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Novel smart technologies such as wearable devices and unconventional robotics have been 

enabled by advancements in semiconductor technologies, which have miniaturized the sizes of 

transistors and sensors. These technologies promise great improvements to public health. However, 

current computational paradigms are ill-suited for use in novel smart technologies as they fail to 

meet their strict power and size requirements. In this dissertation, we present two bio-inspired 

colocalized sensing-and-computing schemes performed at the sensor level: continuous-time 

recurrent neural networks (CTRNNs) and reservoir computers (RCs). These schemes arise from 

the nonlinear dynamics of micro-electro-mechanical systems (MEMS), which facilitates 

computing, and the inherent ability of MEMS devices for sensing. Furthermore, this dissertation 

addresses the high-voltage requirements in electrostatically actuated MEMS devices using a 

passive amplification scheme. 

The CTRNN architecture is emulated using a network of bistable MEMS devices. This 

bistable behavior is shown in the pull-in, the snapthrough, and the feedback regimes, when excited 

around the electrical resonance frequency. In these regimes, MEMS devices exhibit key behaviors 

found in biological neuronal populations. When coupled, networks of MEMS are shown to be 

successful at classification and control tasks. Moreover, MEMS accelerometers are shown to be 

successful at acceleration waveform classification without the need for external processors. 



 
 

MEMS devices are additionally shown to perform computing by utilizing the RC 

architecture. Here, a delay-based RC scheme is studied, which uses one MEMS device to simulate 

the behavior of a large neural network through input modulation. We introduce a modulation 

scheme that enables colocalized sensing-and-computing by modulating the bias signal. The MEMS 

RC is tested to successfully perform pure computation and colocalized sensing-and-computing for 

both classification and regression tasks, even in noisy environments.  

 Finally, we address the high-voltage requirements of electrostatically actuated MEMS 

devices by proposing a passive amplification scheme utilizing the mechanical and electrical 

resonances of MEMS devices simultaneously. Using this scheme, an order-of-magnitude of 

amplification is reported. Moreover, when only electrical resonance is used, we show that the 

MEMS device exhibits a computationally useful bistable response.  
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Chapter 1 

INTRODUCTION AND MOTIVATION 

1.1 Dissertation Motivation 

Advances in complementary metal-oxide semiconductor (CMOS) technologies have resulted in an 

increasing reduction in the size and cost of transistors and sensory elements. As a result, great effort 

is being put towards incorporating sensors and microprocessors into various devices to create 

‘Smart Devices’. These devices range in size from large (smart cars  [1] [2], smart homes [ [3] [4] 

[5]) to minuscule (smartwatches [6] [7] and other wearable devices [8] [9] [10]). Consequently, 

data is being generated and collected at an ever-growing rate, with projections of continual growth.  

Emerging CMOS technologies have also enabled the rise of advanced robotic technologies, such 

as soft-robots that utilize new flexible electronic technologies, and micro-robots which were 

realized by micro-electro-mechanical-systems (MEMS) sensors and fabrication techniques. 

Processing data in smart devices, however, has proven to be a struggle. On the one hand, larger 

smart systems require complex analysis of data generated by many sensors such as building 

management in smart homes. On the other hand, smaller smart systems possess limited size and 

power capacities, which limit them to either perform simple computation locally or transmit their 

data to be processed in the cloud.  

In all the aforementioned smart devices, i.e. wearable electronics and micro-robots, data processing 

is considered inefficient size- and power-wise when performed locally. Improvements in local 

computing power are plateauing as we approach the end of Moore’s law1 due to reaching the 

physical limits of transistor sizes miniaturization [11] and the complicated thermal management 

 
1 Moore’s law is a projection based on observation of historical trends in transistor production. Contrary to 
what the name suggests, Moore’s law is not a physical law. 
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requirements of existing CMOS-based logic gates [12] [13]. Latency is another concern as the 

memory-processor separation throttles the speed of the system. This latency, named the ‘von-

Neumann bottleneck’, is inherent to the computing scheme used in digital computing. In contrast, 

cloud computing bypasses the size limitation of processors by transferring data for external 

processing. However, data transmission was shown to constitute a significant amount of power loss 

[14] [15] and may raise privacy concerns [16]. Furthermore, latency due to data transmission is a 

big drawback in cloud-computing-based architectures, which makes them ill-suited for real-time 

processing. 

Therefore, there is a great need for new computing architecture suited for the challenges of smart 

systems. These computing architectures must: 

1.  Take advantage of the large amount of data generated by the sensors without 

overwhelming the digital processors in the systems. i.e., enabling modularity.  

2. Be power- and size-efficient. Cutting some sources of energy loss in this computing 

architecture, such as analog-to-digital converters (ADC) and memory buses. 

Ideally, the proposed computing architecture should be as close to the sensory node as possible to 

improve performance, as shown by the potential of edge computing architectures [14]. In this 

dissertation, an analog-based colocalized sensing-and-computing architecture is presented using 

micro-electro-mechanical-system (MEMS) sensors. Computing is performed immediately at the 

sensor node to compress analog data into meaningful information (e.g. in a wearable device 

application concerned with the distance traveled, acceleration data would be sent as the number of 

footsteps taken), which enables the production of modular, intelligent, specialized sensors that are 

well-suited for use in intelligent systems.  

