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bases for extensions of finite fields, whenever they exist. In this
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manner and apply them, through computer search, to identify the
lowest complexity of self-dual normal bases for extensions of low
degree. Comparisons to similar searches amongst normal bases
show that the lowest complexity is often achieved from a self-dual
normal basis.
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0. Introduction

Let q be a power of a prime, n an integer, and let Fq be the field of q elements. The Galois group
G of the extension Fqn /Fq is a cyclic group, generated by the Frobenius automorphism φ : x �→ xq .

A basis for Fqn /Fq consisting of the orbit (α,αq, . . . ,αqn−1
) of a single element α under the action

of the Frobenius is known as a normal basis. We call it the normal basis generated by α (note that in
this paper we consider the basis generated by any other conjugate of α to be different, as its elements
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are in a different order). Using such a basis, both exponentiation by q and computation of traces are
straightforward operations; the former being simply a cyclic shift of coordinates. The difficulty of
multiplying two elements written as linear combinations of the conjugates of α is measured by the
so-called complexity of α, defined as the number of non-zero entries in the multiplication-by-α matrix
[19, §4.1]. It has been shown in [20] to be at least 2n − 1, in which case the basis is called optimal,
but this occurs only for very special values of n [9].

The search for normal bases with low complexity has taken two complementary directions. On
the theoretical side, several authors have attempted to build them either from roots of unity in larger
extensions, using Gauss periods [1,6,9,15] or traces of optimal normal bases [5,6], again with some
limitations on the degree; or from the extension itself, using division points of a torus [3,8] or of an
elliptic curve [7]. In the latter case the authors show that fast arithmetic can be implemented using
their bases, as was also shown to be the case for normal bases generated by Gauss periods in [10].

More precisely, the normal basis generated by α is said to be self-dual if Tr(αqi
αq j

) = δi, j for
0 � i, j � n − 1, where Tr is the trace map from Fqn to Fq and δ is the Kronecker delta. Its complexity
is the number of non-zero entries in the matrix:

(
Tr

(
ααqi

αq j ))
0�i, j�n−1.

Self-dual normal bases are useful for arithmetic and Fourier transform, and have applications in
coding theory and cryptography. Contrary to normal bases, not all extensions of finite fields admit
self-dual normal bases, but the existence conditions, recalled in Theorem 1 below, are mild. The the-
oretical techniques used to construct normal bases with low complexity sometimes yield self-dual
normal bases, see for example [8, §5.4] or [3, §5], [10, Corollary 3.5], [5, Theorem 5], [21].

On the experimental side, exhaustive searches of all normal bases of a given extension have been
carried out. Mullin, Onyszchuk, Vanstone and Wilson [20] have given a first list of lowest complexities
in degree less than 30 over F2. This list was extended up to degree 33 by Geiselmann [11, Table 5.1].
In odd characteristic, Blake, Gao and Mullin [3] computed the lowest complexities of normal bases
for a handful of small degree extensions. Recently, Masuda, Moura, Panario and Thomson [18] have
reached degree 39 over F2 and given appealing statistics and conjectures about the distribution of
complexities. It is clear that the cost of the exhaustive enumeration of the elements of F2n used
to look for normal basis generators is a severe limitation to their method when the degree grows.
On the other hand, their Table 4 shows that the minimal complexity for normal bases is very often
reached by so-called self-dual bases (in all degrees not divisible by 4 up to 35 apart from 7, 10, 21).
Restricting to self-dual normal bases enables one to push computations further; Geiselmann [11] was
indeed able to compute the lowest complexity for self-dual normal bases over F2 up to degree 47.
Comparing his results and [18, Table 5], we see that the best found complexity for normal bases in
degree over 40, obtained by theoretical constructions or random search, is also reached by a self-dual
normal basis for odd degrees up to 47.

In this paper we focus on the experimental side and give the lowest complexity of self-dual nor-
mal bases in various characteristics and degrees. At present, the only known strategy to reach this
goal is to compute the complexity of all the self-dual normal bases of the extension (unless it ad-
mits an optimal self-dual normal basis, which is easily predictable, see [10, §3] or [16, Theorem 2]
for a compact statement). In order to do so, we first construct a self-dual normal basis for the ex-
tension, then act on it by the orthogonal circulant group, namely the group of change of self-dual
normal basis matrices. This group has been extensively studied, with accurate descriptions being
given in [4,12,17]. Its size is in O (qn/2) (see Remark 2.5 below), roughly the square root of the
number of normal bases in view of [19, Corollary 4.14]. It follows that exhaustive enumeration of
self-dual normal bases is easier than that of normal bases. We shall restrict ourselves to extensions
Fqn /Fq which are either semi-simple (the degree n prime to the characteristic p) or ramified (n a
power of p), the description of the orthogonal circulant group in the “mixed” case being a bit more
elaborate.

We now describe our work more precisely. First we recall the necessary and sufficient conditions
for the existence of self-dual normal bases [14].
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Theorem 1 (Lempel–Weinberger). The extension field Fqn /Fq has a self-dual normal basis if and only if either
the degree n is odd, or n ≡ 2 modulo 4 and q is even.

The existence proof in [14] is constructive in the sense that, given a normal basis for the extension,
it describes a procedure to transform it into a self-dual normal basis. Wang [25] proposed another
transformation procedure when q = 2 and n is odd, involving solving a system of equations. Poli [23]
extended Wang’s method to deal with the general characteristic 2 case. Recently, Pickett [22] designed
a construction that extends the former ones to the odd characteristic case, dealing separately with the
semi-simple case and the ramified case.

The construction of a normal basis for a given extension is well known and widely implemented.
Therefore, the methods described above enable one to construct a self-dual normal basis under the
existence conditions of Theorem 1. To our knowledge, this has not been implemented before, except
in the restrictive case in which Wang’s method applies. In this paper we apply Pickett’s construction
to compute a self-dual normal basis of a given extension whenever it exists. Note that for this first
goal, the method in [14] is simpler and faster, but most of the computations involved in Pickett’s
construction must be implemented if one wants to compute the action of the orthogonal circulant
group as well.

