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HIGHLIGHTS: 

-A single MOSFET can be employed as a thermal sensor to measure on-chip dynamic thermal 

signals caused by a power-dissipating CUT. 

-The measurement depends on the thermal properties of the substrate, the CUT-sensor 

distance, and the electrical properties of MOSFET sensor. 

-Thermal simulations in COMSOL and experimental results from a chip fabricated in 0.35 μm 

CMOS technology are provided. 

-The proposed thermal sensor is applied to estimate the linearity of an RF amplifier. 
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Abstract— This paper analyses how a single metal-oxide-semiconductor field-effect transistor 

(MOSFET) can be employed as a thermal sensor to measure on-chip dynamic thermal signals 

caused by a power-dissipating circuit under test (CUT). The measurement is subjected to two 

low-pass filters (LPF). The first LPF depends on the thermal properties of the heat-conduction 

medium (i.e. silicon) and the CUT-sensor distance, whereas the second depends on the 

electrical properties of the sensing circuit such as the bias current and the dimensions of the 

MOSFET sensor. This is evaluated along the paper through theoretical models, simulations, 

and experimental data resulting from a chip fabricated in 0.35 µm CMOS technology. Finally, 

the proposed thermal sensor and the knowledge extracted from this paper are applied to 

estimate the linearity of a radio-frequency (RF) amplifier. 

 

Keywords: IC testing; MOSFET; RF testing; temperature sensor; thermal coupling; thermal 

testing. 

 

1. INTRODUCTION 

Among many other applications [1], integrated thermal sensors are employed as built-in 

testers (BIT) of other blocks (so-called CUT) embedded into the same integrated circuit (IC). 

The thermal sensor is placed near the CUT so that they are thermally coupled through the 

semiconductor substrate and then it measures on-chip thermal variations caused by the power 

dissipated by the CUT. These thermal measurements can be used to detect failure or hot-spots 

in digital ICs [2,3] and in operational amplifiers [4], and to extract figures of merit, such as 

the centre frequency or the 1-dB compression point (CP), of analogue RF-ICs [5,6]. The main 

advantage of employing thermal sensors, instead of electrical sensors [7,8], in RF-IC testing is 

that no node of the CUT is electrically loaded by the BIT. Thermal measurements can also be 

performed using off-chip optical instrumentation, such as an infrared-radiation (IR) camera, 
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that access to the die through its upper, back or lateral sides [9,10]. These off-chip techniques 

are less attractive in terms of cost and integration, but they do not suffer from CUT-sensor 

electrical coupling. 

The simplest on-chip thermal sensor that can be used in BIT applications is a diode-

connected transistor, with either a bipolar junction transistor (BJT) [11,12] or a MOSFET 

[13]. The higher accuracy provided by BJT-based sensors is not a key element for the 

selection of the sensing transistor since the magnitude of interest here is the change of 

temperature caused by CUT and not the absolute value of temperature. The comparative 

analysis reported in [14,15], which was carried out through static on-chip thermal 

measurements, shows that MOSFET-based sensors offer the following advantages: (i) fully 

compatibility with the fabrication process, (ii) more sensitivity (especially, in strong inversion 

[14]) to on-chip thermal variations caused by the CUT, and (iii) less layout area required 

around the CUT, which is crucial for BIT applications because a small sensor can be easily fit 

in the empty areas with minimum impact on the IC design. Note that the layout of the CUT 

should not be re-designed as a consequence of placing the thermal sensor because this is a 

time-consuming task, especially when designing RF circuits that are so sensitive to layout 

parasitic components. In that sense, the sensor is expected to be placed in empty areas around 

the CUT and, hence, we can have a certain distance between the power-dissipating device of 

the CUT and the sensor. 

Some BIT applications involve dynamic thermal measurements, i.e. the sensor has to 

measure an on-chip AC thermal signal whose amplitude (and/or phase) has information about 

the CUT performance. For instance, when RF-ICs are thermally tested using the heterodyne 

technique (which will be explained later in Section 5), the information about the performance 

at high frequency is embedded into a low-frequency (e.g. 1 kHz) on-chip thermal signal [5, 6]. 

