appropriate to that 

load. Apglic&tlon programs such as STRUTEX illustrate the 

widespread need for embedded c, 1.e. the integration of A I  and 

algorithmic languages in a fashion that allows the AI facilities 

to be called as subprograms from the algorithmic program. It is 

this need that was addressed by the current phase of the 

project. The results are as follows: 

. 

. 
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A Prolog-based A I  capability callable in embedded 
mode from alyorlthmic programe was created 

The developed capability was tested 
in conjunction with the STRUTEX system 

Since Phase 1 of this project achieved the embedding of 

alzOrithmiC subprograms in an AI system, and Phase 2 embedded AI 

ificilities in algorithmic main programs, the result is a product 

whose two components supplement each other in a h i g h l y  

synor.g;istic fashion. The addition of embedded AI capabilities t o  

algorithmic programs has already been discussed; the 

augmentation, however, w o r k s  in the other direction as well. 

Thus. the invocation or' Prolog from algorithmic language allows 

Proloy t o  inherit traditional control structures, in which it is 

(treatly deficient. from these languages. As another example, 

1'1 oattrig point operations, which are missing f r o m  this 

rJa!'t.tcultir Prolog impltzmentation, can be added by invoking; 

& l c . o r . l  thinic subprograms f r o m  Prolog. Additional augmentations 

CIZ*C: l i i i i i t e d  only by the imagination of the programmer. 

DRIGINAL PAGE IS 
'g@$ POOR QUALITY 

e 
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T E C H N I C A L  D E S C R I P T I O N  

T h e  goal of embedding AI facilities in algorithmic languages 

was achieved in a manner technically similar to that which 

achieved the integration of algorithmic languages into Prolog: 

the addition of the new evaluable predicates import and export 

t o  Prolog. Before describing these predicates we will briefly 

review the conceptually similar escape predicate, which is 

described i n  detail in 123. 

T h e  escape Predicate 

The escape predicate is the heart of the Prolog/RIM 

interface; moreover, we have noted that this predicate can Serve 

an an interface among a variety of other systems. escape would 

work as well, for example, as a Prolog/graphics package 

interface, o r  a LISP/RIM interface, etc. In fact, the Only 

requirement appears to be lists or list-like structures in the 

calling language ( 1 . e .  the language calling the eacage), Since 

otherwise the operations needed to set up and decode escape's 

parameters are too cumbersome. The fact that few languages 

besides those oriented toward Artificial Intelligence feature 

list structures as Primitives, rather than as a construct to be 

defined by the programmer, may account for the fact that the 

. 
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escape mechanism is not a universally Implemented feature. 

In YRIM. the PPOlO&/RIM integration described in C21. the 

escape predicate 1s added to the Prolog side of the Interface; 

i t  is installed in Prolog as a new evaluable predicate. 

Here is the design of the escape predicate as it was 

implemented: 

escape(X, Y) 
A , .  

I 1  
I 1  

+ - - - - - - - - - - - - - - - -  + +- - - - - - - - - - - -+  
I 1 
I I 

list containing result returned 
Information on in this argument 
operations to 
b e  p e r f  ornied 

The input list X Is expected to be a linear list of atoms 

( d y t n b o l i c  or numeric); the result appears bound to Y .  and also 

has the form of a linear list of atoms. Note that quoted strings 

tire leeltlinate atoms In Prolog, 8 0  passing a list 

[floatadd, ‘37.82‘, ‘-10.036’1 

1s a r e a n i b l e  method of implementing real addition in Prolog.  

The ln ter f t i ce  between Pascal and Prolog consists of a set of 

i)roc(:dur’cis within the Pro log  implementation that move the values 

ot’ t h c  tnptit list elements to a parameter buffer internal to the 

l b ~ ~ s c : ~ L  pro,g~’am on the Pascal side of the interface, whence they 

m c i y  tst- mFinipulated by the Pascal program as desired. Returning 

priranieters to Prolog is the reverse of this process: the result 

values tire placed in the parameter buffer, and Interface 

rboutines use these values to create a Prolog list and bind It to 
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the second parameter of escape. The reader is again referred to 

t h e  program documentation for details. 

T h e  format [<action-code>, <arg>,  --- 1 is typical for input 

pcirameter l is ts ,  1 . e .  pbrameters to be passed to the escape 

predicate in a list bound to the first parameter. This means 

t h a t  the appropriate format for a Pascal program implementing 

c::3cape Is a case statement on <action-code>: in other words, the 

PLisctrl program is typically an interpreter interpreting commands 

oL' the P o r m  [<action-code>, <arg>, --- 1. 
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Invoking Prolog in Embedded Mode 

c 

One O Y  the most important reasons embedded AI is a rare 

rJhenonienon is that AI facilities are almost universally 

1riipleniented tis subroutine packages written in the major A I  

1unyueK:es L I S P  and Prolog. Since it may be s a i d  of both of 

tliese languages that the syntax consists entirely of subroutine 

calls. these A I  Rackages have the appearance of language 

ctxtensions, or even of new special-purpose languages. 

The point of these observations is that embedding L I S P -  or 

P~oloy-based A I  facilities is tant&mount to embedding the entire 

I sneuage interpreter and/or run-time environment. These are 

large stand-alone progranis not designed to run in subroutine 

i iwdc: .  a n d  t h u s  present formidable praoblems to the would-be user 

wtho 1ntc:ndu t o  invoke them f r o m  non-AI programs. We htrve been 

u b l c  Lo clevelop techniques, however, that 6llOw the Prolop 

I r i t e r p r * t l t e r ~  to interact with algorithmic grogr&ins in a m6nner 

t h a t  Crnplements embedded A I .  This interaction is the main result 

01’ the pr*es;cint research. 

Two factors combined to make it possible to embed Prolog in 

t ~ L ~ o r l t t m l c  languages, one a straightforward separate 

~oi~ipllrition capability offered by many language systems, the 

other a brilliant design feature devised by the Prolog 

i n i p 1  emen tors .  



Interpreters, regardless Of the language interpreted, tend to 

have similar overall structure:. in particular, there is almost 

Inevitably a main Interpretation loop having the following 

general form: 

loop 
perform housekeeping; 
process next language element; 

end loop 

The first factor referenced above is the VMS Pascal [6] module 

feature. Prefacing a Pascal program with the keyword module 

rather than program signals the compiler that the program Is a 

separately compiled unit whose internal facilities (data and 

subroutines) may be made available (by prepending the phrase 

[global]) to other programs. Such a separate compilation 

cauability, while not a part of standard Pascal, is almost 

universal in modern Pascal systems running on microcomputers as 

well &is mainframes. We may therefore use it with little concern 

that portability and general usefulness will be compromised. 

Since the Prolog interpreter can trivially be made into a 

module, and since procedures within it can therefore be m a d e  

available to calling programs, it is straightforward to insert a 

procedure like this: 

[global] Procedure test; 
begin 
Perform necessary housekeeping; 
perform next interpreter action; 

end : 

which can then be called by any program that Is linked together 
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with the Prolog module. The obvious question is: what is the 

"next interpreter actlon"; more particularly, Is it what we want 

done In order to do A I  In on embedded mode? A s  it stands. the 

tinywer is "no", since, as Indicated above, the next interpreter 

action is to "process next language element". In Prolog this 

rimounts to prompting the user f o r  the next Q u e r y ,  deducing an 

t5nLiwCrr from the rulebase, and printing this answer o u t  for the 

user. 

T h i s  interactive mode is inappropriate for embedded 

agplicutlons, where the AI facilities must communicate not with 

a human user in interactive mode, but with the calling program. 

