104 research outputs found

    Design, Characterization and Analysis of Component Level Electrostatic Discharge (ESD) Protection Solutions

    Get PDF
    Electrostatic Discharges (ESD) is a significant hazard to electronic components and systems. Based on a specific process technology, a given circuit application requires a customized ESD consideration that meets all the requirements such as the core circuit\u27s operating condition, maximum accepted leakage current, breakdown conditions for the process and overall device sizes. In every several years, there will be a new process technology becomes mature, and most of those new technology requires custom design of effective ESD protection solution. And usually the design window will shrinks due to the evolving of the technology becomes smaller and smaller. The ESD related failure is a major IC reliability concern and results in a loss of millions dollars each year in the semiconductor industry. To emulate the real word stress condition, several ESD stress models and test methods have been developed. The basic ESD models are Human Body model (HBM), Machine Mode (MM), and Charge Device Model (CDM). For the system-level ESD robustness, it is defined by different standards and specifications than component-level ESD requirements. International Electrotechnical Commission (IEC) 61000-4-2 has been used for the product and the Human Metal Model (HMM) has been used for the system at the wafer level. Increasingly stringent design specifications are forcing original equipment manufacturers (OEMs) to minimize the number of off-chip components. This is the case in emerging multifunction mobile, industrial, automotive and healthcare applications. It requires a high level of ESD robustness and the integrated circuit (IC) level, while finding ways to streamline the ESD characterization during early development cycle. To enable predicting the ESD performance of IC\u27s pins that are directly exposed to a system-level stress condition, a new the human metal model (HMM) test model has been introduced. In this work, a new testing methodology for product-level HMM characterization is introduced. This testing framework allows for consistently identifying ESD-induced failures in a product, substantially simplifying the testing process, and significantly reducing the product evaluation time during development cycle. It helps eliminates the potential inaccuracy provided by the conventional characterization methodology. For verification purposes, this method has been applied to detect the failures of two different products. Addition to the exploration of new characterization methodology that provides better accuracy, we also have looked into the protection devices itself. ICs for emerging high performance precision data acquisition and transceivers in industrial, automotive and wireless infrastructure applications require effective and ESD protection solutions. These circuits, with relatively high operating voltages at the Input/Output (I/O) pins, are increasingly being designed in low voltage Complementary Metal-Oxide-Semiconductor (CMOS) technologies to meet the requirements of low cost and large scale integration. A new dual-polarity SCR optimized for high bidirectional blocking voltages, high trigger current and low capacitance is realized in a sub 3-V, 180-nm CMOS process. This ESD device is designed for a specific application where the operating voltage at the I/O is larger than that of the core circuit. For instance, protecting high voltage swing I/Os in CMOS data acquisition system (DAS) applications. In this reference application, an array of thin film resistors voltage divider is directly connected to the interface pin, reducing the maximum voltage that is obtained at the core device input down to ± 1-5 V. Its ESD characteristics, including the trigger voltage and failure current, are compared against those of a typical CMOS-based SCR. Then, we have looked into the ESD protection designs into more advanced technology, the 28-nm CMOS. An ESD protection design builds on the multiple discharge-paths ESD cell concept and focuses the attention on the detailed design, optimization and realization of the in-situ ESD protection cell for IO pins with variable operation voltages. By introducing different device configurations fabricated in a 28-nm CMOS process, a greater flexibility in the design options and design trade-offs can be obtained in the proposed topology, thus achieving a higher integration and smaller cell size definition for multi-voltage compatibility interface ESD protection applications. This device is optimized for low capacitance and synthesized with the circuit IO components for in-situ ESD protection in communication interface applications developed in a 28-nm, high-k, and metal-gate CMOS technology. ESD devices have been used in different types of applications and also at different environment conditions, such as high temperature. At the last section of this research work, we have performed an investigation of several different ESD devices\u27 performance under various temperature conditions. And it has been shown that the variations of the device structure can results different ESD performance, and some devices can be used at the high temperature and some cannot. And this investigation also brings up a potential threat to the current ESD protection devices that they might be very vulnerable to the latch-up issue at the higher temperature range