The criterion used in [25] to determine which changes of basis are appropriate has been gen-
eralised to any characteristic and degree, see [11, Lemma 5.5.3], where it is expressed in terms
of circulant matrices. Here we restate it in terms of the group algebra Fq[G] as in [22]. Conju-
gation u �→ u in Fq[G] is the Fq-algebra automorphism obtained from g �→ g−1 for all g ∈ G; if
u = ∑n−1

k=0 ukφ
k ∈ Fq[G] and α ∈ Fqn , we put u ◦ α = ∑n−1

k=0 ukφ
k(α) ∈ Fqn .

Theorem 2. Assume that α is a generator of a normal basis of Fqn over Fq and let

R =
∑
g∈G

Tr
(
αg(α)

)
g ∈ Fq[G]. (1)

Any v ∈ Fq[G] such that v v = R is invertible, and the map v �→ v−1 ◦ α is a one-to-one correspondence
between the set of solutions of the equation v v = R in Fq and the set of elements of Fqn that generate a
self-dual normal basis.

In Section 1 we first explain how this result can be deduced from the statement on circulant
matrices [11, Lemma 5.5.3]. Our main interest is in implementing Pickett’s method as an algorithm,
and since the language he uses to describe his construction of a solution of the equation v v = R
in [22, §3] is quite elaborate — his framework is wider than ours — we reformulate it in terms of
the polynomial ring Fq[X]/(Xn − 1); the resulting algorithm to compute a self-dual normal basis
is described in the last section. We remark that this construction gives an alternative proof of the
sufficiency of the conditions of Theorem 1; for interest we give a proof of their necessity, mainly
based on Theorem 2, and simpler than the original (see [11, Propositions 4.3.4 and 5.2.2]).

Section 2 deals with the orthogonal circulant group O (n,q). Its elements are the n × n matrices P
over Fq that are circulant (Pi+k mod n, j+k mod n = Pi, j for 0 � i, j,k � n−1) and orthogonal (P t · P = I ,
where P t is the transpose matrix of P and I the identity n×n matrix). It follows from Theorem 2 that
O (n,q) is isomorphic to the subgroup of Fq[G]× consisting of the solutions of the equation v v = 1.
In both the semi-simple and the ramified case we indicate how this equation can be solved; the
resulting algorithms are described in the last section. Doing so we recover the number of self-dual
normal bases, as derived in [12,13] from MacWilliams’ results about the orthogonal circulant group
[17] (see [11, 5.3] for a summary). In the ramified (and odd characteristic) case our construction is
a variation, adjusted to our situation, of MacWilliams’ iterative construction; we also present a new
explicit formula for the solutions.

In Section 3 we present our algorithms, experimental results and conclusions. For semi-simple
extensions in odd characteristic, the lowest complexity we find is close to that obtained for normal
bases from exhaustive computer search [3] or from theoretical constructions [15], as this was already
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the case in even characteristic. We also observe an interesting behaviour under base field extension.
When the extension is of degree p in odd characteristic p we recover the basis with very low com-
plexity 3p − 2 described in [3].

1. Construction of a self-dual normal basis

Our algorithm to find a self-dual normal basis relies on the interpretation in terms of polynomial
rings of Pickett’s construction of a solution v of the equation v v = R of Theorem 2 (under the neces-
sary conditions of Theorem 1). The majority of this section is devoted to presenting this interpretation.
First, however, we deduce Theorem 2 from statements in terms of circulant matrices. At the end of
the section we show how to deduce the necessity of the conditions of Theorem 1 from Theorem 2.

Proof of Theorem 2. Consider the one-to-one correspondence between Fq[G] and circulant n × n ma-
trices over Fq , given by

v =
n−1∑
j=0

ρ jφ
j ∈ Fq[G] �→ Cv = (ρ j−i mod n)0�i, j�n−1. (2)

One has C1 = I and, for any v, w ∈ Fq[G], Cv · C w = Cv w , so (2) yields a group isomorphism between
Fq[G]× and the abelian group of invertible circulant n × n matrices over Fq . Note that the matrix

C R = (Tr(αqi+q j
)) is invertible since α generates a normal basis, see [19, Corollary 1.3]. Hence, R ∈

Fq[G]× and v v = R implies v invertible as well.
Moreover one has Cv = (Cv )t . It follows that the equation v v = R is equivalent to

Cv · (Cv)t = (
Tr

(
αqi+q j ))

0�i, j�n−1. (3)

For x ∈ Fqn , let [x] denote the n × n matrix whose j-th column, 0 � j � n − 1, consists of the

coordinates of xq j
in a fixed Fq-basis of Fqn . Then one has, for any v ∈ Fq[G], x ∈ Fqn :

[v ◦ x] = [x] · Cv .

Let P be some invertible n×n matrix over Fq , then the columns of B = [α]P are the coordinates in
the fixed Fq-basis of Fqn of a normal basis if and only if P is a circulant matrix, see [11, Lemma 3.1.3].
Further, for such a P , its inverse P−1 is also circulant and from [11, Lemma 5.5.3] we know that the
columns of B form a self-dual normal basis if and only if

P−1 · (P−1)t = (
Tr

(
αqi+q j ))

0�i, j�n−1. (4)

If v v = R , then Cv is circulant invertible and (Cv )−1 = Cv−1 satisfies (4). Hence B = [α]Cv−1 =
[v−1 ◦ α] is a self-dual normal basis. If β generates a self-dual normal basis, let P be such that
[β] = [α]P , then P is circulant and so is its inverse. By (3) the element v ∈ Fq[G] such that P−1 = Cv

satisfies v v = R . These two maps are clearly mutual inverses, which completes the proof. �
1.1. Interpretation of Pickett’s construction in terms of polynomial rings

The Galois group G of Fqn over Fq is cyclic of order n and generated by the Frobenius φ, so we
may identify the Fq-algebras Fq[G] and Fq[X]/(Xn − 1) through the isomorphism mapping φ to X .

