91 research outputs found

    Distributed Intelligent MEMS: Progresses and Perspectives

    No full text
    International audienceMEMS research has until recently focused mainly on the engineering process, resulting in interesting products and a growing market. To fully realize the promise of MEMS, the next step is to add embedded intelligence. With embedded intelligence, the scalability of manufacturing will enable distributed MEMS systems consisting of thousands or millions of units which can work together to achieve a common goal. However, before such systems can become a reallity, we must come to grips with the challenge of scalability which will require paradigm-shifts both in hardware and software. Furthermore, the need for coordinated actuation, programming, communication and mobility management raises new challenges in both control and programming. The objective of this article is to report the progresses made by taking the example of two research projects and by giving the remaining challenges and the perspectives of distributed intelligent MEMS

    ENABLING HARDWARE TECHNOLOGIES FOR AUTONOMY IN TINY ROBOTS: CONTROL, INTEGRATION, ACTUATION

    Get PDF
    The last two decades have seen many exciting examples of tiny robots from a few cm3 to less than one cm3. Although individually limited, a large group of these robots has the potential to work cooperatively and accomplish complex tasks. Two examples from nature that exhibit this type of cooperation are ant and bee colonies. They have the potential to assist in applications like search and rescue, military scouting, infrastructure and equipment monitoring, nano-manufacture, and possibly medicine. Most of these applications require the high level of autonomy that has been demonstrated by large robotic platforms, such as the iRobot and Honda ASIMO. However, when robot size shrinks down, current approaches to achieve the necessary functions are no longer valid. This work focused on challenges associated with the electronics and fabrication. We addressed three major technical hurdles inherent to current approaches: 1) difficulty of compact integration; 2) need for real-time and power-efficient computations; 3) unavailability of commercial tiny actuators and motion mechanisms. The aim of this work was to provide enabling hardware technologies to achieve autonomy in tiny robots. We proposed a decentralized application-specific integrated circuit (ASIC) where each component is responsible for its own operation and autonomy to the greatest extent possible. The ASIC consists of electronics modules for the fundamental functions required to fulfill the desired autonomy: actuation, control, power supply, and sensing. The actuators and mechanisms could potentially be post-fabricated on the ASIC directly. This design makes for a modular architecture. The following components were shown to work in physical implementations or simulations: 1) a tunable motion controller for ultralow frequency actuation; 2) a nonvolatile memory and programming circuit to achieve automatic and one-time programming; 3) a high-voltage circuit with the highest reported breakdown voltage in standard 0.5 μm CMOS; 4) thermal actuators fabricated using CMOS compatible process; 5) a low-power mixed-signal computational architecture for robotic dynamics simulator; 6) a frequency-boost technique to achieve low jitter in ring oscillators. These contributions will be generally enabling for other systems with strict size and power constraints such as wireless sensor nodes

    Microrobots for wafer scale microfactory: design fabrication integration and control.

    Get PDF
    Future assembly technologies will involve higher automation levels, in order to satisfy increased micro scale or nano scale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to micro-electronics and MEMS industries, but less so in nanotechnology. With the bloom of nanotechnology ever since the 1990s, newly designed products with new materials, coatings and nanoparticles are gradually entering everyone’s life, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than with top-down robotic assembly. This is due to considerations of volume handling of large quantities of components, and the high cost associated to top-down manipulation with the required precision. However, the bottom-up manufacturing methods have certain limitations, such as components need to have pre-define shapes and surface coatings, and the number of assembly components is limited to very few. For example, in the case of self-assembly of nano-cubes with origami design, post-assembly manipulation of cubes in large quantities and cost-efficiency is still challenging. In this thesis, we envision a new paradigm for nano scale assembly, realized with the help of a wafer-scale microfactory containing large numbers of MEMS microrobots. These robots will work together to enhance the throughput of the factory, while their cost will be reduced when compared to conventional nano positioners. To fulfill the microfactory vision, numerous challenges related to design, power, control and nanoscale task completion by these microrobots must be overcome. In this work, we study three types of microrobots for the microfactory: a world’s first laser-driven micrometer-size locomotor called ChevBot,a stationary millimeter-size robotic arm, called Solid Articulated Four Axes Microrobot (sAFAM), and a light-powered centimeter-size crawler microrobot called SolarPede. The ChevBot can perform autonomous navigation and positioning on a dry surface with the guidance of a laser beam. The sAFAM has been designed to perform nano positioning in four degrees of freedom, and nanoscale tasks such as indentation, and manipulation. And the SolarPede serves as a mobile workspace or transporter in the microfactory environment

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    MACHINE LEARNING AUGMENTATION MICRO-SENSORS FOR SMART DEVICE APPLICATIONS