I t  i t ;  at this Point that the second factor mentioned above comes 

Lnto play. A s  it happens, the "next interpreter action" 

performed in the loop is defined not by a body of Pascal code, 

b u t  by Pr*o log  statements that are read in by the Interpreter 

u i ~ o n  initltilization. These Prolog statements define (are the 

tjody of') t h c  Prolog procedure $top; "perform next interpreter 

action" then amounts merely to causing the invocation of $top. 

' I ' t h i  L: :::I.inplicity of function allows us to reproduce procedure 
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[global] p r o c e d u r e  test; 
var x: term: e:env; 
begln 

choicegoint : = 0; t housekeeping code 1 
NewEnv(e, nil, 0, nil, 0); t more housekeeping code 1 

t the following statement invokes PrOlOg procedure $top: 1 

If togA^.proc <> nil then Goal(MakeFunc(topA, 0, nil, 0 ) ;  

KillStacks(0); t yet more housekeeping 1 
end: 

The significance of the fact that the basic interpreter action 

I s  defined in terms of Frolog code which is read In at 

Interpreter initialization time is that if we do not like what 

the Interpreter does, we need not reprogram lone sections of 

obscure Pascal code: changing the Prolog statements defining 

$top is all that is required. This, however, is quite easy to 

do, since Prolog is a high-level language. To transmit a feel 

f o r  what is involved, we present part of the original definition 

of $top. 

'$top' :- write(*?- '1. read(>(), nonvar(>o,  e exec*(^). 

*$exec'(end) :-  !, end, nl. 

'$exec'((?- end)) :-  !, end, nl. 

'$exec* ( G )  : - '$grid* (GI , ! , G. 

'$exec' (G) : - G, write( I==> ' 1 ,  write(G1, write(* ? ' ) ,  '$ask'. 

A 6  can be seen, $tog writes out the prompt I? - ' ,  reads the 

user'a input, makes s u r e  that this Input I s  not solely a 
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variable, and executes it by invoking Sexec on It. The 

definition of $exec, in turn, follow immediately. The first two 

clauses simply cause termination if the user types "end" or 

"?-end*'. The last two clause6 of the definition deal with the 

c e s e ~  where G does, resRectively does not, contain variables: in 

cither case, G is Invoked. When no additional answers for G 

exist. $exec completes, causing $top to complete as well and 

t'etur-n to the interpreter loop. 

For the Purposes of' implementing embedded Prolog it was 

necessary to change the above definition of $top so that it 

accepted data from the calling program rather than the user, 

processed it as desired, and passed the results back to the 

calling progr&m, rather than printing them out at the terminal 

by means or a write(G). Here is the modified version of $top: 

'$top* : -  import()<), '$process'(X). 

Ttie l i ~ i t i o l  $ sign, inciaentally, is a naming; convention 

dcsignatirig the procedure name as part of the interpreter loop 

definition: cidherence is optional. The ' marks surrounding such 

ncirncs ~ I W  needed to let Prolog accept "strange" characters such 

cis $ without complaint. 

AS will be seen in the course of the subsequent discussion, 

the procedures import(X) and export()<) transfer data from, 

rt-::rgec t ively to, outside programs written in algorithmic 

I ~ ~ n g u a g e s .  The data in question is bound to variable X: 

p r w c e c l i r r e  $process(X) processes it. 

The elevance and simpllc~ty of this method of deflning the 
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interpreter loop  is apparent. What is even more impressive is 

the flexibility this approach yields: the code defining the 

action of the Interpreter 1s available to the Prolog programmer 

for modification. The power of this particular modification 

which we have undertaken becomes apparent when it is noted that 

the definition of $process IS to be supplied by the user, and 

may do anything at all that the user desires. A s  a simple test 

case, the following rule definition w a s  used: 

'Sprocess'(X) :-  write(' imported/exported ' 1 .  
write(X), export ( X I .  

The data imported into Prolog is written on the terminal, 

whereupon export returns it unchanged to the calling program. 
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The import and export Predicates 

The escnpe predicate described above transfers information to 

n non-F'roloR Program, which acts on it. whereupon the results 

are transferred back i n t o  the Prolog program. For the purposes 

or t h i c  work it has groved useful to breek out the primitive 

components of the transfers Involved. A s  indicated. import(>() 

and export(X) are new evaluable (built-in) predicates that have 

h e e n  a d d e d  to Prolog to achieve the goals of this Project. 

-~ import is used to make data created externally (SAY by an 

a3 fzorlthmic prozram) available to Prolog: export Passes data 

b o c k  to the '*outside". In both cases the data involved is bound 

to the parameter of the predicate. Since they are central to the 

resul ts  that have been achieved. we will describe the structure 

Qncl I~RI). OP these predicates in detail. 

The communications interface between Proloe: and the "outside 

world*' that was devised to implement those predicates is a 

b r i f f e r  structure that is shared by the programs that need to 

c x c h n n ~ e  information. In the (Zypical) case of tho STRUTEX 

ny-tom A F O R T R A N  program is communicating with the 

( P s s c r i l  -bnsf?cl) Prolog interpreter: we will E i v e  the buffer 

t l c c l ~ r n t i a n ~  on both sides of the interface. The Pascal 

r l e c  I n i - n  t; I onn are: 
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srg-i: [~oMMoN(FPCOMI)I array[ll. .maxargsl of integer: 
Arg-1.: [COMMON ( FPCOMR ) 3 array C 1. maxargs 1 of real : 
arg-s: [COMMON(FPCOMS)] arrayll. .maxargs] of alpha: 

ar-g-type : [COMMON ( FPCOM2 ) ] array [ 1. . maxargs 1 of char: 

A s  can be seen, the buffer structure consists of four parallel 

arrays. Array arg,type[i] contains a one-character flag 

indicatinp: whether the i'th data element is of type integer 

(flanRed by 'i*)* real ('r'), or string ( * s ' ) ,  i.e. packed 

Rrrmy[l. .alphasize] of char. If the element is an integer, it is 

contained in arg-i[i]: if real, in arg-r[i], and if string, in 

arR-s[I]. In the Prolog interface reals are actually Passed in 

erg-n as strings. due to quirks of this particular Prolog 

iinplement~tion. Array arg-r is thus not used i n  STRUTEX, but 

has been retained for the sake of generality. 

T h i n  storege scheme optimizes simplicity and portability at 

the expense of space: to add an unforeseen data type, we need 

simply add the declaration 

arg-u: [COMMON(FPCOMU)] array[l..maxargs] of unforeseen-type: 

and decide on a character flag to denote it. Since the number of 

d ~ t a  elements to be passed will generally be moderate (maxargs 

In ciirrcntly set to 10). allocating unused space is well worth 

the snvjnns in complexity that result over a scheme using data 

over1 nys produced by EQUIVALENCEing. The phrases 

[COMMnN(FPC@M*)] in the above declarations indicate to the 

compiler that the storage to be allocated to t h e s e  data 

ntructures is to be a COMMON area that will be shared by other 

programs; FPCOM* names the COMMON area in which this data 
c 
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striictiire is to be placed. The FORTRAN side of the interface 

lookc like thie for integer data: 

INTEGER intval(maxargs) 
 CHARACTER*^ argtype(maxargs) 
COMMON /FPCOM2/ arstype 
COMMON /FPCOMI/ intval 

and nnalogously for the real and string buffers. 

