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Abstract 

Compliant Torsional Micromirrors with Electrostatic Actuation 

Jianliang You, PhD 

Concordia University, 2011 

 

Due to the existence of fabrication tolerance, property drift and structural stiction in 

MEMS (Micro Electro Mechanical Systems), characterization of their performances 

through modeling, simulation and testing is essential in research and development. Due to 

the microscale dimensions, MEMS are more susceptible and sensitive to even minor 

external or internal variations. Moreover, due to the current limited capability in micro-

assembly, most MEMS devices are fabricated as a single integrated micro-mechanical 

structure composed of two essential parts, namely, mass and spring, even if it may consist 

of more than one relatively movable part. And in such a scale of dimensions, low 

resonant micro-structures or compliant MEMS structures are hard to achieve and difficult 

to survive. Another problem arises from the limited visibility and accessibility necessary 

for characterization. Both of these issues are thus attempted in this research work.  

 

An investigation on micromirrors with various actuations and suspensions is carried out, 

with more attention on the micromirrors with compliant suspensions, electrostatic 

actuation and capable of torsional out-of-plane motion due to their distinct advantages 

such as the low resonance and the low drive voltage. This investigation presents many 

feasible modeling methods for prediction and analysis, aiming to avoid the costly 

microfabrication. Furthermore, both linear and nonlinear methods for structure and 

electrostatics are all included. Thus, static and dynamic performances of the proposed 
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models are formularized and compared with those from FEA (Finite Element Analysis) 

simulation. The nonlinear modeling methods included in the thesis are Pseudo Rigid 

Body Model (PRBM) and hybrid PRBM methods for complex framed microstructures 

consisting of compliant beam members.  

 

The micromachining technologies available for the desired micromirrors are reviewed 

and an SOI wafer based micromachining process is selected for their fabrication. Though 

the fabrication was executed outside of the institution at that time, the layout designs of 

the micro-chips for manufacture have included all related rules or factors, and the results 

have also demonstrated the successful fabrication.  

 

Then investigation on non-contact test methods is presented. Laser Doppler Vibrometer 

(LDV) is utilized for the measurement of dynamic performances of proposed 

micromirrors. Two kinds of photo-sensing devices (PSDs), namely, the digitized PSD 

formed by CCD arrays and the analog PSD composed of a monolithic photosensing cell, 

are used for static test set-ups. An interferometric method using Mirau objective along 

with microscope is also employed to perform static tests of the selected micromirrors. 

Comparison of the tested results and their related theoretical results are presented and 

discussed, leading to a conclusion that the proposed hybrid PRBM model are appropriate 

for prediction or analysis of compliantly suspended micromirrors including issues arising 

from fabrication tolerance, structural or other parametric variations.    
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Kmsi   -   A member stiffness matrix in the global Cartesian or structural member stiffness; 
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CHAPTER 1: INTRODUCTION 

  

1.1 MEMS and Optical MEMS 

 

It is well known that MEMS (Micro-Electro-Mechanical Systems) are derived from the 

advances in micromachining processes achieved for fabrication of silicon based 

microelectronic integrated circuits (IC) that is growing all the way from the low scale IC 

(a few components on a chip) to presently the ultra-large-scale IC (ULSI) that has more 

than 10,000 electronic components per chip. Historically, the first IC chip was fabricated 

in the late 1950s [1], and the first MEMS, the silicon based piezo-resistive diaphragm for 

pressure sensing, was reported only a few years later in 1960s by researchers from 

Honeywell [2]. The first movable MEMS is an electrostatic micro-motor developed in the 

1980s [3], which demonstrated the great progress in micromachining of complex MEMS. 

Then the digital micromirror device (DMD) applied for projection displays and the first 

micro-accelerometer for the automobile air bag system were carried out successfully by 

Texas Instruments and Analog Devices, respectively, in the 1990s [4, 5]. Then since the 

past decade, MEMS technology has experienced very rapid growth due to the great 

demand of miniaturization from optical fiber telecommunication and other optics related 

industries. 

 

The miniaturization trend of MEMS is reported approaching toward the nano scale due to 

the advancement in research on sub-micrometer fabrication [6] and in NEMS (Nano-

electro-Mechanical Systems). On the other hand, the miniaturization capability has 
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enabled a MEMS chip to be integrated with conditioning or preprocessing circuits on the 

same substrate, chip or wafer, which results in a further compactness in dimensions. The 

conventional MEMS chips with size of a few square millimeters can thus be upgraded to 

a higher functionality level such as the Lab-on-a-Chip or Micro Total Analysis Systems 

(μTAS) [7, 8]. Such devices behave as independent systems and execute the expected 

perception or actuation on its own.  In other words, due to miniaturization, the new 

generation MEMS can be regarded as an integration of microelectronic circuits with 

various sensing or actuation mechanisms. 

 

Unlike IC chips that only consist of a lot of electronic devices and circuits in micro-scale, 

MEMS are originally constructed by both mechanical components and the electrical leads 

for external connection. These mechanical components can be beams, bridges, plates, 

gears, tubes, diaphragms, springs and etc, all in micro-scale [9]. These mechanical 

components work with electrical actuations or other sensing and actuation mechanisms 

such as optical, fluidic, thermal, magnetic, piezoelectric and piezoresistive to fulfill 

expected functions [10]. Thus MEMS devices are actually machines or systems in micro 

scale, which is one of the reasons it is called Microsystems in Europe and Micro-

machines in Japan, respectively [11].  

 

Though a variety of mechanisms have been applied in MEMS research and development, 

the majority of commercially successful MEMS in recent years are optical MEMS or 

MOEMS (Micro-Opto-Electro Mechanical Systems). These include various optical 

switches, cross-connects, projection displays and other MEMS devices involved with 
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optical sensing, actuation and imaging. If classified by the dominant working principle of 

transduction, MEMS can be such defined as it uses electrical transduction technique, and 

MOEMS is then defined similarly as it utilizes not only electrical transducing but also 

optical transduction techniques [12]. Moreover, other MEMS devices such as the inertial 

sensors for accelerometer [13], gyroscope [14], hydro-phone [15] and geophone [16] 

have also involved with optical transducing techniques, which can also be classified into 

the category of optical MEMS. Further, there have appeared recently the optical MEMS 

devices that combine electronics with microfluidics, fluorescence, photonics and other 

disciplinary principles for biological, medical and space applications. Examples of such 

research or developments can be found in the recent literatures [17-23]. No matter how 

many disciplines are involved in MOEMS devices, the two basic components or 

functions, perception or actuation and microfabrication, are the skeleton to construct the 

MEMS technology.  

 

1.2 Optical Micromechanisms 

 

As mentioned, optical MEMS refer to MEMS that utilize at least a kind of optical 

transducing principles or MEMS that can be applied in optical fiber telecom or optical 

network datacom. The typical features of MEMS, given to micro size of the devices, can 

be listed apparently as invisible to our naked eyes, the fragility by mechanical contacts or 

manual operations, and the susceptibility in performance variation by ambient conditions. 

These have lended the popularity to optical non-contact tests for MEMS characterization 

and thus also to optical MEMS.  
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Taking advantages of non-contact sensing or actuation, optical micromechanisms are 

exploited and combined with other micromechanisms in most MEMS devices recently. A 

list of optical non-contact sensing mechanisms for MEMS [24] includes but does not 

limit to 1) reflection such as the micromirrors for projection displays [25-27]; 2) 

diffraction such as the grating light valves for high resolution display [28]; 3) refraction 

such as the waveguides in the integrated optics for light propagation between dielectric 

microstructures and light sources [29]; 4) interference used for phase modulation and 

interferometry [30, 31]. In general, optical micromechanisms can be based on light 

intensity, wavelength and phase for sensing, and photothermal or photomechanical 

actuations [12]. Photothermal actuation is realized by converting optical energy into heat 

through light absorption by an optical media and the heat is then conducted to expand or 

deform an active component in the structure. Instead, photomechanical actuation is a type 

of direct actuation using photo-generated charges to induce stress variation along the 

surface or the bulk body of a silicon component in MEMS. As size goes down to nano 

scale, optical actuation has more advantages in applications such as nanotubes, which is 

beyond scope of discussion [32].  

  

Light intensity based sensing technique works based on light energy that is detected or 

received by a photodetector. Light intensity can be easily affected by the reflecting 

surface, air space, and optical conducting media between light source and photodetector 

to propagate the light signals. The received light intensity and its variation can indicate 

the mechanical movement of the target. An array or a matrix of photodetectors or photo-

transistors can thus perform realtime measurements of acceleration or mechanical 
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movement when it is integrated with MEMS chips [33, 34]. Based on the previous 

classification, both reflection from an optical reflecting surface and refraction through an 

optical media except air belong to light intensity based sensing techniques. Meanwhile, 

diffraction through grating and fluorescence is a kind of wavelength based method. 

However, interference or interferometry is a kind of optical phase based techniques. This 

method is often utilized to detect or measure nano-scale displacements or profiles in high 

precision and can be applied in a high temperature environment (up to 700°C) [12].  

 

Due to the relatively large size of MEMS, direct optical actuation can not provide enough 

energy to fulfill a desired actuation. This is the reason that optical based sensing 

techniques are more popular in MEMS applications for perception instead of actuation. 

Actuation of MEMS is mostly realized through non-optical mechanisms. Optical MEMS 

is actually the micro device that utilizes optical sensing with or without non-optical 

actuation. This will be introduced in the following section.  

 

1.3 Optical MEMS Actuation 

 

As mentioned, MEMS encompass a wide variety of micro-devices including MOEMS. 

However, there is another more specified classification based on applications. For 

example, RF MEMS is MEMS working in radio high frequency [35]; Bio-MEMS is 

intended for biological applications; Inertial-MEMS are capable of sensing inertial forces 

or their actuations are performed by inertial forces; and optical MEMS is the MEMS used 

in optical engineering. Due to MEMS interdisciplinary feature, this classification does 
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not specify clearly any sensing or actuation mechanisms. Optical MEMS involves optical 

physics for sensing and also other domains of actuation [36-38]. Sensing and actuation 

are sometimes related each other in MEMS to fulfill an operation. In order for effective 

sensing, non-active actuation is needed for transduction. And there is no difference in 

actuation of MEMS and MOEMS.  

 

Movable MEMS have parts in structures that are designed such that they are able to be 

actuated and perform mechanical movement. In other words, the movable MEMS can be 

actuated by a physical domain for in-plane or out-of-plane motions, though ranges of 

motions are very limited due to the confined spaces and micro-sized structures. In most 

cases, sensing function of a MEMS device containing movable parts is realized by 

reading the signals converted or transduced from the movement or actuation of movable 

parts in MEMS. The main kind of actuations is strictly a mechanical movement to 

execute a final task such as grasping and rotation. Therefore there exist two kinds of 

actuation, that is, the actuation for perception and the actuation for mechanical operation. 

There are a lot of examples for the second kind of actuation in optical MEMS, such as 

micro-switches, micro-scanners, optical-cross-connects, and etc. There are also a few 

examples of actuation for perception, such as micro-accelerometers, the inertial micro-

sensors. And in recent years a few types of MEMS that can execute complex tasks like 

micro-robots which can move in a limited space without tethers [39, 40] were reported. 

 

Due to mechanical fragility, behavior of MEMS is detected by using a non-mechanical 

contact principle, such as optical, piezoelectric, piezo-resistive or pyroelectric physics. 
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Similarly, actuation of MEMS or optical MEMS can be fulfilled by electrostatic, 

piezoelectric, electro-thermal, photo-thermal, photo-mechanical methods, of which 

electrostatic actuation is the most popular. It is widely employed in those movable 

MEMS that consist of parallel plates where the relative movement between a pair of 

conductive electrodes can be performed due to an attraction induced by the electrical bias 

applied on the pair of plates. The attractive or pulling force thus generated is proportional 

to the square of the electrical bias but is inversely proportional to the square of the 

distance between the two plates, resulting in high nonlinearity of the attraction force. 

Electrostatic characteristics and corresponding phenomena can be found in [41-43]. The 

main advantages using electrostatic actuation for optical MEMS include easy fabrication, 

fast response, capability of out-of-plane motion, less energy consumption, easy control, 

and beam reflection tunability. Examples of MEMS electrostatic actuation can be found 

in micro-resonators, optical switches, bistable micro-relays, torsional micromirrors, 

combdrive micromirrors, micro-valves, micro-accelerometers, micro-geophones, micro-

gyros, and micro-seisomometers, just to name a few [13-16, 44,45]. 

 

As mentioned in previous section, both photothermal and photomechanical actuations 

have not received much attention because of their reduced capability in MEMS actuation. 

In the other hand, although piezoelectric materials have been widely applied in 

conventional instruments, piezoelectric actuation to fulfil a required motion in MEMS 

was not recognized in the past century. Moreover the material is sensitive to the ambient 

temperature and it may malfunction or errors may be performed. If such a principle is 

used as a piezo-sensing element, a complex conditioning circuit is needed to match the 
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high output impedance in order to process the signals. However, this situation has been 

recently reconsidered given the achievements in microfabrication especially the SOI 

(silicon-on-insulator) based micromachining. A large displacement range of actuation can 

be performed by using piezoelectric material and framed microstructures in MEMS with 

low drive voltage [46-48]. Similarly, given the availability of surface micromachining, 

electro-thermal micro-structures for a desirable actuation could be created in which they 

usually take the form of stacked or laminated structures. Heat is generated when an 

electrical current passes thorugh a resistor layer, and deforms the other laminated 

structure at this location. A typical advantage of using electro-thermal actuation is that it 

needs very low voltage to drive, as compared with either piezoelectric or electrostatic 

actuation [49-51].  

 

1.4 SOI-Based Microfabrication  

 

Realizing the aforementioned optical MEMS mechanisms for perception or actuation at 

the micro scale relies on the achieved microfabrication techniques. Thus in the following 

sub-sections, silicon micromachining is first introduced and then the main features and 

advantages of SOI wafers for optical MEMS fabrication will also be reviewed.    

 

1.4.1 Silicon Micromachining 

 

Silicon based bulk micromachining was first reported in the fabrication of 

micromechanical parts in the 1970s [52]. Then both additive processes that refer to 
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surface micromachining techniques and subtractive processes that mainly refer to bulk 

micromachining processes have been widely employed since 1980s. Some new 

techniques and tools such as anodic bonding, high-aspect-ratio lithography, electro-

chemical-plating, ion beam, electron beam, laser beam, etc, have also added more 

capabilities to this planar micromachining technology [53-55].  

 

Summarily speaking, chemical vapor deposition process (CVD), sputtering, evaporation, 

spin-on application, plasma spraying and plating are some of the individual processes in 

surface micromachining. Instead, plasma etching, reactive-ion-enhanced (RIE) etching, 

deep reactive ion etching (DRIE), wet chemical etching and electrochemical etching are 

mainly intended for bulk micromachining. Etch-stop is used to control the depth of 

etching, which can be realized by doping, i.e., through thermal diffusions including pre-

deposition and drive-in and ion implantation by bombardment of the dopant ions [56].  

 

Surface micromachining processes produce thin layers (for example ~2�m thick) for 

MEMS structures. It is difficult for surface micromachining techniques to yield relatively 

large micro-plates with satisfactory uniformity of thickness and acceptable flat surface. 

Unfortunately these two features are indispensable for efficient optical reflection. 

However, it can be accepted for fabrication of small body micro-devices and various 

approaches have been employed to improve their performance. Combinations of different 

techniques for fabrication of complex MEMS have become a necessity [57]. Though it 

has very limited capabilities, MUMPs (Mult-User MEMS Processes) is the first multi-



10 
 

user commercial process in surface micromachining. There are a few typical complex 

MEMS devices that were made by MUMPs [58].  

 

For large size MEMS fabrication, bulk micromachining processes are involved. Etch 

holes on structural layers are usually required in order for fast removal of sacrifice layers, 

which may affect optical performance. In order to overcome this defect, however, the 

aforementioned etch-stop techniques are employed during production of silicon wafers. 

The uniformity of layer thickness and material composition as well as flatness of large 

reflective surfaces can be acquired by epitaxial growing of single crystal silicon on 

substrates or during wafer production. The structural layer thickness and the sacrificial 

layer thickness for cavities are controlled either by grinding, etching with etch-stops, or 

by anodic bonding or flip-chip bonding. This kind of fabrication processes is called SOI 

based MEMS fabrication technology, which starts from wafer preparation.   

 

1.4.2 Silicon-on-Insulator (SOI) Wafers 

 

The silicon-on-insulator (SOI) wafer refers to a stacked structure that is made of a thin 

layer of single-crystal-silicon (SCS, also called structural layer or device layer), a layer of 

electrical insulator, and a silicon substrate. SOI wafers can be classified into thick and 

thin-film types depending on different thicknesses of structural layer. The thin-film SOI 

wafer refers to thickness of the device layer less than 1.5�m [59]. Originally they were 

used for IC production in order to reduce parasitic capacitance in IC [60]. Other 

advantages include the improved isolation, higher circuit speed, lower power 
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consumption, compactness and compatibility with the existing IC fabrication processes 

[61-63]. Thereafter, SOI wafers with thick structural layers have also received a lot of 

attention and gained very successful applications in optical MEMS fabrication.  

 

As mentioned in [64], SOI wafers can be made using either wafer bonding or epitaxial 

SCS growing. The manufacture involving wafer bonding is a more popular method. 

Figure 1.1 shows a cross-section of this kind of SOI wafers. The handle silicon layer (the 

temporary silicon layer or the second substrate) at the topmost can be conveniently 

bonded with the first oxidized silicon substrate. A thin SCS layer with a desired thickness 

is formed by cutting and fine grinding of the handle silicon layer. After removal of the 

handle layer, the device layer is exposed to become the topmost layer of the stacked 

structure, whereas the insulator layer directly underneath it provides electrical isolation 

between the top device layer and the bottom. The insulator layer can be made of silicon 

dioxide (oxidization by doping or implanting), glass or other insulation materials such as 

sapphire and zirconia [65]. According to wafer flats and dopants, SOI wafers can be of P-

type or N-type with <100> or <111> crystal orientations. SOI wafers with N-type and 

Silicon Substrate Silicon dioxide layer 

Thin SCS layer 
or device layer 

Figure 1.1 The cross-section of a stacked SOI wafer with removal of the silicon 
handle layer  

Silicon handle layer 
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<100> orientation of single crystal silicon have identical chemical and physical properties 

including Young’s modulus on all lattice planes.  

 

1.4.3 SOI-Based MEMS Fabrication 

 

The thick-film SOI wafers, due to uniformity, thickness, flatness and low roughness for 

device layers, greatly enhance both optical and mechanical performances, suitable for 

optical MEMS fabrication. As comparison, these bonded SOI wafers have demonstrated 

their advantages over bulk silicon wafers [66, 67]. Except the above mentioned 

advantages, other benefits include the superior silicon structure, low internal stress, good 

reproducibility and feasibility in both sizes and structures, and fewer masks needed in 

micromachining. SOI MEMS have also advantages over surface micromachining in that 

higher aspect ratio microstructures, better mechanical properties, pure SCS composition, 

while a wider range of thickness for silicon device layers are achievable.  

 

Deep reactive ion etching (DRIE) is the critical step in SOI based MEMS fabrication.  A 

typical process of SOI wafer based MEMS fabrication is illustrated in Figure 1.2. The 

first step is the deposition and photolithography patterning of the photoresist layer. The 

patterned photoresist layer thus becomes a mask for dry-etching of the underneath silicon 

device layer using deep reactive ion etching process (DRIE). The silicon dioxide layer 

herein also serves as an etch stop for the DRIE process. The sacrificial layers, i.e., the 

photo-resist and the silicon dioxide layer can be removed by oxygen plasma etching and 

hydrofluoric acid (49% concentration of HF), respectively. Metallization of the surfaces 
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on both the device layer and the bottom trenches is performed as the final step of the SOI 

MEMS fabrication process, which is in a purpose to increase the conductivity and 

reflectivity of the MEMS devices.  

 

Silicon Substrate 

Silicon Substrate 

Silicon Substrate 

Silicon Substrate 

Silicon Substrate 

(a) 

(b) 

(c) 

(d) 

(e) 

SOI wafer 

Patterned 
photo-resist 

DRIE  

Sacrificial 
layer removal 

Metal film 
deposition 

Figure 1.2 A typical process for SOI-MEMS fabrication: (a) The process starts 
with an SOI wafer that is made of layers of silicon, silicon dioxide and silicon 
substrate; (b) The photo-resist layer is deposited and patterned; (c) The SCS layer 
is deeply etched using DRIE process; (d) The removal of the sacrifice layer; (e) 
The top surfaces of microstructures and the exposed surfaces on the bottom 
substrate are coated with metal for better electrical conductivity and optical 
reflectivity. 
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The versatility in thickness for both silicon dioxide layers and device layers can provide 

more solid structures and much thicker free space for movable components. Among these 

movements, out-of-plane motion is often desired for light reflecting in MOEMS devices, 

such as optical cross connects (OXC), optical scanners, micro-accelerometers, and etc. 

Although there are quite a few bottle-necks to produce fully movable 3D MEMS, MEMS 

capable of out-of-plane motion for light reflecting is one of the hot topics of research in 

optical MEMS. There is a popular word - micromirror- to name after all of these devices 

which will be given a review in the next section. 

 

1.5 Micromirrors 

 

A mirror usually reflects an incident light according to a schedule towards a target or a 

surface through manipulation of the reflecting surface. Research on micromirrors started 

in the late 1970s and early 1980s [68]. Like the mirrors in macro optical systems, 

micromirrors in MEMS are also used for position measurement, imaging or switching via 

sensing of light route, phase, intensity and wavelength. With advances in IC and MEMS 

fabrication techniques achieved in the past decades, SOI (thin or thick silicon film) based 

optical MEMS especially micromirrors have gained great success in various applications 

such as optical fiber telecom and biomedical endoscopy [69-72]. Micromirrors are hence 

considered the leading technology for optical MEMS. 
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1.5.1 Classification of Micromirrors 

 

A lot of micromirror configurations have been developed in the past decade. Though light 

reflecting surfaces can be made on non-movable components, most micromirrors in literature 

refer to movable micromirrors. For better understanding, these micromirrors can be classified 

into two groups, that is, micromirrors capable of in-plane motions (two lateral Cartesian 

coordinates) and micromirrors capable of out-of-plane motions. Since out-of-plane motions 

are the most interest, out-of-plane micromirrors can further be divided into three types: out-

of-plane augular torsion, vertical translation and their combination.  Another classification 

was reported in [73] in which these out-of-plane motion micromirrors are classified as 

deformable micromirrors, movable micromirrors, piston micromirrors and torsional 

micromirrors. Deformable micromirrors deform reflecting surfaces like a membrane [68], 

whereas movable micromirrors can move or deform in three dimensions (3D), that is, out-of-

plane and in-plane motions [74]. The piston micromirrors are actuated to move up and down 

vertically and have two stable positions, and are also called bistable micromirrors [75].  

 

1.5.2 Actuation of Movable Micromirrors 

 

All movable micromirrors must be integrated with some actuation mechanism capable of 

either in-plane or out-of-plane motions. Usually two mechanical routines are adopted for the 

movements, that is, either through elastic deformation of structural components or the 

relative kinematic movements of structural components around pivots, latches, or along slots 

or sliders. The MEMS devices capable of out-of-plane kinematic movement are more 
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complicated to fabricate and may involve micro assembly processes [76, 77]. Abrasion and 

contact fatigue accumulated on contact surfaces due to repetitive operation will damage these 

microstructures by themselves [78-79]. The use of the integral capabilities of the mechanical 

structures to fulfill the desired kinematic motions is more complex. Other non-mechanical 

examples for out-of-plane motion of micromirrors can be found in [80-82] where mercury 

drops or liquid-metal pivots in micro size are employed to realize the out-of-plane motion of 

the attached micromirrors based on surface tension or electrowetting effect.  

 

However the microstructures with minimal or without manual assembly are more popular 

and easier to fabricate even though they have to include a large number of beams and plates 

in the structures to achieve the targeted deformation, actuation or structural resonance. The 

micromirrors actuated through internal elastic deformation are well compatible to the 

micromachining processes based on SOI wafers. The whole device is one single part in most 

cases. No or very unchallenging assembly work is required. Given the elastic restoring force 

or torque, no extra mechanism to recover to its original position after release of actuation is 

required. As previously mentioned, actuation of these micromirrors can be performed by 

comb-drives or parallel plate electrostatic [83, 84], piezoelectric [18, 46-48, 70], electro-

thermal bimorph [51, 74] and electromagnetic [85]. No matter what kind of actuations 

involved in such elastically movable micromirrors, their structural counteracting or restoring 

mechanical properties such as stiffness can be defined by their geometries and specific 

physical parameters [86]. Given the vast diversity of micromirrors built so far, only some 

typical examples that are fabricated using bulky SOI wafers and contain light reflecting 

micromirrors are introduced in the following section. Special attention will be given to 
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those having electrostatic actuation and performing out-of-plane motion, which is the 

dominant approach in recent years in optical MEMS [87-93]. A more detailed 

classification of out-of-plane motion micromirrors and the corresponding examples are 

given below.  

 

1.5.3 Out-of-Plane Deformable and Translation Tunable Micromirrors 

 

The first two micromirror devices using deformable micromirror arrays for projection 

display and light modulation were described in 1980 and 1983, respectively [68, 94] 

where mirror arrays are formed by a sheet of thinly metalized polymer stretched over a 

supporting grid structure. The static deflection or actuation for the arrays is realized by 

electrical bias applied between the sheet and the bottom electrodes. With deformations at 

individual mirror arrays under diferent electrical voltages, an incident light is modulated. 

Another typical example of deformable micromirrors used for adaptive optics is shown in 

Figure 1.3 [95], in which SU-8 photoresist [96] with gold coating is used as reflecting 

mirrors. The significant advantage of using polymer as a structural layer for mirrors is its 

low Young modulus which requires low voltages to be driven electrostatically. This 

deformable membrane is also called an optical cross connect (OXC) fabric. After 

deformed, the total membrane has some curve across the surface. There is another kind of 

out-of-plane micromirrors with uniform vertical displacement for the whole mirror plate. 

The mirror can be held at a position under an applied voltage, which means it is tunable 

in translational bending. An example of these micromirrors can be found in [97].    
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1.5.4 Out-of-plane Piston Bistable Micromirrors  

 

The piston motion of a micromirror as recently reported is realized by electrowetting effect 

of a liquid-metal drop (LMD) with a low voltage applied [98]. The reflecting micromirror is 

diced and placed on the top of a mercury droplet. A voltage as low as 2V is applied between 

the micromirror at the top of the droplet and the electrode on the bottom substrate, in which 

it deforms the height of the droplet, thus realizes the translational piston motion of the 

micromirror. The characterization of the LMD-pivot micromirrors were performed in [99], in 

which the snap-down voltage (pull-in voltage), frequency response, laser beam steering, light 

signal switching, survival of mechanical shake and operation cycle life are discussed. 

Resonant frequency of this kind of micromirrors drops in a range from 0.01Hz to 3.0kHz, 

with piston amplitudes from about 10 �m to the maximum 60�m for a micromirror at the 

size of 1mm×1mm×20�m for mirror plate and the diameter of 500�m for the  mercury 

drop [100, 101]. However, it is the first development in which piston motion of the 

micromirrors is realized through electrostatic comb-drive where a group of movable 

Figure 1.3 The schematic view of a deformable micromirror for applications in the 
field of adaptive optics (Adapted from [95]).   
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comb fingers attached with a micromirror pair with the determined quantity of fixed 

comb fingers to perform electrostatic actuation [102]. The composite beams having 

various electrothermal bimorph structures have also been employed in micromirrors to 

drive for piston motion [103, 104]. 

 

1.5.5 Out-of-Plane Torsional Bistable Micromirrors 

 

In 1990s an electrostatic controlled, MEMS based 800×600 micromirror matrix was 

successfully incorporated into commercial projection display products [105~106]. 

Though this type of devices is actually composed of rigid bistable micromirror arrrays for 

optical cross connect (OXC) applications, it is also called Digital Micromirror DeviceTM 

(DMD) by the developer. Figure 1.4 illustrates the schematic structure for a pair of 

individual micromirrors and SEM pictures for a portion of the micromirrors at “on” or 

“off” positions (+10° or -10°) [105, 107]. Each micrcomirror works independently as a 

bistable on-off switch for optical beam transmission. The structural layer for switching 

operation is located under the reflective micromirror where it is driven by the electrical 

bias applied between one of the two symmetric side plates on this layer and its opposite 

electrode on substrate. The whole structure is symmetrically supported by the torsion 

hinge along the symmetry axis.  
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Another type of torsional bistable micromirrors for OXC was reported in [108, 109]. 

They are composed of torsional micromirrors capable of 90° torsional rotation along the 

torsion axis. Dimensions for an individual micromirror in one of these two reports are 

500×250×20�m3 (length×width×thickness) with a pair of 6�m–wide torsion beams at a 

length of 350�m and a thickness of 0.4�m. An SEM picture for the micromirror is shown 

in Figure 1.5. Supporting for the suspended micromirror is a pair of slim beams attached 

to the micromirror and the substrate at their ends. The micromirror is pulled down by the 

electrostatic actuation and rotated to some angle along its torsion axis. The operation 

switches the mirror to its “on” status and a light beam is then reflected by the mirror. Due 

to the large gap, a rather high drive voltage is needed for the 90° angle switching 

operation. Though a low resonant frequency may be obtainable, actuation may cause 

Figure 1.4 The schematic views of DMDTM matrix: (a) a view of two DMD pixels 
in opposite tilting states; (b) the SEM pictures of the DMD arrays in -10° (the 
upper) and +10° (the lower) positions (Adapted from [105, 107]). 

(a) (b) 
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nonnegligible vertical bending due to the long and slim beams. An extra trench and a 

vertical electrode are added to the parallel plate micromirrors in order to reduce the drive 

voltage (around 50% less) and to stop the micromirror at exact 90° vertically after it is 

electrostatically actuated [109].       

