79 research outputs found

    Temperature-dependent Characterization of Power Amplifiers Using an Efficient Electrothermal Analysis Technique

    Get PDF
    In this paper, we propose an efficient methodology for the electrothermal characterization of power amplifier (PA) integrated circuits. The proposed electrothermal analysis method predicts the effect of temperature variations on the key performances of PAs, such as gain and linearity, under realistic dynamic operating conditions. A comprehensive technique for identifying an equivalent compact thermal model, using data from 3-D finite element method thermal simulation and nonlinear curve fitting algorithms, is described. Two efficient methods for electrothermal analysis applying the developed compact thermal model are reported. The validity of the methods is evaluated using commercially available electrothermal computer-aided design (CAD) tools and through extensive pulsed RF signal measurements of a PA device under test. The measurement results confirm the validity of the proposed electrothermal analysis methods. The proposed methods show significantly faster simulation speed comparing to available CAD tools for electrothermal analysis. Moreover, the results reveal the importance of electrothermal characterization in the prediction of the temperature-aware PA dynamic operation

    Characterization and Compensation of Thermal Effects in GaN HEMT Technologies

    Get PDF
    Further advancements with GaN based technologies relies on the ability to handle the heat flux, which consequently arises from the high power density. Advanced cooling techniques and thermal optimization of the technology are therefore prioritized research areas. Characterization techniques play a key role in the development of new cooling solutions, since these rely on accurate measurements of e.g. the temperature of the device. This thesis covers techniques to electrically characterize the lateral and vertical heat properties in GaN, and a temperature compensation technique for GaN MMICs.The first part outlines a methodology to electrically extract the thermal resistance of a GaN resistor without risking distortion from field induced electron trapping effects, which are exhibited by GaN heterostructures. The technique uses differential resistance measurements to identify a suitable resistor geometry, which minimizes trapping effects while enhancing the self-heating. Such conditions are crucial for electrical methods since these exploit the self- heating for a thermal analysis.Furthermore, a test structure and measurement method to electrically characterize the lateral heat spread was designed and evaluated. The structure is implemented with a thermal sensor, which utilizes the temperature-dependent IV characteristics of a GaN resistor, making it suitable for integration in GaN MMICs. The transient response can be obtained to extract the thermal time constants and propagation delay of the heat spread. At higher ambient temperatures, the propagation delay increases and the thermal coupling is increased. Lastly, a biasing technique to compensate for thermal degradation of the RF performance of an LNA was developed. By utilizing the gate- and drain voltage dependence of the RF performance, a constant gain against increasing temperature can e.g. be achieved

    FINITE ELEMENT AND IMAGING APPROACHES TO ANALYZE MULTISCALE ELECTROTHERMAL PHENOMENA

    Get PDF
    Electrothermal effects are crucial in the design and optimization of electronic devices. Thermoreflectance (TR) imaging enables transient thermal characterization at submicron to centimeter scales. Typically, finite element methods (FEM) are used to calculate the temperature profile in devices and ICs with complex geometry. By comparing theory and experiment, important material parameters and device characteristics are extracted. In this work we combine TR and FEM with image blurring/reconstruction techniques to improve electrothermal characterization of micron and nanoscale devices

    MOSFET dynamic thermal sensor for IC testing applications

    Get PDF
    This paper analyses how a single metal-oxide-semiconductor field-effect transistor (MOSFET) can be employed as a thermal sensor to measure on-chip dynamic thermal signals caused by a power-dissipating circuit under test (CUT). The measurement is subjected to two low-pass filters (LPF). The first LPF depends on the thermal properties of the heat-conduction medium (i.e. silicon) and the CUT-sensor distance, whereas the second depends on the electrical properties of the sensing circuit such as the bias current and the dimensions of the MOSFET sensor. This is evaluated along the paper through theoretical models, simulations, and experimental data resulting from a chip fabricated in 0.35 mu m CMOS technology. Finally, the proposed thermal sensor and the knowledge extracted from this paper are applied to estimate the linearity of a radio-frequency (RF) amplifier. (C) 2016 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author's final draft

    Hot spot analysis in integrated circuit substrates by laser mirage effect

    Get PDF
    3 páginas, 2 figuras.This work shows an analytical and experimental technique for characterizing radial heat flow present in integrated circuits (ICs) when power is dissipated by integrated devices. The analytical model comes from the resolution of the Fermat equation for the trajectory of rays and supposing a spherical heat source dissipating a time-periodic power. An application example is presented; hence demonstrating how hot spots and heat transfer phenomena in the IC substrate can be characterized. The developed method may become a practical alternative to usual off-chip techniques for inspecting hot spots in ICs and to experimentally characterize heat flow in the semiconductor substrate.This work has been partially supported by the Consejo Superior de Investigaciones Científicas (CSIC) (under contract “Junta para la Ampliación de Estudios,” JAEDoc No. E-08–2008–0637732) and the Spanish Ministry of Science and Innovation (research programs THERMOS TEC2008- 05577, RUE CSD2009-00046, TERASYSTEMS TEC2008- 01856, and Ramón y Cajal RYC-2010-07434).Peer reviewe