Write n = pen1, where p is the characteristic of Fq and n1 is prime to p. We take advantage of the
following result [11, Theorems 3.3.13 and 5.1.9] to split the extension into two parts.
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Lemma 1.1. Let m, n be two co-prime integers. Suppose α (resp. β) is a generator of a self-dual normal basis
of Fqm (resp. Fqn ) over Fq, then αβ is a generator of a self-dual normal basis of the compositum Fqmn over Fq.
Moreover, the complexity of αβ is the product of the complexities of α and of β .

By the former result, we may deal separately with the two cases n = pe which we call the
ramified case, and n co-prime to p, the so-called semi-simple case. We show how to construct a
solution v of the equation v v = R of Theorem 2 in each of these two cases, under the existence
conditions of a self-dual normal basis of Theorem 1. Multiplying the bases obtained this way then
yields self-dual normal bases for the extensions with “mixed degree” n = n1 pe with n1 � 2 and
e � 1.

1.1.1. The ramified case (n = pe)
In this case, the algebra Fq[G] is isomorphic to Fq[X]/(X − 1)n . Let ε : Fq[G] → Fq be the augmen-

tation map given by ε(
∑n−1

k=0 akφ
k) = ∑n−1

k=0 ak . This is a homomorphism of Fq-algebras whose kernel is

a codimension 1 subspace of Fq[G]. Further ε(
∑n−1

k=0 akφ
k) = 0 implies

∑n−1
k=0 akφ

k = ∑n−1
k=0 ak(φ

k − 1),
and therefore the kernel is (φ − 1)Fq[G]. Invertible elements in Fq[G] are those which have non-zero
image under the map ε (because invertible modulo (X − 1)n means invertible modulo X − 1), hence
the group Fq[G]× has order qn−1(q−1). In fact, it is the direct product of F

×
q by U = 1+ (φ −1)Fq[G],

the inverse image of 1 under the map ε .
Under the necessary conditions of Theorem 1, we have two cases to consider.

Proposition 1.2. Let p be the characteristic of Fq. If p = n = 2, β ∈ Fq2 generates a self-dual normal basis if

and only if Tr(β) = 1. If p is odd and n = pe, there exists ω ∈ Fq[G] such that ω2 = R. Furthermore, ω = ω.

Proof. The even characteristic case is straightforward. We proceed with the odd characteristic case.
Recall that R ∈ Fq[G]× and note that R = R , which is clear from (1). One can easily see that ε(R) =
Tr(α)2 (detailed in the proof of Lemma 1.6 below), so that the decomposition of R in the direct
product F

×
q × U is R = Tr(α)2 · (1 + (φ − 1)R ′) for some R ′ ∈ Fq[G]. The second factor is also a square

as it belongs to the group U which is of odd order, hence R = ω2 for some ω. Further R = R implies
ω2 = ω2, so that ω/ω is a square root of 1 living in the group U of odd order. Thus ω = ω. �
1.1.2. The semi-simple case (gcd(n,q) = 1)

We assume that n is odd to fit with the conditions of Theorem 1 (but q could be odd or even).
The polynomial Xn − 1 is square free and has monic irreducible factors over Fq:

Xn − 1 =
σ∏

i=1

f i(X)

τ∏
j=1

g j(X) · g∗
j (X) (5)

where g∗
j denotes the reciprocal polynomial (up to a constant) of g j and where the f i are the self-

reciprocal (also up to a constant) irreducible factors. We will now express the equation R = v v in this
decomposition, solve it, and then lift back the solution to Fq[G].

Let m be the order of q modulo n. The field Fqm contains a primitive n-th root ζ of 1. On the
set {0, . . . ,n − 1} we define the cyclotomic equivalence relation: s ∼ s′ if there exists k such that s ≡
qks′ mod n. Note that 0 forms a class on its own and that the integers prime to n belong to classes
with the same cardinality equal to the order of q modulo n. Namely, since n and q are co-prime, the
cyclotomic equivalence relation restricts to (Z/nZ)× and for s, s′ invertible modulo n, s ∼ s′ if and
only if s and s′ belong to the same coset in (Z/nZ)×/〈q〉.

The following proposition justifies the terminology. Recall that by “self-reciprocal”, we mean “self-
reciprocal up to a constant factor”.
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Proposition 1.3.

(a) If ζ s is a root of an irreducible factor of Xn − 1, then the other roots are the ζ s′ where s′ ∼ s.
(b) The ζ s such that s ∼ (n − s) are roots of a self-reciprocal factor fi . The ζ s such that s � n − s are roots of

a non-self-reciprocal factor g j .
(c) The number of cyclotomic classes is equal to the number σ + 2τ of irreducible factors of Xn − 1.
(d) The self-reciprocal factors f i have even degree, except f1 = X − 1.

Proof. (a), (b), (c) are clear. Let us prove (d). If ζ s is a root of an f i , then ζn−s is also a root. If we
exclude the case s = 0 corresponding to the factor X − 1, the two roots ζ s and ζn−s are distinct,
because n is odd. Hence f i has en even number of roots in an algebraic closure. �

From the Chinese Remainder Theorem, the algebra Fq[X]/(Xn − 1) is isomorphic to a product of
σ + 2τ fields:

Fq[X]
(Xn − 1)

�
σ∏

i=1

Fq[X]
( f i(X))

×
τ∏

j=1

(
Fq[X]

(g j(X))
× Fq[X]

(g∗
j (X))

)
. (6)

Each factor in the RHS of this equation is an extension of Fq contained in Fqm (recall m is the order
of q modulo n). The evaluation map u(X) ∈ Fq[X]/( f ) �→ u(ζ s) ∈ Fq(ζ

s), where f is an irreducible
factor of Xn − 1 and s ∈ {0, . . . ,n − 1} is such that f (ζ s) = 0, is a field isomorphism. We obtain the
following result:

Proposition 1.4. Let S be a set of representatives of cyclotomic classes. The map

⎧⎪⎨
⎪⎩

Fq[X]/(Xn − 1
) −→

∏
s∈S

Fq
(
ζ s),

u(X) �−→ (
u
(
ζ s))

s∈S

(7)

is an Fq-algebra isomorphism.