Information Transfer 

W e  will now describe how information flows into and out of 

these buffers on both sides of the interface. The interface 

operates et8 follows: 

when 8 FORTRAN program wishes to invoke embedded Prolog. it 

p1.aces the information to be passed to Prolog in the buffer(s) 

of the corresponding type. with the appropriate flag in the f l a g  

buffer. Subroutines to perform this placement i n  a uniform and 

modulnr manner are provided, and will be discussed below. Once 

the data to be transferred has been placed, the subroutine call 

CALL TEST 

invokes the (global) procedure test within the Prolog 

interpreter. thus invoking $top. as discussed above. On the 

Prolog side, a call to import will retrieve the data stored in 

the shared buffer structure, bind it to the parameter of import, 

and make it available to the Prolog rules. If there is data to 

be pnnsed back, procedure export places it in the buffer 
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structure on t h o  Prolog e i d e .  

Here is a listing of subroutine pushstr, which is used by the 

FORTRAN procrammer to place string data In the buffer structure 

for transmittal to Prolog: 

SUBROUTINE pushstr(sarg) 
implicit none 
integer alfalength, maxargs 
PARAMETER (alfrlength = 8, maxargs = 2 5 )  

character* ( * )  sarg 
character*(alfalcngth) strnic 
INTEGER no-of-rrrs 
character*l arctypc(maxargs) 
common /fpcom2/ aretype 
common no-of-rrgs 
character*(alfalength) strval(maxargs) 
common /fpcomo/ strval 

strng = sarg 
no-of-arcCs = no-of-argo + 1 
strval(no-of,rrgs) = strng 
argtyge(no-of,args) = 's' 
RETURN 
END 

A B  cen be seen, this routine places its argument in the 

RRRroPriatc buffer array, sets the type flag to ' s ' ,  and updates 

no-of-args. the number of arguments inserted so far. To 

transmit the string 'Hello', for example, the Programmer would 

write 

CALL PUSHSTR('Hell0') 

The routines for inserting integer and real arguments into the 

buffer structure are analogous. Here is a complete sequence 

corresponding to a typical parameter setup: 
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NO-OF-ARGS - 0 
C A I , L  FIJSHSTR( ' color' ) 
CAL,L PUSHSTR ( ' red ' 1 
C A L L  PUSHSTR( 'volume' 1 
CALI, P U S H R E A L (  ' 1 6 .  h7'  ) 
C A L I ,  FTJSHSTR( 'amount ' 
CAL.1, PUSHSTR( 100) 
C A L L  TEST 

Whnt happens to these parameters on the Prolog side depends on 

the pnrticular rules which the user has provided as definition 

o f  $process. 

A s  cnn be seen. the interface is rather straightforward on 

the F O R T R A N  side, the perhaps most unaesthetic element being the 

requlrcment to initialize NO-OF-ARGS to 0. Means of obviating 

this regulrcment exist and were considered. but the cure proved 

w o r s e  than the disease in every case. 

The Prolog Side of the Interface 

From the programmer's point of view, the Prolog side of the 

1 ntorf'ncr? is irreducibly simple. Suppose the above sequence of 

c n l  Is he? heen mnde: the call to TEST then causes $top to be 

nctlvntrd. which in turn causes $process to execute, which does 

w h n t c v c r  the (Prolog)  programmer has programmed. If a Prolop: 

rule n e e d s  access to the parameters, an invocation of imgort(X) 

docr, J I , :  after completing, the parameter X will be hound to the 

1 L r . t .  

[color. red. volume, '16.07'. amount, 1001 
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which can then be used by the Prolog program as needed. 

The implementation of import and export is easily described. 

Two procedures, Doimport and Doexport, were written to act as 

handlers for these constructs. A s  indicated above, Doimport 

collects the data from the buffer structure (and counts the 

elements transmitted), converts them into Prolog atoms, collects 

these atoms into a Prolog list, and finally binds this list to 

the argument of import. Doexgort doe6 the inverse: its argument 

must be bound to a list of Prolog atoms. These atoms are pulled 

off the list one by one. Their data type is determined, they are 

converted to the corresponding buffer structure type (integer. 

real or string), and inserted in the buffer structure. 

Page 18 



Callins Program Control of Embedded Prolog 

W e  have described how information can be passed from FORTRAN 

to ombedded Prolog and accessed by the invoked Prolog rules. The 

nature of Prolog. however, makes it easy for the calling program 

to exert considerable control over the processing performed on 

the Prolog side. If the Prolop. rules are set up correctly, any 

clc?.sircd Prolog procedure to be Invoked can be specified from the 

FORTRAN side. In fact, since Prolog can interpret the passed 

data. a virtual interface of any desired design can easily be 

created. The one we have designed I s  simple and powerful, but w e  

cmghnsizc that it is o n l y  one of an infinite number of 

pon.ol3 b 1 1  i t  -1 es. 

Our interface design is based on the observation that there 

are two basic operations that can be performed in Prolog: 

invocation of a Prolog procedure, and updates of the Prolog 

datnbase. It can be maintained that the database updates are 

themselves merely procedure calls to the assert and retract 

procedures. This is correct, but updates are conceptually 

sufflciently distinct to deserve their own classification. Our 

$process procedure therefore expects the data being passed to it 

to t)c in one of two possible list formats: 

[assert, <predicate>, <arguments>] 
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[call, <function>, <arguments>] 



Thua. suppose the list passed f r o m  FORTRAN to Prolog is 

[assert, P. a, b. c] 

Then the Prolog procedure call 

assert(p(a,b,c)) 

is executed. Similarly, passing the list 

[call, f. x .  Y ,  z ]  causes call(f(a,b,c)) to be executed, 

invokinp f (a,b. c )  as Prolog procedure. 

ilerc? nre the Prolog statements that create this interface: 

'Sprocess'(X) : -  X = [assert Y ] , ! ,  F =..  Y. assert(F). 
/* e.E. if X = [assert, f, a, b. c]* 

An assert(f(a,b,c)) I s  executed */ 
*Sprocess'(X) : -  X = [call I Y],!, F =..  Y, call(F). 
/* e . g .  if x = [call, f, a], a call(f(a)) 

is executed */ 
'$groceEs*(X) : -  write(* imported/exported ' 1 .  

/* this last definition can be expanded 
write(X), nl, exporto(). nl. 

to c lo  whatever 1s desired with X */ 
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A Case Study: STRUTEX 

The embedded AI facilities we have developed are being tested 

and applied in STRUTEX, a prototype knowledge-based system for 

the conceptual design of structures to support point loads in 

two dimensions. 

A s  presently constituted, STRUTEX combines a database, a 

knowledge base. and a graphics display into a prototype 

knowledge-based system. The program simulates an engineer. 

bcglnning work on a new project with a blank piece of pager. and 

a discussion with his manager. T h e  graphics screen plays the 

part of the blank piece of paper, with a text area f o r  dialogue 

between the manager and engineer. 

The user inputs data about the load, such as number of loads, 

t y p e  of load (e.g. gravity load), the load magnitude. and 

s i m i l a r  information. A mouse I s  used t o  position the load on 

thc gcreen. The u s e r  then inputs data about the support surface, 

nirch n s  position with respect t o  load, whether OL’ not it is a 

p o j n t .  nurface. and the area of a non-point surfsce. The mouse is 

n ~ n J n  uncd to display the midpoint of the support surface, and 

the proKrnm calculates the length of the surface and the 

dictnnce from the surface t o  the load point(s). Finally the 

u e e r  spec1f-le.s whether or not the support must be lightweight. 