    Modeling Approaches for Active Antenna Transmitters

    Get PDF
    The rapid growth of data traffic in mobile communications has attracted interest to Multiple-Input-Multiple-Output (MIMO) communication systems at millimeter-wave (mmWave) frequencies. MIMO systems exploit active antenna arrays transmitter configurations to obtain higher energy efficiency and beamforming flexibility. The analysis of transmitters in MIMO systems becomes complex due to the close integration of several antennas and power amplifiers (PAs) and the problems associated with heat dissipation. Therefore, the transmitter analysis requires efficient joint EM, circuit, and thermal simulations of its building blocks, i.e., the antenna array and PAs. Due to small physical spacing at mmWave, bulky isolators cannot be used to eliminate unwanted interactions between PA and antenna array. Therefore, the mismatch and mutual coupling in the antenna array directly affect PA output load and PA and transmitter performance. On the other hand, PAs are the primary source of nonlinearity, power consumption, and heat dissipation in transmitters. Therefore, it is crucial to include joint thermal and electrical behavior of PAs in analyzing active antenna transmitters. In this thesis, efficient techniques for modeling active antenna transmitters are presented. First, we propose a hardware-oriented transmitter model that considers PA load-dependent nonlinearity and the coupling, mismatch, and radiated field of the antenna array. The proposed model is equally accurate for any mismatch level that can happen at the PA output. This model can predict the transmitter radiation pattern and nonlinear signal distortions in the far-field. The model\u27s functionality is verified using a mmWave active subarray antenna module for a beam steering scenario and by performing the over-the-air measurements. The load-pull modeling idea was also applied to investigate the performance of a mmWave spatial power combiner module in the presence of critical coupling effects on combining performance. The second part of the thesis deals with thermal challenges in active antenna transmitters and PAs as the main source of heat dissipation. An efficient electrothermal modeling approach that considers the thermal behavior of PAs, including self-heating and thermal coupling between the IC hot spots, coupled with the electrical behavior of PA, is proposed. The thermal model has been employed to evaluate a PA DUT\u27s static and dynamic temperature-dependent performance in terms of linearity, gain, and efficiency. In summary, the proposed modeling approaches presented in this thesis provide efficient yet powerful tools for joint analysis of complex active antenna transmitters in MIMO systems, including sub-systems\u27 behavior and their interactions

    Micro/Nano Gas Sensors: A New Strategy Towards In-Situ Wafer-Level Fabrication of High-Performance Gas Sensing Chips

    Get PDF
    Nano-structured gas sensing materials, in particular nanoparticles, nanotubes, and nanowires, enable high sensitivity at a ppb level for gas sensors. For practical applications, it is highly desirable to be able to manufacture such gas sensors in batch and at low cost. We present here a strategy of in-situ wafer-level fabrication of the high-performance micro/nano gas sensing chips by naturally integrating microhotplatform (MHP) with nanopore array (NPA). By introducing colloidal crystal template, a wafer-level ordered homogenous SnO_2 NPA is synthesized in-situ on a 4-inch MHP wafer, able to produce thousands of gas sensing units in one batch. The integration of micromachining process and nanofabrication process endues micro/nano gas sensing chips at low cost, high throughput, and with high sensitivity (down to ~20 ppb), fast response time (down to ~1 s), and low power consumption (down to ~30 mW). The proposed strategy of integrating MHP with NPA represents a versatile approach for in-situ wafer-level fabrication of high-performance micro/nano gas sensors for real industrial applications

    Doctor of Philosophy

    Get PDF
    dissertationFor the past two decades, tip-based thermal engineering has made remarkable advances to realize unprecedented nanoscale thermal applications, such as thermomechanical data storage, thermophysical/chemical property characterization of materials in nanometer scale, and scanning thermal imaging and analysis. All these applications involve localized heating with elevated temperature, generally in the order of mean free paths of heat carriers, thus necessitates fundamental understanding of sub-continuum thermal transport across point constrictions and within thin films. Considering the demands, this dissertation is divided into three main scopes providing: (1) a numerical model that provides insight onto nanoscale thermal transport, (2) an electrothermal characterization of a heated microcantilever as a localized heating source, and (3) qualitative measurement of tip-substrate thermal transport using high resolution nanothermometer/heater. This dissertation starts with a literature review on the three aforementioned scopes followed by a numerical model for two-dimensional transient ballistic-diffusive heat transfer combining finite element analysis with discrete ordinate method (DOM-FEA), seeking to provide insight on subcontinuum thermal transport. The phonon Boltzmann transport equation (BTE) under grey relaxation time approximation is solved for different Knudsen numbers. Next, a thermal microcantilever, as one of the main tools in tip-based thermal engineering, is characterized under periodic heating operation in air and vacuum using 3ï·ï€ technique. A three-dimensional FEA simulation of a thermal microcantilever is used to model heat transfer in frequency domain resulting in good agreement with the experiment. Next, quantitative thermal transport is measured by a home-built nanothermometer fabricated using combination of electron-beam lithography and photolithography. An atomic force microscope (AFM) cantilever is used to scan over the sensing probe of the nanothermometer at an elevated temperature causing local cooling. The experiment is done in air resulting in a tip-substrate effective thermal conductance of 32.5 nW/K followed by theoretical calculations predicting contribution of solid-solid thermal conduction to be 48%. Finally, the same experiment is conducted in vacuum with similar operating condition, showing 50% contribution of solid-solid conductance, which is in good agreement with the theory, assuming no water meniscus in vacuum condition. The outcomes of these studies provide a strong platform to fundamentally understand thermal transport at the micro/nanometer scale

    Doctor of Philosophy

    Get PDF
    dissertationFor the past two decades, tip-based thermal engineering has made remarkable advances to realize unprecedented nanoscale thermal applications, such as thermomechanical data storage, thermophysical/chemical property characterization of materials in nanomet
    corecore