25 research outputs found

    Elliptic periods for finite fields

    Full text link
    We construct two new families of basis for finite field extensions. Basis in the first family, the so-called elliptic basis, are not quite normal basis, but they allow very fast Frobenius exponentiation while preserving sparse multiplication formulas. Basis in the second family, the so-called normal elliptic basis are normal basis and allow fast (quasi linear) arithmetic. We prove that all extensions admit models of this kind

    Normal Elliptic Bases and Torus-Based Cryptography

    Full text link
    We consider representations of algebraic tori Tn(Fq)T_n(F_q) over finite fields. We make use of normal elliptic bases to show that, for infinitely many squarefree integers nn and infinitely many values of qq, we can encode mm torus elements, to a small fixed overhead and to mm ϕ(n)\phi(n)-tuples of FqF_q elements, in quasi-linear time in log⁥q\log q. This improves upon previously known algorithms, which all have a quasi-quadratic complexity. As a result, the cost of the encoding phase is now negligible in Diffie-Hellman cryptographic schemes

    On Modular Inverses of Cyclotomic Polynomials and the Magnitude of their Coefficients

    Full text link
    Let p and r be two primes and n, m be two distinct divisors of pr. Consider the n-th and m-th cyclotomic polynomials. In this paper, we present lower and upper bounds for the coefficients of the inverse of one of them modulo the other one. We mention an application to torus-based cryptography.Comment: 21 page

    Construction of self-dual normal bases and their complexity

    Get PDF
    Recent work of Pickett has given a construction of self-dual normal bases for extensions of finite fields, whenever they exist. In this article we present these results in an explicit and constructive manner and apply them, through computer search, to identify the lowest complexity of self-dual normal bases for extensions of low degree. Comparisons to similar searches amongst normal bases show that the lowest complexity is often achieved from a self-dual normal basis

    On the construction of elliptic Chudnovsky-type algorithms for multiplication in large extensions of finite fields

    No full text
    International audienceWe indicate a strategy in order to construct bilinear multiplication algorithms of type Chudnovsky in large extensions of any finite field. In particular, using the symmetric version of the generalization of Randriambololona specialized on the elliptic curves, we show that it is possible to construct such algorithms with low bilinear complexity. More precisely, if we only consider the Chudnovsky-type algorithms of type symmetric elliptic, we show that the symmetric bilinear complexity of these algorithms is in O(n(2q)^log * q (n)) where n corresponds to the extension degree, and log * q (n) is the iterated logarithm. Moreover, we show that the construction of such algorithms can be done in time polynomial in n. Finally, applying this method we present the effective construction, step by step, of such an algorithm of multiplication in the finite field F 3^57. Index Terms Multiplication algorithm, bilinear complexity, elliptic function field, interpolation on algebraic curve, finite field
    corecore