A l l  of this data is stored in the database (RIM). 
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Tho knowledge base i s  then executed to determine the type of 

support ( e . g .  beam or truss) that is required. This 

dct~rinination is based on knowledge about the relationship 

bCt.wcon the support surface and the load and data in the 

c la tnbnr ,~ .  Here is a Frolog rule typical of those c~iled in 

c?mbr?ddcd mode by the FORTRAN-based STRUTEX program: 

/* 
R b c n m  support is appropriate if the support surface 
location is below the load, the surface 8.rea is large, 
And the support is not known to be lightweight 

*,’ 

The program computes the coordinates of the members of the 

silppoi’t, which are also entered into the database. If there is 

R slnn1.e l o a d  Pojnt and the support type is 8 truss, then a 

de~(.crnil.nntion is made of whether or not bracing is needed by 

chr*( .kInp:  thr? ratios of the member lengths against the loading 

coti(1I t Ion?:. If there are multiple load points and t h e  support 

t y p e  I:: a truss. then the user designs an initial. t r u s s  guided 

by rccornmendntions from the knowledge base. Features of the 

( 1 - s . i  p:n n r e  checked against the knowledge base and 

recommendations for improvements are made. T h e E e  iterations 

cont.lnuc until the user is satisfied with the design. Each new 

R I I P P O P ~  Js displayed o n  the graphics screen. 
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The FORTRAN/Prolog Interface 

We will now examine the interface used to call the embedded 

r i i l v  bnsc-. from FORTRAN. The FORTRAN main program component of 

STRTJTIrX is structured so that requirements for services such as 

Krnphlcs support. RIM database accesses, or calls to embedded AI 

Pncil F t J c s ,  are satisfied by CALLS to handler subroutines. These 

h n n c l l c r s  have the logical structure of case statements (although 

F O R T R A N  must, of course, simulate this effect by meanc of I F s  or 

c o m p u t p d  GOTOs): thus invocations of these handlers have as 

pnrnmr-t crs R numeric code indicating the particular service 

rcqulrcd. plus the specific information required to perform that 

f:crvlc*e. T h o  name of the handler for the embedded knowledge base 

Jn 1:135:EC; R listing of KBXEC may be found in Appendix 1. 

Th- followinE FORTRAN statements define the interface among 

:;TJ>lITEX , t h e  graphics handler, and t h e  RIM database handler: 

ommm FAG% IS 
OF POOR QUALITY 

c 
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I M P L I C I T  REAL*8 (A-H, 0-2) 
CHARACTER*8 PLOADT. SURFLC, SUPTYP, SUPPWT 
CHARACTER*8 SURFT,CHOICE,BRCTYP,CHBRAC,SIDES 
CHARACTER*lO TEMP 
CIiARACTER*$O STRING 
COMMON/LOADC/PLOADN,PLOADT.PLOADX.eLOADX,~LOADY,HLOAD,VLOAD,DIST 
COMMON/SURFC/SURFLC, SURFXS, SURFYS, SURFXE, SURFYE, SURFA, 

COMMON/SUFPC/SUPPNO, SUPTYP, SUPPWT, SUPPXS, SUPPYS. SUPPXE, 

COMMON/SHRCOM/NPTS. NTOTSP, PIXPER. XSECT. YSECT, SURFT, 
€?L.OAD, RSRFAC, RSUPRT. RATIO, CIIBRAC, BRCTYP. SIDES. SIDDIF 

C O M M O N / M E M X Y / S M E M N O ( l O O ) , X S ( l O O ) , ~ ~ ~ l O O ) , Y S ~ l O O ) , Y E ( l O O ~  
DIMENSION ARLOAD(7),ARSURF(8),ARSUPP(8) 
EQUIVALENCE (ARLOAD(1). PLOADN), (ARSURF(l),SURFLC), 

1. SURFXM, SURFYM 

1 SUPPYE. SUPDIS 

1 

1 (ARSUPP(l),SUPPNO) 

T h  P s 1.1 bseque n t stat emen t s : 

integer alfalength. maxargs 
PARAMETER (alfalength = 8 ,  maxargs = 10) 

CHARACTER*(alfal.ength) strval(maxargs) 
character*l argtype(maxargs) 

in tc scer  no-of-args ! f o r  sharing with the 
common no-of-args ! stacking routines onIy 

common /fpcoms/ strval 
COMMON /f pcom2/ argtype 

define the FORTRAN/Prolog communications interface, which has 

tJJeP1l described previously. We will describe the action of KBXEC 

P o r  A typ ica l  invocation of the handler: 

f: II:;E KNOWLEDGE B A S E  TO DETERMINE HOW DIAGONALS 
c: A R E  Tn IIP, DRAWN BETWEEN MEMBERS OF A TRUSS 
c: n Y  CHECKING LENGTH OF TWO ADJACENT SIDE MEMBERS 

C A L L  KBXEC(2,MDIST,TDIST,ALPHA) 

The z-ction o f  KBXEC code executed as a result of this Call is: * 
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DNGINAL PAGX IS 
'01 EOOR QUALITY 

c: 
C DETERMINE HOW DIAGONALS ARE TO BE DRAWN 
C BETWEEN MEMBERS OF A TRUSS 
c 

T I P (  TOPT. EQ. 2 )  THEN 
no-of-args = 0 
call pushstr('assert') 
cnll pushstr('dist1') 
c ~ l l  pushreal(tdist) 
call test 

no-of-args = 0 
c a l l  pushstr('assert') 
c n l l  pushstr('dist2') 
call pushreal(hdist1 
cnll test 

no-of-args = 0 
c n l l  pushstr('cal1') 
c a l l  pushstr('cmpside8') ! activate compare-sides rule in Froloe: 
cnll. test 

c n l l  cc('u',strval(l),SIDES) 
rend(strva1(2),'(F8.2)')SIDDIF 

E N D 1  F 

T h e  c o c l ~  segment 

cnll pushstr('assert') 
cell pushstr('dist1') 
call pushreal(td1st) 

c n t ~ z c r :  thp character strings "assert" and "distl". as well as 

the rcnl number tdist, to be inserted into the interface buffer. 

The nuhzcquent line: 

call test 

I i r v o l ! c . r :  t I I ~  Pro1 O R  roil t tnc? test, which. as 1 ndlc.?ted earlier, 

!: I r n f ) l y  1 3 ~ 1 ,  lvntcs the P r o l o p :  interpreter on the goal (PrOlOR 

p r . c ( l I ~ n t ~  cnll) $top. Recall that $top is defined as 

'$top' : -  import(X). '$process'(X). 
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to KBXEC as floating-point Parameter) was 3.5. The Import 

predicate assembles the arguments passed in the interface buffer 

into a Prolop list: 

[assert. distl, '3.5'1 

and binds it to X. (Note that the real number 3.5 has been 

automatically converted to a Prolog string. The reason for this 

will be set forth in the subsequent discussion of real 

arithmetic operations in Prolog.) Finally, $process is activated 

with this value of X as argument. 

A s  discussed above, the action of $process when encountering 

a list beginning with the atom "assert" is to invoke the call 

assert(distl('3.5')) 

which inserts the predicate distl( '3.5' ) into the Prolog 

database. 

The subsequent code sequence similarly causes 

dlst2(<value of hdist>) 

to be inserted. Finally, the sequence 

call pushstr('cal1') 
call pushstr('cmpside8') ! activate compare-sides rule in Prolog 
cal L test 

causes execution of the Prolog procedure call(cmpsides). defined 

as follows: 

/* Rule COMPARE-SIDES: IOPT = 2 */ 
cmgsldes :- distl(Dl), dist2(D2), !, 

retract(distl(Dl)), retract(distZ(D2)). 
fminus(D1, D2. Siddif). fabs(Siddif, DiPfa). 
fdiv(Diffa. D1, Pcdifl), fdiv(D1ffa. D2. PcdifZ), 
C86tUff(PCdifl, Pcdif2). 
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A S  is evident, this rule looks up the values of distl and disti! 

in the Prolag database, binds the results to D1 respectively D2, 

and deletes the current distl and dlst2 entries from the 

database. The procedure csstuff is then called with arguments 

:Dl - D21/D1 and :D1 - D2:/D2. Note that since this particular 

Prolog implementation lacks floating-point arithmetic, such 

operations must be performed by calls to pr0CedUreS such as 

fminus, which are defined in terms of the escape predicate, 

which in turn invokes FORTRAN code. We thus have FORTRAN 

invoking embedded AI rules, which in turn can invoke FORTRAN 

code: such invocations can chain indefinitely. 