    Design, Characterization And Analysis Of Electrostatic Discharge (esd) Protection Solutions In Emerging And Modern Technologies

    Get PDF
    Electrostatic Discharge (ESD) is a significant hazard to electronic components and systems. Based on a specific processing technology, a given circuit application requires a customized ESD consideration that includes the devices’ operating voltage, leakage current, breakdown constraints, and footprint. As new technology nodes mature every 3-5 years, design of effective ESD protection solutions has become more and more challenging due to the narrowed design window, elevated electric field and current density, as well as new failure mechanisms that are not well understood. The endeavor of this research is to develop novel, effective and robust ESD protection solutions for both emerging technologies and modern complementary metal–oxide–semiconductor (CMOS) technologies. The Si nanowire field-effect transistors are projected by the International Technology Roadmap for Semiconductors as promising next-generation CMOS devices due to their superior DC and RF performances, as well as ease of fabrication in existing Silicon processing. Aiming at proposing ESD protection solutions for nanowire based circuits, the dimension parameters, fabrication process, and layout dependency of such devices under Human Body Mode (HBM) ESD stresses are studied experimentally in company with failure analysis revealing the failure mechanism induced by ESD. The findings, including design methodologies, failure mechanism, and technology comparisons should provide practical knowhow of the development of ESD protection schemes for the nanowire based integrated circuits. Organic thin-film transistors (OTFTs) are the basic elements for the emerging flexible, printable, large-area, and low-cost organic electronic circuits. Although there are plentiful studies focusing on the DC stress induced reliability degradation, the operation mechanism of OTFTs iv subject to ESD is not yet available in the literature and are urgently needed before the organic technology can be pushed into consumer market. In this work, the ESD operation mechanism of OTFT depending on gate biasing condition and dimension parameters are investigated by extensive characterization and thorough evaluation. The device degradation evolution and failure mechanism under ESD are also investigated by specially designed experiments. In addition to the exploration of ESD protection solutions in emerging technologies, efforts have also been placed in the design and analysis of a major ESD protection device, diodetriggered-silicon-controlled-rectifier (DTSCR), in modern CMOS technology (90nm bulk). On the one hand, a new type DTSCR having bi-directional conduction capability, optimized design window, high HBM robustness and low parasitic capacitance are developed utilizing the combination of a bi-directional silicon-controlled-rectifier and bi-directional diode strings. On the other hand, the HBM and Charged Device Mode (CDM) ESD robustness of DTSCRs using four typical layout topologies are compared and analyzed in terms of trigger voltage, holding voltage, failure current density, turn-on time, and overshoot voltage. The advantages and drawbacks of each layout are summarized and those offering the best overall performance are suggested at the en

    Design Of Silicon Controlled Rectifers Sic] For Robust Electrostatic Discharge Protection Applications