For practical reasons (mainly to deal with square matrices), we also consider the map F (a Fourier
transform)

F :
{

Fq[X]/(Xn − 1) −→ (Fqm )n,

u(X) �−→ (u(ζ s))0�s�n−1
(8)

which is a homomorphism of Fq-algebras, with matrix F (ζ ) = (ζ i j)0�i, j�n−1. Compared with isomor-
phism (7), we now compute a component at every 0 � s � n − 1; the components corresponding to
indices in the same coset under ∼ are cyclically permuted when applying the Frobenius φ.

We note the following easy but useful relation involving the matrices F (ζ ) and F (ζ−1) =
(ζ− ji)0�i, j�n−1.

Lemma 1.5. We have, with the previous notation, F (ζ−1)F (ζ ) = nI .

As a consequence, the following linear map F , with matrix F (ζ−1), can be used to compute the
inverse of F .

F :
{

(Fqm )n −→ Fqm [X]/(Xn − 1),

(r , . . . , r ) �−→ ∑n−1 u Xt where u = ∑n−1 r ζ−ti .
(9)
0 n−1 t=0 t t i=0 i



464 F. Arnault et al. / Finite Fields and Their Applications 18 (2012) 458–472
This is because F (F (u)) = nu for each u ∈ Fq[X]/(Xn − 1).
The idea here is to express R as an element of the RHS of (7), to solve the equation in each

component, and to bring back the solution to Fq[X]/(Xn − 1). The conjugation map, induced by X �→
Xn−1 in Fq[X]/(Xn − 1) is given by ζ �→ ζ−1 and will sometimes be denoted by J in the RHS of (7).

Let R be as in Theorem 2. The s-coordinate of F (R) is Rs = ∑n−1
i=0 Tr(α1+qi

)ζ si .
We begin with the cyclotomic class s = 0. Here, Fq(ζ

s) = Fq and the conjugation map J acts
trivially. Note that R0 = ε(R).

Lemma 1.6. (See Lemma 3.5 in [22].) With v0 = Tr(α), we have v0 v0 = R0 .

Proof. We have J (Tr(α)) = Tr(α) and

Tr(α)2 =
(

n−1∑
i=0

αqi

)2

=
n−1∑

i, j=0

αqi+q j =
n−1∑

i,k=0

αqi(1+qk) =
n−1∑
k=0

Tr
(
α1+qk) = R0. �

We now consider the cyclotomic classes s such that s � n − s.

Lemma 1.7. (See Lemma 3.6 in [22].) Let s′ ∈ S such that s′ ∼ n− s. We have Rs = Rs′ . Putting vs,s′ = (Rs,1) ∈
Fq(ζ

s) × Fq(ζ
s′ ), we have vs,s′ vs,s′ = (Rs, Rs).

Proof. The conjugation map J exchanges coordinates in Fq(ζ
s) × Fq(ζ

s′ ): J (u, u∗) = (u∗, u). As R is
invariant by conjugation, we have Rs = Rs′ . Therefore vs,s′ J (vs,s′ ) = (Rs,1)(1, Rs) = (Rs, Rs). �

We finally deal with the cyclotomic classes s such that s = 0 and s ∼ n − s.

Lemma 1.8. (See Lemma 3.7 in [22].) Let s ∈ S such that 0 = s and s ∼ n − s. Then the field Fq(ζ
s) is stable

under the conjugation map J , and we denote by Fq(ζ
s) J the fixed subfield. Furthermore Rs (resp. −Rs) has a

square root u (resp. u′) in Fq(ζ
s). We consider three cases:

(a) If u ∈ Fq(ζ
s) J , then vs = u satisfies vs vs = Rs;

(b) If u′ /∈ Fq(ζ
s) J , then vs = u′ satisfies vs vs = Rs;

(c) If u /∈ Fq(ζ
s) J and u′ ∈ Fq(ζ

s) J , then there exists an integer n such that −n is a non-zero square η2

modulo the characteristic p of Fq, but −(n − 1) is not a square modulo p, and there exists an integer ν
such that ν2 ≡ n − 1 modulo p. We put vs = (νu + u′)/η, then vs vs = Rs.

Proof. From Proposition 1.3, the field Fq(ζ
s) is stable under J and of even degree over Fq . Further-

more, we have ζ s = ζ−s = ζ s because n is odd, hence J restricted to Fq(ζ
s) is an order 2 field

automorphism. By Galois theory Fq(ζ
s) J is the unique index 2 subextension of Fq(ζ

s)/Fq . Moreover,
Fq(ζ

s) is the only degree 2 extension of Fq(ζ
s) J in a given algebraic closure. It follows that every

element of Fq(ζ
s) J is a square in Fq(ζ

s). Since Rs and −Rs are both invariant under J , the existence
of their square roots u and u′ in Fq(ζ

s) is proved.
If u = u, namely in case (a), then uu = u2 = Rs . Note that the condition u ∈ Fq(ζ

s) J is automat-
ically fulfilled in characteristic 2, since the Frobenius from the prime field F2 is an automorphism
of Fq(ζ

s) J in that case. The same argument shows that q has to be odd in cases (b) and (c).
If u′ = u′ , namely in case (b), then u′ = −u′ and u′u′ = −u′ 2 = Rs . Suppose now (case c) that
u = −u and u′ = u′ . As −1 = −Rs/Rs , we know that −1 is not a square in Fq(ζ

s) J , nor in Fp .
Hence the first n > 1 such that −n is a square modulo p exists and satisfies the required con-
ditions. Also, because neither −1 nor −(n − 1) are squares modulo p, there exists an integer ν
such that ν2 ≡ (n − 1) modulo p. Taking the residues of η and ν modulo p, we have η = η and
ν = ν because Fp ⊆ Fq(ζ

s) J . With vs = (νu + u′)/η, we have vs = (−νu + u′)/η and it follows that
vs vs = (−ν2u2 + u′ 2)/η2 = (−(n − 1)Rs − Rs)/(−n) = Rs . �
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We have solved the equation vs vs = Rs for every cyclotomic class s, thus by the Fq-algebra iso-
morphism (7) we get a solution v ∈ Fq[G] of the equation v v = R .