 

1.5.6 Out-of-Plane Torsional Micromirrors 

 

A few torsional micromirrors actuated by parallel electrostatic field and capable of 

angular tuning before they are snapped to the opposite electrode by a relatively large 

voltage are reported. Figure 1.6 illustrates an SEM picture of a symmetric torsional 

micromirror, in which bending deflection due to the thin torsion beam can not been 

neglected [110]. The micromirror fabricated using three-layer-polysilicon surface 

micromachining process yields a 100�m×100�m mirror surface and is suspended by a 

short bridge attached to the substrate through two torsion beams of 65�m×1.55�m. The 

snap-down voltage of the micromirror in a gap of 2.75�m is tested to be around 17.4V. 

Figure 1.5 SEM picture of an individual micromirror in an OXC array (Adapted 
from [108]). 
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The etched holes on the micromirror and thin structural layers confined by this 

micromachining process limit its optical performance and the applications. However, the 

robust torsional micromirrors with large gap (>10�m) and dimensions (hundreds to a 

thousand microns) have been reported in the past decades yielded through SOI based 

microfabrication [111-114]. The out-of-plane movable micromirrors can be held at a 

desired angle before it is snapped down. Applications of these tunable torsional 

micromirrors include but not limit to beam steering, scaning operation, tunable reflectors, 

optical switch ports. Their performance largely depends on the range of torsion motion 

and the magnitude of drive voltage. According to statistics from recently published 

literature, out-of-plane torsional micromirrors have received the most attention and 

continue to constitute the main stream of research in optical MEMS. In this consideration, 

structural features for a few recently reported micromirrors will be briefly analyzed in the 

next section.   

 

Figure 1.6 The SEM picture of a symmetric micromirror with two very thin 
torsion beams in between the two half mirrors (Adapted from [110]). 
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1.6 Structure and Compliant Suspension of Micromirrors  

 

As above mentioned, most micromirrors are movable with out-of-plane motion. This 

represents for the main type of micromirror designs. They all contain a suspension to 

support the movable mass or the mirror plate. Although it can be made of mechanical or 

liquid [98], the suspension for an out-of-plane torsional motion micromirror is usually 

realized mechanically. The stuctural design of micromirrors relies heavily on the 

availability in 3-D micromachining. Since there is no much room to improve or modify 

the micromirror plate, most research focus on the suspension design and approach for 

improvement. An ideal suspension design for a torsional micromirror is the one that can 

rotate and stay still at any desireable rotation angle with low power consumption, low 

drive voltage and fast response. This has remained a huge challenge for the researchers 

because of the limitations in the present 3-D micromachining. However, a few 

approaches on new structure of torsional micromirrors have been performed based on the 

present level of microfabrication. Their structural characteristics are briefly reviewed as 

below. 

 

Laterally actuated torsional micromirrors using SOI/SOI wafer-bonding process was 

reported in [115]. Here, a lateral mechanical transfer mechanism combined with 

electrostatic comb drive in structural design and SOI plus SOI bonding process in 

fabrication concept are used to build a robust micromirror capable of steering or scanning 

operation within a range at a potential of about 70V. Another typical torsional 

micromirror was reported in [116], where the torsional actuation of the micromirror is 
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realized by the symmetric lateral comb-drives. Buckling problem for the micromirrors is 

solved by the localized plastic deformation of silicon torsion beam that is resulted from 

passing an electrical current through the selected portion in the structure. The prototyped 

micromirror is able to rotate up to an angle of 50.9° under a driving voltage of 30V DC 

plus 14V AC and has proved a very long life expectancy.  

 

An in-plane thermal actuator under an applied DC voltage of around 13V performs 

torsion of 5.2°~6.5° for the rounded micromirrors at a size of a few hundred microns as 

reported in [117]. Another typical torsional micromirror design has been also reported 

from the same research group, in which both electrothermal and electromagnetic 

actuators are utilized for actuation of the discussed torsional micromirrors [118].   

 

A novel approach for a tilting micromirror was implemented in the form of a circular 

micromirror suspended by four helical beams and rested on the peak of a micro-pyramid 

located underneath the central point of micromirror. The micromirror can be 

electrostatically pulled to tilt along the peak at around ±30°. The micromachining process 

of the pyramid is simply based on the anisotropic etching nature of the silicon wafer and 

the etchant [119]. Diameter of the fabricated micromirror is 75�m, 2�m thick, and width 

of each helical beam is 8�m while the gap of the micromirror with the bottom electrodes 

is 30�m. The drive voltage for this micromirror is around 200V. 

 

Aiming to increase out-of-plane motion of the micromirrors, the report in [120] presents a 

pre-bent mirror plate before removal of the sacrificial layer, leading to a non-flat mirror 
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plate. A very different electrostatic actuation mechanism is reported in [121], in which a 

pair of electrodes is attached on a U-shape suspension beam for the micromirror. This 

pair of electrodes can attract each other under an electrical bias thus to rotate the 

micromirror by a certain angle, while a large angle of torsion of the micromirror may be 

resulted if multiple pairs of electrodes are involved in the structure. There are many other 

typical stuctures and materials for the torsional micromirrors together with various 

actuation mechanisms for various applications while many more are under development.    

 

From the aforementioned examples, suspension compliance for a torsional micromirror 

largely depends on design and fabrication of its compliant micro-mechanism. This refers 

to an elastic and continuous mechanical structure in micro-scale having flexible flexures 

for suspension and lumped masses of mirror plates to transfer the desired motion by 

actuation. Compared to a pivotal micro-structure that contains two or more continuous 

solid members in it, the main advantages of compliant micromirrors include easier to 

fabricate, no micro-assembly, no internal wear and friction and uniformly distributed 

compliance, which is associated with less power consumed, lower drive voltage and large 

out-of-plane motion.  

 

Compliantly suspended micromirrors have applications in low frequency domains and 

inertial MEMS such as micro-accelerometers, geophones, micro-relays, and microrobots. 

Due to their delicate structures owing to availability of SOI based micromachining in 

recent years, MEMS with compliant suspensions have started to receive more attentions 

[122-124]. Typical examples include compliant bistable micromechanisms [125, 126] 
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and microactuators with lengthy beams for suspensions of their proof mass microplates 

[127, 128]. Other examples of compliant MEMS can be found in [129-131]. Although in 

the above-mentioned examples the suspension designs are not compliant enough, they are 

suitable in solving or alleviating problems of wear, friction, backlash or hysteresis, and 

thus offer greater versatility.  

 

Since the movable micromirrors are mainly mass-spring structures, the suspension 

mechanism for a mass component dominantly determines its mechanical performance 

such as the stiffness thus the resonance of the structure. However, neither the size of 

micromirrors or proof mass plates can be increased unlimitedly nor the flexibility or 

compliance of a mechanical suspension can be greatly enhanced. There exists a limit in 

compliance of suspension structures due to fabrication limitations. Modeling and 

characterizing of such kind of complex compliant microstructures may be quite 

challenging. Therefore in the next section, characterization methodolgies for torsional 

micromirrors having suspension mechanisms and electrostatic actuation are briefly 

reviewed and discussed.       

 

1.7 Characterization of Torsional Micromirrors 

 

The sophisticated micromachining technologies available at the present time mainly 

produce the planar microstructures consisting of two essential parts, that is, the planar 

beams and the planar mass plates, though they can be conceived of multiple layers by 

means of bonding or deposition. The rigid micromirrors are usually suspended by short 
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hinges or directly clamped to substrates at their edges. In comparison, the relatively 

compliant suspension is obtained through adding either longer beams or more mass to the 

mirror or mass plates, thus resulting in a frame-type suspension for the masses. 

Performance charactization and prediction of these micro-frames will become difficult if 

more compliant members are involved in the microstructure. Thus among the two stages 

of MEMS research, modeling is more accepted and more economical due to the 

expensive individual fabrication owing to the micro-scale dimensions whereas testing is 

utilized to verify or validate modeling or prediction. However modeling is tricky as it 

requires modeling both the MEMS stucture and the corresponding fabrication process. If 

anything in the fabrication process is changed, the entire model needs to be modified 

accordingly. And the tested results obtained during characterization tests help improving 

the model design and the fabrication process design. A lot of methodologies used in 

modeling and testing of the beam or frame-suspended micromirrors have been performed 

in the past decades. A brief introduction to these characterization methodologies is 

hereafter provided.  

 

1.7.1 Modeling Methodologies 

 

There are two major approaches in modeling methodologies for framed MEMS. These 

are the End-Effect approach based on computerized topology and optimal design for the 

desired frames [131] and Flexure-Synthesis approach based on the assumed structures 

and parameters that target directly to a specific application. From user-defined inputs or 

force-deflection requirements, the former approach generates topological structures that 
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are hard to fabricate in reality or it may lead to a deadlock without any practical result 

though its output is clearly defined. Moreover this trial-and-error method is also time 

consuming [122, 131-134]. Instead, the second approach is based on the established 

knowledge and experience and natural phenomena of various microstructures and the 

already-well-demonstrated micromachining proceses along with specific materials [135-

138] thus is more acceptable. 

 

Comparatively the Flexure-Synthesis modeling or design approach of compliant MEMS 

mostly deals with familiar and regular micro-structures, such as the rectangular or the 

circular micro-plates and micro-beams. The designed models are easy to understand, 

more predictable and implementable. As is reviewed in [44], this series of characterizing 

methodologies includes conceptual, mathematical, numerical (finite element analysis) 

modeling methods and thereafter various experimental procedures. This methodology has 

gained success in MEMS research in the past years. The essential mechanism in 

modeling the elastic micro-mechanical structures is the energy conservation principle. All 

individual modeling methods such as classic energy methods, stiffness matrix methods 

and finite element methods are based on this mechanism and work with different orders 

of structural discretization to perform analysis or prediction for MEMS with framed 

mechanisms.  
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1.7.2 Testing Methodologies 

 

Due to the micro scale, the currently available test methods can mainly be classified in 

two groups: the non-destruction methods and the destructive methods [139-141]. The 

latter group is normally used for material test or the tests to verify if any performance 

changes on MEMS after they are exposed to harsh condition during post-processing, 

packaging, testing or actual operation. This kind of tests usually involves some 

mechanical disturbers to deflect or touch the test objects. And the detection is based on 

non-contact optical or electrical instruments to sense or pick up the feedback, deflection 

or profile of a microstructure. The disturbers can be a microprobe, a nanoindenter or a 

loading mass [142-146]. These disturbers cannot be used in characterization tests of 

movable micromirrors with compliant suspension due to their micro-size and fragility.  

 

Instead, the non-destructive or non-mechanical-contact test methods employ non-

mechanical disturbers such as electrical bias or current to pull or deflect the test objects 

and non-contact detections to pick up the deflections or changes [147]. Optical 

transducing technology is derived from light transmission and propagation laws such as 

light reflection, refraction or diffraction and thus leads to the testing methods based on 

direct light reflection, interferometry [148-151] and Laser Doppler velocimetry methods 

(LDV) [152-154]. The integrated photo-sensing devices such as CCDs (charge-coupled 

devices) or embedded monolithic photo-sensing cells (or photo-sensing detector-PSD) 

are used to measure position variation of the reflected or refracted light beams. Laser 

Doppler velocimetry is used as a vibrometer to detect resonance properties and vibration 
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spectrum for MEMS devices. These testing methods are also used for surface profiling of 

microstructures and for the measurement of mechanical performances of MEMS. 

Therefore optical non-contact sensing methods together with various electrical or 

electrothermal actuations have become the main stream for MEMS characterization.  

 

1.8 Rationale and Objectives 

 

Based on the above analysis, the main aspects discussed in this thesis are related to 

modeling, design, fabrication and characterization of the micromirrors made of SOI 

wafers, which perform out-of-plane motions and which are electrostatically actuated 

while supported by compliant framed suspensions. The rationale in support of this 

proposition is herein summarized below and then the specific objectives of the research 

are listed thereafter in this section.  

 

Batch fabrication of MEMS greatly cuts down the cost of individual MEMS devices. 

However, modeling, prototyping and experimental characterization are three 

indispensable steps before one can move to a commercial product. Besides the three 

stages, the precise, repeatable and flexible dimension control of micromachining is the 

key to a successful design. The thick device layer SOI wafers not only feature in the 

precise dimensions and uniform material composition along the cross-section but also the 

robust planar structure and flat surface on the device layer according to the introduction 

on SOI wafer production [69-70]. Moreover, the insulator layer in a SOI wafer can be 

easily removed by etching without etching holes. This forms a free space for out-of-plane 
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motion of mass components with their suspension. Very large free space for movable 

components can be created using the flip-chip bonding techniques [155]. The flexibility 

in thickness of the device layer and its free space with the bottom substrate enables the 

SOI-based MEMS in large variety of geometries. The capability thus represents an 

attractive reasoning towards the study of optical MEMS, specifically out-of-plane 

micromirrors in SOI technology.  

 

As a substrate material for IC production, silicon micro-chips including SOI wafers are 

also suitable for building mechanical micro-components given the excellent mechanical 

performance and adaptivity to micromachining. Suspensions made of one or more very 

slim micro-beams are able to support relatively large mass microplates because of material 

strength and the available micromachining techniques. Microbeams of several microns or 

below that are achievable and reliable according to previous investigations [156].  

However, there is a limit in how far the miniaturization can go given the limits in 

microfabrication and the requirements for effective optical transmission. To avoid or 

alleviate such shortages, approaches on various structures made of planar beams and 

plates are needed, in which structural modeling represents the essential work and critical 

for applicable designs.  

 

A compliant suspension needs elaborate modeling and design. Though various 

suspensions in macro size can be utilized for micro mechanical designs, most of them are 

not feasible based on the current capabilities of micromachining. Thus fabricable models 

have to go through the complete process of modeling and characterization. Moreover, a 
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flat and highly reflective surface can be acquired using a relatively thick microplate at one 

hand, meaning a relatively large micro mass plate. Then out-of-plane motion of thick 

microplates will require stronger suspensions. On the other hand, this requires either a 

relatively large drive voltage or a large size of thin plate to be electrostatically actuated. 

Though this actuation has a lot of advantages over other actuation methods (see Section 

1.3), compliant suspensions are necessary for the movable micromirrors. Modeling of 

these micromirrors with compliant suspension is thus focused on reducing electrostatic 

drive voltage and avoiding issues arising from the fabrication such as sticktion and 

structural sinking.  

 

Structural stiffness is therefore one of the main parameters in modeling and 

characterization of suspended micromirrors. Most of out-of-plane movable micromirrors 

are supported by short hinges or beams with higher value of stiffness according to the 

literature [88-93]. However, the serpentine springs consisting of multiple folds of straight 

beam setions are reported [157, 158]. Modeling for practical applications of these springs 

for out-of-plane torsional micromirrors still needs lots of work. Very important aspect in 

this effort is to set up mathematical or analytical models aiming to predict or analyze their 

performances. These models can be numerically solved and virtually tested using the 

commercial FEA (Finite Element Analysis) software. An important aspect of 

characterization in MEMS research is the set up of a proper test-bench for validation of 

the fabricated prototypes. As above introduced, there are a few non-contact optical test 

methods for movable micromirrors such as CCDs or monolithic silicon photodetectors, 

interferometry, and Laser Doppler Velocimetry. The design of the appropriate test bench 
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is usually related to the design and the function of the optical MEMS. However, the proper 

selection of the test procedures and limits is one of the challenges that create the rationale 

of the present investigation.  

 

In consideration of batch fabrication, the commercially available micromachining 

processes are applied for the prototype manufacture. These processes use thick SOI film 

wafers as the base material for the micromirrors in this research. Proper selection of one of 

these processes and proper design of the micromirrors compatible to its fabrication rules 

are essential to the success of a design, and this also represents one of the main contents of 

the research.  

  

In consideration of the above rationale, the research focuses on the study of torsional 

micromirrors with compliant suspensions that are driven by parallel electrostatic 

actuation. Analytical models are etablished and used for prediction of the behavior of the 

torsional micromirrors, and the feasible models are selected and fabricated for 

experimental validation. The test instruments are selected and set up for both static and 

dynamic tests, then results obtained from analytical modeling, numerical simulations and 

the tests are compared. The main objective of the research is to contribute to the 

knowledge about the out-of-plane movable micromirrors with compliant suspensions and 

parallel field electrostatic actuation.  

 

The mirror plate suspended by one or more springs or hinges will rotate or be pulled 

toward its opposite electrode plate in some angle when it is applied by an external non-
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contact mechanical force (such as gravity or an acceleration) or an electrical bias. This 

angular deformation or other displacement is detectable in real-time by means of non-

contact optical sensing techniques. The approach targets those applications that require 

low stiffness such as the angular tuning positioners, scanners, on-off switches or multiple 

optical port switches, projection displays, and the low resonant micro-accelerometers in 

inertial MEMS. The particular objectives are listed as follows:   

• Analysis of parallel electrostatic fields 

• Analysis of framed suspensions for out-of-plane micromirrors 

• Modeling of torsional motions via compliant suspensions 

• Linearization of mathematical models 

• Design and fabrication of compliant torsional micromirrors 

• Experimental set-up for performance measurement using various non-contact optical 

sensing techniques 

 

1.9 Summary 

 

This chapter gives an introduction to MEMS and optical MEMS, optical micro-

mechanisms and optical MEMS actuation mechanisms. Further, it introduceds in details 

the main purpose and the fundamens of the investigation as well as the technical routines 

used to accomplish the research topic. Electrostatic actuation is emphasized to be very 

suitable for MEMS actuation in comparison to other actuations such as piezoelectric, 

piezoresistive, electro-thermal, magenetic, etc. MEMS made of SOI wafers for optical 

applications are the primary focus of the research, thus a brief review of SOI wafers and 
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the main SOI based MEMS process are given thereafter. Robust micromirrors fabricated 

using SOI wafers are the main components in Optical MEMS. Classification and typical 

structures and functions of these micromirrors are given. In order to arrive at such a 

research goal, a review of the literature related to the topic is given. The review indicated 

there is interest but less work has been carried out so far on the compliant torsional 

micromirrors due to the limits in micromachining, though the low resonance inertial 

MEMS are highly demanded. A brief introduction to the methods based on Flexure-

Synthesis algorithm, modeling methods which include the conventional energy method, 

matrix method for framed microstructures and numerical methods are briefly introduced. 

Test methods used for MEMS characterization are also reviewed and non-contact test 

methods using light reflection, interference and Doppler effects are mentioned and will 

be further used in our research. 

 

1.10 Thesis Layout 

 

This thesis is written following the stream of modeling methods, case modeling, case 

micromachining, and characterization. As shown above, the first chapter provides the 

literature review of all related sub-topics such as MEMS fundament, MEMS actuation, 

micromirrors, micromachining for micromirrors, compliant micromirrors and modeling 

and testing methods for MEMS, as well as the rationale and objectives of the research for 

compliant torsional micromirrors with eelectrostatic actuation. 
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The following chapter, Chapter 2, provides in more detail the mathematical methods for 

MEMS structural modeling, especially for the compliantly framed MEMS. This includes 

the conventional energy method and matrix methods used for linear micro-structures and 

Finite Element Methods such as chain algorithm, Pseudo Rigid Body Model and 

combination of linear and nonlinear methods for large deformation or non-linearity of 

framed microstructures.  

 

Chapter 3 gives detail modeling and formulates the process using the four theorectical 

methods for the analysis of the torsional micromirrors with compliant serpentine springs 

and electrostatic actuation. Comparisons between different modeling methods and results 

of the numerical simulation are presented.  

 

In Chapter 4, the detailed micromachining process using SOI wafers suitable for 

fabrication of the proposed micromirrors is presented after a brief review of 

micromachining technologies based on surface deposition and SOI wafers. The layout 

design rules and limits for the micromachining process of the micro-chips that contain the 

proposed micromirrors are introduced and presented. Some fabrication problems are also 

reviewed and finally the final fabricated micromirrors are presented.  

 

Chapter 5 gives an overview of non-contact test methods for MEMS. Further, a detailed 

presentation of every individual test set up using LDV, PSD and interferometry, and the 

results of the tests are presented. Comparisons of data retrieved from the different test 

methods and the results of the numerical or analytical predictions are presented. 
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Chapter 6 gives a general view on the conclusions of the research and lists the 

achievements or contributions of the work. The future work and recommendations for the 

further approach to the proposed topic are also discussed.  

 

1.11 Contributions 

 

The main contributions of this research are listed as follows: 

� Detail analysis on electrostatic actuated torsional micromirrors was fulfilled; 

� Effects arising from large deflections and shear strain were discussed; 

� Structural matrix method was extended to analyze the framed micro-mechanisms; 

� PRBM method was extended to analyze out-of-plane motions of compliant beams; 

� The general formula of stiffness matrix for the planar rotational or classical 

serpentine springs was derived; 

� Structural matrix method was combined with PRBM method to solve framed 

micro-mechanisms that have compliant beams; 

� Three kinds of test benches for static performance were established; 

� Data acquisition and post-processing after tests were developed; 

� FEM modeling of compliant hinges was developed and verified.  

A list of publications is given below:  

1. Jianliang You, M. Packirisamy, I. Stiharu,"Study of an eletrostatically actuated 

torsional micromirror with compliant planar springs" , Journal of Microsystems 

Technologies, Issue 14, No. 1, pp. 7-16, 2007; 
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2. Jianliang You, Avinash K. Bhaskar, Muthukumaran Packirisamy and  Rama 

Bhat,  “Static and dynamic evaluation of SOI based scanning micromirrors”, 

International Journal of Intelligent Systems Technologies and Applications, Vol. 

5, No. 1/2, pp. 185-200, 2008;  

3. A. Chandrasekaran, Shanmugasundaram, P., J. You, A. Acharya, M. Packirisamy, 

D. Maxwell, “Bio-resistive identification of Heat Shock Protein 90”,  Journal of 

BioMicrofluidics, Accepted, June 28 2008. Biomicrofluidics vol.2(3) 2008, pp 

034102:1-10. Also published Virtual Journal of Biological Physics Research, July 

15, 2008; 

4. Jianliang You, Luis Flores, Muthukumaran Packirisamy and Ion Stiharu, 

‘Modeling the Effect of Channel Bends on Microfluidic Flow’, IASME 
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Compliant Planar Spring for Micromirrors’, Poster Session, 4th Canadian 

Workshop on MEMS, Opportunities and Challenges on the Road to Microsystems 
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CHAPTER 2: MODELING METHODOLOGIES  

FOR PLANAR MICROMECHANISMS 

 

As introduced in Section 1.7.1, Flexure-Synthesis approach of modeling is a more 

intuitive method. It starts from modeling of the essential structural members such as 

beams and plates in conjunction with the electrostatic or the electrothermal actuation for 

optical MEMS. This chapter will first give a review of the features of the planar micro-

mechanisms capable of out-of-plane motion based on the currently available 

micromachining processes. This will be followed by the example of a full analysis for a 

micromirror nonsymmetrically supported by torsion beams and actuated by uniform 

electrostatic field using the conventional energy method. The linear matrix method and 

pseudo-rigid-body model method that are individually applied in the analysis of a planar 

and framed microstructure are presented. 

      

2.1 Planar Micromechanisms 

 

The planar micro-mechanisms refer to microstructures that are composed of planar beams 

and plates in micro scale of dimensions. Suface micromachining has been very capable so 

far in creating planar microstructures consisting of beams and plates [159]. An expected 

compliance or structural resonance of a micro-structure can be realized without exception 

by adjusting the ratio of proof mass and stiffness of the suspension. As introduced, this 

ratio is limited by both material strength and microfabrication capability. The flat surface 

necessary for light reflecting requires a non-compliant mirror plate. On another hand it is 
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difficult to reduce endlessly the stiffness of suspension while the proof mass stays rigid. 

Such requirement is even more difficult to achieve for the planar micromechanisms. In 

macro fabrication, suspension by vertical springs for a mass can be very soft thus 

enabling a reduced ratio of suspension stiffness versus the structure mass. However it is 

difficult within the current micromachining capabilities to make their counterparts in 3-D 

spatial structure [159]. Moreover, the 3-D movable MEMS have been demonstrated to be 

hard and costly when obtained from assembly of a few separated micro-components 

[160,161]. Instead, the planar springs made of integrated planar beams and plates are thus 

adopted for compliant suspensions in micro world.   

 

Moreover, for the movable micro mechanisms, compliance or the total elasticity is 

exploited to convert the available energy into a useful movement of the mechanism. More 

displacement or deformation can be achieved by the same amount of energy input in a 

compliant microstructure. Similarly, an integrated MEMS device made by planar 

micromachining may be granted the desired compliance by involving lengthy beams in 

its framed microstructure. The sophisticated 2-D micromachining technology for planar 

microstructures represents topic of high interest in MEMS area. The concept of planar 

micro-mechanisms thus not only deals with applicable micromachining, but also requires 

analysis and modeling of planar framed microstructures. As the main focus of this 

chapter, investigation on modeling methodologies for the micro-frames is performed 

through a typical example of out-of-plane torsional micromirrors with electrostatic 

actuation. This device is assumed to be a rectangle mirror plate supported by two 

identical torsion beams at both sides and anchored to the substrate at the other ends of the 
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beams. The electrostatic field between the mirror and the substrate under the mirror is 

generated by electrical bias and used for actuation (see Figure 2.1).  

 

2.2 Analysis of a Bridged Torsional Micromirror 

 

Energy methods are widely used in the analysis of applied mechanics. This method 

involves concept of work (such as virtual work) and energy to solve for linear and 

nonlinear mechanical problems. The essential of this method is the energy conservative 

X 
Y 

Z 

O 

bottom electrode 

mass plate or 
micromirror 

thin beams 

substrate 

substrate 

Figure 2.1 Schematic diagrams of a torsional micromirror in 3-D coordinates: (a) 
The top view shows isometric view of the structure; (b) The bottom diagram 
shows the cross-section of electrostatic force applied on the structure; and (c) The 
side view shows its equalized fixed-to-fixed beam with a lumped mass in the 
midpoint. 

Fe, Te 

(a) 

(b) 

(c) 
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principle for any isolated mechanical system. Thus this section provides mathematical 

derivatives of the mechanical strain energy, the electrostatic potential energy, and 

nonlinear characteristic analysis of a torsional micromirror suspended by a bridge as well 

as its corresponding static and dynamic equations of motion.  

 

2.2.1 Strain Energy and Mechanical Deformation 

 

Strain energy is generated and stored in a beam or other elastic members whenever it is 

bent by an external force. If it is released the beam tends to recover to its original status 

[167]. In other words, strain energy refers to the energies that are absorbed by the elastic 

structure during external loading process. Theoretically this strain energy Uint is equal to 

the work Wext done by the external loads, provided no other energy is added into the 

system or no energy in the system is transferred in the form of heat. Thus,       

                                                            Uint=Wext                                                            (2.1) 

Under the assumption of structural linearity or small deflection of elastic structures that 

follows Hooke’s law, the expressions of strain energy for a beam subjected to axial forces, 

torqes, and bending moments, respectively, can be written [162]: 
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where L is the length of the beam; E is Young’s modulus of elasticity of the material; A is 

the cross-section area of the beam; P(x), T(x), and M(x) are the locally applied axial 

pulling or pushing load, torsional torque, and bending moment or force couple applied on 

the beam respectively; kaxi is the spring stiffness; 	 is the axial strain deformation of the 

beam; G is the shear modulus of elasticity of the material; Ip is the polar moment of 

inertia of the beam; 
 is the twist angle of the beam; kt is the torsional spring stiffness; I is 

the cross-sectional moment of inertia of the beam; � is the rotational angle of the beam 

and finally kb is the bending stiffness of the beam.  

 

In general terms, if an elastic structure is subjected to n loads P1, P2, P3, …, Pi, …, Pn and 

has n correspondent displacements 	1, 	2, 	3, …, 	i, …, 	n, Castigliano’s first theorem 

states that the partial derivative of strain energy of the structure with respect to any 

displacement 	i is equal to the corresponding force Pi [162]: 

                                                                 
i

i

U
P

δ∂

∂
=                                                         (2.5) 

Strain energy can be expressed either as a function of displacement or as a function of 

loads. Castigliano’s second theorem states that the partial derivative of the strain energy 

with respect to any load Pi is equal to the corresponding displacement 	i: 

                                                                 
i

i P

U

∂

∂
=δ                                                         (2.6) 

There is another derivative for a displacement of a beam based on energy method, which 

is called the unit-load method for linear elastic structures. The method is based on the 

work principle that the internal virtual work done by the internal stresses equals the 

external virtual work done by the external loads applied on the structure during a virtual 
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displacement. The external work is assumed to be fully absorbed by the beam and stored 

in as strain energy and the displacement is then found by assumption of a unit-load 

applied on the beam [163, 164]: 
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where � represents the displacement in solving. NU, MU, VU and TU represent stress 

components along the beam due to the axial forces, moments, shears and torques 

converted from the unit load. This virtual load is assumed to apply on the location of 

displacement. Instead, NL, ML, VL and TL are the corresponding stress components 

resulted from the actual loads on the beam.  

 

As a typical example of torsional micromirrors shown in Figure 2.1, their suspensions are 

usually formed by a bridge or two cantilever beams. Depending on different boundary 

conditions, three types of beams can be classified for their mechanical strain energies, 

displacements and spring constants (listed in Table 2.1) under application of point loads 

(bending and torsion) on either the free end of cantilever beams or the middle point of the 

fix-fix bridge.  Figure 2.2 shows these three types of beams useful for the torsional 

micromirrors where F and T indicate the equivalent bending force and torsional torques 

respectively on the location of displacment. It is noted that in the table the shear and axial 

deformations due to the applied loads are neglected since they are small when compared 

to other deformations in the linear structure. The prismatic cross-sections for these three 

types of beams in discussion are the same with each other in dimensions of width w and 

thickness t. Table 2.1 indicates the cantilever beam as the most flexible and the fixed-

fixed beam is the least flexible in bending. No matter what boundary conditions are 
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subjected to, all beams have the same torsional performance for the same cross section 

due to the same length.  