    Get PDF
    Electrostatic Discharge (ESD) phenomenon happens everywhere in our daily life. And it can occurs through the whole lifespan of an Integrated Circuit (IC), from the early wafer fabrication process, extending to assembly operation, and finally ending at the user‟s site. It has been reported that up to 35% of total IC field failures are ESD-induced, with estimated annual costs to the IC industry running to several billion dollars. The most straightforward way to avoid the ICs suffering from the threatening of ESD damages is to develop on-chip ESD protection circuits which can afford a robust, low-impedance bypassing path to divert the ESD current to the ground. There are three different types of popular ESD protection devices widely used in the industry, and they are diodes or diodes string, Grounded-gate NMOS (GGNMOS) and Silicon Controlled Rectifier (SCR). Among these different protection solutions, SCR devices have the highest ESD current conduction capability due to the conductivity modulation effect. But SCR devices also have several shortcomings such as the higher triggering point, the lower clamping voltage etc, which will become obstacles for SCR to be widely used as an ESD protection solutions in most of the industry IC products. At first, in some applications with pin voltage goes below ground or above the VDD, dual directional protection between each two pins are desired. The traditional dual-directional SCR structures will consume a larger silicon area or lead to big leakage current issue due to the happening of punch-through effect. A new and improved SCR structure for low-triggering ESD iv applications has been proposed in this dissertation and successfully realized in a BiCMOS process. Such a structure possesses the desirable characteristics of a dual-polarity conduction, low trigger voltage, small leakage current, large failing current, adjustable holding voltage, and compact size. Another issue with SCR devices is its deep snapback or lower holding voltage, which normally will lead to the latch-up happen. To make SCR devices be immunity with latch-up, it is required to elevate its holding voltage to be larger than the circuits operational voltage, which can be several tens volts in modern power electronic circuits. Two possible solutions have been proposed to resolve this issue. One solution is accomplished by using a segmented emitter topology based on the concept that the holding voltage can be increased by reducing the emitter injection efficiency. Experimental data show that the new SCR can posses a holding voltage that is larger than 40V and a failure current It2 that is higher than 28mA/um. The other solution is accomplished by stacking several low triggering voltage high holding voltage SCR cells together. The TLP measurement results show that this novel SCR stacking structure has an extremely high holding voltage, very small snapback, and acceptable failure current. The High Holding Voltage Figure of Merit (HHVFOM) has been proposed to be a criterion for different high holding voltage solutions. The HHVFOM comparison of our proposed structures and the existing high holding voltage solutions also show the advantages of our work

    Electrostatic Discharge Protection Devices for CMOS I/O Ports

    Get PDF
    In modern integrated circuits, electrostatic discharge (ESD) is a major problem that influences the reliability of operation, yield and cost of fabrication. ESD discharge events can generate static voltages beyond a few kilo volts. If these voltages are dissipated in the chip, high electric field and high current are generated and will destroy the gate oxide material or melt the metal interconnects. In order to protect the chip from these unexpected ESD events, special protection devices are designed and connect to each pin of the IC for this purpose. With the scaling of nano-metric processing technologies, the ESD design window has become more critical. That leaves little room for designers to maneuver. A good ESD protection device must have superior current sinking ability and also does not affect the normal operation of the IC. The two main categories of ESD devices are snapback and non-snapback ones. Non-snapback designs usually consist of forward biased diode strings with properties, such as low heat and power, high current carrying ability. Snapback devices use MOSFET and silicon controlled rectifier (SCR). They exploit avalanche breakdown to conduct current. In order to investigate the properties of various devices, they need to be modeled in device simulators. That process begins with realizing a technology specific NMOS and PMOS in the device simulators. The MOSFET process parameters are exported to build ESD structures. Then, by inserting ESD devices into different simulation test-benches, such as human-body model or charged-device model, their performance is evaluated through a series of figures of merit, which include peak current, voltage overshoot, capacitance, latch-up immunity and current dissipation time. A successful design can sink a large amount of current within an extremely short duration, while it should demonstrate a low voltage overshoot and capacitance. In this research work, an inter-weaving diode and SCR hybrid device demonstrated its effectiveness against tight ESD test standards is shown

    Design, Characterization And Compact Modeling Of Novel Silicon Controlled Rectifier (scr)-based Devices For Electrostatic Discha