The csstuff procedure is defined as 

csstuff(X, Y )  :-  export([equal,Siddif]). 

The first rule for csstuff Stipulates that if X > 0.1 or 

Y > 0.1, then the character string 'notequal' and the numeric 

value of Siddif are to be inserted into the interface buffer: 

otherwise, the string 'equal' and Siddif are inserted. 

With completion of procedure csstuff, procedures cmpsides. 

$process. and $top complete as Well. With the completion of 

$top. control is returned to the FORTRAN calling program. In 

this case, the code executed immediately after returning is 

call cc('u',strval(l),SIDES) 
read(strval(2),'(F8.2)')SIDDIF 
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Recall that the arrav strval is the one of the three parallel 

interface buffer arrays in which string values are returned from 

Prolog. The FORTRAN procedure converts from upper to lower 

case letters or back: in this case the string in strval(1) 

(which w a s  ' e q u a l '  or 'notequal') is converted to capitals and 

the result t3tOred in FORTRAN variable SIDES. cc is needed 

because names with initial capitals designate variables in 

Prolog: names beginning with lower-case letters denote 

constants. Similarly, the real number value (returned In string 

form) of Siddlf is converted to floating point representation 

via an internal read, and the result stored in FORTRAN variable 

SIDDIF. This completes proceasing of option 2 on part of KBXEC, 

and control returns to the caller. 

Implementation of Floating Point Operations 

Since the University of York Prolog interpreter [ 5 ]  

emphRsizes simplicity, floating-point operations are not 

implemented. The STRUTEX operation, however, recluires such 

operations at every turn. The ease with which floating-point 

operations were added to Prolog is indicative of the flexibility 

and simplicity of the interface that has been constructed. 

Here are the Prolog rules defining floating-point operations: 

L 
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flt(Fl,F2) :-  escaPe(~l,Fl.F2],[lt]). 
fle(F1,FZ) :-  escaPe([l,Fl,F2], [le]). 
feq(Fl,F2) :-  escaPe([l,Fl,F21, [esl). 
f ge ( F1, F2 : - escape ( [I, F1, F21, [gel 1. 
fgt (Fl, F2 1 : - escape( 11, F1, F21, [gtl 1. 
fplus(F1. F2, R) :- escape([2.Fl.F2], [RI). 
fminus(F1, F2.R) :- escaPe(~3,Fi,F21, [R]). 
ftimes(F1, F2.R) :- escape([U,Fl.F2], [R]). 

fabs(F,R) :- escape([6,Fl, [RI). 
fdiv(Fl,F2 tR) : -  escape([S,Fl,FZI, [R]). 

A s  is evident, each of these operations invokes the escape 

predicate. Appendix 3 reproduces the subroutine IFACE, which 

implements the case statement which is invoked by escape. To 

illustrate its operation, w e  will consider the will consider the 

rule for floating less-than: 

flt(F1,FZ) :- escape([l,Fl,F21, [It]). 

A typical call to the RrOCedUre appears thus: 

flt('3.29'. '-2.6') 

Recall that floating-point numbers are represented in string 

format. This Call invokes 

which causes the arguments 1, '3.29'. and '-2.6' to be Placed in 

the interface buffer as usual. A 8  is generally the case, the 

first argument (the "1") is a command code: the following line 

of IFACE cCises on this code: 

goto ~ 1 0 0 , 2 0 0 , 3 0 0 . 4 0 0 , 5 0 0 , 6 0 0 ) ,  lntval(1) 

Recall that intval is the part of the interface buffer that 

h o l d s  integer arguments. Since intval(1) contains the 1 that was 

transmitted. control is transferred to statement 100 in IFACE. 

The statements 
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100 read(strval(2). * (Fa. 2) * )rl 
read(strval(3). *(F8.2)*)r2 

transform the real values, which are in the string 

represen tat ion required by Prolog, to floating-point 

representation, and store them in variables rl and r2. The 

subsequent statements test the relationship between these 

values: 

IF (rl .et. r2) THEN 
strval(1) = *gt* 

ELSE IF (rl .eq. r2) THEN 
strval(1) = 'eq' 

ELSE IF (rl . It. r2) THEN 
E L S E  IF (rl .le. r2) THEN 

ELSE IF (rl .=e. r2) THEN 

else 

END IF 
no-of-args = 1 
argtype(1) = ' 8 '  

strval(1) = *It* 

rctrval(1) = *le* 

strval(1) = *=e* 

print *, ' *** COMMAND CODE 2: WEIRD ARGS. NOT ORDERED* 

goto 3000 

Since rl = 3.29 and r2 = -2.6, it is evident that *Et* will be 

Rtored in strval(1). This string i s  returned to Frolog and made 

Into R list. [gt], which becomes the second (output) argument of 

escnpe. Since, however, this invocation of escape had [lt] a8 

second argument, and [lt] does not match [st], the invocation 

fails. This is, of course, the desired result, since 3.29 Is not 

less than -2.6. 

An obvious question that might arise on examination of the 

floatlnsK-Point comparisons is why all of them were assigned the 



same action code, i . e .  1. The answer is that this was not a 

compelled choice: choosinp: a separate action code for each 

comparison is a f e a s i b l e  alternative. Design of the appropriate 

IFACE FORTRAN code is left as an exercise for the interested 

reader: it is our opinion t h a t  the given design results i n  

somewhat cleaner code. 

Operatlons such as f1t(FleF2) are predicates that operate by 

testing their operands and succeeding or failing. depending on 

the outcome. Operations such as fplus (floating-point plus), 

however, must produce results. The natural w a y  to implement such 

operations is as functions. Prolog syntax, however. does not 

allow for functions: all procedures are subroutines. Values must 

therefore be returned bound to an output parameter rather than 

to the function name. Thus, to add 1.0 and 1.0, and print out 

the result. we would write 

f plus ( * 1.0 ' , ' 1.0 * . X )  , write (X 1. 

causing a '2.0' to be written out. The principle of operation of 

the definition of fplus in terms of an escape predicate is 

similar to that of flt: Appendix 3 provides details. 

We have presented a complete dissection of a typical 

invocation of embedded AI  rules from a FORTRAN program, and 

demonstrated how these rules could invoke FORTRAN code in turn. 

Processing for the other options is analogous. A s  can be Seen. 

the cal.line and return sequences are stereotyped and rather 



straightforward; programming with embedded AI rules expressed in 

Prolog thus becomes sufficiently straightforward to serve as a 

etandard programming technique for algorithmic applications. 

Power of Embedded Prolog 

The STRUTEX rules reproduced in Appendix 2 correspond in 

their effects to the C L I P S  131 rules used by the STRUTEX version 

described in [ a ] .  It is natural to pose questions regarding the 

relative and absolute power of Prolog rules. 

Strictly speaking, CLIPS and Prolog are equivalent, since 

both system8 can implement a Turing machine. From the 

ProRrammer's point of view, however, it is fair to say that 

Prolog i s  significantly more powerful than CLIPS. Most of the 

features of C L I P S ,  such as the built-in rule base, are present, 

or at least can be easily simulated, in Prolog. In addition, 

Prolog has a powerful deductive capability based on resolution. 