In the literature, we can find other applications interested in measuring the amplitude and 

phase shift of AC thermal signals, for example: the determination of thermal properties of 
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fluids [16] and the monitoring of biofilm dynamics [17]. In those examples, however, the 

heater and the sensor are not thermally coupled through the silicon substrate but through the 

fluid or biofilm under test. In any of these applications involving AC thermal measurements, 

both the frequency of the AC thermal signal and the distance between the CUT (or heater) and 

the sensor play a significant role in the thermal coupling [18]. This was also reported for BJT-

based thermal sensors fabricated on a silicon-on-insulator substrate [19], which involves a 

lower heat spreading due to the lower thermal conductivity of glass.  

With the final aim of using a single MOSFET to measure on-chip AC thermal signals 

resulting from the heterodyne test of RF circuits, this paper analyses the main parameters (i.e. 

operating frequency, CUT-sensor distance, dimensions and bias of the MOSFET sensor) 

affecting the measurement. Knowledge about the effects of distance and frequency on the 

dynamic thermal measurements is essential to decide the right placement of the MOSFET 

sensor around the CUT and the appropriate operating frequency. This is evaluated 

theoretically in Section 2, through thermal simulations in Section 3, and experimentally in 

Section 4. Finally, the concept is applied to characterise an RF power amplifier (PA) in 

Section 5 and the advantages of the proposed technique are discussed in Section 6. 

2.  THEORETICAL MODELS 

2.1. On-chip thermal oscillation 

The heat dissipated by the CUT, which is here a harmonic function of frequency f, is 

mainly transferred by conduction through the substrate towards the bottom, thus generating a 

gradient of temperatures in its neighbourhood. This thermal variation is then monitored by a 

thermal sensor that is located at a distance d from the CUT. This scenario can be treated, in a 

first approximation and whenever the thermal penetration depth (δp) is smaller than the 

substrate thickness, as a semi-spherical heat source in a semi-infinite homogeneous medium 

with concentric semi-spherical isothermal surfaces, as shown in Fig. 1. Two remarks about 
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Fig. 1: (a) the thermal sensor is assumed to be small and made of silicon and, therefore, the 

medium can be considered homogeneous in spite of the presence of the sensor, and (b) the 

adiabatic boundary condition considered on top takes into account that the additional layers of 

the backend part (such as silicon dioxide and polyamide) have a low thermal conductivity. In 

that scenario, the amplitude and phase shift of the thermal oscillation (T) can be expressed, 

using phasor notation, as [20] 

 p p/ /
( , )

d jdC
T d f e e

d

  
 , (1) 

where C is a constant and δp depends on f as 

 p

D

f



 , (2) 

D being the thermal diffusivity of the medium (i.e. 90·10-6 m2/s for silicon).   

Equation (1) shows that the amplitude (A) of the on-chip thermal oscillation generated by 

the CUT depends on both d and f.  Using as a reference the value of amplitude (A0) obtained 

at a distance d0 and at a frequency f0 (and, hence, at a penetration depth δp,0), the amplitude 

can be normalised and simplified (assuming as δp,0 >> d0) as 

 0 p,0 p p/ / /0 0
norm

0

( , )
d d dd dA

A d f e e
A d d

   
   . (3) 

At low frequencies (i.e. when δp >> d), Anorm can be approximated as Anorm,LF  d0/d and, 

hence, it can be considered independent of f. However, at high frequencies (i.e. when δp and d 

are comparable), Anorm decreases with increasing f due to the attenuation caused by the 

exponential term in (3). Therefore, the measurement is subjected to a “thermal” LPF with the 

following 3-dB cut-off frequency: 

 c,t 2

0.12D
f

d
 . (4) 

Note that if an increase of d decreases Anorm,LF by a factor K, then fc,t also decreases but by a 

factor K2. In the next sections, we assume d  20 µm, which fixes fc,t ≤ 9 kHz.  
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For BIT applications, the thermal sensor should be placed as close as possible to the CUT 

in order to enhance the thermal coupling, but with minimum impact on its layout (for 

instance, using empty areas around the CUT). In that sense, we can have a certain distance 

between the power-dissipating device of the CUT and the sensor. Once d is known, the 

operating frequency (i.e. f in the heterodyne technique explained in Section 5) should be 

selected to be lower than fc,t at that d. However, if the value of d is very small (say, a few 

microns), it is advisable to operate at f << fc,t so as to reduce the CUT-sensor capacitive 

electrical coupling, which behaves as a high-pass filter. 