1.2. The necessity of the conditions of Theorem 1

If α is a generator of a self-dual normal basis of Fqnm over Fq , then TrFqnm /Fqn (α) is a generator of
a self-dual normal basis of Fqn over Fq , see [22, Lemma 4.3]. Therefore, to prove the necessity of the
conditions in Theorem 1 we need just consider the cases Fq2/Fq for q odd and Fq4/Fq for q even.

When q is odd, Tr(ααq) = 2N(α) for any α ∈ Fq2 , where N(α) denotes the norm of α in the
extension, hence Tr(ααq) = 0 would imply α = 0.

Let q be even, and assume for contradiction that there exist a normal basis generator α of Fq4/Fq

and an element v ∈ Fq[G] such that v v = Tr(α2) + Tr(ααq)φ + Tr(ααq2
)φ2 + Tr(ααq3

)φ3. Note that

Tr(ααq3
) = Tr(ααq) and Tr(ααq2

) = 2 TrFq2 /Fq (NFq4 /Fq2 (α)) = 0. Writing v = a + bφ + cφ2 + dφ3 with

a,b, c,d ∈ Fq and letting β = α + αq2
, we easily get the equations:

a + b + c + d = Tr(α) = β + βq, (a + c)(b + d) = Tr
(
ααq) = ββq.

It follows that {β,βq} = {a + c,b + d}, namely β ∈ Fq , which is impossible since it would imply α +
αq2 = αq + αq3

, contradicting the fact that α generates a normal basis. The result now follows using
Theorem 2.

2. Change of self-dual normal basis

The orthogonal circulant group O (n,q) can be seen abstractly as the group of vector space auto-
morphisms that map a self-dual normal basis of Fqn /Fq to another one. Once a vector space basis
of Fqn over Fq has been fixed, it identifies with the more concrete group of orthogonal and circulant
n × n matrices with entries in Fq . We now give a third interpretation in terms of the group algebra
Fq[G]. Our result, which is essentially a different formulation of the “key” Lemmas 2 and 3 of [13], is
an immediate consequence of Theorem 2 and the observations that if α generates a self-dual normal
basis, then R = 1, and that if v v = 1, then v−1 = v .

Corollary 2.1. Let α generate a self-dual normal basis of Fqn over Fq. The map v �→ v ◦ α is an isomorphism
between the group of solutions of the equation v v = 1 in Fq[G] and the group of elements of Fqn that generate
a self-dual normal basis.

It follows that computing all self-dual normal bases from one is equivalent to finding all the so-
lutions v ∈ Fq[G]× of the equation v v = 1. We devote the rest of this section to explain how this
equation can be solved, first in the semi-simple case and then in the ramified case.

2.1. The semi-simple case

The decomposition (7) from Section 1 is useful to find the solutions of the equation v v = 1. Let
V (X) ∈ Fq[X]/(Xn − 1).

Proposition 2.2. The polynomial V (X) satisfies the equation V (X)V (Xn−1) = 1 modulo Xn − 1 if and only
if the following conditions hold:

⎧⎪⎨
⎪⎩

V (1) = ±1 (case s = 0),

V
(
ζ s

)
V

(
ζ−s

) = 1 for s � n − s,

V
(
ζ s

)qr/2+1 = 1 for 0 = s ∼ n − s, where r is such that Fq(ζ
s) = Fqr .

Note that r is the degree of the irreducible factor fi of Xn − 1 such that fi(ζ
s) = 0.
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Proof. The component at s = 0 is V (1) and the equation we need to solve in Fq(ζ
0) = Fq is simply

V (1)2 = 1 because the action of conjugation in Fq is trivial.
For s � n − s, we have to consider the product Fq(ζ

s) × Fq(ζ
−s). We have seen in the proof of

Lemma 1.7 that conjugation swaps coordinates in these two factors. The solutions are the powers of
(gs, g−1

s ) where gs is any primitive element of the Fq(ζ
s).

For 0 = s ∼ n − s, we have seen in the proof of Lemma 1.8 that the set of invariants under conjuga-
tion J is the subfield Fqr/2 of Fqr = Fq(ζ

s). Conjugation J is an Fqr/2 -automorphism of Fqr of order 2,

hence J (x) = xqr/2
for x ∈ Fqr . The equation we want to solve can be written xqr/2+1 = 1. Note that

qr/2 +1 divides qr −1 so we find exactly qr/2 +1 solutions, generated by any element of order qr/2 +1
in Fq(ζ

s). �
We remark that this proof provides generators for the group of solutions of v v = 1, so we can

easily derive the cardinality of this group, which by Corollary 2.1 is also the number of self-dual
normal bases of Fqn over Fq . As expected, this calculation agrees with the result in [13] which was
obtained using the formulas given in [17] — note that the cyclic shift of a basis is considered to be
the same basis in [13], but not here, so our formula differs from the one found there by a factor n.

Theorem 2.3. Consider the decomposition (5) of Xn − 1 over Fq. The number of self-dual normal bases of Fqn

over Fq is given by

2a
σ∏

i=2

(
qci + 1

) τ∏
j=1

(
qd j − 1

)
with

{
a = 0 for even q and a = 1 for odd q,

2ci = deg f i and d j = deg g j.

Proof. The case s = 0 has solutions ±1 in odd characteristic, and only 1 for even q. For the case
0 = s ∼ n − s, we found a generator of order qc + 1 for the set of solutions in the field Fq(ζ ). For
the case s � n − s, let g be a primitive element in Fq[X]/( f ) � Fq(ζ ), the solutions are the powers of
(g, g−1). �
2.2. The ramified case

We deal only with the odd characteristic case, so we let p be an odd prime number, and q and n
be powers of p.

Theorem 2.4. There are 2q
n−1

2 solutions v ∈ Fq[G] to the equation v v = 1.