    Get PDF
    Electrostatic Discharge (ESD), an event of a sudden transfer of electrons between two bodies at different potentials, happens commonly throughout nature. When such even occurs on integrated circuits (ICs), ICs will be damaged and failures result. As the evolution of semiconductor technologies, increasing usage of automated equipments and the emerging of more and more complex circuit applications, ICs are more sensitive to ESD strikes. Main ESD events occurring in semiconductor industry have been standardized as human body model (HBM), machine model (MM), charged device model (CDM) and international electrotechnical commission model (IEC) for control, monitor and test. In additional to the environmental control of ESD events during manufacturing, shipping and assembly, incorporating on-chip ESD protection circuits inside ICs is another effective solution to reduce the ESD-induced damage. This dissertation presents design, characterization, integration and compact modeling of novel silicon controlled rectifier (SCR)-based devices for on-chip ESD protection. The SCR-based device with a snapback characteristic has long been used to form a VSS-based protection scheme for on-chip ESD protection over a broad rang of technologies because of its low on-resistance, high failure current and the best area efficiency. The ESD design window of the snapback device is defined by the maximum power supply voltage as the low edge and the minimum internal circuitry breakdown voltage as the high edge. The downscaling of semiconductor technology keeps on squeezing the design window of on-chip ESD protection. For the submicron process and below, the turn-on voltage and sustain voltage of ESD protection cell should be lower than 10 V and higher than 5 V, respectively, to avoid core circuit damages and latch-up issue. This presents a big challenge to device/circuit engineers. Meanwhile, the high voltage technologies push the design window to another tough range whose sustain voltage, 45 V for instance, is hard for most snapback ESD devices to reach. Based on the in-depth elaborating on the principle of SCR-based devices, this dissertation first presents a novel unassisted, low trigger- and high holding-voltage SCR (uSCR) which can fit into the aforesaid ESD design window without involving any extra assistant circuitry to realize an area-efficient on-chip ESD protection for low voltage applications. The on-chip integration case is studied to verify the protection effectiveness of the design. Subsequently, this dissertation illustrate the development of a new high holding current SCR (HHC-SCR) device for high voltage ESD protection with increasing the sustain current, not the sustain voltage, of the SCR device to the latchup-immune level to avoid sacrificing the ESD protection robustness of the device. The ESD protection cells have been designed either by using technology computer aided design (TCAD) tools or through trial-and-error iterations, which is cost- or time-consuming or both. Also, the interaction of ESD protection cells and core circuits need to be identified and minimized at pre-silicon stage. It is highly desired to design and evaluate the ESD protection cell using simulation program with integrated circuit emphasis (SPICE)-like circuit simulation by employing compact models in circuit simulators. And the compact model also need to predict the response of ESD protection cells to very fast transient ESD events such as CDM event since it is a major ESD failure mode. The compact model for SCR-based device is not widely available. This dissertation develops a macromodeling approach to build a comprehensive SCR compact model for CDM ESD simulation of complete I/O circuit. This modeling approach offers simplicity, wide availability and compatibility with most commercial simulators by taking advantage of using the advanced BJT model, Vertical Bipolar Inter-Company (VBIC) model. SPICE Gummel-Poon (SGP) model has served the ICs industry well for over 20 years while it is not sufficiently accurate when using SGP model to build a compact model for ESD protection SCR. This dissertation seeks to compare the difference of SCR compact model built by using VBIC and conventional SGP in order to point out the important features of VBIC model for building an accurate and easy-CAD implement SCR model and explain why from device physics and model theory perspectives

    Semiconductor Device Modeling, Simulation, and Failure Prediction for Electrostatic Discharge Conditions