This capability is central to the capabilities of Prolog, and is 

not matched by any feature of CLIPS. 

Prolac ie, of course, an extremely powerful etand-alone 

programming language in its own right. Its capabilities are 

RufPicientlY impressive to have caused it to be chosen as the 

language of Japan's fifth-generation project, as well as being 

the dominant AI language in Europe. It suffers, however, from 

severe deficiencies in the area of control structures, since all 



control flow in Prolos is based on backtracking rule 

application. While this is natural for certain applications, it 

can become an extremely unnatural way to program in situations 

requiring more traditional control structures such as while and 

- d o  loops. 

One of the most significant results of the present research 

is that it imposes the control structures provided by the 

traditional calling language on Prolog. A s  is clear from the 

calls to embedded rules we have examined, such invocations can 

be enclosed within loops, if statements, or whatever other 

construct the calling lansuage offers. Programming in Prolos is 

thus brought. PerhaRS for the first time, into the realm of 

general-purpose algorithmic programming. 

. 
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CONCLUSION 

A method for embedding Artificial Intelligence capabilities 

based on Prolog rules has been reported. The techniques 

developed were applied to the STRUTEX program, a prototype 

system for the conceptual de8ign of structures to support point 

loads in t w o  dimensions. The Prolog-based rules proved to be 

more expressive and powerful than the original C L I P S  version: 

mmreover, needed features such as real arithmetic were easily 

supplied by means developed in the initial phase of this 

project. The approach developed should be applicable to a wide 

variety of algorithmic languages, since our implementation 

presupposes only the existence of a straightforward separate 

compilation capability, as supplied by the algorithmic language 

orocessing systems of most modern machines. 

A t  least as significant a result I s  the imposition of control 

structures provided by the algorithmic calling language on 

Prolog. Thia superposition eliminates much of the difficulty 

which Prolog programming poses, thus making this powerful AI 

tool available to the alnorithmic proprammer. 
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STRUTEX Rules 

'$proccss'(X) :-  X = [assert Y],!, F =.. Y, assert(F1. /* e.g. If X = [assert, f ,  a, b, cl. 
an asstrt(f(a,b,c)) is executed */ 

'$process'(X) : -  X = [call Yl,!, F =.. Y ,  call(F). 
/* e.g. if X = [call, f, a, b, cl. 

a call(f(a,b,c)) is executed */ 
'$process'(X) :-  write(* imported/exported '1 ,  

/* this last definition can be expanded 
write()<), nl, export(><), nl. 

to do whatever I s  desired with X */ 
flt(Fl,F2) :- escape([l,Fl,F2], [lt]). 

fle(Fl,F2) : -  cscape([l,Fl,F2], [le]). 

feQ( F1, F2 1 : - escape ( [l, F1, F21, [eu] 1. 

f ge ( F1, F2 ) : - escape ( 11, F1, F2 I , [gel 1. 

f et ( F1 , F2 : - escape ( [ 1, F1, F21 , [gt 1 1 .  

fplus( F1, F2. R )  : - escape( 12, F1, F21, CRI 1. 

fminus(Fl,F2,R) : -  escape([3,Fl,F2], [Rl). 

ftimes(Fl,F2,R) : -  escape([4,Fl,F21, [RI). 

fdiv(Fl,F2.R) : -  escape( [ 5 ,  F1, F21, CRI 1 

fabs(F,R) :-  escape( 16,  Fl, [Rl I. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  /* application program starts here */ 

/*rule BEAM; I O P T  = 1 */ 
sURROI?t :- beam, !, assert(support(beam)), export(Cbeam1). 

support :- truss,!, assert(support(truss)), export([trussl). 

. 
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beam :- surflc(s1de). surfa(point). 

beam :-  surflc(slde), surfa(larse), not(suppwt(1ight)). 

beam :- surflc(be1ow). surfa(po1nt). 

warn :-  surflc(bel0w). surfa(1arge). not(suppwt(l1eht)). 

beam :-  8UrflC(abOVe), surfa(polnt), not(ploadt(g1)). 
,; jf-" 

nOt(SllPpWt(1ight)). 

/* Rule TRUSS */ 
truse :- (surflc(s1de) : surflc(below)), 

surfa(large), suPpwt(l1ght). 

/* Rule STRING */ 
string :- surflc(above), plOadt(g1). 

/* Rule BRACE-TYPE: IOPT = 0 */ 
brCetyPe : -  alpha(AlRhaval),!,dobracetype(Alphaval). 

dobracetYpe(Alyhave1) : -  flt(Alphava1, '40.0'). !, 
assert( tYpeofbrace(v) 1, export( [V I  ) .  

/* Rule COMPARE-SIDES; IOPT = 2 */ 
cmpsldes :- distl(Dl), dlst2(D2). !, 

retract(dlstl(D1)). retract(dist2(D2)), 
Pminus(D1, D2. Siddlf). fabs(Sidd1f. Diffa), 
fdiv(D1ffa. D1, Pcdifl), fdiv(D1ffa. D2. Pcdif2). 
cSstUff(Pcdif1, Pcdif2, Siddif). 

~sstufP(X. Y ,  Slddlf) : -  (fgt(X. '0.1') ; fgt(Y. 'Ool')), 
export ( [notequal, Siddif I 1. 

csstuff(X, Y ,  Siddif) :-  export( [equal,Siddif] 1. 



/* Rule BRACE-CORRECT for triangles: IOPT = 33 */ 
brcorrtr : - triok(Alpha), !, retract (trlok(A1pha) ), 

tPiokstuff(A1pha). 

trlokstuff(A) : -  flt(A, '15.0'). exgort([small, 'O.O']). 

triokstuf f ( A )  : - fgt ( A ,  ' 120.0' 1, export ( [large, * 0.0 ' I 1. 

trlokstuff(A) : -  export([good, '0.0'1). 

/* Rule BRACE-CORRECT; IOPT = 3 */ 
brcorrqd :- quadok(Alpha),!, retract(quadok(A1pha)). 

aokstuff (Alpha). 

gokstuff(~) :- flt(~, '15.0'1, export(Csmal1, * O . O ' J ) .  

qokstuff(A) :- fpt(A, '75.0'1, export([large, '0.0'1). 

qokstuff(A) :- export( [good, '0.0'1). 

/* Rule BRACING: IOPT = 5 */ 
bracing : -  xnl(N1). dist(D), toleranc(Tol),!, 

f div ( Temp, To1 , R) , f d l v  ( N1, D, Temp ) , 
(fgt(Ratio, '1.0') -> Brace = yes : Brace = no), 
assert(ratio(Rat1o)). assert(brace(Brace)), 
export( [Brace, Ratio] 1 .  

f abs ( R , Rat l o  , 

/* Rule EXPLANATION: IOPT = 8 */ 

reasons : -  surflc(slde), 
write(' The support surface is to the side of the loads.'),nl. 

reasons : -  surflc(below), 
write(* The support surface is below the loads.'),nl. 

reasons : - surf lc (above), 
write(' The support surface ie sbove the loads.'),nl. 
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r e s n o n s  :- eurfm(lmrse), 
write(* The support surface io not a point.'),nl. 

reasons :-  s u p p w t ( ) o ,  
( X  - light -> 

write(' The support  surface must be lightweight.') 
: write(* The eupport can be heavy.')). nl. 

reasons :-  ploadt(vl), 
write(* There are only vertical loads.*),nl. 

reasons :- ploadt(g1). 
write(' There are only gravity loads.'),nl. 

reasons : - plOadt (61) , 
/' / write(* There are only Bideways loads.*),ni. 