2.2. Dynamic thermal sensor 

As a thermal sensor, we propose to use a diode-connected n-type MOSFET operating in 

strong inversion and biased with a DC current source (IB), as shown in Fig. 2a. Assuming the 

temperature dependence of both the carriers mobility and the threshold voltage of the 

MOSFET, the output voltage (vout) of the circuit in Fig. 2a linearly depends on temperature 

with the following sensitivity [14]: 

 B
T

0
0 ox

21

2

I
S

WT
C

L






  , (5) 

where  is the temperature coefficient of the threshold voltage,  is the exponent of the 

temperature dependence of the mobility, T0 is a reference temperature, µ0 is the carriers 

mobility at T0, Cox is the gate oxide capacitance per unit area, and W and L are the width and 

length of the MOSFET channel, respectively. Since  < 0 and   < 0 [21], we can achieve a 

high (positive) sensitivity using a high value of IB and/or a low value of W/L; note, however, 

that the sensor area (and, hence, W and L) can be determined by the available layout area 

around the CUT. Values of ST up to +6.6 mV/K, which is three times higher than in BJT-

based sensors, were reported in [14] for static on-chip thermal measurements. For the 

previous discussion, we have assumed that IB is far from the CUT and, therefore, it is not 
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affected by the dissipated power. Changes of ambient temperature affecting IB are not 

expected to be critical whenever these are slower than the IC test. 

When the circuit in Fig. 2a is subjected to on-chip thermal oscillations at f, the MOSFET 

carries out a small-signal temperature-to-voltage conversion at f. This conversion is done 

around a DC operating point that can be quite susceptible to process variations, but this is not 

a major concern here since the information is embedded into the small signal at f. The circuit 

in Fig. 2a can be modelled by the small-signal equivalent circuit shown in Fig. 2b that 

includes an AC voltage source, an output resistance (rout) and an output capacitance (cout). The 

amplitude of voltage source depends on ST and, hence, on IB and W/L. The output resistance 

can be approximated to gm
-1 [22], where gm (= 0 ox B2 /C I W L ) is the transconductance of the 

MOSFET, whereas the output capacitance includes the contributions of the MOSFET itself, 

the current source, the input/output pad, and the off-chip readout electronics. According to 

Fig. 2b, the measurement is subjected to an electrical LPF with the following 3-dB cut-off 

frequency:   

 c,e

out out

1

2
f

r c
 . (6) 

Simulations in Cadence-Spectre showed that rout < 100 k for the MOSFETs under test. 

Therefore, considering cout = 10 pF, we have fc,e > 160 kHz, which is much higher than the 

value of fc,t estimated in Section 2.1. Consequently, the thermal LPF behaviour is expected to 

dominate over the electrical one.  

In comparison with the dynamic thermal sensor suggested in [5], which relies on a 

differential configuration of two sensing devices implemented with parasitic BJTs, the 

MOSFET sensor proposed in Fig. 2a occupies less layout area (say, ten times less), which 

facilitates its integration around the CUT. Moreover, the sensing circuit shown in Fig. 2a does 

not need any preliminary calibration, as it happens in [5] to adjust the mismatch between the 

two sensing devices that brings the amplifier output to saturation [6]. On the other hand, in 
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comparison with the sensor suggested in [17] that relies on a thin-film germanium thermistor, 

the required area of the MOSFET sensor in Fig. 2a is also much smaller (more than a hundred 

times). Furthermore, the thermistor proposed in [17] is not located at the CUT level (i.e. top 

of the substrate) but at the backend part and, therefore, the scenario shown in Fig. 1 would not 

be valid. 

3.  THERMAL SIMULATIONS 

The effects of both frequency and distance on the CUT-sensor thermal coupling have been 

simulated in a 3D structure using the heat-transfer module in COMSOL Multiphysics. The 

geometry considered in the simulations, which agrees with that of the chip fabricated and 

tested in Section 4, is represented in Fig. 3. The CUT is emulated by a heater dissipating a 

sine-wave power signal of frequency f and amplitude Pp, whereas the sensor is replaced by a 

testing point placed at a distance d from the centre of the heater. The boundary conditions 

assumed are: (a) isothermal (20ºC) at the bottom surface, which takes into account that this 

surface will be in contact with a high-conductivity large-area metal; and (b) adiabatic at the 

lateral and top surfaces, which considers that the heat will be mainly transferred by 

conduction through the silicon substrate towards the bottom [23]. The frequencies simulated 

are from 100 Hz to 200 kHz and, hence, the values of δp calculated by (2) are from 12 µm to 

535 µm. Because the maximum value of δp is smaller than the thickness of the silicon 

substrate, the results of the simulations can be considered quite independent of the boundary 

condition assumed at the bottom surface [24].  