To bypass the pitfalls of the von Neumann architecture, MEMS devices in this dissertation employ 

a non-conventional computing approach named ‘neuromorphic computing’, which is a neuro-
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inspired approach to computing [17]. Various works [18] [19] have shown that neuromorphic 

approaches to computing can circumvent the limitation of current smart systems that stem from 

relying on the von-Neumann architecture for digital computing. The predominant neuromorphic 

computing idea is the use of neuronal structures, due to their structure enabling a high degree of 

parallel computing and colocalized memory-and-processing [17], and the extreme energy 

efficiency of their biological counterparts [20]. Information pre-processing at/near the sensor level 

has also been shown to be effective at addressing these challenges [14]. In what follows, a literature 

review of recent breakthroughs in non-conventional computing is presented. 

1.2 Literature Review 

Smart and wearable devices often gather data to perform tasks such as health diagnostics [21], 

warning generation for adverse events such as elderly falls [22] and/or assisting the ill [23] by 

relying on specific signatures in the data. These signatures are often complex to extract using 

classical methods and/or are individual-specific.  Consequently, machine learning, often Artificial 

Neural Networks-based (ANNs), is often employed to perform these tasks. As such, computation 

via machine learning will be the main focus of this dissertation. 

While theoretically suitable for use, machine learning is prohibitively expensive to employ in 

smaller systems, such as wearable devices and micro-robots. Moreover, due to size and weight 

restrictions, large ANNs cannot be utilized locally using digital processors. Off-sourcing data-

processing using cloud computing results in energy loss via wireless communication [14] [15], 

possess privacy risks [11] and begets internet-dependence in operation. 

The problems with digitally simulating artificial neural networks are expected to persist due to the 

inevitable end of Moore’s law. These limitations mainly arise from the inefficiency of the von-

Neumann architecture used in digital processors. In this architecture, memory and processors are 

separated, which introduces energy losses in the communication buses and latency (von-Neumann 

bottleneck). Therefore, alternative computational architectures have been introduced, mainly 
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inspired by computation in living beings. One of the most prominent of these approaches is 

Neuromorphic Computing. 

1.2.1 Neuromorphic Computing 

The concept of Neuromorphic computing, a term conceived by Mead [20] in the late 1980s, was 

introduced to address the limitations of the von-Neumann architecture. Neuromorphic computing 

was initially defined as the use of analog circuits, namely transistors in the sub-threshold regime 

(rather than the typical digital operational regime) to model the dynamics of spiking neuronal 

networks in the human brain. The concept was later expanded to include the use of digital elements 

and hybrid analog-digital circuits to perform the same goal [17]. Biological neuronal networks are 

well known for their incredible power efficiency, and ability to solve complex computational 

problems. This is due to parallelism, colocalized memory, and processing. Indeed, it is said that the 

human brain is up to nine orders of magnitude more efficient than transistor-based digital 

computers [20]. Therefore, by utilizing alternative computing architecture based on biological 

neurons, it may be possible to enhance the computational ability of current processors and enable 

complex computation in novel smart systems. 

Various neuronal models have been developed based on biological neurons [24] from the simple 

leaky integrate-and-fire neurons to the complex Hodgkin-Huxley [25] and Izhikevich [26] models. 

It was shown in the literature that even the simplest of neuronal models can be extremely potent 

when coupled with large networks in a computing architecture named neural networks. 

1.2.2 Artificial Neural Networks and Continuous-Time Recurrent Neural Networks 

Artificial neural networks (ANN) are visualized as networks of nonlinear nodes (named neurons) 

arranged into various structures called “layers”. These layers are arranged in a sequential fashion 

starting from an input layer (first layer) and ending with an output layer (last layer). If the network 

has more than 2 layers, intermediate layers are named “hidden layers”. Often in the ANN literature, 
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the number of layers in a neural network is understood as the number of hidden layers as the input 

and output layers are inherent to ANN structures. It is noted here that simulated neural networks 

are not typically considered a subset of neuromorphic as they suffer from the von Neumann 

drawbacks in this form. 

 

Figure 1.1: Artificial Neural Network schematics showing the input layer, hidden layers and output layers. (a) 
Feedforward neural networks (FFNN). (b) Recurrent neural network (RNN). Note the self-connection absence in FFNN 
and addition in RNNs. 

In traditional ANNs, named “Feedforward neural networks” FFNN, each neuron can only receive 

inputs from other neurons in its subsequent layer and can only supply its outputs to neurons of its 

immediate consequent layer, as shown in FIG.1.1 In this architecture, self-connection (self-
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feedback) and inter-layer connections are prohibited. This architecture experiences a critical 

problem of memory retention as the FFNN reacts to inputs discretely disregarding their past inputs.  

To address this limitation, newer architectures of neural networks, named Recurrent neural 

networks (RNNs) were developed. These networks retain memory through recurrent self-

connections, or through connections with neurons within the same layer. Various types of RNNs 

exist from simple discrete Elman Networks [27] to the popular and computational expensive Long 

Short-Term Memory (LSTM) neural networks [28]. An RNN architecture of particular interest in 

this dissertation is the Continuous-Time Recurrent Neural Networks (CTRNNs) [29] which offer 

higher computational ability than RNNs while requiring less computational resources to model 

compared to LSTMs. In addition to their balanced stats in computational power and modeling 

complexity, the continuous nature of CTRNNs is what makes them particularly attractive as it 

enables them to be emulated by physical devices, such as photonics [30] and sub-threshold 

transistors [31]. CTRNNs offer additional potential due to their similarity to neurons used in the 

Dynamic Field Theory [32] [33] , a mathematical theory for understanding human memory.  