Table 2.1 Strain energy, displacement and stiffness for three kinds of beams 

  Cantilever Guided-end cantilever Fixed-fixed beam 
Strain energy 

pGI

LT

EI

LF

26
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+  
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224
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Bending stiffness 
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Torsion stiffness 

L

GI
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L
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k p
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L

GI
k p

t

2
=  

 

 

As shown in Figure 2.1, the torsional micromirror has two long but thin beams of 

uniform rectangular cross-section (l×w×t, where l is the length of one of the two beams) 

at both sides of the micromirror. These two beams are attached to the micromirror to 

F, T 

F, T 

F, T 

(E, I, 2L) 

(E, I, L) 

(E, I, L) 

Figure 2.2 Three models of beams and their applied loads used for modeling of 
torsional micromirrors: (a) a cantilever; (b) a guided end cantilever; (c) a fixed-
fixed beam. 

(a) 

(b) 

(c) 



47 
 

form a rotational (torsion) axis for out-of-plane motion of the mirror plate. The other ends 

of the beams are anchored to substrate. Thus out-of-plan motion of the micromirror is 

actuated by electrostatic force underneath. At the same time the beam is also subjected to 

a resistant force or torque due to the twisted angle of the two beams resulted from 

electrostatic actuation. The external energy is thus balanced by the internal strain energy 

of the beams. We denote g0 as an initial gap between the bottom electrode and the top 

micromirror; α,z as vertical displacement and torsion angle of the micromirror at 

location of the torsion axis, which means a mechanical system with two degrees of 

freedom (2-DOF); kb and kt as the corresponding bending and torsional spring constants; 

Jp and Ip as the polar mass moment of inertia of the mirror plate and the polar moment of 

inertia of the beams; respectively. Thus strain energy of the torsional micromirror is 

found as it follows, 

                                    2

0

22

2
1

2
)(

2
)(

2 αξ p

l

p
mech Jd

GI

xT

EI

xM
U +�

�
�

�
�
�
�

�
+= �                             (2.8) 

where moment M(x) and torque T(x) are the internal moment and torque at cross-section x 

of the beams, respectively. A fixed-to-fixed beam (length of 2l) for the side beams is 

further considered.  

 

2.2.2 Electrostatic Energy  

 

The electrostatic or potential energy Uelec from the electrostatic actuation (see Figure 2.1) 

can be written as [165] 

                                                            2
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The rectangular mirror plate has dimensions of L×W×t (the same thickness as of the 

beams). Thus the capacitance C between the mirror plate and bottom substrate and the 

potential energy are 
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where V is the applied electrical bias; � is dielectric constant of the material in the space 

between two plates, usually air. The capacitance is derived from integration of the 

differential capacitance along the length, i.e., from the torsional axis (the origin) to the 

free end of the micromirror (0, L). Some assumptions are taken into consideration, for 

example, the bottom electrode and the top micromirror are assumed to be overlapped 

exactly, and no stray loss of energy is assumed in this parallel plate electrical field. 

 

A small torsion angle can be obtained by electrostatic actuation due to the large mirror 

plate and the relatively small gap of the micromirror. Thus tangential or sine of angle � is 

approximated as the angle itself. Thus the two formulas can be rewritten. 
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The vertical electrostatic force Fe and the electrostatic torque Te as shown in Figure 2.1 

can then be derived from partial differentiation of the potential energy Uelec with respect 
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to displacement z according to Castigliano’s first theorem and by integral of infinitesimal 

torque (dT=x×dFe) along the length of the micromirror, respectively. These are written as 

follows: 
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When taking into account of small torsion angle or small deformation, they can be 

simplified as:    
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2.2.3 Static Equations of Motion 

 

The static equilibrium in a 2-D mechanical system can be expressed by static equations of 

motion. The static equations of the torsional micromirror in Figure 2.1 can be derived by 

equaling the vertical electrostatic force Fe to the vertical restoring force and equating the 

electrostatic torque to the mechanical resistant torque from the torsion beam, respectively: 

                                                 eteb TKFzK == α,                                                   (2.19) 
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where Kb and Kt can either be derived from partial differential of the mechanical strain 

energy Umech in equation (2.8) with respect to corresponding deformations according to 

Castigliano’s second theorem or from the unit-load Equation (2.7) according to Hook’s 

law. Rigid anchorage is assumed for the fix-to-fix torsion beams in consideration of SOI 

based micromachining. A rigid mirror plate is considered suspended by two torsion 

beams at both sides. For the mirror plate itself, neither torsional deformation nor bending 

deformation is assumed due to the thick SCS device layer. According to Table 2.1, the 

static equations can be rewritten as: 
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where l is the length of a side beam, L is the length of the mirror plate. The bending 

moment of inertia I and torsional moment of inertia Ip for a rectangular cross-section 

beam are provided as [166]: 
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where width of the beam w is assumed larger than thickness t in the formula. They need 

to be replaced each other if thickness is larger than width. The static performance of the 

electrostatic actuated torsional micromirror can thus be predicted by solving the static 

equilibrium equations. Due to electrostatic nonlinearity, Newton-Raphson method is used 

to solve for these implicit nonlinear equations. The equations can be normalized by using 

nondimensional parameters of Z=z/g0, �=�/ �cr and �cr= g0/L as 
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for the two guided-

end side beams. Torsion angle and vertical displacement at torsion axis under a given 

voltage can be solved from these two equations.  

 

2.2.4 Static Analysis of a Torsional Micromirror 

 

As an example, Table 2.2 provides the related material properties of silicon [167,168] and 

the dimensions of a torsional micromirror. Solving the derived static equations with the 

provided parameters yields electrostatic curves of displacement versus applied voltage as 

illustrated in Figure 2.3. As illustrated in Figures 2.2, the micromirror is assumed to be 

supported by either two identical cantilever beams or two equivalent guided-end beams. 

From Figure 2.3, the pull-in voltage for the cantilever supported micromirror is around 

51V as compared to the pull-in voltage of 54V for the guided-end-beam supported 

micromirror. Due to the dominant torsional motion of the micromirror, the resultant 

vertical displacement at front edge of the micromirror (see Figure 2.3 (c)) does not show 

much difference before pull-in voltage. The approximate linear electrostatic phenomenon 

(torsion versus applied voltage) can be observed from the analytical results. In the 

comparison shown in Table 2.3, the guided-end beam supported micromirror has a more 

stiff bending or less vertical bending deflection at the torsion axis than the cantilever 



52 
 

supported micromirror, which results in a more linear domain of the electrostatics, as 

illustrated in Figure 2.3.  Moreover, more bending stiffness arising from the two guided-

end beams enables a more reliable micromirror. As a result, the more rigid anchorage for 

both side beams of the torsional micromirrors will yield more reliable suspension and this 

does not deteriorate the torsional flexibility. This is one of significant required features of 

torsional micromirrors for optical switching applications. 

Table 2.2 Structural dimensions and material properties of a torsional micromirror 

Micromirror 
L×W   
(�m2) 

Beam 
l×w 

  (�m2) 

Thickness 
T, t 

(�m) 

Gap 
g0  

(μm) 

Young 
modulus 
E (GPa) 

Poisson 
ratio  
 

density 
� (kg/m3) 

300×200 221×10 8 12 129.5 0.21 2320 
 

 

2.2.5 Pull-in Characteristics 

 

The static equations indicate that every applied voltage corresponds to a position of the 

micromirror before it reaches a value where the micromirror is pulled down to the bottom 

electrode. This critical value of voltage is called pull-in voltage. The corresponding 

performance of the micromirror when it is pulled down is then called pull-in 

characteristics. Before pull-in, the whole micromirror is kept suspended and its behavior 

follows the derived static equations. However, these equations are not anymore effective 

after pull-in. Thus the critical values used to describe pull-in phenomenon is pull-in 

voltage and mirror position: torsion angle and vertical displacement at the front edge of 

the plate before pull-in. The prediction of the phenomenon requires a new function which 

is defined by combining the two static equations for the given 2-DOF system [169-172], 
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Figure 2.3 Electrostatic curves for vertical deflection versus applied voltage of a 
micromirror (L=300�m, W=200�m) symmetrically suspended by two guided-end 
beams and two cantilever beams, respectively. 
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                                                       f(�, Z)=V1+�(V1-V2)                                             (2.25) 

where � is an arbitrary number called Lagrange’s number, V1 and V2 are the applied 

voltages that are found from both equations (2.23) and (2.24), respectively, 
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The pull-in status represents the extremes of the equation (2.25) that can therefore be 

deduced from solving the following partial differential equations  

                                         21;0;0 VVZff ==∂∂=′∂∂ α                                      (2.28) 

A further deduction replaces the arbitrary number � with the differentials and Equations 

(2.28) such that the differential equations can be reduced to two algebraic equations as 

follows, 
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where � and Z are the normalized torsional angle of the mirror plate and the bending 

displacement in the middle of the torsion axis of the micromirror. The normalized values 

can be obtained by solving these two implicit nonlinear equations. Newton’s method that 

involves Jacobian matrix is employed. The pull-in characteristics can thus be obtained 

from these solutions. It is noted the pull-in characteristics, i.e., the pull-in voltage and the 

pull-in position for any given micromirror structure is a kind of build-in attribute, which 

is not changeable. Table 2.3 shows the resulted pull-in parameters for the torsional 

micromirror given in the previous section.  
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Table 2.3 Pull-in performance of a torsional micromirror using two models of beams 

 
Models for 
beams 
 

Pull-in 
voltage 

  (V) 

Normalized 
deflection 
at torsion 

axis 

Normalized 
angular 
torsion  

Deflection 
at torsion 

axis 
(�m) 

Torsion 
angle 

(°) 

Vertical 
deflection 

at front 
edge 
(�m) 

Cantilever 
beam 

50.785 0.044 0.6492 0.528 1.4879 8.3175 

Guided-end 
beam 

53.531 0.0125 0.6964 0.15 1.596 8.506 

 

Pull-in voltage in Table 2.3 is found by substitution of the normalized pull-in deflections 

(Z, �) into either Equation (2.26) or Equation (2.27). Similarly, the actual deflections can 

be converted from z=g0×Z and �= g0×� /L. The resultant vertical deflection at front edge 

of the micromirror is calculated by geometry relation, which is equal to (z+L×Sin�). 

Different beam models for the same torsional micromirror result in a slight difference in 

the pull-in characteristics. As shown in Table 2.3, the difference of pull-in voltage from 

the two beam models for the same micromirror is around 5%. Differences of 2.2% and 

6.8% for synthetic bending deflection and angular deflection are found.   

 

The pull-in characteristics for a torsional micromirror vary with structural dimensions. 

Figure 2.4 shows the pull-in characteristics (mainly the pull-in voltage and the pull-in 

torsional angle) versus the varied width and length of the side beams (the guided-end 

beam models are used) for the micromirror with dimensions as it follows: the mirror plate: 

L×W=300×200�m2; the two rectangle side beams at length, width and thickness of 

lp×w×t=200�m×10×8�m3; the gap: g0=12�m. It is observed from this figure that pull-in 

torsional angle of the micromirror decreases whereas pull-in voltage increases as the 

width of the beams increases. The torsional deflection is not as sensitive as pull-in 
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voltage to a small deviation of dimensions of the beam cross-section, which allows for 

higher tolerance of the beam width during fabrication. Comparatively, torsional 

deflection is more sensitive to length variation than to that of width of the beams. It again 

proves that torsional stiffness and torsional motion of these torsional micromirrors are 

independent on boundary conditions on the attachment of the beams to the substrate.   

 

The actual vertical displacement of the micromirror resulted from pull-in angle is more 

than 10 times of the vertical displacement at the torsional axis due to the amplification 

effect of the mirror length to the torsion angle, although the two normalized pull-in 

deflections at torsion axis are in the same order [172]. The micromirror will have a 

dominant torsional motion when the beam width is small and short due to the strong 

bending stiffness and the negligible bending deflection resulted from short beams; 

however, bending deflection increases as the length of the beams increases, which may 

lead to sinking of the micromirror if the length of the straight beams is increased to a 

specific extent. With a long and straight torsion beam, the vertical bending deflection at 

torsion axis occupies around 20% of the whole gap, leaving less room for torsional 

deformation though it may have a low pull-in voltage.  
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Figure 2.4 Pull-in characteristics versus variation of width of the cross-section or 
length of each side beam from their original dimensions (w=7μm or lp=200μm). 
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2.2.6 Introduction of Dynamic Modeling Using Energy Method 

 

In a mechanical system with n degrees of freedom, kinetic energy (T), potential (strain) 

energy (U) and energy dissipated (D) can be formulated when lumped-parameter method 

is used [173]: 
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where mij is inertia coefficient or generalized mass; kij is stiffness coefficient or the 

generalized stiffness, and Cij is the generalized damping coefficient, while qi and qj 

represent the ith and jth coordinates. These generalized coefficients are deduced with 

respect to their corresponding deflections. For example, the generalized masses mij in any 

direction of motion can be expressed by lumped parameter method as 

                                                  )()(
1

pjpi

N

p
pij xxmm φφ�

=

=                                           (2.31) 

or 

                                                      dmxxm jiij )()( φφ�=                                             (2.32) 

where N is the number of the lumped masses (mp) in a continuous structure. This function 

gives the effective mass or the equivalently lumped mass for a specified point in the 

structure. Øi and Øj are the assumed ith and jth elastic deformation forms (normal mode 

shapes) that satisfy the related boundary conditions. Modal analysis is an important work 
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in dynamic modeling which includes solving for the mode shapes and the corresponding 

natural frequencies. The mode shape u(x, t) or the general displacement at position x for 

any degree of freedom is represented by 

                                                    �
=

=
N

i
ii tqxtxu

1

)()(),( φ                                               (2.33) 

where u(x,t) can be the vertical bending z(x, t) or torsion motion �(x, t) with time t. They 

can be rewritten correspondingly, such as �
=

=
N

i
ii tqxztxz

1

)()(),(  for bending motion and 

�
=

=
N

i
ii tqxtx

1

)()(),( αα  for torsion motion for the given example shown in Section 2.2.2 if 

it is lumped as N masses in the system. The natural frequencies of a mechanical system 

can be solved through application of Rayleigh method, which states that the the 

maximum kinetic energy equals to the maximum strain or potential energy,  

                                                              maxmax UT =                                                      (2.34) 

Thus the natural frequency for a mode of motion can be derived by this energy 

conservative rule as   

                                                               
*

max

max2

T

U
=ω                                                    (2.35) 

where � is the resonant frequency or eigen-frequency of the structure. The expression of 

�2 is also called Rayleigh’s quotient.  

 

Stiffness coefficients kij in Equation (2.30) can be represented with respect to their 

coordinates of motion as follows. 

                                  dxxzxzEIk jiij )()( ′′′′= �    (for bending mode)                            (2.36) 
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                                dxxxGIk jipij )()( αα ′′′′= �      (for torsion mode)                         (2.37) 

The generalized damping coefficient Cij has to be considered in dynamic modeling if 

squeeze damping effect of the air film between the top mirror plate and the bottom 

electrode is taken into account. For low frequency applications, this air film can be 

neglected due to the low velocity of vibration on tilting mirror plates. However, for high 

frequency applications, the squeeze damping effect in the out-of-plane motion 

micromirrors is not negligible. It dissipates some energy if the mirror plate is large and 

works in a high frequency of vibration. The air film is squeezed and released at high 

frequencies of oscillation, thus it behaves as an air spring to the mirror plate. The energy 

dU  dissipated by air squeeze film damping is represented by 

                                                           �= dxxcUd �                                                       (2.38) 

where c is damping coefficient, ��  is the squeezing velocity at position of x. However in 

most applications of torsional micromirrors that target low drive voltages with large 

torsion angles, the dissipative effect from squeeze damping can be neglected [174, 175]. 

 

For an n-DOFs (n degrees of freedom) system, Lagrange’s equations of motion is shown 

as follows in terms of kinetic energy, potential energy and work that are associated with 

generalized coordinates:  
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The Lagrange’s equations of motion for a system that has only viscous damping can be 

written as 
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The free vibration for a conservative mechanical system without energy dissipation by 

damping can be further simplified as 

                                       ni
q

U

q

T

q

T

dt

d

iii

,,2,10 �
�

==
∂

∂
+

∂

∂
−��
�

�
��
�

�
∂

∂
                          (2.41) 

where L=T-U is the Lagrangian operator; T is the total kinetic energy stored in the 

masses of the mechanism by virtue of their velocities; U is the potential energy stored in 

the form of strain energy in the system that arises from conservative forces; Ud is the 

energy dissipation (which is a kind of potential energy) by viscous damping in the system; 

and Qi is the generalized non-conservative force. Various dynamic reponses can thus be 

solved.   

 

For the typical example shown in Figure 2.1, two degrees of freedom (z and �) are chosen 

to represent for vertical bending motion and torsion angle with respect to the torsional 

axis of the micromirror. The axial displacement along the torsion beams is assumed 

negligible according to the structure. The equivalent graph for dynamic responses can be 

approximated in Figure 2.5. 

 

By means of lumped-parameter method, the generalized parameter for the continuous 

torsion beam meff is lumped to the mid-point of the beam with respect to the coordinate z. 

And the effective mass of the torsion beam with respect to torsional displacement at the 

mid-point can be neglected due to its small amount compared to the polar moment of 
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inertia of the mirror plate. Therefore the kinetic energy and potential energy of the system 

are written as: 
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where mij is the generalized mass matrix; e is the eccentric distance of c.g of the mass of 

the mirror plate to the torsion axis; M is the mass of the mirror plate; J is the polar 

moment of inertia of the mirror plate with respect to its midpoint along the length with an 

assumption of the uniformly distributed mass; meff is the equivalent mass of the beams at 

the mid point; Kt and Kb are the stiffness constants of torsion and bending modes of the 

torsion beam. The kinetic energy for the rotation of the beams is neglected as the polar 

moment of inertia of the beams is very small compared to that of the plate.   

Figure 2.5 An equivalent graph of the 2-DOF system for the given torsional 
micromirror used in the dynamic analysis 
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The equivalent mass of the torsion beam with respect to displacement z is obtained based 

on an assumption of a fourth order polynomial of the normal mode shape for bending 

motion of the beam. The boundary conditions for clamped beams in this case can be 

expressed by: 

                                                       

�
�
�

��
�

�

=′

=

=′=

=′=

0),5.0(

),5.0(

0),1(),1(

0),0(),0(

max

tz

ztz

tztz

tztz

                                             (2.44) 

where )()(),( tqztz ξξ = , lx 2=ξ and q(t) is a load excitation; the micromirror plate is 

assumed to be a rigid body lumped to the central point of the mirror plate. The normal 

mode shape for bending motion of the beam is then deduced as: 
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Therefore meff is obtained 
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Substitution of the above functions into functions (2.42) and (2.43) gives the kinetic and 

strain energies. The equations for free vibration of the micromirror can then derived by 

substituting these energy expressions into Equation (2.41):  
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The natural frequencies or the eigen-frequencies of the system can be obtained from the 

following equation of determinant: 

                             0
)(

)(
)(

222

22

=
+−−

−+−
=Δ

ωω

ωω
ω

MeJKMe

MemMK

t

effb                     (2.48) 



64 
 

where � is the natural frequency of the system. For inertial applications such as micro-

accelerometers, the excitation is a force caused by multiplication of the proof mass M of 

the mirror plate and the unknown acceleration a. The amplitude of the forced vibrations 

can be predicted by 
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where Fz =M.a. Application of an electrical bias to the micromirror, it can be shifted and 

works in a desired electrostatic range and the initial position of the micromirror is thus 

preset at (z0, �0). The external excitations disturb it and induce a new balance or vibration 

to the system. The dynamic transition or harmonic vibration can be obtained through 

solving the above equations.  

 

2.2.7 Structural Effects on Compliant Beams 

 

Electrostatic nonlinearity has been demonstrated in the electrostatic formulation, whereas 

the structural linearity is always assumed and other structural effects are neglected in the 

previous discussions. However structural nonlinearity may arise from either large 

deflection or compliant members involved in a framed structure and has significant 

effects on the actual performance of the structure [176]. As a result, assumption of 

linearity may distort the predictions and cause failure of modeling. The following sub-

section discusses the relevant issues associated with structural nonlinearity of beams such 

as large deflection, deflection due to shear strain, stiffening effect due to axial force and 

loosening effect due to shear force.    
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2.2.7.1 Large Deflections 

 

The exact expression for bending displacement of a linearly elastic beam (an Euler-

Bernoulli beam) is provided in the equation  

                                                     
( ) EI

M

y

y
−=

′+

′′
2/321

                                                 (2.50) 

where y is bending deflection of the beam, and y  ̋ (=d2y/dx2) is the second-order 

differential of the deflection with respect to the axial position x; M is the internal moment 

of bending at cross-section x; EI is the flexural rigidity of the beam. For small 

displacements, the slope dy/dx is small, thus (dy/dx)2 is negligible. However this term 

becomes comparable when large deflection occurs. The nonlinear equation (2.50) can be 

solved approximately using either the conventional elliptic integrals or the numerical 

programs such as MathCAD or MatLab. Analytical methods in dealing with such 

nonlinearity due to large deflection have been approached, which include but do not limit 

to Chain Algorithm (CA), Pseudo-Rigid-Body Model (PRBM), and finite element 

method (FEM). The essential of these analytical methods is to split compliant beams into 

a few segments, in which the separation of two or three segments is used in PRBM 

method and separation of several segments is used in CA method. Each segment can thus 

be linearized and applied the linear beam theory for analysis. The load-displacement 

relation is therefore obtained by synthesis of all individual segments.  
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2.2.7.2 Effect of Shear Strain 

 

Shear strain is usually very small and negligible as compared to other flexural deflections 

on a beam if its length is long or its cross-section is thin. This kind of beams usually 

belongs to Euler-Bernouli type of beams. However if the length-to-thickness ratio is less 

than 3-5 [177, 178], the shear strain incurred by the shear force component is comparable 

to bending due stress. This kind of beams is called Timoshenko beams [166]. The shear 

deflection at the free end of a cantilever subjected to a vertical force F at the same 

location can be written according to Castigliano’s theorem as 

                                                              F
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y s

s =                                                      (2.51) 

where fs is a coefficient concerning the shape of the cross-section. As a comparison, the 

bending deflection due to the vertical force is 
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The ratio of deflections can thus be written as [179] 
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Therefore an error may be generated if the Euler-Bernouli beam theory is used in the 

analysis of short beams. If an acceptable range of errors (e) is taken from 1% to 5% 

(e=ys/yb), the ratio of beam length-to-thickness (l/t) can be from 3 to 9. This result tells 

that if the length of a beam is 9 times or more than its thickness, the effect of shear strain 

on accuracy of deflections can be ignored.    
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The accuracy of displacement may be enhanced by including the term of shear if the ratio 

of length-to-thickness drops between 3 and 9. A full expression of bending deflection of a 

beam using unit-load method was derived and rewritten as follows [157]  
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where the cross-section coefficient fs is derived as 
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2.2.7.3 Stiffening or Loosening Effect by Axial or Shear Force 

 

Involvement of axial loads along a beam may also affect accuracy of analytical results. 

Although the axial strain in a straight beam subjected to an axial load may be very small 

and negligible, the axial or longitudinal stress thus incurred in the beam may stiffen the 

beam itself, which may result in higher stiffness in other flexural deflections [180]. This 

can be illustrated as follows and in Figure 2.6. The axial force in a side beam of the 

structure is derived as 
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Equation (2.56) indicates a larger axial pulling force Pe can be resulted from a smaller 

vertical deflection in the conjunction of the two symmetric side beams. The differential 

equations of bending deflection for the two side beams can be written respectively as 
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The maximum deflection occurs at the central joint for the two side beams and can be 

derived as: 
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where the coefficient u is proportional to the axial force Pe; zmax is the vertical deflection 

of the central joint. The bending stiffness of the micromirror located at the central joint 

can be thus deduced as: 

Figure 2.6 The force diagram representing for the stiffening effect incurred by the 
axial loads in a beam. 
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As compared to the corresponding stiffness in Table 2.1, it can be concluded that there 

exists a stiffening effect on the bending of the beam due to the axial force in the beam, 

though this force is actually transferred from the applied lateral loads, such as the 

electrostatic force applied on the micromirror. However, loosening effect due to a shear 

force in a short beam can be demonstrated from the following deductions for 

Tomoshenko beams [180]. The equivalent shear force eqiV ,  in the ith short beam is 

deduced from the applied shear force Vi by 
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where the coefficient iα is defined by  
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where Pi is the axial force; EiIi is the flexural rigidity and Li is length of the beam. The 

bending deflections can thus be approximated by using linear beam theory:   
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where iz ,δ  is the bending displacement; iθ  is the bending slope and Mi is the bending 

moment at the calculation point of the beam. The errors in these approximations increase 

as the axial force Pi increases. The calculated displacements are a bit larger than the 

results using linear beam theory, leading to the loosening effect of the beam.  However, 
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because of the high strength of silicon beams, this loosening effect is usually negligible in 

MEMS. Nevertheless, longitudinal stiffening effect has to be considered in modeling and 

in the estimation of MEMS consisting of compliant beams.  

 

2.3 Linear Matrix Method for Framed Micro-Mechanisms 

 

Matrix method is named such because the basic term used in analysis of mechanics is the 

mathematical matrix. Matrix method is a compact mathematic expression describing the 

mechanical performance of every individual member in a framed structure with multiple 

degrees of freedom (DOF’s). Structural linearity is assumed during applications of this 

method. Flexibility matrix or stiffness matrix is used as the terms in the derived equations. 

This method is easy to be computerized and thus is powerful in dealing with complicated 

structural problems. In macro world, a lot of examples involve mechanical frames such as 

bridges, buildings, etc. However, only in recent years, the planar framed microstructures 

for suspensions of micromirrors or microplatforms are reported [158, 165 and 179]. The 

matrix method has just been recently used in analysis of micro-framed structures. 

Therefore this section will start with an introduction of planar framed microstructures and 

the origin of matrix method. This will be followed by a review on flexibility matrix and 

stiffness matrix methods and their applications.  
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2.3.1 Planar Framed Microstructures 

 

The framed microstructures are made of various beam members. According to the degree 

of freedom (DOF) for individual beams, they can be divided into a few types: 1) the axial 

beam, which is also called truss; this type of beams is subjected to axial force and strain 

only; 2) the in-plane framed beam; each beam has three degrees of freedom, that is, axial, 

in-plane lateral and in-plane moment; 3) the in-plane grid beam; each has the three DOFs 

as in the second type plus an axial torsion; and 4) the spatial framed beam; each beam has 

the complete six DOFs.  

 

Because of the sophisticated surface micromachining technologies, more and more planar 

framed microstructures are fabricated for various applications. These microstructures are 

made of beams and plates or of laminated structures. Suspended by a beam or a group of 

beams as suspension, a proof mass microplate can move up and down by an actuation. A 

planar grid can thus be formed if many beams are entirely connected with each other in a 

plane. This is the third case that has been above mentioned. Figure 2.8 shows some 

examples of micro planar grids.  Connection of beams can take the form of a serial chain 

or the parallel attachment to the mass plate.   

 

A beam segment discussed hereafter is such that it has two nodes at both ends and is 

substantially longer than the width. A single beam is recognized by the three features: 1) 

its uniform cross-section; 2) its straightness in length and 3) no intersection along the 

length. In other words, a curved beam is thus recognized as a formation of multiple beam 
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segments. Two or more series of beams can join together to form a strengthened frame 

(see Figure 2.7 (g)). The intersection of chains is called joint whereas the intersection 

between two neighbor beams is defined a node. The mirror or platform in the frames can 

be recognized as a joint because of its rigidity compared to its framed suspensions. These 

rigid joints or nodes distribute and transfer the internal strains and the external loads 

continuously and throughout the structure.  

 

As mentioned, an in-plane grid is made of in-plane beams and plates and is more inclined 

to out-of-plane motion. External loads are applied on the structure either along the plane 

of the grid or along the normal direction to the plane. Such loading direction may lead to 

in-plane or lateral movement and out-of-plane motion for any beam in the grid. The two 

in-plane lateral deflections and torsion may be neglected for a beam in a grid composition 

of beams and joints that are perpendicular to each other, thus it remains only three out-of-

plane deflections due to vertical force and bending moment and out-of-plane torque (see 

Figure 2.8). This planar structure can be called an in-plane rectangle grid, which is a 

known microstructure for micromirrors or microplatform. Some examples can be found 

in Figure 2.7 and the coordinates system of the three deflections is shown in Figure 2.8 

(a). Though these planar framed microstructures can be easily fabricated using SOI based 

micromachining techniques, modeling or analysis represents a challenge.   
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2.3.2 Matrix Method Origination 

 

The mathematical matrix method is powerful in analysis of framed structures. Physically 

it is originated from the energy conservation principle. The strain energy of any framed 

structure can be expressed in terms of individual displacements or in terms of loads and 

redundant forces and given by [163], 
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Figure 2.7 Various planar framed microstructures made of beams and plates. 
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where the a’s and the b’s are the geometric dependent constants derived from the 

configuration of the structure; the D’s and the P’s are the individual displacements and 

their corresponding loads or redundant forces on the joints and the nodes of the structure. 

A general form of matrix equations can be derived by Castigliano’s first and second 

theorems as, 

                                                           { } [ ]{ }PCD =                                                      (2.66) 

                                                           { } [ ]{ }DSP =                                                      (2.67) 

where [C] in the first equation is called flexibility or compatibility matrix and [S] in the 

second equation is the stiffness matrix with size of n×n, whereas {D} and {P} in the 

equations are the arrays of displacements and loads with an order of n×1, respectively. 