    Get PDF
    Electrostatic Discharge (ESD) caused failures are major reliability issues in IC industry. Device modeling for ESD conditions is necessary to evaluate ESD robustness in simulation. Although SPICE model is accurate and efficient for circuit simulations in most cases, devices under ESD conditions operate in abnormal status. SPICE model cannot cover the device operating region beyond normal operation. Thermal failure is one of the main reasons to cause device failure under ESD conditions. A compact model is developed to predict thermal failure with circuit simulators. Instead of considering the detailed failure mechanisms, a failure temperature is introduced to indicate device failure. The developed model is implemented by a multiple-stage thermal network. P-N junction is the fundamental structure for ESD protection devices. An enhanced diode model is proposed and is used to simulate the device behaviors for ESD events. The model includes all physical effects for ESD conditions, which are voltage overshoot, self-heating effect, velocity saturation and thermal failure. The proposed model not only can fit the I-V and transient characteristics, but also can predict failure for different pulses. Safe Operating Area (SOA) is an important factor to evaluate the LDMOS performance. The transient SOA boundary is considered as power-defined. By placing the failure monitor under certain conditions, the developed modeling methodology can predict the boundary of transient SOA for any short pulse stress conditions. No matter failure happens before or after snapback phenomenon. Weibull distribution is popular to evaluate the dielectric lifetime for CVS. By using the transformative version of power law, the pulsing stresses are converted into CVS, and TDDB under ESD conditions for SiN MIMCAPs is analyzed. The thickness dependency and area independency of capacitor breakdown voltage is observed, which can be explained by the constant ?E model instead of conventional percolation model

    Design And Characterization Of Noveldevices For New Generation Of Electrostaticdischarge (esd) Protection Structures

    Get PDF
    The technology evolution and complexity of new circuit applications involve emerging reliability problems and even more sensitivity of integrated circuits (ICs) to electrostatic discharge (ESD)-induced damage. Regardless of the aggressive evolution in downscaling and subsequent improvement in applications\u27 performance, ICs still should comply with minimum standards of ESD robustness in order to be commercially viable. Although the topic of ESD has received attention industry-wide, the design of robust protection structures and circuits remains challenging because ESD failure mechanisms continue to become more acute and design windows less flexible. The sensitivity of smaller devices, along with a limited understanding of the ESD phenomena and the resulting empirical approach to solving the problem have yielded time consuming, costly and unpredictable design procedures. As turnaround design cycles in new technologies continue to decrease, the traditional trial-and-error design strategy is no longer acceptable, and better analysis capabilities and a systematic design approach are essential to accomplish the increasingly difficult task of adequate ESD protection-circuit design. This dissertation presents a comprehensive design methodology for implementing custom on-chip ESD protection structures in different commercial technologies. First, the ESD topic in the semiconductor industry is revised, as well as ESD standards and commonly used schemes to provide ESD protection in ICs. The general ESD protection approaches are illustrated and discussed using different types of protection components and the concept of the ESD design window. The problem of implementing and assessing ESD protection structures is addressed next, starting from the general discussion of two design methods. The first ESD design method follows an experimental approach, in which design requirements are obtained via fabrication, testing and failure analysis. The second method consists of the technology computer aided design (TCAD)-assisted ESD protection design. This method incorporates numerical simulations in different stages of the ESD design process, and thus results in a more predictable and systematic ESD development strategy. Physical models considered in the device simulation are discussed and subsequently utilized in different ESD designs along this study. The implementation of new custom ESD protection devices and a further integration strategy based on the concept of the high-holding, low-voltage-trigger, silicon controlled rectifier (SCR) (HH-LVTSCR) is demonstrated for implementing ESD solutions in commercial low-voltage digital and mixed-signal applications developed using complementary metal oxide semiconductor (CMOS) and bipolar CMOS (BiCMOS) technologies. This ESD protection concept proposed in this study is also successfully incorporated for implementing a tailored ESD protection solution for an emerging CMOS-based embedded MicroElectroMechanical (MEMS) sensor system-on-a-chip (SoC) technology. Circuit applications that are required to operate at relatively large input/output (I/O) voltage, above/below the VDD/VSS core circuit power supply, introduce further complications in the development and integration of ESD protection solutions. In these applications, the I/O operating voltage can extend over one order of magnitude larger than the safe operating voltage established in advanced technologies, while the IC is also required to comply with stringent ESD robustness requirements. A practical TCAD methodology based on a process- and device- simulation is demonstrated for assessment of the device physics, and subsequent design and implementation of custom P1N1-P2N2 and coupled P1N1-P2N2//N2P3-N3P1 silicon controlled rectifier (SCR)-type devices for ESD protection in different circuit applications, including those applications operating at I/O voltage considerably above/below the VDD/VSS. Results from the TCAD simulations are compared with measurements and used for developing technology- and circuit-adapted protection structures, capable of blocking large voltages and providing versatile dual-polarity symmetric/asymmetric S-type current-voltage characteristics for high ESD protection. The design guidelines introduced in this dissertation are used to optimize and extend the ESD protection capability in existing CMOS/BiCMOS technologies, by implementing smaller and more robust single- or dual-polarity ESD protection structures within the flexibility provided in the specific fabrication process. The ESD design methodologies and characteristics of the developed protection devices are demonstrated via ESD measurements obtained from fabricated stand-alone devices and on-chip ESD protections. The superior ESD protection performance of the devices developed in this study is also successfully verified in IC applications where the standard ESD protection approaches are not suitable to meet the stringent area constraint and performance requirement