1.2.3. Reservoir Computing 

Unlike FFNNs and RNNs, the reservoir computing (RC) architecture foregoes organizing neurons 

into layers, as shown in FIG.1.2. Instead, in RC architectures, large numbers of neurons are 

randomly, yet sparsely, interconnected, thus performing high dimensional transformation using 

sheer numbers (additional details available in chapter 3). RC schemes typically lack dedicated 

output neurons. Rather, the RC output is computed via a weighted linear summation of all neuron 

outputs. Each RC network output requires its own dedicated weighted linear summation unit named 

reservoir readout. 

Similar to RNNs, RCs may retain the memory of previous inputs via recurrent connections, thus 

enabling them to perform time-dependent tasks, such as time-series analysis. RCs have proven 
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successful at some computationally difficult benchmark tests such as chaotic series classification 

[34] [35] and spoken digits classification [36]. 

 

Figure 1.2 Reservoir computing schematics detailing the connections of input signals with the reservoir, the sparse and 
random connections between neurons within a reservoir (including self-connection), and the connections with the 
reservoir readout (denoted by a sum block). For the sake of convenience, it is noted here that the thick red arrows 

connecting the reservoir to the readout circuit signify the outputs of all reservoir neurons. 

The origin of RCs can be traced back to the beginning of the 21st century by the names of Echo 

state networks (ESNs) and Liquid state machines (LSMs), introduced at around the same time 

independently by Jeager [37] and Maass [38], respectively. RC remains an active research topic 

with novel research describing the use of single nonlinear analog devices to simulate a large 

reservoir [39] [40] [41] [42] [43] [44], the use of coupled reservoirs [45] and spatiotemporal 

multiplexing of RC [46], among other research directions. 

Recent research has pointed to the biological plausibility of RC structures, as neuronal structures 

named ‘mushroom bodies’ [47] that exist in some insects are believed to function in a fashion 

similar to computational RC structures [48], suggesting the biological plausibility of this 

architecture. As such, some research has been performed on using RC architectures to control 

robotic insects [48] and perform classification tasks in soft robots [49]. 

 

Reservoir

Neural 
Network 
Inputs ∑

∑

.

.

.

.



 
 

8 

1.2.4. Applied neuromorphic computing 

 Neuromorphic computing has been implemented using a variety of methods. Mead [20] originally 

demonstrated the implementation of artificial neural networks using electronic transistors operated 

at the sub-threshold regime. Various other works utilized this concept to demonstrate non-digital 

neural networks [50] [51]. More recently, novel electronic components named memristors (variable 

resistance elements with a memory through hysteresis) have been extensively employed instead of 

transistors for neuromorphic computing. Memristive devices have shown great potential as tools to 

emulate biologically plausible spiking neurons, rather than artificial neural networks, through using 

memristors to model spike timing dependent plasticity [52] [53]. 

Artificial neural networks have also been demonstrated using neuromorphic approaches. Physical 

CTRNNs have been demonstrated using photonics [30] and subthreshold transistors [31], while 

LSTMs have been emulated using resistive cross-point devices [54] and memristive devices [55]. 

The physical emulation of artificial and biologically plausible neural networks has become 

increasingly easier with the development of TrueNorth [56], a programmable neuromorphic chip 

offering convenience, and high flexibility. 

Biologically inspired neural networks have resulted in the development of neuromorphic sensors. 

In theory, these sensors operate similarly to biological systems, where constant inputs saturate and 

get ignored while transient inputs are transmitted to the brain. This idea gave rise to the Address 

Event Representation AER scheme, which is used in neuromorphic vision [57] [58] [59], auditory 

[60] [61], olfactory [62] and tactile [63] sensors. It is noted here that, while neuromorphic sensors 

operate quite efficiently, the sensors themselves are not neuromorphic. ‘Neuromorphic sensors’ is 

a term usually used to describe a traditional sensor, integrated with an AER-based neuromorphic 

chips, where the location of output-varying sensors (in a sensor array) is transmitted as spikes to a 

neuromorphic processing chip. 
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Reservoir computing has also risen into prominence due to the discovery of delay-based RC, which 

is a scheme that bypasses the strict RC requirement of large numbers of physical neurons by 

creating virtual neurons in nonlinear dynamical nodes. This concept was first introduced in [39] 

and was later used a photonics device for analog computation. Delay-based RC was shown to be 

successful in various other systems such as spin-torque oscillators [64], Boolean nodes [41] and 

microelectromechanical systems (MEMS) [44].  

The current neuromorphic models introduce parallelism and memory-processor colocalization 

while avoiding the von Neumann shortfalls. However, the current neuromorphic computing 

approaches for data analysis necessitate the addition of neuromorphic sensors, which increases the 

size of the smart system overall. This may not be convenient for technologies with limited space 

requirements. Moreover, new digital-based neuromorphic sensors still require additional circuitry 

for signal conditioning and analog-to-digital conversion, which represent avenues for energy loss, 

especially when signals are generated and processed at high speed. Biologically plausible neural 

networks and neuromorphic sensors require means to interpret spiking signals, further increasing 

the size of the system. This dissertation departs from the state-of-the-art neuromorphic computing 

architectures by performing neuromorphic computing at the sensor level, truly reducing the size of 

smart systems while saving energy by performing neuromorphic computing with very few 

additional components.  