The flexibility matrix [C] and the stiffness matrix [S] relate displacements {D} to the 

actions (loads and reactions) {P} at joints or nodes. Either of the two matrices is the 

inverse of the other, provided that the same set of loads, reactions and displacements is 

employed. Each flexibility member Cij in [C] represents the displacement at joint i that is 

caused by a unit load or a reaction force Pj applied at joint or node j. Similarly each 

stiffness member in [S] represents the action or reaction force (loads or reactions) due to 

a unit displacement. Involving either matrix [C] or matrix [S] in the analysis of frames 

thus leads to two different matrix methods, that is, the flexibility matrix method and the 

stiffness matrix method.  
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2.3.3 Flexibility Matrix Method 

 

The flexibility matrix is determined by material properties and the set of joints and nodes 

in a frame. The standard form of the flexibility matrix C for a beam member in the 

previously mentioned in-plane rectangle grid can be given as [164]:  
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where the subscript mi in Cmi mean the ith beam member; L is the length of the beam; E 

and G are the elastic modulus and shear elastic modulus of the material; I represents the 

cross-sectional moment of inertia with respect to the z-axis. Figure 2.9 shows the 

corresponding free body diagrams of the action forces and the corresponding 

displacements for this kind of beam members. Indication for each member in flexibility 

matrix is shown in Figure 2.9 from (b) through (d) under a unit load. 

 

xm 

ym 

zm 
i P3 

P1 
P2 

C33 

 1 
C23 

C11 

 1 

C22 

 1 
C32 

(a) (b) 

(c) (d) 

Figure 2.8 Free body diagrams of the flexibility matrix terms for a beam member 
in an in-plane rectangle grid. 
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The flexibility matrix for all beam members (n) in the grid can thus be assembled 

according to the arrangement of joints and nodes. The general static equations of motion 

can be derived in the following form:   
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where Dj, Dr and Pj, Pr are the displacements and loads at all movable joints and restraint 

joints in the structure, and Cjj, Cjr, Crj and Crr are sub-matrices or terms of the general 

flexibility matrix that show the displacement at joint j or restraint joint r when a unit load 

(reaction or external load) applied at the joint j or the restraint joint r, respectively. 

Therefore the deformation at any desired joint or node in the framed structure can be 

solved. The detail deduction of flexibility matrix method can be found in [163].  

 

For the example given in the previous section (see Figures 2.1 and 2.5), there is a torque 

applied at the mid-point of the torsion axis due to electrostatic actuation of the 

micromirror and thus a torsional angular displacement is considered and denoted as �. 

The bending displacement z at the same location is also resulting from the electrostatic 

force. These two deformations (z, �) are able to fully define the movement of the 

micromirror. The equations of motion can be deduced using the flexibility matrix as   
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where l is the length of a side beam; Iy and Ip are the cross-sectional moment and polar 

moment of inertia of the beams, respectively.  
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2.3.4 Stiffness Matrix Method 

 

In an in-plane rectangle grid, any beam segment can be recognized as a cantilever beam 

with one free end and the other end fixed. This free end acts at the same time as the fixed 

end for the next beam segment, and the fixed end is the free end for the previous beam 

segment. Stiffness constant is equal to the magnitude of the force that is required to 

perform unit displacement and the following 3×3 stiffness matrix is thus resulted for a 

beam member in the planar rectangle grid as: 
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where L is the length of the beam; I and J are the cross-sectional and polar moments of 

inertia of the beam with respect to bending displacement and torsion, respectively; G and 

E are the shear modulus and Young’s modulus of the beam, respectively. 

 

If the grid is composed of m beam segments, the complete joint stiffness matrix Kj can be 

derived from multiplication of the stiffness matrices as it follows:  

                                                       mjm
T
mjj BKBK =                                                    (2.72)                  

where  
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with Km the unassembled matrix consisting of the diagonally arranged sub-matrices Kmi; 

and Kmi the stiffness matrix for the individual beam i. The structural matrix Bmj is 

constructed according to the arrangement of joints and nodes in the structure. It helps to 

transform the member matrix Km to the joint matrix Kj. The structural matrix relates joint 

deflections with member deflections as:    

                                         [ ] 	
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where Dm is an array of displacements for all beams at their ends; Dj is an array of 

displacements for all joints. Dj can be divided into two sub-matrices, Df and Dr as shown 

in (2.74), where Df is the array of displacements for joints that can move freely, whereas 

Dr is for the joints that have restraints. Bmj is determined from the structural compatibility 

of all members in the grid and can be partitioned into two sub-matrices Bmf and Bmr. Each 

column in Bmf contains displacements of all members due to a unit displacement 

performed on a free joint. Each column in the sub-matrix Bmr consists of all member 

displacements due to a unit displacement that occurred at a restraint joint in the structure. 

The indication for each member in a 3×3 stiffness matrix is shown in Figure 2.9.  

 

The stiffness matrix Kj after assembled can further be partitioned into four sub-matrices; 

and the equations of motion in matrix form can be written as,  
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where Kff=
T
mfB KmBmf, Kfr=

T
mfB KmBmr, Krf=

T
mrB KmBmf, Krr=

T
mrB KmBmr. Displacements at 

all free joints can be solved by 
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                                                     )(1
rfrffff DKFKD −= −                                           (2.76) 

The displacements at restraint joints are usually equal to zero, i.e., Dr=0; thus stiffness 

matrix Kff can be formulated for the complete stiffness matrix of the grid.  

 

2.4 Pseudo Rigid Body Model Method 

 

The pseudo rigid body model (PRBM, hereafter) could be used to approximate a lengthy 

beam in a framed mechanism for analysis and was reported in literature in the past 

decade [122, 123, 179 and 181]. It is one of analytical methods dealing with structural 

nonlinearity due to large deflections. Thus in this section a detailed review of PRBM 

method is given first, then an analysis using this method for the typical example given in 

Figure 2.1, the torsional micromirror suspended by two side beams is provided.   

 

1 

k11 D1 

D2 

D3 

x 

z 

y 

Figure 2.9 Indications of the related terms in a stiffness matrix for a planar frame 
beam member. k11 is the axial stiffness of the beam against the torque; k32 and k22 
are the stiffness constants resisting the angular displacement due to the force along 
z-axis and the bending moment along y-axis; k33 and k23 are the stiffness constants 
resisting the vertical force and the bending moment along y-axis.  
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2.4.1 Pseudo Rigid Body Model 

 

Pseudo rigid body model method aims to solve the load-displacement relations for 

mechanisms involved with compliant beam members. In general, PRBM method usually 

separates a lengthy beam into two or three beam sections and uses one or two spring 

constants to approximate the deformations in the beam. This method has been reported to 

solve for load-displacement relations in compliant mechanisms made of compliant hinges 

at macro size [179]. The use of PRBM method for the analysis of micromechanisms 

capable of out-of-plane motions with compliant beams represents one of the contributions 

of this work.  

 

The performance of a cantilever subjected to a bending moment can be expressed by 

Bernoulli-Euler equation as shown in Equation (2.50), where the square term 2)(y′
 
can 

not be neglected in large deflection analysis of beams. Instead this kind of beams can be 

assumed to comprise two or three rigid links that are connected with each other by virtual 

pivots.  This is the main theory on which the PRBM method is based on.  

 

Depending on different loading conditions at the free end of a cantilever, models with 

two and three separations respectively of the cantilever are used in PRBM method. The 

two separation model is constructed by one short link, one long link and a pivot as shown 

in Figure 2.10 (c). The ratio of the short and long segments is defined below based on the 

best match to the possible deflection due to the applied load. This model represents a 

cantilever deflected by a vertical force with or without a synclastic deflection due to a 
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bending moment at the free end. A rotational spring is assumed for the pivot. This pivot 

is also called characteristic joint. Another PRBM model is constructed by three rigid links 

and two pivots, representing for a cantilever subjected to a vertical force plus an opposite 

bending moment, as shown in Figure 2.10 (d). Notations of geometric dimensions, loads 

and deformations of a cantilever are indicated in Figure 2.10 (a). A diagram indicating 

the internal bending moment along the cantilever is shown in Figure 2.10 (b). The PRBM 

model shown in Figure 2.10 (c) can also represents for a cantilever subjected to both a 

vertical force and a bending moment that induces a deflection component in the same 

direction as that of the vertical force. An inflection point happens at a cross-section along 

the cantilever where the resultant moment is zero due to the equal amount of the 

moments acting in opposite direction transferred from the vertical force and the moment 

applied at the free end. For example, the inflection point is located in between the two 

pivots of the PRBM model in Figure 2.10 (d). The deductions based on the two PRBM 

models for a compliant beam are given below.  

 

PRBM Method for Cantilevers of Synclastic Deformations 

As mentioned, this model represents for the cantilevers subjected to either a vertical force 

alone or a vertical force with a moment leading to deformation at the same direction (as 

shown in Figure 2.10 (c)). The characteristic joint of this kind of cantilevers is located at 

a distance of (1-�)×l from the fixed end. The two rigid links are connected together at this 

joint by a rotational resistant spring. Herein length of the rigid link �l is also called as the 

characteristic radius where � is the characteristic radius factor, which is correlated to the 

orientation of the force at the end and should be an optimal value to approximate the trail 
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of the cantilever end. � is approximated to be 0.8517 [123] if there is only one vertical 

force at the end (n=Fx/Fy=0). �� herein is the rotational spring factor that also depends on 

the ratio n of the vertical component against the horizontal component of the end-force 

whereas � is the pseudo-rigid-body angle. The values or factors such as �, ��, etc for 

PRBM models in conjunction with few values of n are listed below in Table 2.4. c� in the 

table is a parametric angle factor for linearization of the PRBM angle �, with a 

correlation of �0=C� � . More details are given in the reference [123]. 

Table 2.4 Coefficients � , ��, c� with different end forces [123] 

n � c� �� 
0.0 0.8517 1.2385 2.67617 
0.5 0.8430 1.2430 2.63744 
1.0 0.8360 1.2467 2.61259 
-0.5 0.8612 1.2348 2.69320 
-1.0 0.8707 1.2323 2.72816 

 

As mentioned, two cases of loading conditions are used for this type of PRBM models 

(Figure 2.11). The first case (Figure 2.11 (a)) consists of only one vertical force applied 

at the free end and no other moment or horizontal force is considered. The rotational 

spring constant of the characteristic joint is given as: 

                                                          
l

EI
K R θκγ=                                                      (2.86) 

where KR is the rotational spring constant, EI and l are the flexural rigidity and the length 

of the long link. According to the geometry shown in Figure 2.10, the vertical out-of-

plane deflection at the free end of the cantilever can thus be written as: 

                                                          Θ== sinlb γδ                                                 (2.87) 

For small angular deflections, the above equation is rewritten as 
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                                                                Θ= lγδ                                                       (2.88) 

Thus the vertical bending (out-of-plane) stiffness is derived as it follows: 

                                                            
3l

EI
K

γ

κθ
δ =                                                      (2.89) 

However, for very large deflections this linearization is not applicable and Equation 

(2.87) instead of Equation (2.88) has a better performance in dealing with nonlinearity, 

with which an implicit form of stiffness constant is deduced. Nevertheless, the angular 

deflection is linearly proportional to the applied force, shown as 

                                                      Θ=
Θ

=
2l

EI

l

K
F R θκ

γ
                                            (2.90) 

This expression may be useful for characterizing a planar frame that is made of one or 

more compliant beam segments. Linearity is obtained by replacing the vertical 

displacement with the angular deflection (the pseudo-rigid-body angle, �).   

 

Another case of loading condition on this PRBM model consists of a vertical force and a 

bending moment that both act in the same direction (see Figure 2.11 (b)), thus both in-

plane and out-of-plane deflections of the cantilever (denoted as a, b in Figure 2.10 (a)) 

due to the applied external loads can be derived as follows [123]: 
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where  
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Rotational spring & 
characteristic joint 

Figure 2.10 (a) A compliant cantilever beam with loads at free end; (b) The diagram of 
the applied external loads; (c) The equivalent PRBM model when M is void (two rigid 
links and a rotational spring); (d) The equivalent PRBM model when M exists (three 
rigid links and two rotational springs). 
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i

ii R

l
Ra sin=                                                  (2.93) 

                                                          )cos1(
i

ii R

l
Rb −=                                                (2.94) 

                                                                
EI

lM

Ri

01
=                                                      (2.95) 

The rotational spring constant in this case is written as 

                                                            
l

EI
K R θκρ=                                                   (2.96) 

The above found formulae can be applied in cantilevers with attached mass plates and 

subjected to electrostatic actuation. One of these examples in MEMS, a cantilevered 

electrostatic actuated micromirror is presented in [182].   

 

PRBM Method for Guided-End Cantilevers 

If the applied moment is opposite in its direction to the vertical force, then the PRBM 

model with two rotational joints and three rigid segments is more suitable for accurate 

approximation (shown in Figure 2.10 (d) and 2.11 (c)). In this PRBM model there exists 

an inflection point (the bending moment at this cross-section is zero) in the length of the 

cantilever. As shown in Figure 2.10 (d), K1, K2 herein are the rotational spring constants 

at joints 1 and 2, while �, ��, �1l and �2l are the PRBM angle, ratio of the PRBM angles 

and lengths of the two rigid segments in the initial and the final sections of the cantilever. 

In a completely guided-end cantilever, the inflection point is known to be located at the 

mid-point of the cantilever according to the Bernoulli-Euler beam theory (where the 

moment is zero, the curvature is also zero). Therefore, for completely guided-end 
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cantilevers (�1= �2 = (1-�)/2), the two rotational angles at both joints are equal (��=1) 

and the length of the central part in the PRBM model can be represented by �l (�=0.85) 

[123]. The rotational spring constants K1 and K2 are also equal and are given by 

                                                    
l

EI
KKKK θγ221 ===                                           (2.97) 

where K� is the rotational spring factor with this kind of end-loads (K� =2.65) [123]. The 

rotational moment M0 in this PRBM model has a relation with the PRBM angle � as 

M0=K �. Thus the deformed in-plane and out-of-plane dimensions for the cantilever are 

derived as 
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γ
                                       (2.98) 

The vertical bending stiffness of the cantilever can be written as  

                                                           
3

2

l

EI
K

γ

κθ
δ =                                                    (2.99) 

Two more loading conditions could be formulated for this kind of PRBM models. They 

apply to the partially guided-end cantilevers due to a large vertical force and a reduced 

moment applied at the free end, and the overly guided-end cantilevers due to a less 

vertical force and a large moment loaded at the free end. In both cases, the two PRBM 

angles are not equal (���1) and their rotational spring constants K1 and K2 are not equal 

too. Thus, accordingly, the shapes of deflection are different due to shift of the inflection 

point [183].  
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However, the compliant cantilevers in the out-of-plane movable MEMS are usually 

loaded with one vertical force alone or with a small bending moment at the free end. The 

torsional micromirror given in Figure 2.1 represents one of the examples. This structure 

can be modeled using PRBM method as shown in Figure 2.15. Due to the symmetry of 

the structure and the rigidity of the mirror plate, total mirror plate can be levelly pulled 

toward the opposite substrate by the uniformly distributed electrostatic actuation; thus the 

free ends of both cantilevers must be kept in horizontal position to form a smooth profile 

of deformation from both edges of the mirror plate. Both fixed ends of the cantilevers are 

also kept horizontal and smooth from their anchorages. Thus it is concluded the inflection 

point is located in the midpoint of the cantilever. This is the case happened to the fully 

guided-end cantilevers.  

 

(a) 

(b) 

Figure 2.11 Deflection diagrams of a cantilever subjected to three kinds of loads 
at the free end: (a) a vertical force; (b) a vertical force with a synclastic moment; 
and (c) a vertical force along with a moment in opposite direction.  
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In summary, the PRBM model with two joints and three rigid links has a better 

approximation to a compliant cantilever than the PRBM model with only one joint and 

two rigid links. The rotational spring constants K1 and K2, the ratio of PRBM angles (��), 

and the lengths of the two short rigid links can be determined according to different 

loading conditions and their ratios with each other [183].  

 

2.4.2 Comparison of PRBM and FEM 

 

The load-displacement analysis using PRBM methods is compared here with the results 

obtained from using other methods such as the finite element analysis (FEA) and the 

conventional linear method. The comparison is performed on a compliant cantilever of 

221�m in length and 8×10 �m2 in the cross-sectional dimensions and subjected to three 

different cases of loading at the free end.  

 

Case 1: Cantilevers subjected to a vertical force at free end  

 

This case represents a compliant cantilever loaded with a vertical force alone (shown in 

Figures 2.10 (c) and 2.11 (a)). The out-of-plane bending stiffness constant at the free end 

can be written according to the linear beam theorem as (also refer to Table 2.1): 

                                                             3

3
l

EI
Kb =                                                      (2.100) 

whereas in PRBM method it has been derived in Equation (2.89) and can be rewritten 

here: 
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3l

EI
K

γ

κθ
δ =                                                    (2.101) 

where �� =2.65 and  �= 0.8517, for example [123]. Comparing these two formulae one 

can infer that the PRBM beam model is stiffer than the linear beam model. However they 

all have linear load-displacement relations. This is the reason it is called a linear PRBM 

beam model.  

 

The cantilever model is also simulated in ANSYS (a kind of commercial software for 

FEA) using BEAM4 element to mesh the whole structure and loading conditions. 

BEAM4 is a uniaxial elastic beam element with two nodes at both ends. Each node has 

six degrees of freedom: translations in the nodal x, y, and z directions and rotations about 

the nodal x, y, and z axes. Stress stiffening and large deflection capabilities are included. 

Hence this is appropriate for simulation of the mentioned thin and lengthy cantilever 

beams. A load-displacement curve at the free end of the cantilever subjected to various 

magnitudes of a vertical force is then obtained. Figure 2.12 shows the three load-

displacement curves resulted from using the above three methods. As comparison, one of 

the nonlinear curves named Nonlinear PRBM in Figure 2.12 is obtained using Equation 

(2.87). It is thus observed that larger nonlinearity of deflections can be caused by larger 

forces applied. The flexibility or compliance of a cantilever is decided by either the ratio 

of its length over its cross-section or the magnitude of the applied force. Within a certain 

magnitude of the forces (for example, 1500�N for the given cantilever), both the linear 

and nonlinear PRBM beam models demonstrate good approximation to the results 

obtained from using FEA. Three zones of load-displacement relations are identified from 

the analysis of the results (see Figure 2.12). The first zone is linear where the linear beam 
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theory with the assumption of small deflections is applicable and the deviations thus 

caused are acceptable; while the third zone of the curves shows large deviations are 

resulted from using any of the methods indicated in the figure; the second zone for all of 

the curves in the figure demonstrates PRBM method has a better approximation than the 

results obtained from linear beam theory.  

 

Case 2: Cantilevers subjected to a vertical force plus a synclastic moment    

 

A vertical force and a synclastic moment applied on the tip of a cantilever are assumed in 

this case as shown in Figure 2.12(c) and Figure 2.13(b). The vertical deflection and slope 

angle at the free end can be deduced using linear matrix method (see Section 2.3), which 

is rewritten here as follows (F and M0 are denoted to the applied force and the moment).  
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where 	 and � are the vertical deflection (or out-of-plane bending deflection) and the 

angular deflection at free end of the cantilever. Note that this matrix equation can also be 

applied in any cantilever subjected to any combination of force and moment at the free 

end. Comparatively, the matrix eqauation of motion using linear PRBM models can be 

derived as: 
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Figure 2.12 The load-displacement curves of a cantilever beam at the free end 
subjected to a vertical force, obtained by using linear beam theory, linear PRBM, 
nonlinear PRBM and FEA simulation.  
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where �1 and �2 are the characteristic coefficients due to the vertical force and the 

moment, respectively (�1=0.8517 and �2= 0.7346); K�1 and K�2 are rotational spring 

coefficients due to the force  and the moment (K�1 =2.65 and K�2 =2.0643). Substitution 

of the given coefficients into Equation (2.103) gives the following static equation of 

motion: 
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                         (2.104) 

Compared to Equation (2.102), the flexibility matrix in Equation (2.104) has lower values 

of coefficients for all of the four matrix members, which demonstrates that smaller 

deflections can be derived from the linearized PRBM model. This can also be observed 

from Figure 2.15. 

 

Case 3: Cantilevers subjected to a vertical force with an opposite moment 

 

Conversely to Case 2, the moment applies in an opposite direction to the deflection 

produced by the force at the free end of a cantilever. The deflections thus induced can be 

obtained by using the same equations as in Case 2. This case is representative for most of 

the cantilevers used in suspensions for out-of-plane movable micromirrors and micro-

platforms due to their symmetric structures involved. As a typical example, in Figure 2.1 

the central mirror plate is suspended symmetrically by the two lengthy beams at its both 

sides.  
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Figure 2.13 Different load-deflection curves of a cantilever at free end are 
simulated using linear beam theory, PRBM and FEM software: the curves in (a) 
are resulted from a range of moment with a fixed force; and the curves in (b) are 
resulted from a range of force with a fixed moment.   
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Three load-deflection curves obtained from using linear beam theory, PRBM method and 

finite element method respectively for the cantilever applied by the assumed loads are 

shown in Figure 2.14. The upper part in the figure is plotted as if the cantilever is applied 

at its free end by a variable value of force with a fixed amount of moment in the opposite 

direction. For example, M0 is assumed at 0.2�N.m according to the electrostatic torque 

estimated from the micromirror given in Figure 2.1 and its applied voltage. The lower 

graph is plotted when the cantilever is loaded by a variable amount moment with a fixed 

value of vertical force (F=1000�N) in the opposite direction. It is noted from Figure 2.14 

that with a fixed upward moment, the vertical deflection is positive or upward if the 

downward force is less than a value. No displacement can be resulted if the downward 

deflection arising from the downward force equals the upward deflection caused by the 

upward moment. The simulated results for the cantilever, for example, show that the zero 

displacement happens when the applied force is around 1850�N and the corresponding 

moment is fixed at 0.2�N.m; or it occurs when the applied moment is around 0.113�N.m 

with the fixed force at around 1000�N (see the red lines shown in Figure 2.14). Both 

cases (either a variable force with a fixed moment or a variable moment with a fixed 

force) represent for the guided-end cantilevers. Moreover, it is noted the three curves in 

Figure 2.14 are very close to each other, with the FEM simulated curve located in 

between the linear and the PRBM curves. The reason is that the two opposite loads, 

downward force and upward moment, or vice versa, compress the resultant displacements 

in the range of small deflections. Linearized curves can thus be resulted. This in the other 

hand demonstrates both linear PRBM method and linear beam theorem can be applied in 

the analysis for guided-end cantilevers. 
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All load-displacement curves in Figures 2.12, 2.13 and 2.14 indicate that the PRBM 

method is able to give a closer result to that of FEA simulation than using linear beam 

theorem. For small deflections both linear and PRBM method are applicable. In case of 

very large deflection, neither linear modeling nor PRBM modeling method is applicable 

for approximation. Nevertheless, the cantilevers with very large delfections are rare in the 

actual planar micro-mechanisms. As such, the derived PRBM method is appropriate to 

solve for most of micro-cantilever problems.  

 

2.4.3 Analysis of Torsional Micromirror Using PRBM Method 

 

The torsional out-of-plane motion of the micromirror given in Figure 2.1 is analyzed in 

this sub-section using PRBM method. The vertical force is resulted from the electrostatic 

actuation that is uniformly distributed in the space between the two parallel plates (the 

micromirror and the substrate electrode) and applied on the micromirror as a distribution 

force. Thus the force, the moment and the torque concentrated at an end of the two beams 

are halves of their entire amplitude due to the symmetric geometry. The concentrated 

moment and torque at the ends are thus generated. The geometric symmetry and the 

assumed rigidity of the micromirror (see Figure 2.15) indicate the three links plus two 

joint PRBM model has a better approximation.   
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Each side beam of the micromirror can be approximated by a cantilever having three 

degrees of freedom of motion, that is, the torsional deflection � along its torsion axis, the 

vertical deflection 	 and the bending slope angle � caused by electrostatic actuation. The 
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torsion of the two beams is expressed as a linear relation between load and displacement 

and it is independent from other two degrees of motion (Section 2.2). The vertical and the 

angular slope deflections are correlated to each other. Thus both side beams can be 

represented by the fully guided-end cantilevers. Their equivalent PRBM models are 

composed of three rigid links and two rotational joints, as shown in Figure 2.17. Using 

Equation (2.103), a matrix equation of quasi-static motion of the torsional micromirror 

can be written as follows, 
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                          (2.105) 

The end loads for the equivalent cantilever include the downward force Fz (equal to Fe/2), 

the moment in the opposite direction My (equal to M0) arising from the difference of the 

moment arms, and the torque Tx caused by the distance of the electrostatic force to the 

torsional axis. There may be no deflected slope angle at the free end of the cantilver 

because of the assumed rigidity of the mirror plate compared to the relatively compliant 

cantilevers. The flexibility matrix for the micromirror can be solved as shown in Equation 

(2.105). Depending on different loading conditions at the free end of a compliant 

cantilever in a micro-mechanism, the PRBM models with different numbers and lengths 

for rigid links can be found and the whole micro-mechanism which may include both the 

short rigid beam members and the lengthy compliant beams can thus be linearized and 

analyzed and a model built.   



98 
 

 

 

2.5 Summary 

 

Planar micro-mechanisms and compliant suspensions were first discussed in this chapter. 

A typical planar micro-mechanism which is represented by a torsional micromirror 

suspended by two lengthy side beams was assumed as linear and further analyzed using 

linear energy method. Electrostatic potential energy, the strain energy, the electrostatic 

nonlinearity, the pull-in phenonmenon and static and dynamic performances of the 

micromirror were reviewed. Structural effects due to large deflection, shear strain, axial 

load stiffening and shear force loosening were also discussed in the second part.  

 

Origination of the matrix method and its applications in planar micro-mechanisms were 

reviewed and followed by a general formulation of the matrix equations for the framed 

structures in the third part. Based on the linear assumption, matrix methods via both 

� 
��1 

��2 z

Figure 2.15 The approximated PRBM models for the two cantilever beams in the 
given torsional micromirror. 

 

 

�l 
dFe 

Fe/2 

M0 



99 
 

flexibility and stiffness matrices were given thereafter. The detail introduction includes 

the individual stiffness matrices and the equations of motion for static analysis of a 

torsional micromirror given in the beginning of the chapter. The results were also 

compared with the simulated results acquired from using commercial FEM software.   

 

As an alternative of analytical methods in dealing with compliant beams, the pseudo rigid 

body model (PRBM) is utilized to model nonlinear mechanisms due to large deflections. 

Two types of PRBM models with their criteria and characteristics were presented. 

Structural features and formulation of the PRBM models with three kinds of end-loads 

were discussed.The PRBM method was then applied for static analysis of the given 

torsional micromirror. The results obtained from using different PRBM models were 

compared with those achieved from using linear beam theorem and commercial FEM 

software ANSYS.  

 

As a conclusion and in consideration of the characteristics of the compliant beams in the 

planar framed micro-mechanisms, both linear matrix method and PRBM method are very 

helpful in modeling and analysis of out-of-plane movable MEMS that comprise 

compliant beam members. 
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Chapter 3: Torsional Micromirrors with Serpentine Springs 

 

3.1 Introduction 

 

As previously introduced, the electrostatic actuated torsional micromirrors represent a 

topic of interest among optical MEMS devices due to the following advantages: they can 

be easily made in large batches using SOI wafers; their major components, the mirror 

plates, demonstrate uniformity and flatness in surface for efficient light reflection; their 

structures are stable and reliable for long life expectancy due to the thick silicon film 

used for the structural layers;  they can be easily controlled by simple electronic circuits; 

above all they are the essential components in constructing many of micro-optical devices. 

However, concerns are raised given the hard to satisfy for structural compactness and the 

large drive voltage needed for electrostatic actuation. It is therefore necessary to model 

and design compliant suspensions for micromirrors, aiming to incorporate more devices 

on the micro-chip and to reduce the drive voltage.  

 

Using short beams as hinges to suspend torsional micromirrors was previously discussed 

[184-187]. Although the lengthy beams have to be adopted if flexible movement of the 

proof mass plates is desired, they are actually not easy to produce due to sinking or 

stiction problems during or after fabrication. To avoid such issues, a variety of planar 

suspensions have been developed although they are all comprised by different lengths of 

beams. The geometry for these suspensions can take L-shape, U-shape, sagittal shape, or 

other compositions of multiple beams, as illustrated in Figure 3.1. With symmetric 
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arrangement in geometry, most of them are used for in-plane motion of the micro-

platforms. However, the bridge and the classical serpentine spring shown in Figure 3.1 (a) 

and (e) can also be used for out-of-plane torsional motion of micromirrors given the low 

torsional stiffness constants.  

 

Although few planar springs have been reported to adapt for the suspensions of platforms 

[188], they are too stiff to adapt for the suspensions of torsional micromirrors. Recently 

two kinds of ortho-planar springs in micro size for micro-mechanism applications, the so-

called classical seperpentine springs and rotational serpentine springs were reported in 

literature [86, 157 and 158]. As reported, the spring constants for the out-of-plane 

bending, the in-plane bending and the out-of-plane torsion modes are in the same order of 

values for the classical serpentine springs, while the rotational serpentine spring exhibits 

more flexible torsion and an increased stiffeness in the out-of-plane bending. This 

indicates that rotational serpentine springs are more appropriate to construct the 

suspension structure for a torsional micromirror that requires flexible torsion and stiff 

(a) (b) (c) 

(d) (e) (f) 

Micro-platform 

Figure 3.1 Suspensions for micro-platforms: (a) a bridge by two cantilevers; (b) L-
type folded beams; (c) U-type folded beams; (d) Sagittal springs; (e) Classical 
serpentine springs; (f) Double L-type folded beams. 
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bending. Thus in this chapter, torsional micromirrors symmetrically suspended by two 

side rotational serpentine springs and actuated by parallel field electrostatic actuation are 

analyzed using various modeling methods such as the linear energy method, the linear 

matrix method, the PRBM method, the matrix method with PRBM models and FEM 

simulation.  

 

3.2 Planar Serpentine Springs 

 

A planar serpentine spring consists of multiple beam segments that are consecutively 

connected. Two or more serpentine springs may join together to form a strengthened 

suspension. Figure 3.2 shows several types of planar serpentine springs, in which (a) is a 

serpentine spring composed of multiple loops of rotational serpentine elements; (b) is a 

serpentine spring with a few periods of classical serpentine elements; whereas (e) is a 

serpentine spring having only one rotational serpentine loop. These three serpentine 

springs belong to ortho-planar springs. Two other types of planar serpentine springs, the 

zigzag serpentine spring and the rounded orthogonal serpentine spring are also shown in 

Figure 3.2 (c) and (d).  Because of the folded beam structures, these springs occupy much 

less areas than they may need for the straight beams with the same length. The 

compactness is thus obvious.  