The frequency response of the thermal amplitude at different values of d (from 20 µm to 

100 µm) and for Pp = 5.5 mW (which is the value applied later in the experiments) is shown 

in Fig. 4a. We can observe an LPF behaviour with a low-frequency amplitude (ALF) that is 

inversely proportional to d, as predicted by (3). Furthermore, the higher d, the lower fc,t, as 

suggested by (4). For example, we have ALF = 222 mK and fc,t  10 kHz at d = 20 µm, but 
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ALF = 35 mK and fc,t  600 Hz at d = 100 µm. For comparison purposes, the simulation results 

in Fig. 4a are normalised to the value obtained at d0 = 20 µm and f0 = 100 Hz and represented 

in Fig. 4b together with the theoretical results calculated from (3). The agreement between 

simulation and theoretical data is remarkable. 

Simulation results also show that the on-chip thermal map clearly depends on the frequency 

of the dissipated power. As an example, Fig. 5 represents the plan view (at the heater depth) 

of the isothermal lines when the frequency is (a) 100 Hz, (b) 1 kHz and (c) 10 kHz. Note that 

an increase of frequency causes a higher confinement of the thermal energy around the heater 

and, therefore, a lower thermal amplitude at a certain distance from the heater. 

4.  EXPERIMENTAL RESULTS 

A chip including heaters (that emulate the CUT) and thermal sensors was implemented in 

0.35 µm CMOS technology of AMS (AustriaMicroSystems), and then tested using the 

experimental setup shown in Fig. 6. A signal generator providing a sinusoidal voltage with a 

frequency f (from 100 Hz to 200 kHz, as in Section 3), an amplitude (Ah) of 0.2 V and a DC 

level (Vdc) of 1.2 V was used to excite the heater. With this excitation, the heater (which was a 

diode-connected MOSFET with Wh= 450 µm and Lh= 1 µm) dissipated 5.5 mW at f according 

to simulations in Cadence-Spectre of the extracted view. This power generated an on-chip 

thermal signal at f that was converted into a voltage signal through the MOSFET thermal 

sensor shown in Fig. 2a. The sensor was placed at different d (20 µm and 35 µm), was biased 

at different IB (10 µA, 20 µA and 40 µA) and had different W/L ratios (1/1, 1/4, 1/16 that 

correspond to transistors named M1, M2 and M3, respectively). The amplitude (As) of the 

sensor output voltage at f was then measured by a lock-in amplifier (Signal Recovery 7265). 

The setup also had an IR-camera (FLIR SC5500) with a lock-in processing module [10] that 

was used to validate the on-chip sensor measurements in the frequency range from 100 Hz to 

2 kHz. 
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The experimental frequency response (for M2 with IB = 40 µA and ST = 4.2 mV/K [14]) of 

the thermal amplitude at different values of d is shown in Fig. 7 (in dashed line). We can 

observe again that the higher d, the lower both the amplitude at low frequency and the 

bandwidth. For comparison purposes, Fig. 7 also includes the simulation results (in 

continuous line) represented before in Fig. 4a, which are qualitatively similar to the 

experimental data. Moreover, in Fig. 7 we also have the measurements carried out with the IR 

camera (in black dashed line), which fairly agree with the MOSFET measurements in the 

operating frequency range of the camera 

The effects of IB on the frequency response of the output voltage of M2 (at 35 µm) are 

represented in Fig. 8, which clearly shows, besides the LPF behaviour, that the amplitude 

increases as IB increases, as predicted by (5). On the other hand, Fig. 9 shows the effects of 

W/L on the frequency response when d = 35 µm and IB = 10 µA. Now, the amplitude 

increases as W/L decreases, as also predicted by (5). The flat frequency response of M1 in Fig. 