1.3 Dissertation Objectives 

The goal of this dissertation is to develop neuromorphic micro-sensors capable of addressing the 

strict requirement of future technologies (miniature size, low power consumption). To this end, this 

dissertation aims to depart from the traditional sensing and computing approach in which a physical 

signal is transformed into an analog electrical signal via a transducer, then translated to a digital 

signal via analog-to-digital converters (ADC), and finally sent as a string of binary digits (bits) to 

a digital processor for digital processing. 
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The neuromorphic micro-sensors developed in this dissertation also differ from other prevalent 

neuromorphic sensors in the fact that information is processed in analog at the sensor level, rather 

than transforming data into a spiking signal that is later processed using a spiking neural network 

(SNN) embedded in a neuromorphic processor. The elimination of the additional components in 

SNN is essential in some applications that require extreme miniaturization, such as micro-robotics 

and wearable devices, and in applications that require minimal rigid electronics, such as flexible 

electronics and soft robotics. 

To this end, the neuromorphic sensing-and-computing in this work is colocalized in the sensor 

node. This dissertation mainly focuses on nano/microelectromechanical systems (N/MEMS) for 

colocalized sensing and computing due to their prevalence in smart systems, their convenience in 

use, and their nonlinear dynamics. Specifically, this dissertation objective is addressing the 

following goals: 

G1: Finding the dynamical behaviors that facilitate computing in general and how to generate 

them in MEMS sensors. 

G2: Developing schemes to couple micro-sensors to enable computing through analog neural 

networks (CTRNNs and RCs). Furthermore, this dissertation modifies the developed schemes 

to allow for colocalized sensing-and-computing.  

G3: Demonstrating the particular advantages of MEMS devices for colocalized sensing-and-

computing. 

An additional research objective in this dissertation involves studying the practicality of using 

electrostatic MEMS devices for colocalized sensing-and-computing. Mainly, this dissertation 

addresses modeling the response changes of electrostatic MEMS devices at very high frequencies. 

Furthermore, we address the high voltage requirements to actuate general electrostatic MEMS 

devices by proposing a novel actuation scheme named ‘Double resonance drive’. (G4) 
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The organization of this dissertation is as follows: In Chapter 2, the dynamics of MEMS are 

introduced, in chapter 3, a background in neural networks and neuromorphic computing is 

presented, in chapter 4, the dynamics of MEMS devices utilized to perform some simple 

computational tasks in an attempt to address G1, the MEMS devices are then coupled in a large 

network in chapter 5 to perform a benchmark test. Chapter 6 addresses reservoir computing using 

MEMS sensors and introduces a modified RC approach to facilitate colocalized sensing and 

computing to address G2. Chapter 7 sheds some light into additional nonlinear dynamics in MEMS 

devices that can be utilized to further improve MEMS performance both in sensing and 

computation, thus posing some answers to Q3. Chapter 8 discusses some potential future directions 

for this research. Finally, chapter 9 presents an overall conclusion to this dissertation. This thesis 

is supplemented with experimental results throughout chapters 4, 6 and 7. 

It is noted here that, in principle, the colocalized neuromorphic sensing and computing schemes 

discussed in this work are suitable for various types of sensors aside from electrostatic MEMS 

devices. The operating regime and/or modifications necessary to facilitate colocalized sensing and 

computing may differ as well. However, provided the sensors themselves satisfy the conditions 

necessary for neuromorphic computing (such as the RC requirements), colocalized sensing-and-

computing may be possible. 
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Chapter 2 
INTRODUCTION TO MEMS DYNAMICS 
 

Microelectromechanical systems (MEMS) appear in the literature in various forms. Structurally, 

they can be as simple as microbeams (FIG.2.1,a) or as complex as compounded structures and 

Combdrive devices (FIG.2.1,b). MEMS devices also differ in their means of excitation, with 

electrostatic excitation and piezoelectric excitation being the two most popular means of excitation. 

In this dissertation, mainly beam-structure, electrostatically actuated MEMS devices are 

considered. This chapter briefly introduces the dynamics of MEMS devices. 

 

Figure 2.1 MEMS schematics. (a) MEMS microbeam (silver). (b) MEMS Combdrive. The moving proof mass is colored 
blue. 

2.1 Introduction of MEMS dynamics 

MEMS devices may be modeled as single-degree-of-freedom (SDOF) systems, such that the 

entirety of the MEMS inertia is assumed to concentrate into a single point mass, the structural 

elasticity is modeled as spring element (linear or nonlinear), and the energy dissipation is modeled 

as a damper element. In this case, the simplified model only solves the structural deflection at a 

single point.  

Alternatively, MEMS devices may be modeled as continuous microbeams, where the deflection of 

the microbeam can be computed for every point along with the MEMS structure. The continuous 

(a) (b)
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microbeam model of MEMS devices is more accurate than the SDOF model. However, SDOF 

models are computationally efficient to study, especially in applications such as simultaneous 

sensing-and-computing in this work where multiple MEMS devices are simulated simultaneously, 

or when MEMS devices are actuated for a relatively long period compared to the integration step 

size. While both the SDOF model and the continuous model are used in this dissertation, the former 

is used more often for convenience.  