 

As mentioned previously, a framed structure composed of serpentine springs can be 

regarded as a grid, capable of out-of-plane translation, slope angular deflection due to the 

bending moment, and axial torsion. The axial deformations and the in-plane lateral 
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deformations for individual beam segments are assumed negligible. Compared to 

orthogonal serpentine springs, the zigzag and the rounded serpentine springs are more 

difficult to fabricate due to selective etching nature of silicon. Thus in actual applications, 

only rotational serpentine springs or classical serpentine springs are chosen for 

suspensions of out-of-plan movable MEMS. Rotational serpentine springs are therefore 

chosen for suspensions of compliant torsional micromirrors due to their advantages in 

structural compactness, stiffened bending, and more compliant torsion. All analyses using 

different methods hereafter in this chapter are focused on the torsional micromirrors 

supported by rotational serpentine springs.   

 

 

Figure 3.2 Several types of planar serpentine springs: (a) one with multiple loops 
of rotational serpentine; (b) one with multiple loops of classical serpentine; (c) one 
zigzag classical serpentine; (d) one with rounded classical serpentine; (e) a 
rotational serpentine spring with one serpentine loop.    

(a) 

(b) 

(c) 

(d) (e) 
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3.3 Modeling by the Energy Method 

 

The schematic views (both top and side views) of a torsional micromirror suspended by 

two identical rotational serpentine springs are shown in Figure 3.3 (a) and (b), 

respectively. The two rotational serpentine springs are attached to the micromirror 

symmetrically at their free-ends and anchored to the substrate at their fixed ends. The 

micromirror is thus suspended and limited from in-plane movements. The gap g0 between 

the bottom electrode on the substrate and the top mirror plate allows for the out-of-plane 

bending and torsion of the micromirror. The electric field is created by application of the 

electrical bias on the pair of electrodes. The top mirror plate can thus be driven to rotate 

by an angle � about the torsion axis while the torsion beam can be deflected by a vertical 

translation z. Small deflections, non residual strains, the overlapped upper and lower 

plates, and no fringe effect of the electrical field between the two plates, are all assumed 

in the model and used for performance analysis in this section.  

 

(b) 

Figure 3.3 Schematic views of a torsional micromirror suspended by two 
rotational serpentine springs: (a) top view; (b) side view. 

(a) 
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3.3.1 Formulation of Stiffness for Rotational Serpentine Springs 

 

As shown in Figures 3.3 and 3.4, due to the structural symmetry, two side springs 

counteract on each other with equal forces along the torsion axis, such that no axial 

displacement for any side spring occurs. Meanwhile, the individual axial elongations or 

stretches along the four short segments (segments #2, #4, #6 and #8 in Figure 3.4) can be 

cancelled out each other because of their symmetric arrangement along the torsion axis. 

And the individual elongations or stretches along the three long segments (segments #3, 

#5 and #7 in Figure 3.4) of each side spring can merge together to behave as a cantilever 

beam due to the symmetric structure and the uniformity in cross-section and material. 

Therefore, the two side spring can be regarded as the cantilever serpentine springs with 

fully guided-end loading condition due to the rigidity of the micromirror and the 

symmetry of the entire structure. The force diagram for such a rotational serpentine 

spring element is shown in Figure 3.4 (a), in which lp, lo, li, lf and di are denoted for 

lengths of the parallel long segments, the orthogonal short segments, the initial segment 

at the fixed end, the final segment at the end attached to the mirro plate and the distance 

between the two neighbor short segments in the serpentine spring.  

 

 According to Castigliano’s theorems, the total strain energy stored in any beam segment 

of a spring subjected to a general load that includes the components of bending, shear, 

axial force, and torque, can be summed up as: 

                               torsionaxialshearingbending UUUUU +++=                         (3.1) 
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Since the force components Mz, Fx and Fy for the in-plane deflections are assumed 

negligible, thus the term Uaxial is neglected. The other terms in Equation (3.1) are 

expressed as:  
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where fs in Equation (3.3) is a coefficient that depends on the cross-sectional geometry; Iy 

and Iz are cross-sectional moments of inertia with respect to the y-axis and the z-axis, 

respectively while all integrations are carried out along the length of individual segments. 
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Figure 3.4 Schematic diagrams for a rotational serpentine spring. (a) the free 
body diagram of a rotational serpentine spring with applied loads and geometry 
notations; (b) the joint and segment numbering of the spring; (c) the internal loads 
on a segment.  
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L, A, G, J and ds are the length, the cross-sectional area, the shear modulus, the cross-

sectional polar moment and the infinitesimal element of length of the beam.  

 

The assumptions of no shear strain, no axial strain and no lateral bending moment (Mz) 

are reasonable according to the applied loads and the characteristics of a planar grid. 

Thus the corresponding terms of the strain energy on the assumed negligible motion 

directions can be neglected. The total strain energy for each segment in Equation (3.1) 

can be simplified to two terms only: bending and torsion strain energies. Thus the total 

strain energy for a serpentine spring consisting of nine segments and subjected to Tx, My 

and Fz at the free end (shown in Figure 3.4 (a)) can be simplified to  
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According to Castigliano’s second theorem, the bending slope 
0, the torsional angle �0, 

and the vertical displacement 	0 can therefore be determined by  
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Thus all of the three stiffness constants can be derived by forcing two of the equations 

equal to zero and solving the remaining one in Equation (3.6). For an example, the 

torsional stiffness kt at the free end of a side spring is derived from setting 
0=0 and 	0=0 

such that a relation between the applied torque and the torsional angle is obtained. The 

other two stiffness constants can be similarly obtained.  

 

Table 3.1 lists the corresponding internal loads for all of the nine segments due to the 

external loads applied at the free end of a serpentine spring. The geometric denotations in 
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the table can be found in Figure 3.4. The variable x in the table represents a longitudinal 

distance from the initial node in a beam segment, shown in Figure 3.4 (c). The constant 

cross-section and the uniform material properties are assumed in the analysis. The three 

deflections at the free end of the spring are then derived from solving Equations (3.5) and 

(3.6) as follows. 

Table 3.1 Internal moments and torques for individual segments 

Segment Number 
(length) 

Moment Torque 

1 (lf) My+Fz x Tx 
2 (l0) Tx-Fz x My+Fz lf 

3 (lp+di) My+Fz( lf+x) Tx-Fzl0 
4 (l0) Tx-Fz (l0-x) My+Fz (lf+lp+di) 
5 (lp) My+Fz (lf+lp+di-x) Tx 
6 (l0) Tx+Fz x My+Fz (lf+di) 

7 (lp+di) My+Fz (lf+di+x) Tx+Fzl0 
8 (l0) Tx+Fz (l0-x) My+Fz (lf+lp+2di) 
9 (li) My+Fz (lf+ lp+2d i+ x) Tx 
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       (3.9)                         

Equation (3.7) indicates the torsional deformation at the free end of the spring solely 

depends on the external torque applied, while the slope angle and transverse bending 

deflection at the free end depend on both the applied vertical force and the bending 

moment, as given by Equations (3.8) and (3.9). These two equations can be rewritten as: 
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where coefficients C11, C12, C21, C22 are the members for the flexibility matrix for the 

spring. The torsional stiffness kt for a rotational serpentine spring with only one 

serpentine loop is therefore derived from Equation (3.7): 

                                               
1

0432
−

��
�

�
��
�

�
+

+++
=

EI

l

GJ

ldll
k pifi

t                                  (3.11)  

Meanwhile, due to the assumption of the rigid mirror plate and the balanced moment at 

the free end of a side spring, the bending slope 
0 at this point is zero (
0=0). Substituting 

this boundary condition into Equation (3.10) yields the out-of-plane bending stiffness at 

the free end of the side spring. Other stiffness coefficients can be similarly derived by 

solving Equation (3.10), which are shown below: 
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where k
 is the stiffness constant to the bending slope at the free end resisting against the 

out-of-plane bending moment; k	 is the bending stiffness resisting against the vertical 

force; k
z and kz
 are the stiffness constants indicating the coupled relations between the 

two deflection modes: the bending component due to moment My and the bending due to 

the vertical force Fz. As mentioned, since 
0=0 and My=0, the out-of-plane bending 

stiffness for a side spring is thus found from Equation (3.10). 

 

3.3.2 Static Analysis of Torsional Micromirrors  

 

Structural symmetry with respect to the centre of the micromirror can be observed from 

the given torsional micromiror (Figure 3.3). The applied load resulted from electrostatic 

actuation can be equally divided onto the two side springs. Therefore the torsional 

stiffness constant for the complete micromirror is two times of each torsional spring 

constant,  
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                             (3.13) 

Similarly, as indicated by the structural symmetry, the out-of-plane bending stiffness 

constant for the complete suspension of the micromirror is also a two-fold of the 

corresponding stiffness for one side spring, that is, Kb=2k	, where k	 can be directly 

solved from Equation (3.9).   
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As above discussed, in consideration of the soft serpentine springs and the non-

deformable mirror plate, it is reasonable to approximate the torsional micromirror with a 

decoupled 2-DOF model, thus the static equations for this micromirror can be re-written 

here: 

                                               eteb TKandFzK == α                                             (3.14)           

where Fe and Te are the vertical force and the torque applied on the mirror plate arising 

from the electrostatic actuation. The solving process for Equations (3.14) and the 

expressions for the two electrostatic forces are provided in Section 2.2 of the thesis.   

 

Similarly, the total strain energy for a serpentine spring comprising multiple loops of 

rotational serpentines can be solved by integration of all segments involved. Thus 

stiffness constants and static equations of motion for the torsional micromirror can be 

derived.    

 

3.4 Modeling by Structural Matrix Method 

 

Structural matrix method has been previously introduced. Compared to the linear energy 

method presented above, the structural matrix method is easy to be implemented and 

structured in an algorithm. The method is thus useful for complex framed structures. The 

complexity of modeling the framed micro-mechanism is increased if non-symmetric 

factors or unexpected phenomena are present to a microstructure, such as misalignment, 

undercut, non-uniform deposition, over-etch, tilt, warp and etc. during the 

microfabrication (Figure 3.5). However, this can be conveniently addressed by using the 
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structural matrix method. The derivation for the structural stiffness matrix at the free end 

of a planar rotational spring is provided in this section. The similar process of derivation 

can be applied to other types of framed structures, such as the planar grids or spatial 

frames.  

 

The rotational serpentine spring shown in Figure 3.4 has only one rotational serpentine 

element connected with the initial part that is attached to the substrate in the other end 

and the final part that is connected with the mirror plate at the free end. However, a 

general rotational serpentine spring may consist of multiple elements of rotational 

serpentines. It can be decomposed to three parts: the initial part, the final part and the 

rotational serpentine elements, as shown in Figure 3.6. This separation is to reduce the 

order of the matrices needed for the analysis. Moreover, the matrix equation for the 

multiple rotational serpentine elements can be obtained by multiplication of all identical 

elements. Therefore the static matrix equations for the three parts of a rotational 

serpentine spring are derived in three separate sections below.  

Figure 3.5 Schematic of micromirrors suspended by framed suspensions: (a) the 
ideally fabricated microstructure with numbering of nodes and beam segments; 
(b) the possible deviation of the fabricated microstructure.  

(a) (b) 
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3.4.1 The Static Equation for a Rotational Serpentine Element 

 

 

Figure 3.6 The schematic diagrams for (a) a serpentine spring with multiple 
loops of rotational serpentine; (b) the initial part attached to the substrate; (c) 
one rotational serpentine loop and (d) the final part attached with the mirror 
plate.    
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Figure 3.7 A basic serpentine element with four segments and five nodes   
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One rotational serpentine element extracted from the general rotational serpentine spring 

(Figure 3.5) is shown in Figure 3.7 with new numbering for the segments and nodes. Any 

rotational serpentine spring is formed by one or more of such elements with the initial 

part and the final part. This section provides only the deduction of static matrix equations 

of the element or loop. The global coordinates and the internal loads on any node are also 

shown in Figure 3.8. This planar frame is subjected to a torque, a moment and a vertical 

force transferred at the free end (Node #1) and each node or restraint joint is loaded 

internally by a vertical force, a torque and an out-of-plane bending moment (Fz, Tx, My). 

The corresponding displacements will be in an order of (�z, �x, �y). The member 

stiffness matrix Kmi in the local Cartesian coordinates for a beam segment that has the 

initial joint/node and the free joint/node at its ends can be written and arranged as shown 

in Figure 3.8, where EI, L, G and J are the flexural rigidity, length, shear modulus, and 

cross-sectional polar moment of inertia of the beam in the loop respectively. 

 

Thus the structural stiffness matrix in the global Cartesian for the member can be 

obtained by transforming the local member stiffness matrix, which is shown as 

                                                      Tmi
T
Tmsi RKRK =                                                     (3.15) 

where Kmsi is the member stiffness matrix in the global Cartesian, also called structural 

member stiffness matrix; T
TR is the transpose of the transformation matrix RT. The 

transformation matrix RT for a beam member in a planar grid has the form of [163]:   
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Equation 3.16 shows that a transformation matrix is composed of two rotation matrices 

arranged in diagonal. The rotation matrix for a spatial beam member is a multiplication of 

two rotation matrices:   

                                                                   R=R�R�                                                      (3.17) 

 

 

where � is defined as the in-plane rotation angle of the beam and � is the out-of-plane 

rotation angle of the beam; R� is the rotation matrix of the beam at an angle �;  R� is the 

rotation matrix at an angle of �.  According to the planar grid in Figure 3.6, the local 

coordinates and the global coordinates share z-axis, thus there is no out-of-plane rotation 

(�=0). Then rotation matrix R in Equation (3.16) is a matrix with one in-plane rotation, 

thus R=R�. Given the orthogonal structure, the rotation angle is equal to either 90º or 0º 

(positive value for the counter-clockwise rotation). As a result the rotation matrices for 
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Figure 3.8 A stiffness matrix for a planar beam segment. The terms in the columns 
and rows of the matrix are arranged in the same order as the numbering of joints 
and are set to conform to the order of load and displacement vectors.   
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members 1 and 3 are equal because of the right angle of orientation with respect to the 

global X-axis (�=90°). The rotation matrices and the transformation matrices for these 

two members in 3-DOF can be written as 
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It can be seen from Figure 3.6 that members 2 and 4 are opposite in their orientation 

angles and thus their rotation and transformation matrices can be written accordingly:  

                                 

°=
	
	
	




�

�
�
�



�
=

	
	
	




�

�
�
�



�

−

=

0

2

100

010

001

cossin0

sincos0

001

α
αα

ααR                              (3.20) 

                               

°=
	
	
	




�

�
�
�



�

−

−=

	
	
	




�

�
�
�



�

−

=

180

4

100

010

001

cossin0

sincos0

001

α
αα

ααR                       (3.21) 

According to Equation (3.15) and Figure 3.7, structural member stiffness matrices for 

individual members in the loop can be derived as:  
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The structural stiffness matrix method distinguishes it from other matrix methods by 

enabling the construction of a global stiffness matrix to cover all beam members and all 

nodes of the structure by summing up all stiffness terms at the same position in the global 

stiffness matrix instead of multiplying all individual stiffness matrices for beam members. 

Figure 3.8 shows the assembly and the distribution of each structural member matrix and 

its terms in the large matrix. The order of the assembled matrix can be found from the 

number of DOFs for each beam member and the node number. For the structure shown in 

Figure 3.6, a 15×15 matrix can be resulted (5 nodes by 3 DOFs).  

 

The constraints are denoted by load vector Pr and the vector Dr represents for the 

displacement of the restrained nodes. Ff and Df represent for load vector and 

displacement vector for the free joints. Then the global stiffness matrix can be partitioned 

into sub-matrices that correspond to the constraints and the free joints. The static equation 

for the rotational serpentine loop can thus be formulated in matrix form as 
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As one can see from Figure 3.8, the last three rows and columns represent the stiffness 

matrix at the last joint which is the real restraint for the entire structure. Compared to 

Equatin (3.25), the matrix Kff is constructed by the 12×12 upper left part of the global 

matrix, which can be reformed to 
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Each matrix term in Kff is in an order of 3×3, representing the stiffness matrix for all free 

joints of a rotational serpentine loop. The non-zero sub-matrices in Kff for the rotational 

serpentine loop shown in Figure 3.6 are provided as follows (derivation is omitted). 

Figure 3.9 The global stiffness matrix for a complete rotational serpentine 
spring assembled from all individual member stiffness matrices in the global 
coordinates. 
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Thus the serpentine loop has the following static equation that relates the forces with the 

deformations: 
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                        (3.27) 

where Ff1=(Fz, Tx, My)T, Ff2=0, Ff3=0, Ff4=0 and Dr5=0 since there is no external load 

applied at the internal nodes of the structure except at the free end (Node #1) and also no 

displacement is assumed at the restraint (Node #5). Thus the global equation of motion 

for the free end of the structure can be expressed from Equation (3.27) as: 
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Similarly, the reaction force vector Fr5 at the assumed fixed end of the serpentine element 

can be solved by letting Dr5=0 in Equation (3.27), that is  
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3.4.2 Static Matrix Equations for Initial and Final Parts  

 

The total stiffness matrix for a torsional serpentine spring shown in Figure 3.4 should 

include the contributions from the initial part (composed of two segments) and the final 

part (composed of three segments), as shown in Figure 3.9 (a) and (b), respectively. The 

external applied loads at Node #1 in the initial part have been derived as Fr from 

Equation (3.29) in the previous sub-section and the boundary conditions for the fixed 

joint (Node #3) of this part can be described as D3=0. The rotation matrices R1 and R2 for 

the two members are given as: 
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Figure 3.9 The schematic diagrams for (a) the initial part and (b) the final part of 
a rotational serpentine spring.    
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Thus the two structural member stiffness matrices transferred from their local coordinates 

to the global Cartesian can be similarly derived. The elements are numbered for 

derivations. Here, Lo is the length of one of the orthogonal segments; n is the loop 

number of the spring, whereas Li and Lf are lengths as shown. If only one loop is used, 

n=1. The structural stiffness matrices for segments #1 and #2 in the initial part can be 

expressed as 
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where the superscript i rmeans the initial part. Thus the static matrix equation of motion 

for the initial part can be written as 
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Since external loads applied on Node 2 are zero (Ff2=0) and displacements for the 

restraint are also zero (Dr3=0), static equations for Node 1 (the free end for the initial part) 

and reactive loads at Node 3 (the assumed fixed end of the initial part) of zero 

displacements can be solved as 

                                                 i
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in which the resultant matrix in the parenthesis is the global structural stiffness matrix for 

the initial part of the spring. All other non-zero sub-matrices are listed below:    
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Finally in Figure 3.9 (b), one can see that the final part of a torsional serpentine spring 

consists of three folded segments. The structural stiffness matrix for this part can be 

derived in the same way. The real external loads (FZ, TX, MY) are applied at Node 1 in this 

part. Though segments #1 and #3 are at the same orientation and have the same form of 

transformation matrices, their structural member stiffness matrices are different because 

of the different lengths. The structural member stiffness matrices in the global Cartesians 

for the three members are therefore deduced:  

                       

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	




�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�



�

−

−

−−−

−

−

−

=

ffff

ff

ffff

ffff

ff

ffff

f
ms

L

EI

L

EI

L

EI

L

EI
L

GJ

L

GJ
L

EI

L

EI

L

EI

L

EI
L

EI

L

EI

L

EI

L

EI
L

GJ

L

GJ
L

EI

L

EI

L

EI

L

EI

K

4
0

62
0

6

0000

6
0

126
0

12

2
0

64
0

6

0000

6
0

126
0

12

22

2323

22

2323

1              (3.35) 



126 
 

                      

	
	
	
	
	
	
	
	
	
	
	
	
	
	




�

�
�
�
�
�
�
�
�
�
�
�
�
�
�



�

−

−

−

−

−

−−−

=

00

0
2
00

2
0

2
0

3
0

2
0

3
0

00

0
2
00

2
0

2
0

3
0

2
0

3
0

2

0000

0
46

0
26

0
612

0
612

0000

0
26

0
46

0
612

0
612

L

GJ

L

GJ
L

EI

L

EI

L

EI

L

EI
L

EI

L

EI

L

EI

L

EI
L

GJ

L

GJ
L

EI

L

EI

L

EI

L

EI
L

EI

L

EI

L

EI

L

EI

K f
ms               (3.36) 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	




�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�



�

++
−

++

++
−

+
−

++
−

+
−

++
−

++

+
−

+

++
−

++

=

0
2

00
2

0

00

2
0

3
0

2
0

3
0

0
2

00
2

0

00

2
0

3
0

2
0

3
0

3

4
0

)(

62
0

)(

6

0000

)(

6
0

)(

12

)(

6
0

)(

12

2
0

)(

64
0

)(

6

0000

)(

6
0

)(

12

)(

6
0

)(

12

dL

EI

dL

EI

dL

EI

dL

EI
dL

GJ

dL

GJ
dL

EI

dL

EI

dL

EI

dL

EI
dL

EI

dL

EI

dL

EI

dL

EI
dL

GJ

dL

GJ
dL

EI

dL

EI

dL

EI

dL

EI

K

pppp

pp

pppp

pppp

pp

pppp

f
ms

    

                                                                                                                                      (3.37) 

The assembled structural stiffness matrix and the static equation for this part are written 

below:  
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where the similar partition to the global stiffness matrix gives the form of matrices in 

Equation (3.25) as follows.  
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Since there is no external load for nodes #2 and #3, i. e. Ff2=0 and Ff3=0, and Dr4=0 due 

to the assumed fixed end, then solving Equation (3.38) results in the static matrix 

equation for the free node: 
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3.4.3 Static Matrix Equation of Motion for a Side Spring  

 

Now that equations of motion for all three portions of a rotational serpentine spring have 

been derived, the global static equation of motion can be deduced similarly. As shown in 

Figure 3.10, since all equations for the three parts of a rotational serpentine spring have 

been transformed into the global coordinates, and each segment has been assumed as a 

cantilever during derivation, the total displacements at the free end of the spring equal the 

summation of all individual amounts, which is expressed by 
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As can be seen in Figure 3.10, K1, K2 and K3 are the structural stiffness matrices in 

Equations (3.34), (3.40) and (3.28), respectively, whereas F3 or f
fF 1 is an external load 

matrix Ff applied at the free end of the spring. Derivation of the internal loads F1 and F2 

yields 
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Substitution of K1, K2, K3 and F1, F2 into Equation (3.41) yields the global flexibility 

matrix or the inversion of structural stiffness matrix as well as an equation of motion for 

the free end of the spring, that is 

                                           fffff KDForFKCFD === −1                              (3.42) 

 

 

K1 K2 K3 

Figure 3.11 A schematic diagram to assemble the global static equation of motion 
from sub-equations of the three parts for a serpentine spring.  
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If a rotational serpentine spring is composed of only one or two loops of serpentine 

beams, the global stiffness matrix and the general static equation can be derived using the 

same process as shown in Section 3.4.1 and the stiffness matrix map in Figure 3.7. The 

derived equation is shown in Equation (3.43). Solving this equation yields the static 

matrix equation of motion for the free end of the spring, that is, Ff=KD1. The global 

structural stiffness matrix for the free end of the spring K is also derived and shown in 

Equation (3.44), where K11, …, K00 are defined in Section 3.4.1 and Figure 3.8. The 

arrangement of the terms in the stiffness matrix indicates an algorithm which is very 

helpful in analyzing other types of serially and orthogonally connected planar frames or 

springs. The stiffness matrix layout and the form of the global equation are also 

applicable in analysis of other serially connected springs, such as the classical serpentine 

springs, the zigzag springs, or spatial springs. The difference in using this method for 

different serpentine springs consists in the derivation of the rotation matrices due to 

different orientations of the beam members.   
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Because of the symmetry of the two side springs with respect to the central point of the 

mirror plate on the torsion axis and the symmetry of the orthogonally connected side 

spring with respect to the torsion axis, slope bending at the free end of a side spring will 

not transmit to the whole structure and the stiffness for slope bending deflection can be 

neglected, leading to a static equation with only two degrees of freedom (torsion and 

translation bending). This is in agreement with the results acquired using the linear 

energy method in Section (2.2.4). And the static equation of motion for a torsional 

micromirror with one or multiple loops of rotational serpentine springs and electrostatic 

actuation can thus be solved using the same formulation as it has been shown in Section 

3.4.1.  

 

3.5 Modeling by Matrix Method with PRBM Models 

 

The PRBMs (Pseudo Rigid Body Models) are used to approximate lengthy beam 

members (also called compliant beam members) in a framed structure. In the example 

shown in Figure 3.11, the rotational serpentine spring for torsional micromirror 

suspensions is composed of both short and long beams. For compliant suspensions, the 

three parallel beams (members 3, 5 and 7 in Figure 3.11 (b)) may be much longer than 
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the short beams. Using PRBM models to approximate these lengthy beams (Figure 3.11 

(c)) in the framed micro-mechanism helps enhance analytical accuracy. Due to 

complexity of framed structures, a hybrid method involving both matrix method and the 

PRBM model is utilized in analysis of the planar framed micro-structures.   

 

3.5.1 Structural Member Stiffness Matrices 

 

The structural member stiffness matrices in the global coordinates for members 1, 2, 4, 6, 

8 and 9 in Figure 3.11 have been found in the previous section (see Equations (3.22), 

(3.31), (3.32), (3.35), (3.36)). Since the length of these beams is much shorter than the 

parallel segments, they can be recognized as linear beams with very small deflections. 

Approximation of PRBM models for these orthogonal beams and the initial and final 

segments is not considered. However, due to their length and the thin cross-section of the 

parallel beams, it is more likely for them to perform large deflections. The structural 

member stiffness matrices for all short beams are rewritten here for convenience.  

 
Lengths, spring constants, applied loads, and beam numbering used in the following 

matrices are denoted and shown in Figure 3.11. EI and GJ are the flexural rigidity and the 

twisting rigidity, respectively. One of the assumptions is that all beams share the same 

cross-section and material properties. Kms is made and the structural member stiffness 

matrix is found. Since the final section and the initial section of the spring have the same 

orientation but different lengths (Lf or Li), thus they share the same format of matrices: 
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Similarly, members #2 and #8 share exactly the same stiffness matrix due to the same 

orientation and the same length:  
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Figure 3.12 The free diagrams for a rotational serpentine spring with a single 
serpentine loop, where (c) is the equivalent structure after PRBM approximation 
for the three long segments.     
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Other two orthogonal segments, namely, members #4 and #6 also have the same length 

and the same orientation in the global coordinates, thus their stiffness matrix is shown in 

Equation (3.47) below. However, some terms in the map for a structural stiffness matrix 

of the lengthy beam in Figure 3.7 have to be adjusted to adapt to the current PRBM 

beams. The new map involving PRBM models is shown in Figure 3.12 as follows. This 

structural member stiffness matrix is arranged in an order of vertical force along z-axis, 

moment along x-axis and moment along y-axis or in an order of vertical translation, 

angular deflection along x-axis and angular deflection along y-axis according to the 

global coordinates of (Z, X, Y) in Figure 3.11.  
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The terms in the adjusted matrix for a parallel beam have been given in Equations (2.90), 

(2.97) and (2.99) in Chapter 2, which can be rewritten here:  
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Figure 3.13 A stiffness matrix for a PRBM equivalent beam. The columns 
and rows of the matrix are arranged in the order of local coordinates and the 
numbering for joints.   
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where �� and � are a rotational spring factor and a characteristic radius factor that are 

related to the orientation of the external force at the free end of a beam. If there is only 

one vertical force, �� and � are usually equal to 2.65 and 0.8517, respectively.  

 

According to Figure 3.12 and transformation matrices for the three long beams (#3, #5 

and #7 in Figure 3.11 (c)), their structural member stiffness matrices are given as follows. 

Beam members #3 and #7 share the same matrix due to the same orientation and length. 

The structural member stiffness matrix for beam member #5 is shown in Equation (3.50) 

below. The structural member stiffness matrices for the 9 beam segments of a rotational 

serpentine spring are thus derived.  
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3.5.2 Global Stiffness Matrix and the Equations of Motion 

 

Since the rotational serpentine spring has 9 beam members and 10 nodes in the structure, 

and each node has three DOFs, therefore the global stiffness matrix has an order of 30×30 

terms arranged in 9 columns and rows. The matrix can be assembled similarly as the 

previous distribution map shown in Figure 3.8 because of the serially connected chain of 

beams. By adding up all matrix terms located at the same positions in the assembled 

matrix, sub-matrices Kij shown in Equations (3.43) or (3.44) can also be resulted. Thus 

static equation for the complete rotational serpentine spring can be written in the similar 

form as in Equation (3.43). The sub-matrices are listed as follows.  
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The stiffness matrix and the static equation for a torsional micromirror with rotational 

serpentine springs can thus be expressed as two times of the global stiffness matrix in the 

corresponding equation. The same process and equations can be found in the previous 

section thus the derivations are not repeated herein. It is noted that due to the symmetric 

structrure and the freedom in angular bending deflection for each beam, no angular 

bending deflection or slope for the two side springs is resulted during deduction. The 

final static equation of motion for the torsional micromirror is thus a system of 2-DOFs 

(vertical bending and torsion).     
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3.6 Numerical Simulation, Analysis and Comparison 

 

Numerical simulation of torsional micromirrors with compliant suspensions composed of 

two symmetric rotational serpentine springs was performed through the commercial FEM 

software, ANSYS. Similar work was carried out using commercial software COMSOL 

[189].   

 

3.6.1 Numerical Simulation 

 

In consideration of the structural features and the coupled electrical field, the structural 

meshing elements SOLID45, SOLID95 and BEAM4 in ANSYS Multiphysics are used 

respectively to mesh the proposed torsional micromirrors. SOLID45 is a 3-D cubic 

element that is defined by the eight nodes at corners, with each node having three degrees 

of freedom: translations in x, y, and z directions. Electrostatic field is applied as a surface 

load uniformly distributed on all nodes on the bottom surface of the top mirror plate. 

