628 research outputs found

    Characterisation of an Electrostatic Vibration Harvester

    Get PDF
    Harvesting energy from ambient vibration is proposed as an alternative to storage based power supplies for autonomous systems. The system presented converts the mechanical energy of a vibration into electrical energy by means of a variable capacitor, which is polarized by an electret. A lumped element model is used to study the generator and design a prototype. The device has been micromachined in silicon, based on a two-wafer process. The prototype was successfully tested, both using an external polarization source and an electret.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Ambient Energy Harvesting-An Electrostatic Approach.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018

    Surface micromachined MEMS variable capacitor with two-cavity for energy harvesting

    Get PDF
    In this research, a novel MEMS variable capacitor with two capacitive cavities for energy harvesting was developed that use the wasted energy associated with undesirable mechanical vibrations to power microelectronic sensors and actuators widely found in structures and systems surrounding us. The harvested power, though very small, can have a profound effect on the usage of microsensors. First, the self-powered sensors will no longer require regular battery maintenance. Second, the self-powered chip is a liberating technology. On a circuit board, it can simplify the connection. On a commercial jet, the sensors can greatly simplify cabling. The design, fabrication, modeling and complete set of characterization of MEMS variable capacitors with two-cavity are presented in details in this thesis. The MEMS variable capacitors are unique in its two-cavity design and use of electroplated nickel as the main structural material. The device consists of 2x2 mmÂČ movable capacitive proof mass plates with a thickness of 30 [mu]m suspended between two fixed electrodes forming two vertical capacitors. When the capacitance increases for one cavity, it decreases for the other. This allows using both up and down directions to generate energy. The suspended movable plates are supported by four serpentine springs with a thickness of 3-5 [mu]m that are attached to the address lines on a silicon substrate only at the anchors' points which is made of electroplated nickel. The serpentine suspension beams are made with a width, thickness and total length (four serpentine turns) of 15 [mu]m, 5 [mu]m and 1485 [mu]m. Five gold stoppers with height of 2-4 [mu]m were electroplated on the fixed plates to prevent snap-down of the movable plates by overwhelming electrostatic force. SiO2 and Si3N4 thin layers were patterned on the fixed plates to insulate the stoppers and enhance the dielectric property of capacitive cavities. The MEMS variable capacitor with two-cavity has been designed and modeled using MEMS CAD tool and COMSOL Multi-PhysIncludes bibliographical references (pages 108-118)

    Survey of Energy Harvesting Technologies for Wireless Sensor Networks

    Get PDF
    Energy harvesting (EH) technologies could lead to self-sustaining wireless sensor networks (WSNs) which are set to be a key technology in Industry 4.0. There are numerous methods for small-scale EH but these methods differ greatly in their environmental applicability, energy conversion characteristics, and physical form which makes choosing a suitable EH method for a particular WSN application challenging due to the specific application-dependency. Furthermore, the choice of EH technology is intrinsically linked to non-trivial decisions on energy storage technologies and combinatorial architectures for a given WSN application. In this paper we survey the current state of EH technology for small-scale WSNs in terms of EH methods, energy storage technologies, and EH system architectures for combining methods and storage including multi-source and multi-storage architectures, as well as highlighting a number of other optimisation considerations. This work is intended to provide an introduction to EH technologies in terms of their general working principle, application potential, and other implementation considerations with the aim of accelerating the development of sustainable WSN applications in industry

    A Hybrid Technique of Energy Harvesting from Mechanical Vibration and Ambient Illumination

    Get PDF
    Hybrid energy harvesting is a concept applied for improving the performance of the conventional stand-alone energy harvesters. The thesis presents the analytical formulations and characterization of a hybrid energy harvester that incorporates photovoltaic, piezoelectric, electromagnetic, and electrostatic mechanisms. The initial voltage required for electrostatic mechanism is obtained by the photovoltaic technique. Other mechanisms are embedded into a bimorph piezoelectric cantilever beam having a tip magnet and two sets of comb electrodes on two sides of its substructure. All the segments are interconnected by an electric circuit to generate combined output when subjected to vibration and solar illumination. Results for power output have been obtained at resonance frequency using an optimum load resistance. As the power transduced by each of the mechanisms is combined, more power is generated than those obtained by stand-alone mechanisms. The synergistic feature of this research is further promoted by adding fatigue analysis using finite element method

    Power Management Electronics

    No full text
    Accepted versio

    A POWER DISTRIBUTION SYSTEM BUILT FOR A VARIETY OF UNATTENDED ELECTRONICS

    Get PDF
    A power distribution system (PDS) delivers electrical power to a load safely and effectively in a pre-determined format. Here format refers to necessary voltages, current levels and time variation of either as required by the empowered system. This formatting is usually referred as "conditioning". The research reported in this dissertation presents a complete system focusing on low power energy harvesting, conditioning, storage and regulation. Energy harvesting is a process by which ambient energy present in the environment is captured and converted to electrical energy. In recent years, it has become a prominent research area in multiple disciplines. Several energy harvesting schemes have been exploited in the literature, including solar energy, mechanic energy, radio frequency (RF) energy, thermal energy, electromagnetic energy, biochemical energy, radioactive energy and so on. Different from the large scale energy generation, energy harvesting typically operates in milli-watts or even micro-watts power levels. Almost all energy harvesting schemes require stages of power conditioning and intermediate storage - batteries or capacitors that reservoir energy harvested from the environment. Most of the ambient energy fluctuates and is usually weak. The purpose of power conditioning is to adjust the format of the energy to be further used, and intermediate storage smoothes out the impact of the fluctuations on the power delivered to the load. This dissertation reports an end to end power distribution system that integrates different functional blocks including energy harvesting, power conditioning, energy storage, output regulation and system control. We studied and investigated different energy harvesting schemes and the dissertation places emphasis on radio frequency energy harvesting. This approach has proven to be a viable power source for low-power electronics. However, it is still challenging to obtain significant amounts of energy rapidly and efficiently from the ambient. Available RF power is usually very weak, leading to low voltage applied to the electronics. The power delivered to the PDS is hard to utilize or store. This dissertation presents a configuration including a wideband rectenna, a switched capacitor voltage boost converter and a thin film flexible battery cell that can be re-charged at an exceptionally low voltage. We demonstrate that the system is able to harvest energy from a commercially available hand-held communication device at an overall efficiency as high as 7.7 %. Besides the RF energy harvesting block, the whole PDS includes a solar energy harvesting block, a USB recharging block, a customer selection block, two battery arrays, a control block and an output block. The functions of each of the blocks have been tested and verified. The dissertation also studies and investigates several potential applications of this PDS. The applications we exploited include an ultra-low power tunable neural oscillator, wireless sensor networks (WSNs), medical prosthetics and small unmanned aerial vehicles (UAVs). We prove that it is viable to power these potential loads through energy harvesting from multiple sources

    Influence of the structural non–linearity on the performance o fan electret–based vibration energy harvester

    Get PDF
    Films of electret material are currently used to cover the surface of electrodes of some vibration capacitive harvesters based on deformable beams, clamped at both ends. Nevertheless, performance of this device is often predicted through some simplified electromechanical model, which neglects the effect of geometric nonlinearity due to a mechanical coupling between the axial and flexural behaviors of the clamped beam. Stiffening of beam and nonlinear behaviour in dynamics is herein investigated, by resorting to a distributed model of the electromechanical copuling of the vibration harvester, based on the Finite Element Method. Influence upon the performance of the energy conversion is then analyzed and an optimization of the configuration is proposed

    Modeling and Optimization of an Electrostatic Energy Harvesting Device

    Get PDF
    • 

    corecore