2.2.1 SDOF MEMS dynamics 

The dynamics of a SDOF electrostatically actuated MEMS device is governed by a first-order 

spring-mass-damper system equation (2.1) and a schematic of a SDOF MEMS device is shown in 

FIG.2.2: 

𝑚$%%𝑥̈(𝑡) + 𝑐$%%𝑥̇(𝑡) + 𝑘$%%𝑥(𝑡) = 𝐹$(𝑥, 𝑡)      (2.1) 

Where 𝑚$%%, 𝑐$%% and 𝑘$%% are the effective mass, damping coefficient and stiffness coefficient of 

the microbeam, respectively, 𝑥(𝑡) is the deflection of the proof mass at time 𝑡; the dot operator in 

(2.1) represents temporal derivatives, and 𝐹$(𝑥, 𝑡) is the electrostatic force given by (2.2): 

𝐹$(𝑥, 𝑡) =
&'()!"!#(+)$

#(-./)$
         (2.2) 

The microbeam has a length and width given by 𝑏 and 𝐿, respectively. The vibrating microbeam 

(moving electrode) and the stationary electrode are separated by a dielectric material with a 

permittivity 𝜀 and a thickness 𝑑. The electrostatic force is generated due to a constant or time-

varying potential difference (total applied voltage) 𝑉0102(𝑡), which may be AC, DC, or a 

combination of both. 

The predominant form of damping is squeeze-film damping. A mechanism through which kinetic 

energy is lost via compressing the air between the moving and stationary electrodes (viscous 

damping). The nonlinear squeeze film damping is governed by (2.3): 
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𝑐(𝑥) = 345(/)6%7&
#8'%(-./)

"9:$

("9:$)$9((*)
$

,-
        (2.3) 

where 𝑐(𝑥) is the nonlinear squeeze film damping, 𝜎(𝑥) is the squeeze number, given by (3.4), 𝑃; 

is the ambient pressure, 𝐴< = 𝑏𝐿 is the MEMS surface area, 𝑓 is the vibration frequency, and 𝛽 is 

the MEMS aspect ratio. 

 

Figure 2.2 SDOF MEMS schematics. 

𝜎(𝑥) = "#	7&	>.//
6%	(-./)$

         (2.4) 

where 𝜇$%% is the effective viscosity of air, accounting for the slip boundary condition, given by 

(2.5) [65] [66]. 

𝜇$%% =
>

"9?.3ABCD0.023
         (2.5) 

where 𝜇 is the nominal viscosity of air at the given temperature and humidity conditions and 𝐾𝑛 is 

the Knudsen number calculated using (2.6) and (2.7), sequentially. 

𝜆; =
E464
6%

          (2.6) 

𝐾𝑛 = E%
-

          (2.7) 

where 𝜆! and 𝜆; are the mean-free path of gas molecules at atmospheric pressure 𝑃! and at the 

operating pressure, respectively. 

Fixed support

Fixed electrode

Microbeam

!!"!#

!!"""!""

#!"" $
% & , %̇ & , %̈(&)
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2.2.2 Microbeam dynamics 

The dynamics of a microbeam arch are governed by the Euler-Bernoulli equation (2.8): 

𝐸𝐼F
G-H(/,+)
G/-

+ 𝜌𝐴F<
G$H(/,+)
G+$

+ 𝑐 G/(/,+)
G+

=  

NG
$H(/,+)
G/$

− -$H4(/)
-/$

O P175&
#( ∫ RNGH(/,+)

G/
O − 2NGH(/,+)

G/
-H4(/,+)

-/
OS(

! 𝑑𝑥T − 𝑓$(𝑥, 𝑡)  (2.8) 

where 𝑤(𝑥, 𝑡) is the deflection of the microbeam at a distance 𝑥 from the support at time 𝑡; 𝜌, 𝐸, 

𝐼F and 𝐴F< are the mass density of the microbeam, the Young modulus of elasticity, the second 

moment of area and the cross-sectional area, respectively. 𝑐 is the damping constant per unit length, 

𝑤!(𝑥) is the nominal elevation due to curvature at 𝑥 and 𝑓$(𝑥, 𝑡) is the electrostatic force per unit 

length. For a clamped-clamped MEMS microbeam, like the one shown in FIG.2.3, the following 

boundary conditions are applied (assuming perfect boundaries): 

𝑤(0, 𝑡) = 𝑤(𝐿, 𝑡) = 0         (2.9-a) 

GH(!,+)
G+

= G/((,+)
G+

= 0         (2.9-b) 

For convenience, equation (2.8) is normalized using the following set of nondimensional variables: 

𝑥W = /
(
, 𝑤X = H

-
, 𝑤!Y = H4

-
, 𝑡̂ = +

J
       (2.10) 

Substituting the nondimensional variables into (2.10) yields (2.11): 

G-H(/,+)
G/-

+ G$H(/,+)
G+$

+ 𝑐̃ G/(/,+)
G+

=  

𝛼" N
G$H(/,+)
G/$

− -$H4(/)
-/$

O P∫ RNGH(/,+)
G/

O − 2 NGH(/,+)
G/

-H4(/,+)
-/

OS(
! 𝑑𝑥T − 𝛼#𝑓$(𝑥, 𝑡)  

           (2.11) 

With the following boundary conditions for a clamped-clamped MEMS: 

𝑤(0, 𝑡) = 𝑤(1, 𝑡) = 0                 (2.12-a) 
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GH(!,+)
G+

= G/(",+)
G+

= 0                (2.12-b) 

 

Figure 2.3 Schematics of a MEMS clamped-clamped arch beam. 