Compared to SOLID45, SOLID95 is a higher order structural meshing element with 

additional 12 nodes on the midpoints between the 8 nodes of the SOLID45 element. Thus, 

it tolerates more irregular shapes of solid structures without much loss of accuracy. Since 

each surface on the SOLID95 element has 4 more nodes than that of the SOLID45 

element, the finer presentation of electrostatic pressure can be built on SOLID95 thus a 

better simulation may be resulted if the structure is meshed in the same size of finite 

elements. BEAM4 is a uniaxial element for a slender beam; it has only two nodes at its 

both ends and each node has the complete six degrees of freedom. This element is very 
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useful in meshing Euler beams, but it can not represent properly the surface pressure such 

as the electrostatic force on the mirror plate. Since the proposed micromirror is composed 

of both the beams and the plates, meshing of the entire structure has to be realized by 

using a SOLID element along with the beam element. In consideration that the short 

beam segments exist in the rotational serpentine springs, BEAM4 is not used. Instead, 

either SOLID45 or SOLID95 is used for simulation of the given example. Finer meshing 

for structural corners is required for higher accuracy.  

 

Coupling of electrical field with mechanical structures is created by using the transducer 

element TRANS126 in ANSYS. This is a point-to-point or a line element. Denser 

meshing of the TRANS126 element for the electric field requires higher order structural 

meshing, and thus more accuaret results may be obtained. However, the maximum 

number of elements is not unlimited; it depends on the capability of computer used and 

the type of elements involved. The electrostatic force is applied on the opposite surfaces 

of a pair of electrodes, that is, the bottom side of the mirror plate and the surface of the 

opposite electrode in the torsional micromirror. Compared to the generated electrostatic 

force, electrical fringing effects caused by edges and corners of large mirror plates can be 

neglected [169, 190].  

 

Eight electrical field lines from the 8 nodes on a surface of SOLID95 elements can be 

simulated for the electrical field in this area, as compared to only four electrical field 

lines on a SOLID45 element surface for the same space. Thus a less number of SOLID95 

leads to the same quantity of TRANS126 elements and the same accuracy of simulation 
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for the electrostatic field. Compared to the amount of 9726 elements of SOLID45 in 

meshing of the given torsional micromirror, much less number of SOLID95 elements 

(1378 elements) is required for the same structure. Figure 3.13 shows the top view of the 

meshed micromirror and the lateral view of the micromirror when it is deflected to some 

angle before snap-down. The given micromirror has dimensions of 500μm × 400μm × 

10μm (length×width×thickness) for the mirror plate, 12μm for the gap, 23μm for the 

length of both the initial and the final segment and 220μm for the length of the parallel 

beams as well as 10μm distance between the neighbour features of the structure, which 

results in a distance of 300μm from the anchored point to the attached point on the 

suspended mirror plate for the side springs. The Young modulus, Poisson ratio, and 

density of the material for the mirror plate and springs used during simulation are 

129.5GPa, 0.21, and 2320kg/m3, respectively [167, 168]. 

 

Figure 3.14 The simulated torsional micromirror and the deformation before pull-
in: (a) the top view of the torsional micromirror meshed using SOLID95 element 
(1378 elements in total); (b) the side view of the deflected micromirror before 
pull-in. 

4.833�m deformed (a) (b) 
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3.6.2 Analysis and Comparison  

 

Substitution of the geometric dimensions, physical parameters and the PRBM 

coefficients given in the above example into the sub-matrices K11, K12, …, K00 yields the 

global stiffness matrix  in Equation (3.43). Solving this equation yields the 3×3 stiffness 

matrix for the free end of a side rotational serpentine spring which is formulated in 

Equation (3.44). The static equation for the free end of the spring has the following form, 

which is extracted from Equation (3.25):    

                                                               ffff DKF =

                                                 
(3.51)

 
where Ff is a half of the electrostatic force that is applied on the free end of the spring 

induced by the electrical bias applied on the mirror plate and the bottom electrode on the 

substrate. It has the three components: Fz, Tx and My. Thus Equation (3.51) is rewritten as  

                                                           
�
�

�
�

�

�
�

�
�

�
=
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�
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�
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ff
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K
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T

F

                                             (3.52)     

where 	, � and � are the vertical deflection, the torsional angle and the slope angle due to 

bending moment My. � equals zero because of the guided-end loading condition, the 

rigidity of the mirror plate and the symmetric structure along the centre of the mirror 

plate.  

 

Table 3.2 lists the analyzed and simulated results of the static performance of an 

electrostatic actuated torsional micromirror suspended symmetrically by two single-loop 

rotational serpentine springs. Two kinds of meshing elements in ANSYS, BEAM4 and 

SOLID95 are used in simulation of rotational serpentine springs. The resulted stiffness 
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constants in the table show some difference. The deviation becomes large as the cross-

section of the beam segments increases. However, due to the dominant torsional mode, 

the effect on pull-in voltage due to this error is not significant.  

Table 3.2 Comparison of static performance and pull-in voltage by different methods 

Method Pull-in Voltage 
(V) 

Difference 
(%)  

Bending 
stiffness 
(kN/m) 

Torsion 
stiffness 
(kN/rad) 

Analyzed 18.3971 -5.66 34.3056 1.2931e-07 
BEAM4 17.8927 -8.24 45.1990 1.2571e-07 

SOLID95 19.50 0 33.6137 1.3234e-07 
 

Figure 3.15 (a) shows the colour view of bending deflections distributed along the total 

planar structure, whereas Figure 3.15 (b) shows the maximum stress locations before 

snap-on occurs. The vertical displacement of the micromirror at its front edge at this 

moment is shown to be 4.833μm and the corresponding voltage is 19.5V. When the 

applied voltage is given a small perturbation, the micromirror will be pulled down to the 

opposite electrode abruptly. Bending of the planar springs is noted to be almost 

negligible. Meanwhile, the extreme stress is observed at locations of the concave corners 

of the serpentine springs. The maximum stress occurs at locations of the inner U-corners 

near the anchored ends of the springs (as shown in Figure 3.15 (b)).   Figure 3.16 shows 

the electrostatic curves obtained from an analytical method (linear energy method) and 

ANSYS simulation using SOLID95 meshing elements. Both of the resulted pull-in 

voltages have been shown in Table 3.1 with a difference of around 6%. This error is 

reasonable due to the assumption of small deflection in analytical modeling. The error 

becomes larger as the applied voltage is close to the pull-in voltage.      
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Figure 3.15 FEM simulated results: (a) the top view of the stress distribution on 
the SOLID95 meshed micromirror; (b) the simulated maximum stress locations on 
rotational serpentine springs of the micromirror before pull-in.  

Locations of the 
maximum stress  

 (a)  

 (b) 
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Figure 3.16 Comparison between electrostatic curves obtained using linear 
energy method and FEM simulation with SOLID95 element. 
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3.7 Summary 

 

Various planar framed suspensions for proof mass plates compatible with the current SOI 

wafer based micromachining technology were first reviewed. A concept for designing 

compliant torsional micromirrors is presented.  

 

The compliance, structural compactness and the stiffened out-of-plane bending of the 

rotational serpentine springs are identified in the second section. Compared to classical 

serpentine springs, rotational serpentine springs are soft in torsion but stiff in bending. 

This advantage helps the rotational serpentine springs avoid such issues as stiction, 

sinking, or warping of the microstructures occur during microfabrication. The other 

forms of serpentine springs such as the zigzag and rounded-corner classical serpentine 

springs are hard to produce because of the limits of micromachining processes. 

 

Analytical modeling of a torsional micromirror symmetrically suspended by rotational 

serpentine springs and actuated by parallel electrostatic force is presented in the third 

section. Using a linear energy method, the rotational serpentine springs are analyzed. The 

structure is equivalent to a cantilever with two degrees of freedom comprised of torsion 

and out-of-plane bending at the free end due to the symmetric geometry along its central 

line. The characteristic parameters such as bending stiffness and torsional stiffness are 

derived, which demonstrated that the induced torsion and bending modes at the free end 

of a symmetric rotational serpentine spring can be decoupled. The static equation of 
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motion for the torsional micromirror supported at both sides by two such springs is also 

derived.  

 

Instead, stiffness matrix method is utilized in analysis of a rotational serpentine spring. It 

has been noted any rotational serpentine spring is composed of three parts, the initial part, 

the final part and the part composited by a few loops of rotational serpentines. The matrix 

method is thus applied for each of them. The matrix construction is further presented. 

This includes construction of member stiffness matrix and global stiffness matrix. A map 

to construct the global matrix and the formula to establish the static matrix equations for 

rotational serpentine springs and the complete torsional micromirror are provided.  

 

In consideration of the lengthy beams involved in compliant micromirrors, PRBM 

method is also used to approximate or linearize the nonlinearity of these beams. The 

spring constants from PRBM method dealing with the guided-end cantilevers are used to 

replace the corresponding terms in the map for the global stiffness matrix. The stiffness 

matrix and the static equation of motion for the free end of a rotational serpentine are thus 

derived. Summation of the two stiffness matrices yields the complete stiffness matrix and 

the static matrix equation of motion for the micromirror.   

 

The FEM simulation in ANSYS for the given micromirror is also presented in the last 

section. Different structural meshing elements for the structure result in some deviation, 

in which SOLID95 has demonstrated a better accuracy and thus is recommended for FEA. 

Comparison of analytical method with numerical method is performed too. Both results 
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demonstrate very good agreement. This indicates an acceptable error may be resulted 

from using the analytical method. As for compliant framed microstructures, linear matrix 

method accompanied by PRBM approximation for the compliant beams in the structures 

is recommendable. This way helps enhance the accuracy of the results and also enables 

the embedding in a computer algorithm for the whole process of analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



151 
 

Chapter 4: Micromachining of Torsional Micromirrors 

 

4.1 Introduction 

 

Modeling and design of torsional micromirrors have been discussed in depth in the 

previous chapters. However, due to the desired compliance of suspensions for 

micromirrors, fabrication of such MEMS devices is not an easy task. With good 

understanding of micromachining techniques and materials, development of an easy-to-

handle, cost-effective micromachining process and high success rate of production for 

specific MEMS devices is an important task. Due to the known limitations of bulk 

micromachining, a feasible fabrication process for the proposed compliant micromirrors 

has to tolerate their conflicting requirements on the size and volume of components. Two 

MEMS processes, namely MUMPs (Multi-User MEMS Processes) and MicraGEM 

(Micralyne GEneralized MEMS), are chosen for fabrication. These two processes belong 

to the planar or surface micromachining, which is able to obtain the flat micro-platforms 

or micromirrors for various optical related applications such as optical tele-

communication, micro-scanners, projection display, and micro-sensors. The following 

sections outline the fabrication of miromirrors. 

 

The 2-D layer addition by depositions and bonding processes, and the 2-D layer 

subtraction by etching methods or removals of sacrifice layers, can generate planar 

sandwiched 2-D micro-structures. The planarity of these so-called 2-D micro-structures is 
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due to the successive photo-lithographic patterning of the 2-D layers, the interaction of 

stacked and patterned 2-D layers and the selective etching characteristic of the layers or 

the substrates, depending on the materials, the tools and the etchants that are chosen for 

micro-fabrication. Because of this kind of parallel plate microstructures, an attractive 

force generated between a pair of plates loaded by an electrical bias is widely used as the 

electrostatic actuation for MEMS with movable components.  

 

4.2 MUMPs Process 

 

As it has been introduced, MUMPs micromachining process is a kind of surface 

micromachining processes, suitable for the fabrication of precise and fine planar 

structures composed of a few thin polysilicon layers. The detailed description of MUMPs 

can be found in the manuals or instructions that are provided by the company [191]. A 

brief review of one of MUMPs process, that is, PolyMUMPs is provided herein, which is 

widely accepted for the production of specific MEMS devices such as micromirrors or 

micro-platforms.  

 

There are three sophisticated processes of MUMPs, namely, PolyMUMPs, MetalMUMPs 

and SOIMUMPs, named after the materials that are used for structure layers of MEMS 

devices. Due to the small dimensions of the micro-structures that can be fabricated, 

PolyMUMPs (Polysilicon based MUMPs) is selected for the fabrication of micro-

platforms with soft suspensions. PolyMUMPs is not suitable for micromachining 

torsional micromirrors that are needed in our research as they are supposed to have large 
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dimensions of micromirrors (hundreds of microns) and the corresponding non-symmetric 

supports for torsional movement. Figure 4.1 shows a typical cross-section of 

PolyMUMPs process, which is composed of two structural layers, one bottom electrode 

layer, one external metal wiring layer and three other layers. As shown in this figure, 

poly-silicon layer Poly 0 is for the electrical ground or bottom electrodes, whereas Poly 1 

and Poly 2 are two mechanical structural layers. The two PSG (phosphorous-silicate-

glass) deposited oxide layers are sacrificial layers, employed to provide the first gap (1st 

oxide) between Poly 1 and substrate/nitride and the second gap (2nd oxide) between Poly 

2 and Poly 1. Silicon nitride layer is used for isolating the device with the substrate 

whereas the metal layer is used for wiring of the device for packaging. Thickness for each 

layer of PolyMUMPs process is fixed as one of the design rules for the standardized 

process. Table 4.1 lists all thickness values of the process to be used in layout design in 

order to obtain a successful yield of the MEMS devices. In an overview, PolyMUMPs 

process uses eight lithography levels to pattern the seven physical layers that have been 

mentioned [192]. 

 

 

Nitride Poly 0 1st Oxide Poly 1 2nd Oxide Poly 2 Metal 

Silicon substrate 

Figure 4.1 Cross-section view of PolyMUMPs micromachining process 
(Adapted from MUMPs Process [192]) 
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Table 4.1 Layer or material names and individual thicknesses of PolyMUMPs 

Material layer Nitride Poly 0 1st Oxide Poly 1 2nd Oxide Poly 2 Metal 
Thickness (�m) 0.6 0.5 2.0 2.0 0.75 1.5 0.5 

 

There are a few compliant micromirrors using MUMPs micromachining process that 

have been introduced in the first chapter. They all have relatively large plates with very 

thin thickness (1.5~2�m) based on the design rules provided. Although these devices can 

perform out-of-plane movement, they all have to be actuated using complicated 

mechanisms and additional circuits for actuation controls [193-195]. And flatness of 

mirror surfaces will be deformed after some time. It is therefore the MUMPs is not 

suitable to fabricate the desired torsional micromirrors that have larger dimensions and 

will keep flatness of mirror surfaces for the life time. Nevertheless, it is valuable to 

render this process for fabrication of other kinds of microstructures such as those fully 

clamped deformable micro-diaphragms or micro-bridges for optical sensing applications 

(see Figure 4.2) [196]. The design layout for the two kinds of microstructures (the stiff 

suspension by directly clamped or anchored and the soft suspension by the compliant 

springs) can be seen in Figure 4.2. Out of these, the two soft suspended micromirrors 

snapped over time. Moreover, there are only two options of gaps between the bottom 

electrode (Poly 0) and one of structural layers (either Poly 1 or Poly 2) that can be chosen, 

i.e., 2�m and 4.75�m for the out-of-plane motion, which is too small for the torsional 

micromirrors desired for our research even though the compliance of suspensions can be 

easily obtained. These two drawbacks make the PolyMUMPs process not applicable for 

fabrication of large torsional micromirrors. In replacement, SOI-MUMPs process has 

been developed for such kind of applications. And it is also very similar to another SOI 

wafers based micromachining process such as MicraGEM, as introduced in the first 
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chapter. MicraGEM process for the desired torsional micromirrors will be provided in the 

later section.  

 

 

4.3 SOI Wafers and SOI MEMS Fabrication 

 

As shown in introduction, SOI (silicon-on-insulator) wafers are a kind of sandwich 

structures consisting of three layers: a thin silicon layer on the top, a bulk silicon layer at 

bottom and an insulator layer in between. There are two extensively employed techniques 

in producing SOI wafers for both IC and MEMS applications, that is, the silicon fusion 

bonding (SFB) and the separation by implanted oxygen layer (SIMOX) [61-63].  

 

Figure 4.2 A PolyMUMPs design layout showing two compliant micro-platforms, 
each of  which is suspended by four symmetric classical serpentine springs and has 
four bottom electrodes underneath the platform (see the red circle) [196].  
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The main advantages of SOI (SFB) wafers for fabrication of MEMS devices and 

applications are as follows: 1) the device layer is made of single crystal silicon, which has 

a very uniform geometry (thickness and flatness) and very good mechanical 

performances; 2) the insulation layer, the cavities or gaps and the etch stops underneath 

the device layer can be formed flexibly in various depths and shapes depending on the 

etching process selected and the patterns designed; 3) the thickness for device layers can 

also be realized by mechanical wafer thinning processes such as grinding, lapping and 

polishing of the wafers; 4) due to stable, uniform and high strength mechanical 

performances of the single crystal silicon and the diversity of its thickness for the device 

layers, the fabricated mechanical structures can be very flexible, ranging from very high 

aspect ratio beams (fine cross-section but lengthy beams) to relatively large and heavy 

plates; 5) it is compatible with IC processes (e.g. CMOS) so as to form micro-electro-

mechanical systems on the same chip; and 6) the created devices will have a flat and very 

fine roughness surface, an essential feature for efficient optical refraction or reflection. 

Comparisons of silicon surface micromachining, bulk micromachining and SOI wafer 

based micromachining for MEMS chips were summarized in [197]. 

 

4.4 MicraGEM Process 

 

Using bonded SOI-wafers for high aspect ratio MEMS fabrication is an appropriate 

routine at present, which is especially very suitable for those MEMS devices that need 

large rigid plates or platforms but relatively weak supports. Based on these concepts, the 

bonded SOI wafers are the most suitable base material for fabrication of the micromirrors 
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or microplatforms having large and rigid plates and relatively weak supports. And as has 

been mentioned before, this belongs to one of the research motives, that is, to obtain a 

kind of micromirrors with a heavy proof mass but a relatively soft suspension aiming to 

reduce the resonant frequency of the structure for inertial sensing and positioning 

applications. MicraGEM process (Micralyne GEneralized MEMS), which is one of the 

SOI wafer based MEMS processes, is exactly an SOG (Silicon on Glass) MEMS process, 

in which bulky silicon substrate is replaced by glass plate, an extra thickness of trench is 

added (2�m, 10�m, or 12�m), and the flip-chip bonding technology is utilized in the 

process [167]. The details of the process will be given in the later chapter. Because of the 

availability for Canadian academic researchers owing to the generosity of the technology 

hosting company Micralyne [168], the torsional micromirrors and other micro-platforms 

used herein for the research are thus manufactured.  

 

Among SOI MEMS processes that are recently emerged and commercially available, 

MicraGEM (Micralyne Generalized MEMS, Canada) [167-168] has been well 

standardized and thus used for fabrication of the robust torsional micromirrors in our 

research, owing to its availability made by the company and through the network of 

Canadian Microsystems Corporation to the researchers in Canada. This SOI wafer based 

process offers not only the three options of gaps (2μm, 10μm, 12μm) between the two 

silicon layers, but also the metal electrodes for both the substrate and the device layer as 

well as highly reflective metal surfaces at the top of device layer for micromirrors. The 

minimum size of a feature is 3μm, almost at the same scale of the fine dimensions made 

from PolyMUMPs. And the maximum size of a feature by MicraGEM can be up to a 
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thousand microns according to the maximum allowable aspect ratio of 125:1 in 

MicraGEM, much larger than that of MUMPs. With such a fine dimension and such a 

high aspect ratio, a large micromirror with a relatively soft suspension can be easily 

achieved. Moreover, compared to MUMPs, MicraGEM provides a larger free space or 

gap (10μm or 12μm as compared to 2μm or 2.75μm of MUMPs) for out-of-plane motion 

of torsional micromirrors, meaning a larger angle of torsion. Adding that the residual 

stress in device layer of SOI wafers is negligible and that no etch holes in a device layer 

are needed for etching sacrifice layer, MicraGEM process demonstrates more versatility 

and flexibility over other MEMS fabrication techniques at present.  

 

Instead of a bulk silicon wafer, MicraGEM process employs a Pyrex glass as the 

substrate of SOI MEMS. A cross-sectional view of the process (see Figure 4.3) shows 

that it not only enables the MEMS devices with a free space or gap between the device 

silicon layer and the bottom Pyrex substrate but also offers a metal layer via deposition 

on the Pyrex for the bottom electrodes and another metal layer for the electrodes and 

electrical connection pads on the top surface of the device layer. The bottom electrodes 

are led through patterned metal lines or routes to the pads located at peripheral of the 

Pyrex. The top metal layer provides also reflecting mirror surfaces for functioning of 

micromirrors. Three Pyrex etching depths of 12μm, 10μm and 2�m for the gaps can be 

selected in the process to make it more versatile and flexible. This process is briefly 

presented in Figure 4.3.  
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� Pyrex etching and bottom electrode deposition: This first step starts from a glass 

Pyrex wafer. Patterning with a Pyrex mask (there are 3 mask options:  mask 1 is for 

2μm shallow etching; mask 2 for 10μm deep etching; and double mask for 12μm 

deep etching) on the Pyrex wafer, cavities with selected depths are etched in the 

Pyrex. Thereafter, bottom metal electrodes, lines and bonding pads can be patterned 

by METAL1 mask; 

� Anodic bonding of a SOI wafer with the Pyrex wafer; 

� Etching of SOI handle wafer and buried oxide layer; 

� Designed silicon structures are patterned by DRIE etching and released. The top 

electrodes and reflective metal surface for mirrors are deposited and patterned.  

 

Dimensions of a standard MicraGEM chip are 9×5×0.5 mm3 or 4×5×0.5 mm3. On such a 

chip, one can place many individual MEMS designs by rows and columns. As in our 

research, in order to approach for torsional micromirrors that have relatively low resonant 

value and flat reflective surface, the dimensions of our torsional micromirrors drop in a 

(i) 

(ii) 

(iii) 

(iv) 

Pyrex wafer Metal electrodes 

Silicon handle wafer 
Buried oxide layer 

Device layer 

Deposited metal surface 

Figure 4.3 A typical process flow for MicraGEM SOI MEMS fabrication, which 
briefly shows a few main steps of operation, that is, Pyrex glass etching, metal 
deposition, device layer etching, handle layer etching, and wafer bonding.  
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range of a few hundred microns. Because of the availability of this process, fabrication of 

these micromirrors is focused on the optimum design of the supports or suspensions for 

large micromirror plates. A typical design and fabrication for one of the torsional 

micromirrors is obtained and reviewed in the following sections. The dimensions of the 

micromirror plate were designed to be 500μm long, 400μm wide and 10 μm thick, but 

the actual dimensions after MicraGEM micromachined are measured using a scanning 

electronic microscope (SEM) and found to be 506μm×402μm×10μm (Figure 4.4). A very 

thin metal layer is deposited and patterned on the Pyrex glass substrate to form the 

bottom electrodes that have the same dimensions and positions with those of individual 

micromirrors above. Another metal layer is deposited and patterned on the top surface of 

the chip to cover all the surfaces of micromirrors and surfaces of other structural features 

in the chip, for example, the suspensions of the micromirrors in the shapes of serpentine 

springs. Both shallow and deep Pyrex glass etchings (2+10μm) are utilized to form a 

12μm gap between the micromirrors and the bottom electrodes on the Pyrex substrate. 

Each fabricated rotational serpentine spring has a length of 24μm for both the initial and 

final segments of the spring, a length of 221μm for the long parallel segments, and a gap 

of 10μm between every close neighbor elements, thus the total length of each side 

serpentine spring is added up to be 819μm and the distance between the micromirror and 

the spring anchoring location is measured to be 305μm. All beam segments in the springs 

are designed to be 8μm in width and 10μm in thickness. SEM pictures of the fabricated 

micromirror are shown in Figure 4.4.  
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The metal layer on Pyrex substrate is a combination of titanium, platinum and gold, as 

the process provider indicated, which provides for a low resistance electrical conductivity. 

Instead, chrome or gold is deposited on the top of the device layer (SiSC) to enhance 

optical reflectivity. Lift-off technique is used in both metal layer depositions. The top 

metal layer is patterned and etched to expose the silicon layer underneath. Figure 4.5 

shows SEM pictures for another micromirror with the same designed dimensions as the 

previous one but different dimensions measured after post-processing. Dimensions of the 

fabricated micromirror plate are measured to be 495μm in length and 374μm in width 

showing an error of approximately 1~6% during fabrication. However, it can be observed 

from both figures (Figures 4.4 and 4.5) that the micromirror surfaces are flat and well 

polished, having a perfect surface finishing and being very suitable for optical reflective 

works. Moreover, no curling or sinking of any structural feature is observed in these SEM 

pictures, due to low residual stress of SOI wafers and the optimum design based on the 

rules required by the process, even though the design concepts for suspensions and for 

proof mass plates are contradictive, which demonstrates that MicraGEM is a successful 

MEMS prototyping process. 
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Figure 4.4 SEM photos of the fabricated torsional micromirror with rotational 
serpentine springs: (a) view of the whole mirror; (b) view of a side spring; (c) 
view of the mirror plate.  

(a) 

(b) 

(c) 
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4.5 Layout Design, Wire Bonding, and Packaging 

 

There are a few MEMS layout design tools currently available, such as MEMCAD from 

M.I.T. and CAEMEMS from University of Michigan while MEMS Pro and IntelliCAD 

are commercial software from SoftMEMS and IntelliSense, respectively. They all 

provide system-level synthesis and analysis, structural modeling and numerical analysis, 

layout editors for MEMS components and devices, and 3D visualization of models. All 

layout designs in our research were done by using L-Edit editor in MEMS ProTM. As 

mentioned before, MEMS layout design for a successful fabrication should observe the 

design rules required by any selected micromachining process such as MUMPs and 

MicraGEM. Figures 4.6 and 4.7 show the design layouts for a variety of torsional 

(b) 

(a) 

(c) 

Figure 4.5 SEM pictures of another fabricated micromirror: (a) top view; (b) view 
of a side spring; (c) view of the uniform gap. 
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micromirrors and other suspended micro-devices on the chips with a standard size of 

9×5mm2 that follow with MicraGEM process.  

 

These CAD layouts still need to be checked by running DRC (Design Rule Checker) in 

MEMS Pro to avoid any possible occurrence of costly errors during fabrication. The 

finished design that has passed through DRC is submitted to the manufacturer 

(CMC/Micralyne herein) together with a bonding diagram if required for fabrication. 

Thereafter the finished chip is diced and shipped to the users for further assembly or 

packaging. 

 

Wire bonding is the last step of preparation before MEMS testing and characterization. 

The pads on a MEMS chip are connected internally with the corresponding devices inside, 

and need to connect externally with the pads on a package die, such as those on PGA 

cavity dies (the ceramic Pin Grid Array cavity dies with options of 84 pins and 68 pins at 

bottom, named as 84 PGA and 68 PGA, Figure 4.8). Wire bonding in this aspect fulfills 

this final step. Two bonding types, ball-stitch bonding and wedge-wedge bonding are 

available, which have been used for IC chip production and based on one of the following 

three bonding mechanisms: thermo-compression, ultrasonic, and thermo-sonic. A few 

sophisticated bonding machines in the market can be selected, which can be operated 

either manually or automatically. The manually operated machine WEST/BOND 7400E 

is used in our research for wire bonding of the chips (see Figure 4.8), in which either 

aluminum wires or gold wires with diameters from 17�m to 50�m can be employed for 

wire bonding. The loose dice is first placed, positioned and attached to the central 



165 
 

platform in the cavity of a PGA die. Wire from the attached coil is threaded through the 

capillary hole in the wedge by pressurized gas and held by the clamp, allowing automatic 

feeding by the machine. Aluminum wire bonding operation is implemented using 

ultrasonic bonding, while gold wire bonding operation needs the work piece on the 

platform to be heated, which could be detrimental to the movable components on the chip. 

The cost effective aluminum wire of 20�m diameter was chosen for wire bonding in our 

work. Common defects or failures may occur in wire bonding due to underlying cause. If 

the bonding force is too high, peeling of metallic layer may occur to the pads. 

Conversely, if the bonding force is too low, the bonds may not stick to the pads. Con-

taminated bonding pads or uneven pad surfaces may also keep them from sticking. Wire 

breakage during the bonding process is usually the result of imperfections (nicks, 

scratches, or kinks) in the wire. The high yield and high quality bonding operation can be 

achieved for an experienced operator. Wire bonding of MEMS chips with the ceramic 

cavity dies (or containers) is the last step in the fabrication of MEMS devices for 

laboratory tests and characterization.    
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Figure 4.6 Design layout for a variety of torsional micromirrors with the size of 
the mirror plate at 600μm×500μm on a standard chip of MicraGEM.   

Figure 4.7 Design layouts for a variety of torsional micromirrors with the size of 
the mirror plate at 300μm×240μm on a standard chip of MicraGEM. 
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4.6 Discussion on Limitations 

 

There exist limitations to MEMS fabrication due to limitations of the available 

micromachining techniques and the specific physical fields. As has been mentioned in the 

introduction, MEMS fabrication evolves from single layer addition or subtraction (2D 

micromachining), multiplex planar structures (2D+ micromachining) toward 3D 

micromachining and nano-scale. The drawbacks arising from 2D micromachining can be 

solved as the 3D micromachining technology becomes sophisticated in the future. Since 

the 3D micro-fabrication is still in its initial stage of research, the real 3D MEMS devices 

are hard to be fabricated. MEMS devices made by surface micromachining still need to 

be packaged properly for harsh applications. And various physics and physical fields 

Figure 4.8 The wire bonding machine WEST BOND 7400E and the diagrams of 
an 84 PGA die with pin number used for packaging of the diced MicraGEM chips.  

top view 

bottom  view 
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(electrostatic, magnetic, gravity, etc) may also set to some extent the limitations on the 

capability of micromachining and applications of these MEMS devices.  