    Transient Safe Operating Area (tsoa) For Esd Applications

    Get PDF
    A methodology to obtain design guidelines for gate oxide input pin protection and high voltage output pin protection in Electrostatic Discharge (ESD) time frame is developed through measurements and Technology Computer Aided Design (TCAD). A set of parameters based on transient measurements are used to define Transient Safe Operating Area (TSOA). The parameters are then used to assess effectiveness of protection devices for output and input pins. The methodology for input pins includes establishing ESD design targets under Charged Device Model (CDM) type stress in low voltage MOS inputs. The methodology for output pins includes defining ESD design targets under Human Metal Model (HMM) type stress in high voltage Laterally Diffused MOS (LDMOS) outputs. First, the assessment of standalone LDMOS robustness is performed, followed by establishment of protection design guidelines. Secondly, standalone clamp HMM robustness is evaluated and a prediction methodology for HMM type stress is developed based on standardized testing. Finally, LDMOS and protection clamp parallel protection conditions are identifie

    Development of a Supercapacitor based Surge Resistant Uninterruptible Power Supply

    Get PDF
    Uninterruptible Power Supplies (UPSs) provide short-term power back-up to sensitive electronic and electrical equipments, where an unexpected power loss could lead to undesirable outcomes. They usually bridge the connected equipment between the utility mains power and other long term back-up power systems like generators. A UPS also provides a “clean” source of power, meaning they filter the connected equipment from distortions in electrical parameters of the mains power like noise, harmonics, surges, sags and spikes. A surge resistant UPS or SRUPS is one that has the capability to withstand surges, which are momentary or sustained increases in the mains voltage, and react quickly enough to offer protection to the connected equipment from the same. Usually UPSs run off battery power when the utility mains power is absent. But the SRUPS developed in this design project uses super capacitors instead of battery packs. The reason for this is that the high energy-densities and medium power-densities offered by super capacitors allow for it to serve two purposes. One is to provide the DC power to operate the UPS in the absence of mains power, as an alternative to batteries. Secondly, super capacitors can withstand heavy momentary high current/voltage surges due to its high energy-density characteristics. Also as the life-time of super capacitors is much higher than that of conventional batteries and as they do not need regular topping-up or inspection, the end result is a truly maintenance-free UPS. Most commercial UPSs do not have inherent surge protection capabilities. The UPS is one entity while a discrete surge protection module is inserted between the utility mains and the UPS to provide for transient surge suppression. In the proposed SRUPS, the super capacitor, because of their inherent capability to absorb transient surges, forms a protective front end to the actual UPS rather than needing to have the involvement of discrete protection devices