/' 

/" reasons : - plOadt(gz3) , 
$2 write(* There ie a combination of gravity and sideways loads.'), 

nl. 

reasons : - ploadt (vs) , 
write(' T h e r e  is a combination of vertical and sideways loads.'), 
nl. 



Appendix 2 

Embedded AI Calling Routine 

SUBROUTINE KBXEC( IOPT, HDIST, TDIST, ALPHA) 
C 
C THIS SUBROUTINE INTERFACES WITH THE KNOWLEDGE BASE 
C STRINGS ARE ASSERTED AND CLIPS IS EXECUTED 
C 

IMPLICIT REAL*8 (A-H, 0-Z) 
CHARACTER*8 PLOADT, SURFLC, SUPTYP, SUPPWT 
CHARACTER*8 SURFT, CHOICE, BRCTYP, CHBRAC, SIDES 
CHARACTERa10 TEMP 
CHARACTERx80 STRING 
COMMON/LOADC/PLOADN, PLOADT , PLOADX, PLOADY, HLOAD. VLOAD, DIST 
COMMON/SURFC/SURFLC,SURFXS,SURFYS,SURFXE,SURFYE,SURFA, 

1 SURFXM, SURFYM 

1 SUPPYE, SUPDIS 

1 

COMMON/SUPPC/SUPPNO, SUPTYP, SUPPWT, SUPPXS, SUPPYS, SUPPXE, 

COMMON/SHRCOM/NPTS,NTOTSP,PIXPER,XSECT,YSECT,SURFT, 
RLOAD,RSRFAC, RSUPRT, RATIO, CHBRAC, BRCTYP, SIDES, SIDDIF 

COMMON/MEMXY/SMEMNO(lOO),XS(lOO),XE(lOO),YS(lOO),YE(lOO) 
DIMENSION ARLOAD(7),ARSURF(8),ARSUPP(8) 
EQUIVALENCE (ARLOAD(l),PLOADN).(ARSURF(l),SURFLC). 

1 (ARSUPP(~),SUPPNO) 

integer alfalength, maxargs 
PARAMETER (alfalength = 8, maxargs = 10) 

CHARACTER*(alfalength) strval(maxargs1 
character*l argtype(maxargs) 

integer no-of-args ! for sharing with the 
common no-of-args ! stacking routines only 

common /fpcoms/ strval 
COMMON /fpcom2/ argtYOe 

C 
C INITIALIZE THE KNOWLEDGE BASE AND LOAD THE RULES 
C 

IF(I0PT. EQ. 0) THEN 
no-of-arss = 0 

do i = 1. maxargs 
arptype(1) = * *  

end do 
END IF 
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C 
C DETERMINE THE TYPE OF SUPPORT THAT IS REQUIRED 
C 

IF( IOPT. EQ. 1) THEN 
no-of-args = 0 
call pushstr('as8ert') 
call pushstr('p1oadt') 
call pushstr(p1oadt) 
call test 

no-of-arss = 0 
call pushstr('assert') 
call pushstr('surf1c') 
call pushetr(surf1c) 
call test 

no-of-ares = 0 
call pushstr('assert') 
call Rushstr('suppwt') 
call PUShStr(SUppWt) 
call test 

no-of-ares = 0 
call Pushstr('assert') 
call Pushstr('surfa') 
call Dushstr(surft) 
call test 

no-of-ares = 0 
call Pushstr('cal1') 
call PUshStr('support') 
call test 

call cc('u'. strval(1). suptyp) 
C TRANSFER RESULT TO sugtyp(1). CAPITALIZING THE LETTERS 

C 
C DETERMINE HOW DIAGONALS ARE TO BE DRAWN 
C BETWEEN MEMBERS OF A TRUSS 
C 

ENDIF 

IF(I0PT. EQ. 2) THEN 
no-of-args = 0 
call pushstr('assert') 
call pushstr('dist1') 
call gushreal(tdi8t) 
call test 

ne-of-args = 0 
call ~ushstr('assert') 
call pushstr('dlst2') 
call Rushreal(hdist) 
call test 
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C 

C 
C 
C 
C 
C 

C 

C 
C 
C 
C 
C 

C 

no-of-args = 0 
call puehetr('cal1') 
call puahstr('cmps1des') 

call t e s t  
ACTIVATE COMPARE-SIDES RULE IN PROLOG 

DETERMINE IF BRACING CORRECT FOR QUADRILATERALS 
IF ALPHA < 15 THEN BRACING IS NOT CORRECT 
I F  ALPHA > 75 THEN BRACING IS NOT CORRECT 

I F (  IOFT. EQ. 3) THEN 
no-of-args = 0 
call pushstr(*assert*) 
call pU8hStr('qUadOk*) 
call pUShreal(a1pha) 
call test 

no-of-args = 0 
call pUShStr(*Call*) 
call gushstr(*brcorrqd') 

call test 
ACTIVATE BRACE-CORRECT RULE IN PROLOG 

call c c ( * u * *  strval(l),CHBRAC) 
read(strval(2),*(F8.2)')RATIO 

ENDIF 

DETERMINE IF BRACING CORRECT FOR TRIANGLES 
I F  ALFHA e 15 THEN BRACING IS NOT CORRECT 
IF ALPHA > 125 THEN BRACING IS NOT CORRECT 

IF( IOPT. EQ. 33) THEN 
no-of-args = 0 
call pushstr('assert'1 
call pushstr(*triok*) 
call pUShFeal(a1Pha) 
call test 

no-of-args = 0 
call pushstr(*call*) 
call pushstr(*brcorrtr*) 

call test 
ACTIVATE BRACE-CORRECT RULE IN PROLOG 

call c c (  * u * ,  strval(l).CHBRAC) 
read(strval(2),*(F8.2)')RATIO 
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E N D I F  
C 
C DETERMINE T Y P E  O F  P R A C I N Q  
C I F  ALPHA QE 110 DEQREES THEN 2 T Y P E  IS C H O I C E  
C I F  ALPHA LT 110 DEGREES THEN V T Y P E  IS C H O I C E  
C 

I F (  I O P T .  EQ. 11) THEN 
no-of-args = 0 
cfill pu&hstr('assert') 
call gushstr('a1pha') 
call pushreal(a1pha) 
call test 

no-of-args = 0 

call pushstr(*brcetype*) 
c A C T I V A T E  BRACE-TYPE RULE I N  PROLOG 

call test 

Call pUshStr('Cal1') 

E N D I F  
C 
C DETERMINE I F  BRACING IS NEEDED 
C 

I F (  I O P T .  EQ. 5 )  THEN 
no-of-arcs = 0 
call pushstr('assert') 
call pushstr('to1eranc') 
t o 1  = 100.0 
call pushreal(to1) 
call test 

no-of-args = 0 
call pushstr('8ssert') 
call eushstr('xn1') 
call pushreal(hd1st) 
call test 

no-of-args = 0 
call pushstr('assert') 
cnll pushstr('dist*) 
call pushreal (tdie t 
c a I 1  test 

no-of-args = 0 
call Puehstr('ca1l') 
call pushstr('bracing') 

c A C T I V A T E  BRACING RULE I N  PROLOG 
call test 
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e r l l  ce(*u', s t r v a l ( l ) , ~ ~ B R A C )  
r~~r(strvrl(Z),*(P8.2)*)RATIO 