 

4.7 Fabricated Results  

 

The micromirrors or micro-platforms that are non-symmetrically supported by a variety 

of beams or springs have been successfully fabricated using MiraGEM process, and 

released and packaged in our lab for testing and characterization. Figure 4.9 provides 

AFM photos for the two micro-platforms that are supported by a cantilever of serially 

connected multiple serpentine beam segments. Under each of these micro-platforms there 

are two equal size bottom electrodes that are symmetrically arranged and isolated with 

each other. This kind of electrostatically activated micro-platforms has been validated 

theoretically to be a suitable alternative for spatial optical switches of 1×N routes or ports 

because of its two degrees of freedom of motion (2-DOFs). The tunable ranges of angles 

for both torsion and bending slope of the micro-platforms can be designed to be in the 

same order. Analysis on one of these micro-platforms that are supported by cantilevers 

has been performed [182] while leaving characterization of these micro-platforms with 

different supports for further work. Figures 4.10-4.16 provide the SEM photos of several 

fabricated torsional micromirrors.  
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Figure 4.9 AFM pictures of micro-platforms supported by “a cantilever”. This 
cantilever can be a real cantilever or made of serially connected multiple 
serpentine beams as shown.  

Micro-platform 

Bottom 
electrode 
leaders 

Top electrode leader 

M
ic
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m

ir
ro

r



170 
 

 

Figure 4.10 AFM pictures of a torsional micromirror in the size of 300μm×240μm 
suspended symmetrically by two identical rotational serpentine springs. The lower 
picture shows one of the side springs.  

Micromirror 

Bottom lead 
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Figure 4.11 AFM pictures of a torsional micromirror with the mirror plate at size 
of 300μm×240μm symmetrically suspended by two side springs, each of which is 
made of two rotational serpentine loops. The lower photo shows a side spring. 

Bottom lead 
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Figure 4.12 AFM pictures of a torsional micromirror with the mirror plate size of 
500μm×400μm suspended by two pairs of classical serpentine springs perpendicular 
to each other for strengthening.   

Bottom lead 
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Figure 4.13 AFM pictures of torsional micromirrors with the mirror plate at size 
of 300μm×240μm symmetrically suspended by two straight beams. The top photo 
shows the two side beams are lined up with the central line of the mirror plate; the 
bottom photo shows the torsional axis formed by the two side beams has some 
eccentric distance to the central line of the mirror plate. 

Bottom 
electrode 
leads 

Bottom 
electrode 
lead 
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Figure 4.14 AFM pictures of torsional micromirrors with the mirror plate at size of 
300μm×240μm symmetrically suspended by two side springs. The top photo shows 
a single rotational serpentine spring for a side spring; the bottom picture shows each 
side spring is made of two rotational serpentine springs. 

Bottom 
electrode 
lead 

Bottom 
electrode 
lead 

Bottom 
electrode 
leads 
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Figure 4.15 AFM pictures of torsional micromirrors at size of 300μm×240μm 
that are suspended symmetrically by two pairs of rotational serpentine springs 
(a) or two pairs of straight beams (b).  

(a) 

(b) 
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Figure 4.16 AFM pictures of torsional micromirrors at size of 300μm×240μm with 
their compliant suspensions and the multiple electrodes underneath the 
micromirrors: (a) eight electrodes as shown; (b) six equally distributed electrodes; 
and (c) three electrodes.    

(a) 

(b) 

(c) 

Bottom 
electrode 
leads 

Bottom 
electrodes 
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4.8 Summary 

 

One of surface micromachining processes, MUMPs, its limitations and applications have 

been briefly reviewed, leading to a presentation on SOI wafer production and the specific 

process based on SOI wafers including MicraGEM for the fabrication of the proposed 

torsional micromirrors. Some design rules and design layouts for MicraGEM process, 

packaging of the fabricated MEMS chips were presented thereafter. Some discussions 

and SEM photos of the fabricated torsional micromirrors were finally provided. 
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Chapter 5: Experimental Set-Up and Characterization 

 

5.1 Introduction 

 

There are two types of tests for MEMS characterization: contact and non-contact. In 

avoidance of any damage that may occur to the micro-structures, the highly integrated 

circuits and the micro-chips, non-contact testing methods are typically preferable for 

MEMS and especially for optical MEMS tests. The concept of non-contact herein means 

there is no direct mechanical contact with the movable parts in a MEMS device because 

any mechanical contact such as the microprobe, micro-indenter, or other mechanical 

styluses may lead to the failure of MEMS components. Therefore, the contact test method 

is limitedly used in characterizing material properties of a microstructure or MEMS [198]. 

Instead, MEMS tests without external mechanical contact can be realized through either 

optical or electrical excitation and perception techniques.   

 

Other reasons of using non-contact testing methods are: 1) a highly reflective surface on a 

movable MEMS component is obtainable, which can be formed by gold plating or 

coating or other high reflective coating materials; and 2) a laser beam through a group of 

lenses can be focused into a very small spot on the sensing surface of a movable MEMS 

part, which then reflects the light beam and projects a light spot on a photo-detector. 

Many optical sensing components, such as reflecting micromirrors, micro-plates, micro-

beams, refracting waveguides and lenses can be integrated in optical MEMS devices.  
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Optical non-contact test instruments or methods include scanning electron microscope 

(SEM), laser scanning, stroboscobic interferometry, light scattering and interferometric 

techniques such as the Tolansky multiple beam interferometry and the two-beam 

interferometry based on Michelson, Linnik and Mirau. The electrical non-contact test 

methods include the electrostatic testing method to acquire the capacitance variation of a 

parallel plate structure under a DC bias, and the resonance measurement along with the 

responses of MEMS devices under AC excitation. The piezoelectric excitators such as the 

piezoelectric stacks combined with optical detection method can perform dynamic tests 

of optical MEMS.  

 

The torsional micromirrors herein fabricated using MicraGEM process discussed in the 

previous section are usually plated with gold, having a highly reflective surface. This thin 

deposited layer with the structural device layer (made of silicon or poly-silicon) not only 

is used as one of the two electrodes but also as the reflecting surface for an incident laser 

beam. Based on this principle, Laser Doppler Velocimetry (LDV) is adopted in our 

research for the measurement of dynamic performance for fabricated torsional 

micromirrors. It is equipped with auxiliary devices such as the signal generator with a 

range of frequency and other optical equipment. Both optical interference measurement 

method and PSD (position sensing detector) method are also used in our research for the 

static testing of micromirrors. Therefore, in this chapter, individual testing set-ups based 

on these three testing methods will be provided in detail. Then an introduction of a testing 

method using PSD sensor and Lab-view control algorithm for both static and dynamic 

measurements of the micromirrors will also be given. This is continued by analysis and 
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comparison of the tested results with the previous results from either numerical 

simulations or the established theoretical models. Summary of testing and validation is 

given in the final section. 

 

5.2 LDV for Dynamic Testing  

5.2.1 Doppler Effect 

 

Doppler Effect or Doppler Shift describes that when a laser beam of high frequency is 

scattered back by an out-of-plane vibrating object, it will undergo a frequency shift that is 

proportional to the target velocity. Thus to measure the vibrating frequency of the target 

is to measure the target velocity relative to the motion of the light source. Figure 5.1 

shows the schematic of working principle of a Laser Doppler Vibrometer (Type 3544 

from Bruel Kjaer) [198], in which a small spot of laser beam emitting from a low power 

Helium-Neon laser (2mW and 632.8nm in wavelength) is split into two beams by a beam 

splitter, with one being directed externally to the testing object (the target beam) and the 

other to the internal rotating disc (the reference beam). Then both the target beam and the 

reference beam are scattered and reflected back with their corresponding frequency shifts 

and detected by the photodiode in the instrument. The known frequency shift for the 

reference beam is realized by the rotating disc with a given rotating speed, whereas the 

target beam frequency shift is induced by the motion of the testing object. These 

frequency shifts can be deduced by the formula as fshift = 2×v(t)×cos(�)/�, where v(t) is 

the velocity of the spot on the rotating disc or the vibrating target as a function of time, � 

is the angle between the incident laser beam and the velocity vector, and � is the 
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wavelength of the light. Two beams are then mixed and detected by the photodiode or 

photo-detector in the instrument. Thus the output of the photodiode is a frequency 

modulated (FM) signal, with the reference beam as the carrier and the target beam as the 

modulated. The frequency shift of the target beam can be computed through signal 

demodulation by the signal processor to derive the velocity versus time of the vibrating 

target, which can be expressed as ftarget=abs[(fo+fdisc)-(fo+fdisc+ftarget)]. The original laser 

beam, the known shifted beam by the rotating disc, the unknown shifted beam (scattered 

back) by the target, and the signal after modulation are shown clearly in [199] or Figure 

5.1. The rotating disc in the LDV set-up used in our experiments has two fixed frequency 

shifts, meanly, 0.922MHz and 3.456MHz, for the measurement of low and high 

frequency vibrations of a target, respectively. In other LDV experimental set-ups, the 

rotating disc is replaced with a Bragg cell [199] to add directly a frequency shift to the 

original laser beam for both reference and target beams. 

 

Signal 
processer 

�/4-plate 

Photodiode 

He-Ne 
Laser Beam 

splitter 

Neutral 
density filter 

Fixed 
prism 

Moving 
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Cylindrical lens 
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object 

Output 

Target beam 

Reference beam 

Figure 5.1 The schematic of working principle of a Laser Doppler Vibrometer 
from B & K using Michelson interferometry (heterodyne interferometry) [199].   
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5.2.2 Dynamic Test Set-up 

 

The nominal size of the laser beam in LDV is specified by the manufacturer as around 

1mm in diameter, which has to be reduced to fit for the MEMS devices through a set of 

diverging and converging lenses arranged in the light path between the output of the LDV 

transducer and the target. All individual lenses and beam splitters are mounted on the 

corresponding XYZ positioners, and the PGA packaged MEMS chip is also positioned on 

an XYZ positioner with angle tunable platform [200]. The complete experiment set up 

includes an oscilloscope viewing for the time-domain responses, a frequency spectrum 

analyzer for reading and recording the frequency spectrums of the LDV output, a 

vibration source for the MEMS chip, a microscope with a lamp for viewing and adjusting 

the MEMS chip before test. The vibration for MEMS can be achieved from either 

electrostatic actuation to the individual micro-device or the attachment of the MEMS chip 

to a vibrator (this can be an acoustic speaker or a piezoelectric-stack). The vibrator is 

attached on the platform and adjusted to the right position of the target laser beam. 

Electrostatic actuation to a MEMS device, a torsional micromirror herein, is realized by 

connecting the micromirror with an electrical function generator, which outputs an AC 

power that has an adjustable amplitude and DC floor of voltage and the cyclic varying 

frequency ranging from zero to the upper limit of frequency defined by the LDV 

transducer for each cycle. Instead, the vibration of an excitor (either a speaker or a piezo-

stack) that has a MEMS chip attached on it can be achieved by connecting the speaker or 

the stack with the electrical function generator. The frequency set in the function 

generator can vary from any low frequency (such as DC, the zero frequency) to the upper 
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frequency limit of the LDV, which is specified to be about 25 kHz. In most of the 

experiments with electrostatically driven parallel micromirrors like the torsional 

micromirrors in our research, application of high voltage (may be up to a few hundreds) 

is necessary to actuate the micromirrors due to their relatively high stiffness of the micro-

structures to the out-of-plane motion and large gaps (�10�m). The high voltage can be 

obtained by using a DC/AC voltage amplifier. Figure 5.2 shows an overview of the 

experimental set-up used for the dynamic testing of torsional micromirrors. Positioning of 

all involved opto-mechanical fixtures starts with aligning He-Ne laser to obtain a circular 

laser spot on a reflective surface about 1.5m away. The central point of the spot needs to 

be marked for the alignment of the lenses. And alignment of each lens has to be carried 

out so that the laser beam targets at the marked central point with a complete round spot. 

Optimal positioning for the test set-up is achieved until the size and shape of the laser 

spot on a MEMS device is minimized and perfectly rounded through the adjustment of 

the distances between all optical components, such as the MEMS device, the converging 

and diverging lenses, and the laser transducer. For further details, see references in [199].  

 

5.2.3 Excitation Mechanisms 

 

Excitation to electrostatic torsional micromirrors can be done in a direct or indirect way 

depending on where the mechanical vibration originates. Previously an acoustic speaker 

is used to provide the vibrating motion from its diaphragm that is subjected to an 

alternating electrical signal, which belongs to an indirect excitation method. Since most 

of the packaged MEMS chips are relatively heavy, they are not attachable or bondable to 
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the diaphragm of a speaker. Only the diced microchips can be bonded or glued to the 

central flat portion of the diaphragm for the resonance tests. In this way there is no 

electrostatic deflection that can be resulted because no electrical connection of the 

MEMS device is possible.  

 

The similar vibrating excitation can be obtained by directly applying a harmonic voltage 

on a device or a micromirror on a packaged microchip, which belongs to the direct 

excitation mehod. Thus the direct excitation is straightforward, and can be generated 

through electrical connection of the testing micromirror with an external unit of a 

function generator with a voltage amplifier through the embedded electrodes and wiring 

on the chip and the package. A sinusoidal AC voltage v(t) of small amplitude with 

sweeping frequency � with a base DC voltage helps to generate not only a direct 

vibrating excitation but also a static deflection of the micromirror, in which the excitation 

can be expressed as V0+V·sin�t. In brief, direct excitation method is suitable for the 

packaged and wired microchips. 
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There exist other kinds of indirect excitations using piezo-electric actuators or piezo-

stacks equipped with drive circuits [201]. Selection of the piezo-stacks needs to satisfy 

the desired vibrating amplitude, the desired range of sweeping frequencies, and an easy 

assembly (such as bonding) of it with the packaged micro-chip and the platform. Figure 

 Oscilloscope  

 Spectrum analyzer  

Laser 
power 
supply  

Voltage 
amplifier  Function 

generator  

Vibration 
isolator  

Optical test bench  

He-Ne laser 
& transducer Multimeter 

Acoustic 
speaker  

Diced 
chip  Diverge/converge lenses  

XYZ + an angle 
tunable platform 

XYZ tunable stands Supports 

Figure 5.2 An experimental set-up for dynamic tests of torsional micromirrors. 
The diced MEMS chip with the micromirrors and other microstructures is bonded 
onto an acoustic speaker (see in the top picture); the bottom picture shows the 
detail fixtures for alignment of the laser beam. Similar set-up can be found in 
[205] 
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5.3 gives an example of these piezo-stacks and its voltage–charge amplifier drive circuit. 

The maximum stroke or amplitude of vibration achievable can be more than 100�m 

depending on the working range of drive frequency.  

 

In indirect excitation, the actual frequency spectrum of a micromirror is extracted from 

filtration or subtraction of the frequency response of the MEMS device by that of the 

microchip or the substrate of the testing device. In this way, all background noises from 

the test bench or substrate are removed. As long as the bonding of the chip with the flat 

surface of the vibrator is firm enough, output will be exactly the response from the testing 

device. As mentioned, since all surfaces on the structural layer of MicraGEM made 

MEMS device are plated with gold, a high reflective metal, the laser beam can be 

targeted onto the non-movable portion of the testing device to get the background noise. 

Comparatively, there is no necessity to perform this subtraction for the direct excitation 

as long as the test bench has good isolation.  
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5.3 PSD for Static Test 

5.3.1 Test Set-up Details 

 

The experimental set-up and its optical path arrangement that involve a PSD sensor 

(position sensing detector) for quasi-static performance of torsional micromirrors are 

shown in Figure 5.4. The set-up comes with a He-Ne laser with or without a transducer, a 

pair of diverging and converging lenses for beam focusing, a PSD sensor, a computer 

equipped with PSD digital image processing software, and a function generator with 

(b) (a) 

U ~ 

Power 
supply 

Capacitor 

Charging switch 

Discharge 
switch 

PZT stack 

Stroke 

Trigger 

(c) 
Figure 5.3 Piezo-stack and the drive circuit. (a) a large amplitude (>80�m) of 
stroke or displacement is obtainable for this stack; (b) the flat top of the stack is 
suitable for bonding of MEMS chips; (c) a sample of drive circuits for the stacks 
[208]. 
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voltage amplification attenuator as well as the necessary positioning fixtures (positioners) 

for lenses, microchip, and a mirror for optical path adjustment.  

 

The laser beam originated from a He-Ne laser passes through the two focusing lenses and 

targets at the testing micromirror on the microchip. Then it is reflected by the testing 

micromirror toward the sensing area of the PSD. The PSD sensor captures the image on it 

and transmits to the host computer for processing. The coordinates of the center of a laser 

spot on the digital image or CCD sensing arrays (640×480 pixels) are thus calculated by 

the software and can be displayed. Due to its high sensitivity in position sensing (sub-

micron range) and fast shutter speed (from 1/50 up to 1/10000 per second), both duration 

and the sampling frequency need to be set in the computer for precise measurement. 

Depending on these two parameters given, coordinates (x, y) for a static position of the 

testing object can be obtained and saved in computer for further analysis. It is a common 

practice that the average of them can represent the current position of the spot. By the 

comparison of the current position to the original standstill position (0V), and through 

geometry conversion, one is able to derive the current torsional angle of micromirror. 

Therefore a relation of the actuated torsional angular deflection of the micromirror versus 

the DC electrical bias can be obtained through applications of a series of DC voltages 

(from zero voltage to a voltage before pull-in).  

 

The holder of the microchip is made by an assembly of an XYZ stage and a rotational 

platform. They are used together for the positioning of the micromirror on the microchip 

so that the central portion of the movable micromirror is set to be right in the central line 
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of the optical path and to have a certain angle (for example, 45°) with respect to the 

incident laser beam. The initial position of the spot on the CCD area has to be carefully 

adjusted to make sure that the movement of the spot is fully covered by the sensing 

surface, as shown in Figure 5.4. 

 

5.3.2 PSD Sensor and Data Conversion 

 

The PSD sensor mentioned herein is actually a kind of CCD image sensor with integrated 

matrix arrays of photo-sensing cells. The one used in our research is named as SpotOn 

CCD by the manufacturer [202], an optical beam positioning measurement system for 

real time position measurements of single or multiple beams. As briefly introduced, it 

captures images on the sensing surface and derives the central positions for the light spots 

on the CCD area using the incorporated software in its host computer. Table 5.1 lists 

related parameters of the SpotOn PSD sensor while Figure 5.5 shows the SpotOn CCD 

sensing head and an image of a laser spot on the sensing surface.   

 

Figure 5.4 The schematic diagram of the test set-up for static performance using 
PSD sensor. 
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Because of the well collimated laser beam, the laser source of the LDV set (see Section 

5.2) is selected as the laser source for the PSD static set up. As one can see from the table 

that wavelength of the chosen He-Ne laser (632.8nm wavelength) is in the spectral 

response of the CCD camera which is from 350nm to 1100nm. Moreover, stronger light 

intensity and smaller size of the spot on the CCD area can be obtained if the CCD head is 

placed closer and more perpendicular to the testing micromirror and the micromirror is 

placed in a more perpendicular position to the incident laser beam. The spot shape can 

thus be adjusted to as round as possible in order to maximize the accuracy. The intensity 

of the laser beam itself can be tuned with an attenuator. Since the wide wavelength of the 

CCD spectral response range, there may exist some background noise on the image. It is 

better to place an optical filter in front of the CCD sensing area to avoid any interruption 

of unwanted light. In this way, the central coordinates can be precisely obtained.  

 

Table 5.1 The related specifications of the SpotOn sensor [202] 

Camera type Monochrome Interline transfer CCD, ½" format 

Pixel size 8.6 μm (horizontal)× 8.3 μm (vertical) 

Image Resolution 640 × 480 

Sensor active area 6.47 mm × 4.83 mm 

Position resolution Sub-micron range 

Position accuracy ±5�m deviation edge-to-edge 

Spectral response 350 -1100 nm (Model VIS) 

Dimensions 
64 mm diameter × 34.3 mm depth. 
Optical aperture has ¾"-32 thread for mounting filters 

Communication RS232 

Shutter speed 1/50 to 1/10000 sec 
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The captured image represents the distribution of light intensity or grey levels along the 

complete CCD sensing matrix arrays (640×480 pixels). This digitalized image is output 

and the coordinates (X, Y) of the center of the spot in the image can be computed by the 

image processing software installed in the computer using the formula as follows. 

                                     [ ]� ⋅= IVhihX ),( , [ ]� ⋅= IVhiVY ),(                              (5.1) 

where i(h, V) is the intensity at a pixel of (h, V), and I is the total intensity integrated over 

total area. 

 

As the micromirror might be subjected to transient motion at the moment when it is 

applied by a step loading of a DC voltage, image capturing should start after some time 

delay after the mirror reached static equilibrium position. Moreover, the interval between 

every sampling can be set as long as one second. Duration of 20 seconds can thus provide 

Figure 5.5 (a) The sensing head of the SpotOn CCD sensor; (b) The image in the 
computer for the laser spot on the PSD sensing area that is reflected by the test 
micromirror.  

(a) 
(b) 
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20 groups of coordinates for the same position of the micromirror under one applied DC 

voltage. Average of the values provides the coordinates for the center of the laser spot.  

The conversion from the coordinates to the deflection of the micromirror can be done 

based on the geometry of the optical path. And proper arrangement for the complete 

optical path helps simplify this conversion. Figure 5.6 shows two schematic geometries 

of the optical path for measurement of vertical and torsional deflections, respectively. 

Figure 5.6 (a) is used for vertical deflection measurement, while Figure 5.6 (b) is used for 

the measurement of static performance of the torsional micromirrors that have only non-

symmetric suspensions and with an assumption of negligible vertical bending deflection.   

 

As mentioned, the holder of the MEMS chip is an assembly of an XYZ stage and a 

rotational platform, capable of 3D positioning and an angular positioning. By fine 

adjusting the MEMS chip holder, the incident laser beam is then targeted at the edge area 

of the micromirror for easy capture of vibration. Reflected laser spot must be within the 

sensing area of PSD. As shown in Figure 5.6 (a), if an angle of � for the MEMS chip (the 

MicraGEM micromirror is in parallel with the chip) and an angle of � for the CCD 

surface with respect to the incident laser beam are adjusted after fine tuning of their 

positions, it is possible to predict the relation between the spot position on the CCD 

sensing surface or captured image and the actual vertical deflection of the micro-stage or 

micro-platform as: 

                                                    βα cossin.Δ=z                                                        (5.2) 

where z is the actual vertical deflection of the micro-stage, � the spot trip distance on the 

CCD sensing area or on the image captured by the CCD camera. Similarly, in Figure 5.6 
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(b), the incident laser spot should be adjusted to the target at a location close to the edge 

of the rectangular CCD surface such that the full movement of the laser spot is restricted 

within the sensing area. The distance between the CCD surface and the reflecting 

micromirror has to be as close as possible to minimize the spot size and the spot 

movement on CCD surface. All adjusted angles and distances can be measured manually. 

Thus the actual torsional angle of the torsional micromirror can be derived by the 

following formula according to the geometry conversion: 

                                              

Δ
+−

−
=

S
)2sin(

)2cos(
2tan

βα

βα
θ                                                (5.3) 

where � is the actual torsion angle of the testing micromirror after deflection; S is the 

original distance of the optical path before deflection from the micromirror to the CCD 

sensing surface. Due to the very small angle of the torsional deflection, S can be 

approximated by the distance between the MEMS chip and the centroid of the CCD 

surface. In order to compare test results with analytical and finite elemental simulated 

results, the torsion angle � is further converted to the vertical displacement by assuming 

that the vertical deflection at the torsion axis of the micromirror is negligible.  

 

Slow and careful attenuation of the applied voltage is necessary during the test. Pull-in 

voltage of the micromirror is first estimated by the established analytical model. The 

applied voltage is tuned step by step from zero until pull-in value. The snapped 

micromirror recovers to its free position if the applied voltage is switched off. The spot 

trip � can be deduced by subtracting the current coordinates with the original coordinates 

(zero voltage applied). Thus the torsion angle can be derived by Equation (5.3). The 
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actual vertical deflection for the front edge of the micromirror can be calculated 

according to the relation of z=L×�, where L is the length of the micromirror from the 

torsion axis to the front edge.  
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Figure 5.6 The schematic geometries for the optical paths when PSD sensing 
system is involved in a static test: (a) for measurement of vertical bending 
deflections; (b) for measurement of torsional deflections.  
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5.3.3 Position Sensing Detection 

 

The SpotOn CCD used in static tests belongs to a kind of optical position sensing 

detectors (PSD) involving matrix arrays of discrete and micron size photo-sensing pixels. 

However, there have appeared other position sensing detectors (PSDs) that have been 

involved in MEMS tests, one of which is more economical and employs only a 

monolithic PIN photodiode as the linear (1-D) or planar (2-D) sensing surface and has a 

large size of active area (such as 12×12mm2) with uniformly distributed resistance. 

Compared to those discretely integrated element PSDs, the monolithic silicon PSD has 

the advantages of high position resolution, fast response speed and simple operating 

circuits. Some physical parameters of S1880 two dimensional PSD used in our research 

are listed in Table 5.2 [203]. More details of this PSD can be found in the manufacturer 

website. Figure 5.7 shows the schematic diagrams for the open-loop static test set-up 

using PSD and its signal processing circuit module as well as a photo of their assembly. 

Some views of the complete test set-up are shown in Figure 5.8. 

Table 5.2 The related physical parameters of S1880 type 2-D PSD 

Package type Ceramic 
Active sensing area 12mm×12mm 
Spectral response range 320~1060 nm 
Photo sensitivity   0.6 A/W 
Rise time 1.5�s 
The minimum detectable displacement  
of light spot on the sensing area 

1.5�m 

Reverse bias voltage +5V 
Output voltage range V0(X) ±6V 
Output voltage range V0(Y) ±6V 
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If the incident light spot is not sufficiently focused on the PSD sensing surface, i.e., the 

light spot diameter is large and distorted, and falls upon near the edge of the active area, 

part of the light spot may go outside of the active area, thus degrading the position 

measurement accuracy. The PSD head is recommended to mount on a module board of 

signal processing circuit provided by the same manufacturer (see Figure 5.7 (b) and (c)), 

such that a range of ±6V output voltages listed in Table 5.2 can be achieved for the x and 

y movement of the centroid of the spotlight on the PSD active area when the light spot 

size is made as small as possible and well within the active area with an adequate 

intensity of the spotlight. The light spot position is given by the formula below:    
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where LX is the geometry length of the two electrodes at either of the horizontal sides and 

LY is the geometry length of the two electrodes in a vertical side of the sensor (see in 

Figure 5.9 (a), LX=LY=14mm for S1880 PSD), while IX1, IX2, IY1 and IY2 are the output 

currents from the four electrodes. The schematic of the sensor and the electrodes and its 

equivalent circuit are shown in Figure 5.9 (a). Compared to the digitized image output 

from the integrated CCD arrays or pixels, this PSD together with its module board of 

signal processing circuit (SPC) outputs the analog voltage, which can be converted to 

positional movement of the laser spot. The output resolution is 1mm per output voltage 

from this PSD sensor, which is not adequate in resolution for the tests of optical MEMS. 

The actual angle of the targeted torsional micromirror and angular resolution of the set-up 

can be deduced by geometry relation. Due to the diverging effect of the reflected laser 
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beam from the micromirror, the PSD sensor have to be placed as close as possible to the 

micromirror and the optical path between them is better to be approximately 

perpendicular, such that a small and round spot can be obtained and thus a higher 

positional resolution can be achieved. Large and distorted spotlight on the PSD active 

area will cause errors of measurement. Therefore there exists a trade-off in setting the 

geometry parameters and a calibration for each set up has to be performed. Moreover, 

photocurrent saturation of the PSD may also introduce some error in the position 

measurement. In this regard, it is suggested to reduce background light level or to avoid 

the light beam with strong intensity by using optical filters. Figure 5.9 (b) shows a sample 

of the obtained results during a static test for a torsional micromirror, in which the output 

voltage needs to be converted into the position of spotlight on PSD active area and then 

the angular position of the micromirror subjected to a DC voltage can be estimated.  

 

Compared to SpotOn CCD sensors, measurements by using the monolithic photodiode 

PSD sensors are easily affected by circuits, background light level, and ambient 

temperature. But it is a better, easier and more economical solution to integrate it within a 

MEMS device to form a completely packaged optical sensor, for example, the optical 

cross-connects, the accelerometers, the vibration sensors, etc. Instead, the CCD type PSD 

sensors are expensive and more accurate. So it is better to use it in tests and 

characterizations for MEMS research. Nowadays, quite a few manufacturers can provide 

a variety of monolithic photodiodes to assemble with MEMS devices for various 

applications.   
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Figure 5.7 Schematic diagrams of PSD based open-loop static test set-up and the 
signal processing circuit for the PSD as well as a photo of the set-up. 
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Figure 5.8 Photos of the PSD based static test set up: the bottom left is the mounted 
micro-chip and the reflecting torsional micromirror; the bottom right is the hosting 
computer with algorithms for the static tests.   
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5.4 Optical Interferometry Technique for Static Test 

 

Non-contact tests that employ interferometric techniques are common for the 

measurement of static deflection and surface deformation or profile of MEMS devices 

and other micro-structures. This technique can be further classified as two beam and 
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Figure 5.9 (a) The schematic diagram for the 2-D PSD and its equivalent circuit 
and electrodes. (b) A sample of the tested results: The x-axis represents the time 
duration with a unit of 100�s and the y-axis is the output voltage proportional to 
the spotlight position on the PSD sensing surface. It shows the micromirror is 
deflected to an angle when the micromirror is loaded by a DC voltage input. 
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multi-beam interferometric techniques. The former can be of many types, such as 

Michelson interferometry, Linnik or Mirau interferometry, which involve the double 

beam interferometry technique. Later, some experiment designs were developed based on 

Tolansky interferometry [204]. The two beam interferometric technique does not 

emphasize light reflection from the testing surfaces. However, the highly reflective 

surface of the reference plate is demanded in multiple beam interferometric technique. 

Because of the simplicity in test platform and high accuracy of measurement, the coaxial 

interferometric technique, an improved double beam interferometry that is based on 

Michelson interferometer establishment, is selected in our investigation.    