    Get PDF
    Novel smart technologies such as wearable devices and unconventional robotics have been enabled by advancements in semiconductor technologies, which have miniaturized the sizes of transistors and sensors. These technologies promise great improvements to public health. However, current computational paradigms are ill-suited for use in novel smart technologies as they fail to meet their strict power and size requirements. In this dissertation, we present two bio-inspired colocalized sensing-and-computing schemes performed at the sensor level: continuous-time recurrent neural networks (CTRNNs) and reservoir computers (RCs). These schemes arise from the nonlinear dynamics of micro-electro-mechanical systems (MEMS), which facilitates computing, and the inherent ability of MEMS devices for sensing. Furthermore, this dissertation addresses the high-voltage requirements in electrostatically actuated MEMS devices using a passive amplification scheme. The CTRNN architecture is emulated using a network of bistable MEMS devices. This bistable behavior is shown in the pull-in, the snapthrough, and the feedback regimes, when excited around the electrical resonance frequency. In these regimes, MEMS devices exhibit key behaviors found in biological neuronal populations. When coupled, networks of MEMS are shown to be successful at classification and control tasks. Moreover, MEMS accelerometers are shown to be successful at acceleration waveform classification without the need for external processors. MEMS devices are additionally shown to perform computing by utilizing the RC architecture. Here, a delay-based RC scheme is studied, which uses one MEMS device to simulate the behavior of a large neural network through input modulation. We introduce a modulation scheme that enables colocalized sensing-and-computing by modulating the bias signal. The MEMS RC is tested to successfully perform pure computation and colocalized sensing-and-computing for both classification and regression tasks, even in noisy environments. Finally, we address the high-voltage requirements of electrostatically actuated MEMS devices by proposing a passive amplification scheme utilizing the mechanical and electrical resonances of MEMS devices simultaneously. Using this scheme, an order-of-magnitude of amplification is reported. Moreover, when only electrical resonance is used, we show that the MEMS device exhibits a computationally useful bistable response. Adviser: Dr. Fadi Alsalee

    Design of Capacitive Micromachined Ultrasonic Transducers for Application in Electronic Travel Aid for the Blind

    Get PDF
    A low cost, compact Capacitive Micromachined Ultrasonic Transducer (CMUT) based Electronic Travel Aid (ETA) to identify obstacle has been proposed. The aim is to enable free movement of the blind in an environment ridden with stationary obstacles with a target distance of 1-2m. In the present work, SU-8 has been chosen as the membrane material of the CMUT. This has enabled drastic reduction in the DC operating voltage to just 22V- an essential limit for handheld devices to be carried by the user. The CMUT is designed to operate at around 70kHz which minimises frequency dependent loss in air. The simulations are carried out in CoventorWare and COMSOL. The results show that on superimposing an AC of 0.5V on the DC, displacements as large as the gap distance of 5um are obtained resulting in output pressures of 140dB on surface of CMUT. On travelling a to and fro distance of 2m, this pressure drops to about 1uPa. To be able to sense this small pressure, a receiver with thin membrane is designed. A circuit has been implemented off chip to process the received signal and generate a PWM signal to drive the vibrator

    Compliant Torsional Micromirrors with Electrostatic Actuation

    Get PDF
    Due to the existence of fabrication tolerance, property drift and structural stiction in MEMS (Micro Electro Mechanical Systems), characterization of their performances through modeling, simulation and testing is essential in research and development. Due to the microscale dimensions, MEMS are more susceptible and sensitive to even minor external or internal variations. Moreover, due to the current limited capability in micro-assembly, most MEMS devices are fabricated as a single integrated micro-mechanical structure composed of two essential parts, namely, mass and spring, even if it may consist of more than one relatively movable part. And in such a scale of dimensions, low resonant micro-structures or compliant MEMS structures are hard to achieve and difficult to survive. Another problem arises from the limited visibility and accessibility necessary for characterization. Both of these issues are thus attempted in this research work. An investigation on micromirrors with various actuations and suspensions is carried out, with more attention on the micromirrors with compliant suspensions, electrostatic actuation and capable of torsional out-of-plane motion due to their distinct advantages such as the low resonance and the low drive voltage. This investigation presents many feasible modeling methods for prediction and analysis, aiming to avoid the costly microfabrication. Furthermore, both linear and nonlinear methods for structure and electrostatics are all included. Thus, static and dynamic performances of the proposed models are formularized and compared with those from FEA (Finite Element Analysis) simulation. The nonlinear modeling methods included in the thesis are Pseudo Rigid Body Model (PRBM) and hybrid PRBM methods for complex framed microstructures consisting of compliant beam members. The micromachining technologies available for the desired micromirrors are reviewed and an SOI wafer based micromachining process is selected for their fabrication. Though the fabrication was executed outside of the institution at that time, the layout designs of the micro-chips for manufacture have included all related rules or factors, and the results have also demonstrated the successful fabrication. Then investigation on non-contact test methods is presented. Laser Doppler Vibrometer (LDV) is utilized for the measurement of dynamic performances of proposed micromirrors. Two kinds of photo-sensing devices (PSDs), namely, the digitized PSD formed by CCD arrays and the analog PSD composed of a monolithic photosensing cell, are used for static test set-ups. An interferometric method using Mirau objective along with microscope is also employed to perform static tests of the selected micromirrors. Comparison of the tested results and their related theoretical results are presented and discussed, leading to a conclusion that the proposed hybrid PRBM model are appropriate for prediction or analysis of compliantly suspended micromirrors including issues arising from fabrication tolerance, structural or other parametric variations