Noting that the hat is removed for convenience. The new normalized constants are given by (2.13-

2.16) and further noting that the normalized electrostatic force per unit length is given by (2.17) 

[67] 

𝑇 = ^K75&(
-

1L5
          (2.13) 

𝛼" = 6	 N-
M
O
#
          (2.14) 

𝛼# =
&'(-

#1L5-6
          (2.15) 

𝑐̃ = F(-

1L5J
          (2.16) 

𝑓$ =
)787$

("9H49H)$
          (2.17) 

where 𝛼" is the stretching parameter, 𝛼# is the forcing parameter, 𝑐̃ is the damping parameter, and 

𝑇 is the normalization time. 

!

ℎ

#

$

%!(')
'
)

*
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Solving (2.11) requires intensive computation. A popular approach way to simplify this process is 

using a simple separation of variables via the Galerkin method: 

𝑤(𝑥, 𝑡) = ∑ 𝜑N(𝑥)𝑢N(𝑡)O
N         (2.18)  

Here, the deflection of the microbeam is given by a special component 𝜑N(𝑥) known as the 

modeshape and a temporal component named the modal coordinate 𝑢N(𝑡). Theoretically, the 

response of a microbeam is the outcome of an infinite sum of 𝜑N(𝑥)𝑢N(𝑡). However, in practice, a 

finite number of modeshapes is sufficient to reach any required degree of accuracy. It is noted here 

that the modeshapes are computed based simply by solving the Eigenvalue problem of the MEMS 

device, while computing the modal coordinate requires more involved work. 

The Eigenvalue problem arises from solving the steady-state, unforced response of the MEMS 

device: 

G-H(/,+)
G/-

= 𝛼" N
G$H(/,+)
G/$

− -$H4(/)
-/$

O P∫ RNGH(/,+)
G/

O − 2 NGH(/,+)
G/

-H4(/,+)
-/

OS(
! 𝑑𝑥T  (2.19) 

By taking (2.18) into account and by setting 𝑢N(𝑡) = 𝑎N (steady state), solving (2.19) for 𝜑(𝑖) 

yields an infinite number of non-trivial solutions. These infinite solutions correspond to the 

microbeam modeshapes 𝜑N and their corresponding non-dimensional modal frequencies 𝜔N.  

For a simple straight clamped-clamped MEMS device, the microbeam modeshapes are given by 

(2.20) [68]: 

𝜙N(𝑥) = coshkl𝜔N𝑥m − coskl𝜔N𝑥m − 𝜓Nosinhkl𝜔N𝑥m − sinkl𝜔N𝑥mr   (2.20) 

Where (𝜔", 𝜓#) = (22.37,0.98), (𝜔#, 𝜓#) = (61.67,1.0), …, are computed numerically. 

The dynamical solution of the microbeam response requires solving (2.11) by relying on (2.18) and 

the modeshapes computed in the Eigenvalue problem. Therefore, (2.21) is to be solved: 

∑ 𝜑N
(NP)(𝑥)𝑢N(𝑡)N +∑ 𝜑N(𝑥)𝑢̈N(𝑡)N + 𝑐̃ ∑ 𝜑N(𝑥)𝑢̇N(𝑡)N =  
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𝛼" N∑ 𝜑NQQ(𝑥)𝑢N(𝑡)N − -$H4(/)
-/$

O P∫ R∑ 𝜑NQ(𝑥)𝑢N(𝑡)N − 2N∑ 𝜑NQQ(𝑥)𝑢N(𝑡)N
-H4(/,+)

-/
OS(

! 𝑑𝑥T  

− R$	)!"!#
$

("9H49∑ T9(/)U9(+)9 )$         (2.21) 

Equation (2.21) may lead to unstable numerical solution due to the possibility of a singular solution 

arising from the final term on the right-hand side of the equation. To avoid this problem, (2.21) is 

multiplied by (1 + 𝑤! +∑ 𝜑N(𝑥)𝑢N(𝑡)N )#. To further simplify solving this equation, we further 

multiply (2.21) by 𝜑N(𝑥) and integrate over the range [0,1], making use of the modeshape 

orthonormality: 

∫ 𝜑N(𝑥)𝜑V(𝑥)𝑑𝑥
"
! = 𝛿NV         (2.22) 

where 𝛿!" is the Kronecker delta function, returning 1 if 𝑖 = 𝑗 and 0 otherwise. This results in a system 

of coupled ordinary differential equations in the form: 

𝑀NV𝑢̈N(𝑡) + 𝐶NV𝑢̇N(𝑡) + 𝐾NV𝑢N(𝑡) = 𝐹V(𝑡), 𝑖 = ,1,2, … ,𝑀, 𝑗 = 1,2, … ,𝑀   (2.23) 

where 𝑀NV, 𝐶NV and 𝐾NV are the mass matrix, damping matrix and the stiffness matrix, respectively, 

and 𝐹V is the forcing vector applied to each modeshape. The 𝑀 ordinary differential equations are 

solved simultaneously to find 𝑢N(𝑡) at each timestep. Finally, the microbeam response 𝑤(𝑥, 𝑡) is 

computed at any point 𝑥 and any time 𝑡 using (2.18).  