9 is due to a thermal insensitivity caused by a mutual compensation of mobility and threshold 

voltage thermal effects [25]. Therefore, according to Figs. 8 and 9, the rules for increasing the 

thermal sensitivity of MOSFETs in dynamic measurements are the same as in static 

measurements, i.e. high bias current and low W/L ratio. The experimental tests in Figs. 8 and 

9 were carried out in the frequency range from 100 Hz to 10 kHz since the signal amplitude 

was really low after 10 kHz (see Fig. 7). 

5. APPLICATION TO IC TESTING 

The CUT selected to prove the feasibility of the proposed thermal sensor is a class-A RF-

PA with a cascode stage, as shown in Fig. 10a, and with a central frequency of 440 MHz. A 

microphotograph of the layout of the RF-PA, which was embedded into the same chip 

indicated in Section 4, is shown in Fig. 10b. The cascode transistor (M2 in Fig. 10a), which 

was implemented by three transistors (M2,a, M2,b and M2,c) connected in parallel, was 
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considered as the power-dissipating device of the CUT. The MOSFET thermal sensor (with 

W/L = 1.5/24 and IB = 20 µA) was placed between M2,a and M2,b, as shown in Fig. 10b; the 

distance between the centre of M2,a (or M2,b) and the centre of the thermal sensor was around 

20 µm. The layout area of the MOSFET sensor was a thousand times smaller than that of the 

RF-PA, excluding the PAD area. 

The figure of merit extracted from the RF-PA shown in Fig. 10a was the 1-dB CP, which is 

defined as the input power that provides an output power that is 1 dBm smaller than that 

expected in an ideal linear amplifier [26]. The estimation of the 1-dB CP using thermal 

measurements relies on the fact that the relation between the power dissipated (and, hence, the 

thermal variation) and the input power is linear while the RF-PA operates in its linear range, 

but it follows a non-linear behaviour when the RF-PA reaches saturation [5]. In other words, 

when a saturation phenomenon occurs in the electrical behaviour of a CUT, the same is 

observed in its dissipated power and then this is reflected in the thermal field. 

The linearity of the RF-PA was first tested using RF instrumentation. The output power 

(Pout) was measured at different input power levels (Pin) while keeping the frequency constant 

(i.e. 440 MHz). The results are represented in Fig. 11a, where we can observe that the relation 

between Pout and Pin is linear (i.e. slope of one on a log-log scale) at low levels of Pin, but it 

becomes nonlinear at high levels. The 1-dB CP was found at 2.5 dBm. 

The same RF-PA was then thermally tested using the MOSFET dynamic thermal sensor 

proposed in Fig. 2a and the heterodyne technique. This technique relies on applying two tones 

(f1 and f2) of high frequency to the input, with f (= f2  f1) being much smaller than f1 and f2. 

Then, as a consequence of the frequency mixing generated by Joule effect, the RF-PA 

dissipates power (and, hence, generates an on-chip thermal signal) at the beating frequency 

(i.e. at f) with information about the performance at high frequency [5]; other spectral 

components of the dissipated power (such as those at f1, f2, f1 + f2,…) are filtered out by the 

thermal LPF behaviour shown in Fig. 4. This on-chip thermal signal at f was monitored by 
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the MOSFET sensor in Fig. 2a. The amplitude (As) of vout at f was measured at different Pin 

levels while keeping f1 (= 440 MHz  f/2) and f2 (= 440 MHz + f/2) constant. The results 

are shown in Fig. 11b for two values of f (1013 Hz and 10013 Hz), with a higher amplitude 

at f = 1013 Hz due to the thermal LPF. Similarly to Fig. 11a, the relation between As and Pin 

was linear (i.e. again a slope of one) at low levels of Pin, but it was not at high levels. The 1-

dB CP can be here estimated as the input power that provides an output voltage that is 

1 dBmV smaller than that obtained in an ideal linear amplifier. Thus, the 1-dB CP was 

2.4 dBm for f = 1013 Hz, and 2.8 dBm for f = 10013 Hz, which are very similar to the 

value obtained before using RF instrumentation.  

6. DISCUSSION 

According to the experimental results explained in Section 5, the use of a single MOSFET 

as a dynamic thermal sensor to extract electrical information about a CUT seems feasible. If 

that thermal sensor is employed together with the heterodyne technique to test RF-CUTs, we 

have the following main advantages: 

- Since thermal measurements are non-invasive and do not electrically load any node of 

the CUT, the presence of the thermal sensor do no alter the electrical performance of the 

CUT. Moreover, we do not need a simultaneous co-design of the CUT and the sensor, as 

it happens in conventional BIT strategies based on electrical sensors. 