    MEMS Conveyance: Piezoelectric Actuator Arrays for Reconfigurable RF Circuits

    Get PDF
    An array of piezoelectric cantilevers was designed, fabricated, and characterized for use as a micromanipulation surface in a reconfigurable RF circuit micro-factory. The project, known as RFactory, is an effort by the U.S. Army Research Laboratory to create environmentally adaptable, rapidly upgradeable RF systems. The RFactory actuator surface uses unimorph lead zirconate titanate cantilevers with metal posts at the tip that exaggerate the horizontal deflection produced by out-of-plane bending. The motion of a circuit component on the surface has been modeled and observed experimentally. By varying the waveform, voltage amplitude, and frequency of the drive signal, as well as the actuator length and width, the speed and precision of the motion can be controlled. From these characterization efforts, operating conditions that create speeds above 1 mm/s and low positional error (<200 microns after 5 mm translation) have been identified. Finally, full system RF reconfigurability has been demonstrated

    Process Development for the Fabrication of Spheroidal Microdevice Packages Utilizing MEMS Technologies

    Get PDF
    Sub-mm3 spherical microrobots are being researched as a path towards reconfigurable wireless networks and programmable matter. The microrobot design requires a spheroidal microdevice package compatible with solar energy collection, wireless sensing, and electrostatic actuation mechanisms to be developed. Throughout this research, a variety of MEMS fabrication techniques were evaluated with regards to their applicability to the packaging process. SF6-based plasma was determined to be a preferable alternative to wet HNA etching when producing repeatable bulk isotropic etches in silicon. The effect of silicon crystal orientation on etch variance and anisotropy was also investigated. HNA polishing was demonstrated as an effective method of reducing undercutting, surface roughness, and anisotropy. MatLab image processing routines were developed and incorporated into etch analysis, providing an efficient method of data collection. A method of performing sophisticated wafer alignment and photolithography processes by leveraging existing cleanroom devices was proposed. This research established a path forward for an advanced packaging scheme designed to move microelectronics packages away from the planar circuit board configurations of the past and into the autonomous architectures of the future. The proposed design is applicable to a wide variety of microelectronics applications while meeting the requirements of the sub-mm3 spherical microrobot system

    FABRICATION OF MAGNETIC TWO-DIMENSIONAL AND THREE-DIMENSIONAL MICROSTRUCTURES FOR MICROFLUIDICS AND MICROROBOTICS APPLICATIONS

    Get PDF
    Micro-electro-mechanical systems (MEMS) technology has had an increasing impact on industry and our society. A wide range of MEMS devices are used in every aspects of our life, from microaccelerators and microgyroscopes to microscale drug-delivery systems. The increasing complexity of microsystems demands diverse microfabrication methods and actuation strategies to realize. Currently, it is challenging for existing microfabrication methods—particularly 3D microfabrication methods—to integrate multiple materials into the same component. This is a particular challenge for some applications, such as microrobotics and microfluidics, where integration of magnetically-responsive materials would be beneficial, because it enables contact-free actuation. In addition, most existing microfabrication methods can only fabricate flat, layered geometries; the few that can fabricate real 3D microstructures are not cost efficient and cannot realize mass production. This dissertation explores two solutions to these microfabrication problems: first, a method for integrating magnetically responsive regions into microstructures using photolithography, and second, a method for creating three-dimensional freestanding microstructures using a modified micromolding technique. The first method is a facile method of producing inexpensive freestanding photopatternable polymer micromagnets composed NdFeB microparticles dispersed in SU-8 photoresist. The microfabrication process is capable of fabricating polymer micromagnets with 3 µm feature resolution and greater than 10:1 aspect ratio. This method was used to demonstrate the creation of freestanding microrobots with an encapsulated magnetic core. A magnetic control system was developed and the magnetic microrobots were moved along a desired path at an average speed of 1.7 mm/s in a fluid environment under the presence of external magnetic field. A microfabrication process using aligned mask micromolding and soft lithography was also developed for creating freestanding microstructures with true 3D geometry. Characterization of this method and resolution limits were demonstrated. The combination of these two microfabrication methods has great potential for integrating several material types into one microstructure for a variety of applications
    corecore