 

5.4.1 Optical Interference 

 

When two or multiple light beams travel together, they interface each other forming an 

image or a stripe pattern consisting of successive bright and dark fringes if viewed by an 

optical instrument at this location. This is called optical interference phenomenon. For 

two beam interference, there exists a relation among the quantity of the fringes (N), the 

light wavelength (�), the refractive index (n), the incident angle of light (�), and the 

thickness (t) of the gap between interference image plane and the testing surface on the 

object, which is written as [205] 

                                                          N � = 2 n t cos �                                                 (5.5) 

As is often the case, the incident light is perpendicular to the interference image plane 

and works in a vacuum or air (the index for air is 1), thus the formula can be simplified 

by 
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                                                           t = N �/2                                                             (5.6) 

An interference fringe will appear if the thickness of the gap is changed by half a 

wavelength of the light. The number of interference fringes determines the accuracy level 

of the measurement. And since the deflections/deformations or surface profiles for 

MEMS devices are in a range of microns, this submicron level of precision (half a 

wavelength) is enough for MEMS characterization. Practically, a reference glass plate is 

placed at the location of the interference image plane, which is usually in contact or close 

proximity with the object, thus an image of interference fringes can be observed under a 

microscope. However this reference plate that is almost in contact with the surface of the 

object is detrimental to the MEMS devices because of possible contamination and 

mechanical damage.  

 

Compared to the two beam interference, the width of the interference fringes generated 

from multiple-beam interferometry becomes extremely narrow, and the precision of 

measurement is around 50 times higher than that of the two beam interference technique, 

which is thus used for nano-scale measurement for surface topography. The multiple 

beams are generated by multiple reflections of an incident light beam on two highly 

reflective surfaces that are placed in close proximity, which include the original non-

reflected beam, the twice-reflected beam, the fourfold-reflected beam, and etc (see 

Figures 5.10 (a) and 5.11 (b)). These beam waves superimpose each other to form an 

image of interference fringes when it is collected by a lens and observed in a microscope. 

It is therefore the width of the fringes is determined by intensities of these beams or the 

reflectivity of the surfaces. However, due to the same proximity of the two surfaces (the 
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reference plate and object surface), multiple beam interferometry technique can be used 

for high precision topography measurements.  

 

 

5.4.2 Mirau Interferometry 

 

In avoidance of contact or close proximity measurement, it is desirable to develop a non-

contact interferometric technique for MEMS characterization. The Michelson type 

interferometers, due to an appreciable distance between the reference plate (a beam 

splitter or a half mirror) and the surface of testing object, can be chosen for such kind of 

measurements. The principle of the double beam interferometric technique can be briefly 

described as follows: A light beam from source is split by a beam splitter into two beams 

(b) 

(c) (a) 

Figure 5.10 Multiple beam reflections and interferometry. (a) multiple beams 
generated due to the high reflectivity of the surfaces; (b) the breadth of the fringes 
depends on the reflectivity levels; (c) the comparison of two beam fringes with the 
multiple beam fringes or the synthetic light waves by two beams and multiple 
beams (Adapted from [206]). 
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of equal intensity and mutual coherence, with one beam being directed onto the reference 

mirror plate and the other onto the target surface of a MEMS device. The light produced 

by reflection of these two beams is then made to interfere with each other and generate 

interference fringes. Based on these interferometric essentials, various test set-ups can be 

devised depending on the specified requirements and applications. In combination with 

conventional microscopes, there have appeared a few interference objectives that are so 

compact that they can be easily screwed into a microscope to perform interferometric 

measurements for MEMS chips. Because of this, the microscope equipped with an 

interference objective or Mirau objective is thus called an interferometric microscope.  

 

Mirau objective together with a Nikon microscope is chosen for test characterization of 

the fabricated torsional micromirrors due to the availability of Nikon’s instruments in our 

lab. The principle of the objective, as illustrated in Figure 5.11 (b), relies on placing a 

reflection reference mirror in the center of the objective lens, and interposing a half 

mirror between the objective lens and the testing object. These components are so 

arranged that an interference pattern will appear if the system is focused upon the surface 

of the object. This fringe image is then captured by a digital camera or a CMOS camera 

mounted at the top view port of the microscope and stored in the hosting computer for 

further numerical treatment. The schematic of the interferometric measuring set up that 

involves a Mirau objective is shown in Figure 5.11 (a). The precise alignment of optical 

path has been incorporated into the compact assembly of Mirau interference objective 

(see Figure 5.11(b)).  Due to the coaxial optical path, the interference fringe image will 

appear along the optical axis at the central portion of the reference mirror plate, thus both 
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3-D coarse and fine positioning of the testing micromirror with respect to the Mirau 

objective has to be performed carefully by manual manipulation of the adjusting fixtures 

on the microscope and the micropositioner placed on the platform of the microscope.  

 

 

Packaged 
microchip  

Function generator 
&voltage amplifier 

Platform with 3-D 
micropositioner 

Camera  

Voltage attenuator 

Mirau 
objective 

Microscope 

Computer 

(a) 

(b) 

(c) 

Figure 5.11 The schematic diagrams and views of the two beam interferometric 
static test set up involving Mirau objective. (a) the schematic of the set up; (b) the 
schematic of the Mirau objective; (c) the view of the set up; (d) the micro-stage 
used for fine positioning. 

(d) 
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5.4.3 Static Test Set-up with Mirau Objective 

 

As has been briefly introduced above and shown in Figure 5.11, the static test set-up 

including Mirau interference objective is established on the test platform with the 

microscope capable of 3-D positioning. Fine adjustment of the testing micro-chips can be 

realized by the micro-stage, which is capable of very fine tuning at translation, tilt and 

rotation (see Figure 5.11 (d)). Mirau objectives adaptable to Nikon microscopes have 

three magnifications at 10, 20, and 40 times. The one used in the research is with 10 

times magnification, accurate enough for MEMS measurement. It is a compact assembly 

of a beam splitter or a half mirror, a reference mirror and an objective lens. As illustrated 

previously, two beams reflected by the reference mirror and the testing surface, 

respectively, superimpose or interfere with each other to form a clear fringe image when 

the optical path is focused on the testing surface. A light filter is inserted into the slot on 

the microscope and placed perpendicularly to the optical path in an intention to get a 

monochromatic light beam in narrow wavelength before it is guided onto the Mirau 

objective and to obtain clear fringe maps. Figure 5.12 shows the complete set of fringe 

images taken for a torsional micromirror subjected to a DC voltage that varies from zero 

to pull-in voltage. The circular stripes or ridges with different radius, breadth and 

intensity can be observed from these images depending on the magnitude of the voltage 

applied. The maximum torsional angle can be roughly estimated by counting the number 

of either the dark or the bright ridges when the micromirror is snapped down under the 

pull-in voltage. The further precise evaluation of the desired parameters can be performed 
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by using various digital image processing techniques, which is the content of the 

following sub-section.   

 

 

V=0.0V 

V=6.0V V=6.12V V=10.60V 

V=1.4V V=4.0V 

Figure 5.12 (a): The interference fringe images captured from the interferometric 
microscope that has Mirau objective. The voltages are shown for individual images. 
The last image herein is captured when the micromirror is in perpendicular to the 
incident light beam (in horizontal level). 
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5.4.4 Fringe Pattern Processing 

 

The fringe patterns or images captured by a digital camera from an interferometric 

microscope have to be further processed mathematically to acquire the phase distribution 

Figure 5.12 (b): The interference fringe images captured from the interferometric 
microscope that has Mirau objective. The voltages are shown for individual images. 
The first image is captured when the micromirror is in perpendicular to the incident 
light beam and the last image shows the fringe pattern before pull-in. 

V=21.04V V=20.20V 

V=19.27V V=17.60V V=17.20V 

V=15.40V V=14.09V V=10.85V 
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along the pattern. Then this phase distribution can be converted into the desired 

parameters, such as the out-of-plane deformations or deflections or surface profile of the 

object. There are a few methods used for fringe pattern processing, such as the fringe 

tracking, Fourier-Transform based algorithms, and phase shift techniques. The phase shift 

technique is sensitive to the background noise on the fringe patterns, requiring multiple 

fringe patterns to eliminate this noise. The Fourier transform based algorithms are more 

tolerant to noise, but a signal at one position may affect the signals in other positions. 

This can be overcome by applying an FT algorithm to a partially representative image or 

a window adapted from the global fringe pattern. Applying this algorithm (windowed 

Fourier-Transform, WFT) each time to an individual sub-image, the desired parameters 

for the complete surface can thus be derived and collected. The fringe tracking technique 

is very straight forward, which can be applied to read the linear deflection distribution 

along a rigid plate. Since the torsional micromirrors used in our research are composed of 

the rigid mirror plates and the soft suspensions, no deformation of the mirror plate itself 

is considered, and the fringe pattern reflects only the linear deflection or a constant out-

of-plane slope along the length of the micromirror. By counting the number of the dark or 

bright stripes (ridges) on the fringe pattern, a torsional angle or the vertical deflection 

distribution of the loaded micromirror can be calculated by the formula given in Equation 

(5.6).  

 

Physically a fringe pattern is a distribution of the light intensity along the testing surface, 

while mathematically this fringe pattern can be represented by  

                                ),()],(cos[),(),(),( yxnyxyxbyxayxI ++= ϕ                           (5.7) 
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where I(x, y), a(x, y), and b(x, y) are the recorded intensity, background intensity, and the 

fringe amplitude, respectively; 
(x, y) is the desired phase distribution; and n(x, y) is the 

noise. The phase distribution can be derived by solving the equation using Fourier 

transform, which yields a result for the wrapped phase distribution as,  

                                               ��
�

�
��
�

�
= −

),(Re
),(Im

tan),( 1

yxc

yxc
yxϕ                                             (5.8) 

A conversion using unwrapping is needed in the translation of the phase distribution to 

desired parameters such as an out-of-plane deformation at a position in the image. The 

complete process of WFT algorithm can be done by the hosting computer in the test set 

up, which is installed with the commercial software, Fringe ProcessorTM [207], for post-

processing of the fringe patterns. The operation procedure to perform WFT algorithm 

using the software is written here for reference: 1) The image in true color and BMP 

format captured by the digital camera must be converted into 256 grayscale TIF format; 2) 

A sub-image or window from the formatted image is taken, which has to be a 

representation of the original image; 3) The last image is loaded and further converted 

into 8bit image by the software; 4) This reformatted image is then resized; 5) Low pass 

filter is applied; 6) The 2D FFT is applied; 7) The wrapped phase distribution is obtained 

by applying the inverse FFT; 8) The continuous phase distribution is derived by 

unwrapping; 9) Then the desired parameters are finally achieved by calculation. Figure 

5.13 shows a sample of the initial and the post-processed images obtained by using the 

software. Due to its simplicity, double beam interferometry is therefore also employed in 

our research to measure for static deflections of the fabricated torsional micromirrors for 

verification. With the mentioned processing software, the obtained interference patterns 
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or light strips can be treated to provide the deflections at any point of the micromirror or 

the slope in an assumption that the micro-mirror plate is rigid enough and flat.  

 

 

5.5 Verification and Discussion 

 

Many tests have been done for the verification of the fabricated torsional micromirrors 

using the previously proposed test methods. However, due to many reasons such as the 

Figure 5.13 (a) The interference fringe image captured from Mirau interferometric 
microscope; (b) The processed (wrapped) fringe pattern; (c) The 3-D unwrapped 
phase map showing the bending slope along the micromirror. 

 (a)  

 (c)  

 (b)  
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fragileness, deformed structure, and handling error, some of the micromirrors are broken. 

Therefore, the following analysis and discussion are only on the test results obtained from 

a few micromirrors and have been verified by repeating the same tests at least twice with 

the same device. Comparisons and discussions between analysis, simulation and test of 

these individual micromirrors will be presented. The test methods used in the research are 

very useful for optical MEMS tests and further investigation and characterization on 

these test set-ups are another research topic. The physical properties of the micromirrors 

involved in the following sections are provided by the manufacturer.  

 

5.5.1 Micromirror #1 

 

Table 5.3 presents the design parameters for a torsional micromirror with dimensions of 

500�m×400�m×10�m in length L, width W and thickness t, named as Micromirror #1. 

The static test set-up for the micromirror is based on PSD sensor, that is, the SpotOn 

CCD, shown in Figure 5.5. The 84 PGA packaged MicraGEM device consisting of the 

micromirrors is held by a holder placed on micro-positioners. The LDV He-Ne laser 

source is used to shoot a laser spot on the micromirror device.  An optical system 

consisting of diverging-converging lenses was used in order to reduce the beam diameter 

and focus the laser beam onto the micromirror.  Different laser spot sizes may be 

obtained by varying the distance between the lenses in order to test devices of different 

dimensions. The micro-positioners were also used to precisely tune the distance between 

lenses. Thus the combination of the lens and micro-positioners can be used to get a 

desired laser spot size. The bias voltage is applied using the designated pins of the 
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packaged device. Application of a predetermined voltage tilts the micromirror and the 

amount of tilting can be estimated by the movement of the reflected spot. Figure 5.14 

shows a picture of the experiment. The silicon material for all miromirrors tested in the 

research has the following physical parameters: Young modulus E equals 129.5GPa; 

Poisson ratio  equals 0.21 and density � is 2320kg/m3 [167, 168].  

Table 5.3 The designed dimensions for the torsional micromirror #1 

Spring 
Type 

Side 
Distance

(�m) 

Cross-
section 

w×t (�m) 

Initial 
Length 
Li (�m) 

Final 
Length 
Lf (�m) 

Parallel 
Length 
Lp (�m) 

Orthogonal 
Length  
Lo (�m) 

Air Gap 
(�m) 

Rotational 
Serpentine 

300 7×10 23 23 220 17 12 

 

Because the predicted pull-in voltage is around 19V, the applied voltage on the 

micromirror has to be fixed in the range less than 19V, in order to avoid any unstable 

deflection or snap-down. Therefore the voltage was tuned from zero to 18V in a constant 

step increase of 2V. During each voltage step, PSD performs sampling and recording of 

the spot positions only after the voltmeter settles stably on the desired voltage. Table 5.4 

lists both the measured data and converted data. In order to compare, the PSD read-out 

have been converted into displacement of the front edge of the mirror plate. Figure 5.15 

shows the electrostatic curves obtained from Matlab programming based on linear beam 

theory, FEM simulation based on SOLID95 mesh element in ANSYS and tested results. 

From Figure 5.15, some differences can be observed. The tested deflections are slightly 

lower than the numerical predictions. The difference becomes larger when the applied 

voltage increases. However the tested electrostatic curve is closer to the simulated result 

than it is to the analytical result. The pull-in voltage from the tested electrostatic curve is 

estimated to be around 20V, showing a difference of less than 3% from the simulated 
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value. Thus from this figure, some comments can be derived: 1) the actual pull-in voltage 

is slightly higher than those obtained from numerical model and linear beam model; 2) 

the actual structure can have higher stiffness than assumed or less deflection than the 

predictions. The difference may be caused by fabrication tolerance, structural fillet effect, 

the metal film deposited on all surfaces of the micromirror and the springs due to the 

micromachining process used and the stiffening effect (see Section 2.2.7.3).  

Table 5.4 PSD read-out and converted deflection 

Voltage (V) PSD readout Difference 	 (deg) z-deflection (μm) 
0 83.7991 0 0 0 
2 83.3541 -0.445 -0.00093 0.00812 
4 85.3343 1.5352 0.0032 -0.02793 
6 95.0343 11.2352 0.0234 -0.2042 
8 104.383 20.5839 0.0429 -0.37437 

10 118.011 34.2119 0.0713 -0.62221 
12 135.474 51.6749 0.1077 -0.93986 
14 154.035 70.2359 0.1465 -1.27845 
16 189.073 105.2739 0.2196 -1.91637 
18 240.708 156.9089 0.3273 -2.85623 

 

 

Figure 5.14 A photo of the PSD sensor (Spot-On CCD) based experimantal set-
up for static performance test of a torsional micromirror.  

PSD 

Micromirror 
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5.5.2 Micromirror #2 

 

Table 5.5 The designed dimensions for the torsional micromirror #2 

Spring 
Type 

Side 
Distance

(�m) 

Cross-
section 

w×t (�m) 

Initial 
Length 
Li (�m) 

Final 
Length 
Lf (�m) 

Parallel 
Length 
Lp (�m) 

Orthogonal 
Length  
Lo (�m) 

Air Gap 
(�m) 

Rotational 
Serpentine 

300 9×10 22 22 220 18 12 

 

Table 5.5 presents the design dimensions for Micromirror #2. The mirror plate has the 

same dimensions as Micromirror #1. The electrostatic performance of the micromirror 

has been analyzed using linear matrix method along with PRBM models for the three 

long beams in one of the side springs. The analysis process is similar to the one described 

in Section 3.6.2. Comparison of electrostatic pull-in voltages using different methods is 
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Figure 5.15 Electrostatic curves obtained from the analytical model using linear 
energy method (Matlab), FEA simulation using SOLID95 element (Ansys) and 
static test. 
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shown in Table 5.6. The electrostatic characteristics obtained by different methods are 

shown in Figure 5.16. These methods include the energy method based on linear beam 

theory, the PRBM along with stiffness matrix method, the FEM simulation in ANSYS 

and the curve obtained from the tested results. Some observations from the table and the 

figure are listed below:  

� The difference between the established analytical model and the tested results is 

in an acceptable range; 

� The FEM simulation in ANSYS using SOLID45 structural meshing element and 

TRANS126 electrostatic element yields very close results to the tested results, 

demonstrating that the established model is successful; 

� Torsional motion is the dominant mode of motion for the 2-DOF micromirror, 

and the variation of out-of-plane bending stiffness shows very less affect on the 

torsional motion of the mirror plate. In other words, the two modes of motion 

are almost decoupled.  

 

Table 5.6 Comparison of pull-in parameters using different methods 

Method Normalized 

	pin 

Normalized 

Zpin 

Normalized 

Vpin 

Vpin 

(V) 

Difference 

(%)  

PRBM+Matrix 0.4288 0.0111 0.6325 21.0971 7.27 

Ansys Solid45 --- --- --- 22.60 0.66 

Tested  --- --- --- 22.75 --- 

 

 



217 
 

 

5.5.3 Micromirror #3 

 

Table 5.7 The design dimensions for Micromirror #3 

Spring 
Type 

Side 
Distance

(�m) 

Cross-
section 

w×t (�m) 

Initial 
Length 
Li (�m) 

Final 
Length 
Lf (�m) 

Parallel 
Length 
Lp (�m) 

Orthogonal 
Length  
Lo (�m) 

Air Gap 
(�m) 

Rotational 
Serpentine 

300 9×10 22 22 220 18 12 

 

Table 5.7 shows the designed dimensions for Micromirror #3 with its mirror plate’s 

dimensions of 300�m×240�m×10�m in length L, width W and thickness t. Two tests 

were performed using PSD based test set-up and Mirau objective set-up. The two 

Figure 5.16 The electrostatic curves obtained from using FEM simulation, linear 
energy method, PRBM with linear matrix method (Hybrid PRBM) and the PSD 
detector based experimental results for the torsional micromirror #2.  
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electrostatic curves for the micromirror obtained from the two test methods are shown 

and compared in Figure 5.17. The interferometry test results are post-processed from the 

fringe maps recorded by a video camera (see Figure 5.11), whereas some conversion or 

calculation of the acquired data during PSD based static test is needed to produce the 

electrostatic curve shown in the figure. Again the tested results demonstrate slightly 

higher stiffness and less deflection than those obtained from FEM simulation.  

 

Table 5.8 The designed dimensions and structures for two micromirrors 

Spring 
Type 

Side 
Distance

(�m) 

Cross-
section 

w×t (�m) 

Initial 
Length 
Li (�m) 

Final 
Length 
Lf (�m) 

Parallel 
Length 
Lp (�m) 

Orthogonal 
Length  
Lo (�m) 

Air Gap 
(�m) 

Single 
Rotational 
Serpentine 

300 9×10 21 21 220 19 12 

Double 
Rotational 
Serpentine 

300 11×10 19 19 220 21 12 

Figure 5.17 The electrostatic curves obtained from using FEM simulation, linear 
energy method, Pseudo Rigid Body Model with linear matrix method (Hybrid 
PRBM) and PSD sensor based experimental results for the torsional micromirror 
#3.  
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5.5.4 Measurement of Eigen-Frequency 

 

Table 5.8 shows the designed dimensions for two torsional micromirrors with the same 

dimensions of length, width and thickness (300�m×240�m×10�m) for the mirror plate 

but different cross-sections of the rotational serpentine springs. The simulated Eigen 

frequency spectrums for the two torsional micromirrors symmetrically suspended by the 

single-loop and double-loop rotational serpentine springs are shown in Figure 5.18. Since 

the micromirrors in comparison were damaged due to maloperation in other tests, the 

actual eigen-frequencies of these micromirrors could not be acquired for verification.   

 

However this test has been performed on other similar micromirrors. Due to compliance 

of the suspensions, the resonant frequency of a torsional micromirror is hard to read 

accurately from the spectrum meter. And a slight difference may be resulted from 

different times of test. The more compliant the structure, the more even the frequency 

response is resulted. Because of an applied electrical bias, the micromirror is subjected to 

an electrostatic load, which helps stiffen the structure. The curve of frequency responses 

becomes more tilted when a large voltage is applied on the micromirror and the resonant 

frequency is then easier to identify. Figure 5.19 shows the frequency responses recorded 

during tests.  

 

Similar to static performance tests, the measured values of resonant frequency for the 

proposed micromirrors are higher than those obtained from both analysis and simulation. 

This difference may be as high as 10%. For example, the predicted resonant frequency 
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without voltage for the torsional micromirror with a single loop of rotational serpentine is 

3.81 kHz, but the corresponding value from tests is 4.22 kHz. The reason for this 

deviation is not clear. This needs further research to address. Figure 5.20 provides two 

frequency responses obtained from a torsional micromirror subjected to direct AC 

excitation and indirect vibration. The frequency response with direct excitation is more 

legible. The effect of different types of excitation on the frequency response of compliant 

torsional micromirrors is also needed to further address in the future work.   

 

 

Figure 5.18 The simulated Eigen frequency spectrums for the two torsional 
micromirrors with the single-loop and the double-loop rotational serpentine 
springs.  
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Figure 5.19 The two frequency responses of a torsional micromirror subjected a 
DC voltage along with a small magnitude of AC sinusoidal voltage.   
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Figure 5.20 The different frequency responses of a torsional micromirror subjected 
to direct excitation (the bottom) and indirect excitation (the top).  
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5.6 Summary 

 

The non-contact optical MEMS testing methods are introduced in detail, and typical test 

set-ups for testing torsional micromirrors are presented and specified. The laser Doppler 

vibrometer along with electrostatic or piezoelectric excitators is selected for the dynamic 

tests, while non-contact position sensor based set-ups are used for static performance 

tests. These include CCD arrays based Spot-On sensor set-up and monolithic photocell 

based PSD set-up. Mirau objective is introduced for measuring the static performance of 

torsional micromirrors. Comparison of various interferometric methods is also presented.  

 

However, as found in the tests, the Spot-On CCD sensor based set up is the most 

preferred method for static performance test due to its simplicity, easy control, and easy 

data processing. Mirau interferometry is another option for static or dynamic performance 

tests because of its high capability and accuracy. However post-procesing of the tested 

results takes more time and some error may happen during data treatment.  

 

Comparison of the results obtained from using analytical methods, FEA simulation and 

tests was performed. The proposed hybrid analytical method that combines PRBM with 

linear matrix method is suitable to model and predict mechanical behaviors of the framed 

microstructures that have compliant beam members. Some effect on dynamic behavior of 

the compliant micromirrors arising from different test set-ups with direct or indirect 

excitation was also discussed.   
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Chapter 6: Conclusions and Extensions 

 

6.1 Conclusions 

 

This thesis discussed the compliant suspensions for proof mass microplatforms or 

micromirrors in a microstructure based on the presently available surface 

micromachining technologies. This has led to a conclusion that the planar rotational 

serpentine springs are one of the suitable types of micro-suspensions for torsional 

micromirrors as they are relatively rigid to bending but flexible to torsion displacement, 

which is therefore recommended for the suspensions for low resonant torsional 

micromirrors. Modeling methodologies for these framed microstructures have been 

reviewed systematically aiming to predict or analyze the performances of the 

microstructures, and to approxmate the nonlinearity that may be caused due to the ultra 

thin beam components in the microstructures or large deformations occur to some beam 

components in the microstructures. Micro-fabrication tolerance, property drift and 

irregular micro-frames can all be represented and analyzed and predicted by applying one 

of these introduced modeling methods. And modeling of micromirrors with compliant 

torsional suspension and electrostatic actuation has been discussed in depth. The methods 

for the structural modeling include the linear energy method, the linear matrix method, 

and the PRBM modeling method. The nonlinear electrostatics along with the pull-in 

phenomenon is discussed and solved and combined with the structural analysis for static 

performance. The matrix method is then detailed and extended by formulalizing stiffness 

matrices with the corresponding PRBM terms for the complex framed microstructures 
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with or without compliant beam members. Comparison between predictions by these 

modeling methods and FEM simulations from the same models reveals variations of 

load-displacement performances even though they are in very good conformity in the 

linear working range. Less variation results with acceptable deviation can be obtained 

from using the PRBM hybrid modeling method for nonlinear structural and electrostatic 

analysis, which demonstrates the great potential of PRBM hydrid method in the analysis 

and prediction of the framed compliant microstructures.  

 

Testing methodologies for MEMS have been reviewed, in which the preference is given 

to the optical aided non-contact test mehods. These involve the PSD sensor (CCD arrays 

or monolithic photocell), low power He-Ne laser, interferometry and Laser Doppler 

vibrometer and etc for both static and dynamic experiment set ups, in which the CCD 

arrays PSD sensor based static test set-up and LDV based dynamic set up are more 

preferred due to the simplicity of the set up, more accuracy in measurement and easy 

reading. The Mirau interferometry based set up is a competitive option for the static tests, 

however, there may incur some error when applying the specified post-processing 

software for the treatment of the fringe patterns obtained and it is time consuming. 

Nevertheless, Mirau interferometry microscope is the simplest static test set ups and can 

be recommended for measuring deformations for those MEMS devices that have small 

flat surfaces or for MEMS surface profile measurement no matter if the testing surfaces 

are reflective or not. The static curves for the proposed torsional micromirrors obtained 

from the tests show a stiffener feature than the corresponding simulation models and 

theoretical models when loading status comes close to nonlinearity. In other words, the 
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deflections taken from interferometry tests or PSD tests are a little smaller than the 

calculated and simulated results when the working range is beyond linearity, leading to a 

conclusion that the stiffened effect always occurs to the micro-structure if loading 

conditions go beyond its linear range. Moreover, comparisons between the tested results 

and the results from proposed PRBM modeling methods have demonstrated that 

acceptable smaller error (around 5~7% as compared to around 8~10% from linear models) 

can be achieved by applying the hybrid PRBM and linear stiffness matrix method for the 

proposed framed microstructures that include compliant beam members.  

  

The preference of micromachining processes for the proposed planar compliant 

microstructures has been given to SOI wafer based MicraGEM process due to its 

compatibility in fabrication of the microstructures with the desired structural features. 

This compatibility mainly refers to the desired strength and large thickness for both 

device layer and the trench etched from the sacrifice layer or the bottom substrate. In 

addition, the flip-chip bonding technique in the process greatly increases its flexibility in 

the depth of the trench, which is very important for the microstructures capable of out-of-

plane motion and very potential for the 3D microfabrication. The layout design for 

fabrication has included all related micromachining rules which have been adjusted or 

tested toward smooth and successful batch production. Packaging of the diced MEMS 

chips has been focused on how to wire the MEMS devices and how to fix the chip to a 

holder or a positioner in a test set-up that aims for measurement and verification. Based 

on research work on this topic, some more conclusions can be elucidated as follows. 
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� The electrostatic actuated torsional micromirror with large size mirror plate and 

compliant suspension, due to its low resonance, easy control and stable static 

performance as well as flat reflective surface, is suitable for applications such as 

optical switching, projection display, scanners and etc; 

�  The large but narrow space between the two large parallel planes, the upper 

micromirror and the bottom substrate forms an ideal and easy control actuation for 

the movable micromirror. The actuation voltage can be small as long as the size of the 

micromirror is large;  

� The proposed nonsymmetric torsional micromirrors are advantageous to symmetric 

torsional micromirrors in that the desired drive voltage for the same angular operation 

is much lower, which is very helpful for the MEMS chips to be compatible with ICs 

and to be integrated on the same chip with their drive and control circuits, such as the 

CMOS MEMS.  

� The eigen-frequency of torsional micromirrors varies along with the applied voltage, 

but the resolution (Q-factor) is not as high as those of high resonant devices. However, 

because of the adjustable resonance and simple structure and easy fabrication, they 

are the most suitable design concept for the inertial MEMS devices in this range of 

sensing or monitoring, such as microaccelerameters, hydrophones, and so on; 

� The planar rotational serpentine spring for a proof mass plate is one of the best 

suspensions because of its feature of very flexible torsion but very rigid bending 

resistance.  
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6.2 Extensions 

 

Research on the torsional micromirrors with electrostatic actuation is one of hot topics in 

MEMS field due to the great potential for various applications. However, research on 

compliant torsional micromirrors still needs a long way to go due to the fine structures 

necessary for the compliance. In a general view this has to be related to such researches 

as new high strength materials, micro-assembling with other soft materials, and 

packaging. As such, the following lists the topics or extensions for further study on the 

topic: 

� Further characterization and verification of the proposed hybrid PRBM method for 

modeling the framed microstructures that have some compliant beam members; 

� Further study on dynamic performance of the compliant torsional micromirrors in 

order to provide further theoretical support in development of inertial MEMS; 

� Further verification of performance variations of MEMS due to exposures or 

experiments or compliant designs by various measurements to provide a base data for 

reliability research and improvement of MEMS designs; 

� Study on packaging and 3-D micromachining of SOI based processes to lower the 

drive voltage, to increase the freedom of motion and to extend the life expectancy, etc 

in order for the real products for industrial applications. 
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