I W D X F  
C 
C DETERMINE NODES I N  A T R I A N G L E  
C 

I F (  IOIP. EQ. 6 )  THEN 
d o  I = 1. ntotsp 
no-of-args = 0 

call puShotr( * eSEert * ) 
call pushstr('c1emntno') 
call puohreal(smemno(i)) 
call pushreal(xE(i)) 
call pushreal(ys(1)) 
call pushreal(xe(1)) 
call PUEhre&l(Ye!(i)) 
call te8t 

end do 
no-of-arc. = 0 
C&ll 
call 

C ACTIVATE 
call 

E N D I F  
C 

puahstr('cal1') 
puohstr('findtr1') 
F I N D - T R I A N G L E  R U L E  I N  PROLOG 
te.t 

C W R I T E  EXPLANATION O F  C H O I C E S  
C 

I F (  I O P T .  EQ. 8 )  THEN 
no-of-args = 0 
call pU8hStr(*call*) 
call pushstr(*explain*) 

call test 
C ACTIVATE E X P L A N A T I O N  R U L E  IN PROLOG 

E N D I F  
RETURN 
END 

subroutine cc(code, fromstr, tostr) 
charactera1 code 
character*(*) fromotr, tOStr 
intccer tolen, 1, 8COde. Zcodel blgacode, bigzcode 

acode = lchar(*a*) 
zcode = lchar(*z*) 
blgacode = lchaf(*A*) 
blgzcode = ichar('2') 
tolcn = len(tostr1 
do i = tolen 
tostr(i:i) = * * 

end do . 
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, 
/' 

I f  (code .eq. * u t  .or. cede .eq. 'TJ') then 
do i = 1, len(fromstr) 
if (i .et. tolen) goto 1000 
if (ichar(fromstr(i:i)) .ge. acode 

& .and. (ichar(fromstr(i:i)) .le. 2code))then 
tostr(1:i) = char(ichar(fromstr(i:i)) - 32) 
tostr(i:i) = fromstr(i:i) 

else 

end if 
end do 
end if 

if (code .eq. '1' .or. code .eq. 'L') then 
do i = 1, len(fr0mstr) 
if (i .et. tolen) goto 1000 
if (ichar(fromstr(i:i)) .se. bieacode 

& .and. lchar(fromstr(1:i)) .le. b1gzcode)then 
tostr(1:l) = char(lchar(fromstr(1:i)) + 32) 

tostr(i:i) = fromstr(i:l) 
else 

end if 
end do 
end If 

1000 return 
end 

SUBROUTINE pUShlnt(i8rg) 
implicit none 
integer alfalength, maxargs 
PARAMETER (alfaleneth = 8 .  maxares = 25) 

INTEGER intval(maxares), iarg, no-of-arm3 
character*l argtype(maxarg6) 
common /fpcomZ/ argtype 
common no-of-arps 
common /fpcomi/ intval 

no-of-args = no-of-ares + 1 
intval(no-of-args) = iarg 
argtype(no,of-args) = * i *  
RETURN 
END 

SUBROUTINE pushreal(rarg) 

PARAMETER (alfalength = 8, maxargs = 25) 
C implicit none 

REAL rare, realval(maxarg6) 
INTEGER no,of-args 
character*l argtYue(maxargs) 
character*(alfalength) strval(maxarg8) 
common /fpcoms/ strval 



common /fpcomZ/ argtype 
common no-of-ares 
common /f pcomr/ realval 

no-of-args - no-of-args + 1 
reslval(no,of,args) - rarg 
r e a d ( s t r v a l ( n o - o f - a r s s ) . " ) r a r g  
argtype(no,of,ares) = ' 8 '  ! reals get passed as strings 
RETURN 
END 

S U B R O U T I N E  pushstr(sarg) 
implicit none 
inteser alfalength, maxargs 
PARAMETER (alfalength = 8 ,  maxarss = 25) 

character*(*) sars 
character*(alfnlength) strng 

INTEGER no-of-args 
character*l argtype(maxargs1 
common /fpcomZ/ argtype 
common no-of-args 
character*(alPalength) strval(maxargs) 
common /fpcoms/ strval 

strng = sarg 
no-of-args = no-of-arss + 1 
strval(no,of,arge) = strng 
argtype(no-of-args) = ' e '  
RETURN 
E N D  
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Appendix 3 

8 

Implementation of Real Arithmetic 

SUBROUTINE I F A C E  

Implicit none 
integer alfalength, maxargs 
PARAMETER (alfalength = 8 ,  maxargs = IO) 

CHARACTER*(alfalength) strval(maxargs) 
INTEGER intval(maxarg8)' 
REAL realval(maxargs) 
character*l argtype(maxargs ) 

integer no-of-ares ! for sharing with the 
common no-of-args ! stacking routines only 
integer i 
real rl. rZ 

common /fpcomi/ intval 
common /fpcomr/ realval 
common /fpcoms/ strval 
COMMON /fpcom2/ argtyge 

no-of-arrzs = maxargs 
DO i=1, maxargs 

IF (argtype(i) .eq. ' ' )  THEN 
no-of-args = I - 1 
got0 102 

END IF 
END DO 

102 continue ! loop exit target 
C PRINT *, 'iface: no-of-args = *  ,no,of-args 
C W e  expect the first arg to be a command code 

100 read(strval(2). '(F8.2)')~-1 

C print *, ' rl = ',rl, ' r2 = ', r2 

R o t o  (100,200,300,h00,500,6OO),~ntval(l) 

read(strval(3).'(F8.2)')r2 

IF (rl .gt. r2) THEN 
strval(1) = 'gt' 

ELSE IF (rl .eg. r2) THEN 
strval(1) = 'eq' 

ELSE IF (rl .It. r2) THEN 

ELSE IF (rl . le. r2) THEN strval(1) = 'lt' 

strval(1) = 'le' 
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200 

C 

c 

300 

C 

1100 

C 

500 

C 

600 

C 

ELSE IF (rl . B e .  r2) THEN 

e l s e  

END IF 
no-of-args = 1 
rsrKtype(1) = * s *  

strval(1) = *ge* 

print *. * *** COMMAND CODE 2: ARGS NOT ORDERED' 

goto 3000 

read(strval(2). '(F8.2)')rl 
read(strval(3). *(F8.2)*)r2 

wr i t e ( s t rval ( I. ) . * ( F8.2 ) * ) r 1 + r2 
no-of-args = 1 
ergtype(1) = * s *  

Roto 3000 

print *. * ri = *,rl. * rz = * .  rz. ' sum = ' ,  r1+r2 

print *, * * ! s k i p  a line 

read(strval(2). *(F8.Z)*)rl 
read( strval(3) . * (F8.2) ' )r2 
write( strval( 1). * (F8.2) * ) rl-r2 
no-of-args = 1 
arRtype(1) = ' 8 '  

Roto 3000 
print *, * * ! skip a line 

read(Rtrval(2). *(F8.2)*)rl 
read( strval( 3). * (F8.2) * )r2 
write(strval(l),*(F8.2)*)rl*r2 
no-of-ares = 1 
argtype(1) = * s *  

g o t o  3000 
print *, * * ! s k i g  a line 

read(strval(2). *(F8.2)*)rl 
read(strval(3). *(F8.2)*)r2 
write( strval( 1). * (F8.2) * )rl/r2 
no-of-args = 1 
argtype(1) = * s *  

goto 3000 
print *, * * ! Skip a line 

read(strval(2). *(F8.2)*)rl 
write( strval( 1). * (F8.2) * )abs(rl) 
no-of-args = 1 
argtype(1) = * s *  

goto 3000 
print *, * * ! skip a line 
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3000 do i- no-of-area+l, maxarqa 
argtype(i1 - ' * 

end d o  

end 
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