This result can easily been derived from [12, Theorem 2], which states that if n = sp, where s is
any integer, then the following equality, about sizes of orthogonal circulant groups, holds: |O (sp,q)| =
q(p−1)s/2|O (s,q)|. The original statement is due to MacWilliams in the prime base field case [17,
Theorem 2.6]. We now reinterpret MacWilliams’ constructive proof in our specific case: n a power
of p, so as to explain the structure of the algorithm we use to compute the orthogonal circulant
group in the ramified case.

Proof. First note that the solutions of the equation v v = 1 all lie in Fq[G]× , and recall from Sec-
tion 1.1.1 that Fq[G]× is the (internal) direct product F

×
q × (1 + (φ − 1)Fq[G]), the first component

being simply the image by the augmentation map ε . For v ∈ Fq[G]× , let w ∈ (φ − 1)Fq[G] be such
that v = ε(v)(1+ w), then v v = 1 if and only if ε(v) = ±1 and w + w + w w = 0. Setting r = w + w w

2 ,
the second condition becomes r = −r, namely

r =
n−1

2∑
ri

(
φi − φn−i) (10)
i=1
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for some ri ∈ Fq , hence r can take q
n−1

2 values in Fq[G]. We now show that w is uniquely defined
by r, and how it can be computed, see [17, Appendix A]. One has w = −r + w w

2 , hence w = r + w w
2

and w w = −r2 + (w w)2

4 , so that:

w = −r − r2

2
+ (w w)2

8
.

Replacing iteratively w w by −r2 + (w w)2

4 in the above formula increases the (even) power to which
w w appears; this process terminates since, as an element of (φ − 1)Fq[G], w = (φ − 1)y for some
y ∈ Fq[G], so wn = (φn − 1)yn = 0. �
Remark 2.5. In the odd characteristic case, the formula in Theorem 2.3 reads:

2
σ∏

i=2

(
qci + 1

) τ∏
j=1

(
qd j − 1

) ≈ 2q
∑

i ci+
∑

j d j = 2q(n−1)/2.

In both semi-simple and ramified cases, the size of the trace-orthogonal group is close to 2
√

qn−1,
which means that an exhaustive search quickly becomes lengthy when q or n increases.

We now show that one can also get an explicit formula for the solutions of the equation.

Theorem 2.6. The solutions v ∈ Fq[G] to the equation v v = 1 are exactly the sums v = ∑n−1
i=0 vi(φ −1)i with

v0 = ±1 and, for 1 � i � n−1
2 , v2i−1 is any element of Fq and v2i ∈ Fq is such that:

2i∑
j=1

j∑
k=0

(−1)k
(

n − k

2i − j

)
vk v j−k = 0. (11)

Note that (11) gives a formula for v2i in terms of the vk with 0 � k � 2i −1, for instance −2v0 v2 =
−v2

1 + v0 v1 and −2v0 v4 = v0 v2 − v1 v2 − 2v1 v3 + v2
2 + 3v0 v3.

Our proof begins as a specialisation to the case s = 1 of that of [2, Satz 3.3] — note that [12] points
out a mistake in the end of the proof of this statement; dealing with this simpler case enables us to
deduce a constructive formula.

Before starting the proof, let us recall the isomorphism

Fq[G] ∼= Fq[X]/(X − 1)n (12)

mapping φ to X . The family ((X − 1)i)0�i�n−1 is a basis of the Fq-vector space Fq[X]/(X − 1)n . As
an auxiliary result we compute the conjugates (X − 1)i = (X − 1)i of our basis elements.

Lemma 2.7. For 0 � i � n − 1, (X − 1)i divides (X − 1)i and, more precisely:

(X − 1)i = (−1)i
n−i−1∑

k=0

(
n − i

k

)
(X − 1)k+i ≡ (−1)i(X − 1)i mod (X − 1)i+1.

Proof. Let 0 � i � n − 1, then

(X − 1)i = (
Xn−1 − 1

)i = (
(1 − X)Xn−1)i = (−1)i(X − 1)i Xn−i,

hence the equality, using Newton’s formula for Xn−i = (X − 1 + 1)n−i . �



468 F. Arnault et al. / Finite Fields and Their Applications 18 (2012) 458–472
Proof of Theorem 2.6. We wish to solve the equation v v = 1 in Fq[G]. We shall proceed by successive
approximation, solving v v ≡ 1 modulo (X −1)i for 1 � i � n, where we identify v and its image under
(12), that we write v = ∑n−1

k=0 vk(X − 1)k with vk ∈ Fq .
The first step is obvious: Fq[X]/(X − 1) ∼= Fq is conjugation invariant, hence the equation reads

v2 ≡ 1 modulo (X − 1), namely v ≡ ±1 modulo (X − 1), in other words v0 = ±1.
The second step is about the coefficients of v of odd index.

Lemma 2.8. Let 1 � i � n−1
2 and assume v v ≡ 1 mod (X − 1)2i−1 , then

v v ≡ 1 mod (X − 1)2i .

Proof. Write v v ≡ 1 + u(X − 1)2i−1 mod (X − 1)2i for some u ∈ Fq . Applying conjugation we get that
(X − 1)2i divides v v − 1 − u(X − 1)2i−1, therefore

v v ≡ 1 + u(X − 1)2i−1 mod (X − 1)2i,

thanks to Lemma 2.7. We get:

0 ≡ u
(
(X − 1)2i−1 − (X − 1)2i−1) ≡ 2u(X − 1)2i−1 mod (X − 1)2i,

hence u = 0. �
In particular we get that, if v0 = ±1, then v v ≡ 1 mod (X − 1)2 for any value of v1 ∈ Fq . The third

step is a formula for the coefficients of v of even positive index.

Lemma 2.9. Suppose v v ≡ 1 mod (X − 1)2i for some integer 1 � i � n−1
2 , then v v ≡ 1 mod (X − 1)2i+1 if

and only if v2i satisfies (11).