    Low-Leakage ESD Power Supply Clamps in General Purpose 65 nm CMOS Technology

    Get PDF
    Electrostatic discharge (ESD) is a well-known contributor that reduces the reliability and yield of the integrated circuits (ICs). As ICs become more complex, they are increasingly susceptible to such failures due to the scaling of physical dimensions of devices and interconnect on a chip [1]. These failures are caused by excessive electric field and/or excessive current densities and result in the dielectric breakdown, electromigration of metal lines and contacts. ESD can affect the IC in its different life stages, from wafer fabrication process to failure in the field. Furthermore, ESD events can damage the integrated circuit permanently (hard failure), or cause a latent damage (soft failure) [2]. ESD protection circuits consisting of I/O protection and ESD power supply clamps are routinely used in ICs to protect them against ESD damage. The main objective of the ESD protection circuit is to provide a low-resistive discharge path between any two pins of the chip to harmlessly discharge ESD energy without damaging the sensitive circuits. The main target of this thesis is to design ESD power supply clamps that have the lowest possible leakage current without degrading the ESD protection ability in general purpose TSMC 65 nm CMOS technology. ESD clamps should have a very low-leakage current and should be stable and immune to the power supply noise under the normal operating conditions of the circuit core. Also, the ESD clamps must be able to handle high currents under an ESD event. All designs published in the general purpose 65 nm CMOS technology have used the SCR as the clamping element since the SCR has a higher current carrying capability compared to an MOS transistor of the same area [3]. The ESD power supply clamp should provide a low-resistive path in both directions to be able to deal with both PSD and NDS zapping modes. The SCR based design does not provide the best ESD protection for the NDS zapping mode (positive ESD stress at VSS with grounded VDD node) since it has two parasitic resistances (RNwell and RPsub) and one parasitic diode (the collector to base junction diode of the PNP transistor) in the path from the VSS to VDD. Furthermore, SCR-based designs are not suitable for application that exposed to hot switching or ionizing radiation [2]. In GP process, the gate oxide thickness of core transistors is reduced compared with LP process counterpart to achieve higher performance designs for high-frequency applications using 1 V core transistors and 2.5 V I/O option. The thinner gate oxide layer results in higher leakage current due to gate tunneling [4]. Therefore, using large thin oxide MOS transistors as clamping elements will result in a huge leakage. In this thesis, four power supply ESD clamps are proposed in which thick oxide MOS transistors are used as the main clamping element. Therefore, the low-leakage current feature is achieved without significantly degrading the ESD performance. In addition, the parasitic diode of the MOS transistors provides the protection against NSD-mode. In this thesis, two different ESD power supply clamp architectures are proposed: standalone ESD power supply clamps and hybrid ESD power supply clamps. Two standalone clamps are proposed: a transient PMOS based ESD clamp with thyristor delay element (PTC), and a static diode triggered power supply (DTC). The standalone clamps were designed to protect the circuit core against ±125 V CDM stress by limiting the voltage between the two power rails to less than the oxide breakdown voltage of the core transistors, BVOXESD = 5 V. The large area of this architecture was the price for maintaining the low-leakage current and an adequate ESD protection. The hybrid clamp architecture was proposed to provide a higher ESD protection, against ±300 V CDM stress, while reducing the layout area and maintaining the low-leakage feature. In the hybrid clamp structure, two clamps are connected in parallel between the two power supply rails, a static clamp, and a transient clamp. The static clamp triggers first and starts to sink the ESD energy and then an RC network triggers the primary transient clamp to sink most of the ESD stress. Two hybrid designs were proposed: PMOS ESD power supply clamp with thyristor delay element and diodes (PTDC), and NMOS ESD power supply clamp with level shifter delay element and diode (NLDC). Simulation results show that the proposed clamps are capable of protecting the circuit core against ±1.5 kV HBM and at least against ±125 V CDM stresses. The measurement results show that all of the proposed clamps are immune against false triggering, and transient induced latch-up. Furthermore, all four designs have responded favorably to the 4 V ESD-like pulse voltage under both chip powered and not powered conditions and after the stress ends the designs turned off. Finally, TLP measurement results show that all four proposed designs meet the minimum design requirement of the ESD protection circuit in the 65 nm CMOS technology (i.e. HBM protection level of ±1.5 kV )
    corecore