- Thanks to the application of the heterodyne technique, the sensing circuit operates at 

low frequency regardless of the operating frequency of the CUT. Actually, an amplifier 

operating at higher frequencies (e.g. in the millimetre wave band) could be characterised 

using the same sensing circuit and without any change in the measurement method. 

- The MOSFET thermal sensor is fully compatible with the fabrication process and 

requires a small layout area. Therefore, it can be placed in empty areas around the CUT 

with minimum impact on the IC design. 
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- Because there is no loading effect and the area overhead is minimum, different thermal 

sensors can be employed to individually characterise each of the blocks of a RF system-

on-chip (e.g. low-noise amplifier, mixer, local oscillator, power amplifier, etc.). 

Furthermore, thanks to the thermal LPF behaviour explained in Section 2.1, those tests 

can de done simultaneously without affecting each other whenever these blocks are 

separated enough and the operating frequency is high enough. 

- Unlike off-chip measurement methods (either electrical or thermal), the proposed on-

chip technique not only can be used for pass/fail screening in a low-cost high-volume 

manufacturing test environment, but also for on-line monitoring of parameter drifts 

during normal operation of the IC. 

7. CONCLUSIONS 

This paper has shown that a single MOSFET can be employed to measure on-chip thermals 

oscillations at f generated by a power-dissipating CUT, with the final aim of extracting 

electrical information about the CUT. The theoretical models, simulations and experimental 

results reported along the paper have provided guidelines to improve (a) the CUT-sensor 

thermal coupling by an appropriate selection of the CUT-sensor distance and the operating 

frequency, and (b) the temperature-to-voltage conversion at f by a correct selection of the bias 

current and the dimensions of the MOSFET sensor. These concepts have been then proved by 

testing the linearity of a RF-PA. The 1-dB CP estimated using the MOSFET dynamic thermal 

sensor had an error of 0.1 dBm when f = 1013 Hz. We believe this is a promising IC testing 

technique since it is non-invasive and low cost, and its impact on the IC layout design is 

minimum. 
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List of Figure Captions 

Figure 1. Semi-spherical heat source in a semi-infinite homogeneous medium. 

Figure 2. (a) MOSFET sensor for the measurement of on-chip AC thermal signals. (b) Small-

signal model of the circuit in Fig. 2a. 

Figure 3. Geometry and boundary conditions considered in the thermal simulations in (a) plan 

and (b) cross-section views. 

Figure 4. (a) Simulated frequency response of the thermal amplitude for different heater-

sensor distances. (b) Normalised frequency response of the thermal amplitude according to 

simulations (in continuous line) and to the theoretical model (in dashed line). 

Figure 5. Simulated plan view of the thermal map at (a) 100 Hz, (b) 1 kHz and (c) 10 kHz; the 

legend shows the RMS amplitude of the thermal oscillation at that frequency. 

Figure 6. Experimental setup to characterise the performance of MOSFET sensors when 

measuring on-chip AC thermal signals. 

Figure 7. Experimental frequency response of the thermal amplitude for different heater-

sensor distances using M2 at IB = 40 µA. Simulation results and experimental measurements 

using the IR camera are also included. 

Figure 8. Experimental frequency response of the output-voltage amplitude for different bias 

currents using M2 at d = 35 µm. 

Figure 9. Experimental frequency response of the output-voltage amplitude for different 

MOSFET dimensions when d = 35 µm and IB = 10 µA. 

Figure 10. (a) Schematic circuit and (b) microphotograph of the RF-PA under test.  

Figure 11. Experimental results of the linearity test of the RF-PA using (a) RF 

instrumentation and (b) the MOSFET thermal sensor shown in Fig. 2a. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

W/L

Thermal 

sensor

Chip

Signal 

Generator Lock-in  

amplifier 

DC current  

sourceIB

REF

TTL sync

vout

Heater

d

t

vout

1/f

Vbias

t

vheater

1/f

Vdc

Ah

vheater

As

Wh/Lh

Infrared camera

REF

 



 

 26 

Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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