Proof. Without any hypothesis on v v , one checks using Lemma 2.7 that:

v v =
n−1∑
i=0

(
i∑

j=0

j∑
k=0

(−1)k
(

n − k

i − j

)
vk v j−k

)
(X − 1)i .

With our assumption on v v , we get:

v v ≡ 1 +
2i∑

j=0

j∑
k=0

(−1)k
(

n − k

2i − j

)
vk v j−k mod (X − 1)2i+1,

hence the result, noticing that
(n

2i

) ≡ 0 mod p. �
This ends the proof of Theorem 2.6. �

3. Experiments

3.1. Algorithms

Using MAGMA, we have implemented two algorithms based on the results of this paper. The first
finds a self-dual normal basis for a given extension Fqn /Fq satisfying the existence conditions of
Theorem 1 and such that the degree n is either prime to the characteristic or a power of it. The
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second (when run after the first) computes the orthogonal circulant group and uses it to construct
all self-dual normal bases of the extension from the former one, then selects those which have the
lowest complexity. Both of these algorithms have a semi-simple and a ramified version.

3.1.1. Computation of a self-dual normal basis
Our first algorithm permits us to find a self-dual normal basis for somewhat large extensions. For

example, one can find a self-dual normal basis (of complexity 44 431) for q = 1009 and n = 211. Here
is the structure of this algorithm in the semi-simple case gcd(n,q) = 1:

Step 1. Compute the q-cyclotomic classes of the set {0, . . . ,n − 1}.
Step 2. Let m be the size of the largest class (the class which contains 1) and choose ζ of order n in

Fqm .
Step 3. Build the matrices F (ζ ) = (ζ i j)1�i� j and F (ζ−1).
Step 4. Find a normal element α in Fqn . (This was already implemented in MAGMA, and uses methods

which can be found in the book [19].)
Step 5. Compute R ∈ Fq[G] defined in Theorem 2. Using the matrix F (ζ ), map R to R ′ = F (R) ∈

(Fqm )n .
Step 6. Use Lemmas 1.6, 1.7 and 1.8 to find a solution v ′ ∈ Im F ⊆ (Fm

q )n of v ′v ′ = R ′ . Bring back v ′

to Fq[G] using matrix F (ζ−1) to obtain v such that v v = R . Compute w = v−1.
Step 7. Compute and output γ = w ◦ α.

In the odd characteristic, ramified case, we pick a normal element α in Fqn and compute R ∈
Fq[G]; by Proposition 1.2, solving the equation v v = R reduces to computing a square root of R in
Fq[G] � Fq[X]/(X − 1)n , which can be achieved by computing a square root of R modulo X − 1 and
then using Hensel lifting.

3.1.2. Computation of all self-dual normal bases of Fqn over Fq
The second algorithm can be used whenever the orthogonal circulant group is not too large for

an exhaustive enumeration, see Remark 2.5 and the tables in the next subsection. It uses the data
computed by the previous algorithm which must be run first. Its structure in the semi-simple case
gcd(n,q) = 1 follows.

Step 1. Use Proposition 2.2 to find generators (and their orders) of the group U of solutions of uu = 1
in Fq[G] (this is actually done in the right-hand side with generators of Fqmk where mk is the
size of the cyclotomic class).

Step 2. For each u in U (elements of U are enumerated using the generators found above), com-
pute: the generator γ = (uw) ◦ α of a self-dual normal basis, the multiplication-by-γ matrix

(Tr(γ 1+qi+q j
))i, j , and the complexity of γ . Update statistics accordingly (the best complexity

found up to now, the list of best self-dual normal bases).
Step 3. Finally, output the statistics (mainly the best complexity, and the number of times this com-

plexity was achieved).

In the ramified case, we list all the elements of r ∈ Fq[G] satisfying (10), compute the associated w
as the proof of Theorem 2.4 (i.e., iteratively); the group of solutions of v v = 1 consists of the elements
1 + w obtained in this way together with their opposites −1 − w . We let each of these elements act
on the self-dual normal basis constructed above and we determine the complexity of the resulting
self-dual normal basis.

3.2. Tables

The following tables show the complexity of the best self-dual normal basis obtained with the
above algorithms, for some extensions. We give separate tables for extensions in characteristic 2 and
for extensions of small prime fields of odd characteristic. Blank entries have not been computed since
the cost of exhaustive enumeration grows rapidly.
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3.2.1. Even characteristic
The lowest complexity for self-dual normal bases of extensions over F2 has been computed by

Geiselmann [11, Table 5.1] for odd degree up to 47. With our method we were able to verify these
values up to n = 45 (the computation for degree 45 took approximately 25 hours on a 64-bit Xeon
quad core running at 2.33 GHz). We include our table for completeness.

n 3 5 7 9 11 13 15 17 19 21 23
min 5 9 21 17 21 45 45 81 117 105 45

n 25 27 29 31 33 35 37 39 41 43 45
min 93 141 57 237 65 69 141 77 81 165 153

Note that [18, Table 4] gives a minimal complexity of 171 for normal bases in degree 37, where we
find a self-dual normal basis of complexity 141, agreeing with Geiselmann. Since only one digit differs
between these two results, we suspected that there could be a typo in [18], and this was confirmed
by the authors of that paper.

Using Lemma 1.1, one gets an upper bound for the best self-dual normal complexities in even
degree up to n = 90, using the fact that any element of F4/F2 of trace 1 generates an optimal self-
dual normal basis (of complexity 3). Comparing to the results in [18, Table 4] for n up to 34, we see
that this construction yields the best possible complexity in degrees 10, 22 and 34, and a reasonably
good one in degrees 6, 14, 18, 26 and 30.

We get optimal self-dual normal bases in degrees n = 3, 5, 9, 11, 23, 29, 33, 35, 39 and 41. We
know by [20, Corollary 3.6] that 2n + 1 has to be prime and 2 of order n or 2n modulo 2n + 1 for this
to happen, therefore we do not get optimal self-dual bases in degrees 15 and 21, since 2 is of order
5 modulo 31 and of order 14 modulo 43.