2.2. Nonlinear Dynamics of MEMS 

The nonlinear inverse-squared electrostatic forcing, the microbeam curvature and the nonlinear 

midplane stretching contribute to the complex nonlinear response of MEMS. These nonlinear 

dynamics were traditionally viewed to be detrimental for the response of MEMS sensors. However, 

recently, nonlinear dynamics have been found to be beneficial to enhance sensor performance [69] 

[70] [71] or enable a new behavior, such as switching [72] [73]. In the context of this dissertation, 
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nonlinear dynamics will be used to enable high dimensional (nonlinear) mapping to facilitate 

computing. 

2.2.1. Pull-in instability 

The most crucial nonlinearity arising in microsystems is the pull-in instability, which occurs when 

the electrostatic force exceeds the spring restoration force, causing the microbeam to contact the 

stationary electrode and stick into it, as shown in FIG.2.4. For a SDOF MEMS operated quasi-

statically (using a DC voltage), the pull-in voltage 𝑉6L is computed using (2.24) [68]: 

𝑉6L = ^BW.//-
6

#X&7&
           (2.24) 

 

Figure 2.4. Pull-in schematics. (a) The forces acting on the microbeam. The attractive electrostatic force is countered by 
the stiffness force and the damping force (in dynamic response). (b) The phenomenon of pull-in occurring when the 
electrostatic force exceeds the restoration force. 

Interestingly, if the MEMS device is pulled-in, it cannot be pulled-out (released) unless the input 

voltage is reduced to 𝑉 = 𝑉Y < 𝑉6L. As perfect contact between the microbeam is not possible in 

microscopic sense, the electrostatic force will not be truly infinite upon pull-in as the electrostatic 

model presented in this work may suggest. To incorporate this fact into this dissertation, one may 

consider the presence of a rigid dielectric material, with a thickness 𝑠, at the surface of the fixed 

electrode (or the microbeam) that prevents actual electrical contact between the electrodes (this 
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dielectric layer can be seen in FIG.2.4 as a dark, thin strip at the fixed electrode). In this case, the 

static release voltage 𝑉Y is given by [68]: 

𝑉Y = ^#W.//<
$

&7&
(𝑑 − 𝑠)         (2.25) 

The unequal 𝑉6L and 𝑉Y will prove important in the forthcoming chapters under the name 

‘Hysteresis’. 

2.2.2. Snapthrough of MEMS arches 

MEMS arches also exhibit hysteresis outside the pull-in regime by virtue of their initial curvature. 

For an appropriate initial elevation 𝑤!(𝑥), the microbeam may buckle about the undeformed axis, 

experiencing snapthrough. This behavior is demonstrated in FIG.2.5. Prior to snapthrough, the 

MEMS stiffness is reduced suddenly leading to a sudden response jump. Afterwards, the 

microbeam stiffness suddenly increases, reducing further deflections and stabilizing the 

microbeam. One may model this behavior as a dual-spring-mass system, as shown in FIG.2.6 [74]. 

It should be noted here that large initial elevations will result in an immediate pull-in without 

experiencing a stable snapthrough response. Snapthrough will be discussed more thoroughly in 

chapter 4. 

 

Figure 2.5 Snapthrough schematics experienced by a MEMS arch. 
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Figure 2.6 A Hysteresis model for visualization. As the input voltage increases, 𝑘: decreases (softening) resulting in a 
large response jump. The response jump is stopped once the microbeam reaches the snapthrough configuration. At 
that moment, the MEMS stiffness increases, symbolized by the microbeam contacting the spring 𝑘;. 

2.2.3. Modeling stoppers 

The electrostatic forces acting on a MEMS device are inverse-square forces, thus, as the 

electrostatic gap goes to zero, the electrostatic force approaches an infinite value. This results in 

unstable integration and exploding values. To address this problem, stoppers are installed in the 

MEMS system, as shown in FIG.2.7. In such a MEMS system, the microbeam experiences four 

types of forces: (1) The electrostatic force between the moving and stationary electrode, (2) the 

stiffness restoration force of the spring, (3) the damping force of the damper, and (4) some reaction 

force from the stopper, assuming physical contact, as shown in FIG.2.8. 

 

Figure 2.7 Schematics of a SDOF MEMS device with a stopper 
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The reaction force is only active when the MEMS electrode reaches the stopper located at 𝑥<+Z[[$\. 

Per design, this occurs when the electrostatic force exceeds the sum of the spring and damper forces. 

At that point, the stoppers will exert a non-positive force on the MEMS device to stop its motion. 