We give also a table for other small even q = 2r . Note that αqi
for 0 � i � n − 1 generates the

same normal basis as α, so the number of times the lowest complexity is obtained is a multiple of n.
When we found more than n bases with the lowest complexity, we indicate the multiplier between
parentheses. For example, we found 27 bases with complexity 45 for q = 8 and n = 9.

q\n 3 5 7 9 11 13 15 17 19 21 23 25
2 5 9 21 17 21 45 45 81 117(2) 105 45 93
4 5 9 21 17 21 45 45 81 117(2) 105 45 93
8 9(3) 9 21 45(3) 21 45 81(3) 81

16 5 9 21 17 21 45
32 5 19(15) 21 17 21
64 9(21) 9 21 45(3)

128 5 9 37(98)

256 5 9

When gcd(n, r) = 1 we always found the same best complexity for the extension F2rn over F2r as
for the extension F2n over F2. This observation is partially explained by the following fact, which is
also valid for odd q (see [19, Lemma 4.2] for a partial proof).

Lemma 3.1. If α generates a self-dual normal basis of Fqn over Fq, and gcd(n, r) = 1, then α generates a
self-dual normal basis of Fqrn over Fqr , with the same complexity.

One easily checks that if an extension Fqn /Fq admits both a self-dual normal basis and an optimal
normal basis of type I (see [9]), then q and n have to be even, say q = 2r and n = 2m, with m odd
and 2m + 1 prime. If this is the case, the extension is the compositum of the fields Fq2 and Fqm , each
of which may admit an optimal self-dual normal basis or not. Specifically, one can show that Fq2/Fq

admits one if and only if r is odd, and that Fqm /Fq admits one if 2 is of order m or 2m modulo 2m+1
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and m is co-prime to r. If all these conditions are satisfied, the self-dual normal basis of Fqn obtained
by multiplying these two bases is, by Lemma 1.1, of complexity 3(2m − 1) = 3n − 3, which is also the
complexity of the dual basis of the optimal normal basis of Fqn , see [11, Theorem 5.4.10] ([24] even
shows that the dual of any basis which is equivalent to the optimal one has complexity 3n − 3). This
holds for instance for the extensions of F2 of degrees 6,10,18,22,46, . . . , and those of F8 of degrees
10,22,46, . . . .

3.2.2. Odd characteristic
Now we give the table showing some experiments for odd q. Here, the number of bases with

least complexity is a multiple of 2n because ±αqi
for 0 � i � n − 1 generates a normal basis with

same complexity as the one generated by α. When this multiple is greater than 2n, we indicate the
multiplier between parentheses. For example, we found 4 × 2n = 8n bases with complexity 51 for
q = 13 and n = 9.

q\n 3 5 7 9 11 13 15 17 19 21 23 25
3 7 13 25 37 55(2) 67 −− 91 172 −− 127 135
5 6 13 25 46 64 85 −− 157 153 150
7 6 16 19 41 61 96 87 −−

11 6 13 25 52 31 100 78
13 6 13 25 51(4) 64 37
17 8 13 25 51(5) 64 100 −−
19 8 13 31 51 67 −−

Bold-faced entries correspond to the best complexity in the case when the degree n is a power of
the characteristic. In this case, whenever n is prime, the best complexity is 3n − 2, and is obtained
with the basis exhibited in [3, Theorem 5.3]. This basis is rather explicit since it is generated by the
root of a trinomial, yielding a very interesting family of self-dual normal bases of complexity fairly
close to the optimal one.

We have made no computation for “mixed degree” n = n1 pe with gcd(n1, p) = 1, n1 > 1 and e > 0,
but one gets an upper bound for the lowest complexity in that case by multiplying the lowest com-
plexity in degree n1 by that in degree pe , thanks to Lemma 1.1. For instance, the best complexity
for q = 5 and n = 15 is at most 6 · 13 = 78. Note that when n = ��′ for prime numbers � = �′ , both
different from p, the best complexity for the compositum is not necessarily the product of those for
degrees � and �′ extensions (n = 15, q = 7); however it can be so (n = 15, q = 11; n = 21, q = 5).

In the semi-simple case, we also computed the best complexity for some odd non-prime values
q = pr , which do not appear in this table. When gcd(n, r) = 1 we always found the same best com-
plexity for the extension Fqn over Fq as for the extension Fpn over Fp , as well as the same multiplier
for the number of bases with the best complexity (as in the even characteristic case).

In odd characteristic, the only exhaustive search for lowest complexities among normal bases we
are aware of is in [3], over prime base fields. The lowest complexity for self-dual normal bases is the
same as the one they obtain for normal bases when n = 3 and q = 7 or 13; slightly larger when n = 3
and q = 19 (8 instead of 6) and when n = 5 and q = 11 (13 instead of 12). Note that in this last case,
Liao and Feng give in [15, Example 2] a construction of a normal basis with minimal complexity 12,
using Gauss periods, whose dual basis has complexity 13. Their construction remains valid when
replacing the base field F11 by an extension of degree prime to 5.

3.3. Conclusion

Our algorithms enable us to compute the minimal complexity for self-dual normal bases in various
extensions of finite fields, including some for which the exhaustive enumeration of normal bases
would not be reasonable. In odd characteristic, the lowest complexities we obtain are either the same
as or close to that obtained in former computations on normal bases using theoretical constructions
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or exhaustive search, analogously to what could already be observed in even characteristic. However
the cost of the exhaustive search of all self-dual normal bases (once one has been constructed) is
still a limitation of this method. In order to make self-dual normal bases practical, it would thus be
desirable to find a direct construction of those with low complexity.

A striking fact when looking at the tables above is the repetition of values along columns, albeit
with some exceptions. We have a partial explanation for this phenomenon, that may also help in
achieving the former goal, in terms of global considerations of cyclotomic extensions of the rationals
generated by n2-th roots of unity, where n is a prime. A known construction yields a global self-dual
normal basis generator αn such that, for any prime p = n which does not split in the considered
extension, the residue modulo p of αn is a candidate for a best complexity basis for Fpn /Fp . We hope
to give full details about this construction in a future paper.
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