 

Figure 2.8 Forces acting on the MEMS microbeam 

The MEMS equation of motion can be modified to (2.26) 

𝑚$%%𝑥̈(𝑡) + 𝑐$%%𝑥̇(𝑡) + 𝑘$%%𝑥(𝑡) =
&7&)!"!#

$

#(-./(+))$
− 𝐹Y     (2.26) 

The reaction force 𝐹Y can be found by assuming the microbeam immediately stops when it reaches 

the stopper. Noting here that this is not very accurate as this assumption does not account for the 

MEMS momentum and recoil. However, as the goal here is to model the equilibrium point of the 

MEMS device past pull-in, this approach is considered. 

𝑥̈ = 0, 𝑥̇ = 0          (2.27) 

Therefore, by force equilibrium, the reaction force is found using (2.28) 

𝐹Y =
&7&)!"!#

$

#(-./(+))$
− 𝑘$%%𝑥(𝑡)        (2.28) 

But this force only applies when the microbeam touches the support. Thus, this force must include 

a step function 𝑈(. ) 

𝐹Y = P &7&)!"!#
$

#(-./(+))$
− 𝑘$%%𝑥(𝑡)T × 𝑈k𝑥 − 𝑥<+Z[[$\m	     (2.29) 

!"($)
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Finally, this force must always be positive (multiplied by negative in the EOM to overall be 

negative). To do this, we also apply another step function: 

𝐹Y = P &7&)!"!#
$

#(-./(+))$
− 𝑘$%%𝑥(𝑡)T × 𝑈k𝑥 − 𝑥<+Z[[$\m × 𝑈~

&7&)!"!#
$

#(-./(+))$
− 𝑘$%%𝑥(𝑡)�	   (2.30) 

 

Figure 2.9 Simulated MEMS response utilizing the pull-in simulation scheme described in section 2.2.3. (a) A DC voltage 
signal is applied to the MEMS device (red). As a response, the MEMS device deflects towards the stationary electrode. 
At 116V, the MEMS microbeam contacts the stopper. The MEMS microbeam is released from the stopper when the 
voltage falls below 65V. Insert: zoomed view showing the transience after release. (b) Reaction force corresponding to 
(a). The reaction force ceases upon release.  

The following condition must be imposed on the MEMS equation of motion in the modified model: 

𝑥̇(𝑡) = 	 �
𝑥̇(𝑡),			𝑥(𝑡) < 𝑥<+Z[[$\
0,			𝑥(𝑡) ≥ 𝑥<+Z[[$\

        (2.31) 

Another possible condition is: 

𝑥̇(𝑡) = 	 �𝑥̇(𝑡),			𝐹Y < 0
0,			𝐹Y ≥ 0           (2.32) 

This algorithm for pull-in analysis is tested through simulations, as shown in FIG.2.9. The 

MEMS dimensions used are given in Table 2.1. The simulation shows a pull-in voltage 𝑉6L and a 

release voltage 𝑉Y of 116V and 65V, respectively, which are the same voltages calculated using 

(2.24) and (2.25). 

2.3. Bifurcation and Chaos 

(a) (b)
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The nonlinearities in the MEMS system may result in unstable configurations, which may 

negatively impact the response of the designed sensing-and-computing device. For instance, if a 

device is designed to utilize snapthrough for computation (as is the case in chapter 4), it should 

avoid pulling-in. Therefore, stability analysis is essential. Moreover, studying order and chaos is 

just as important as specific regimes of stability, such as the edge of chaos [75] are particularly 

attractive to use in computation while highly ordered regimes and highly chaotic regimes are, in 

general, ill-suited for computing, owing to the lack of sufficient dynamical complexity and lack of 

resistance to noise, for each, respectively. 

Table 2.1: MEMS parameter for SDOF MEMS in FIG.2.9 

Parameter Value 

𝐿 9	𝑚𝑚 

𝑏 5.32	𝑚𝑚 

𝑑 42	𝜇𝑚 

𝑘$%% 215	𝑁/𝑚 

𝑐$%% 0.0711	𝑁. 𝑠/𝑚 

𝑚$%% 146.97	𝑚𝑔 

 

A generic dynamical system is given by (2.33,a and 2.33,b): 

𝑥(𝑡 + 1) = 	𝑓(𝑡, 𝑥(𝑡))         (2.33-a) 

𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡))         (2.33-b) 

Where 𝑥(𝑡) here is the state of the dynamical system at time 𝑡 and 𝑓(. ) is an update function. 

Dynamical systems may be discrete or continuous. In both cases, dynamical systems rely on their 

previous state to yield future states. 
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The simplest behavior of a dynamical system is a fixed (equilibrium) point. In this case, the system 

response is represented by (2.34,a and 2.34,b): 

𝑥(𝑡 + 1) = 𝑥(𝑡) = 𝑋         (2.34-a) 

𝑥̇(𝑡) = 0          (2.34-b) 

Where 𝑋 is the dynamical system state at the fixed point. The stability of the fixed point is assessed 

through analyzing the change in 𝑓k𝑡, 𝑥(𝑡)m as follows [76]: 

If �-%
-/
� (𝑋) < 0, then the fixed point 𝑋 is called a stable fixed-point, or an attractor. Otherwise, if 

�-%
-/
� (𝑋) > 0 then the fixed point is an unstable fixed-point, or a repeller. 

For a second order MEMS system, the fixed points and their stability can be studied using the 

following state-space approach: 

Let 𝑥(𝑡) = 𝑥"(𝑡) and 𝑥̇(𝑡) = 𝑥#(𝑡). Then, one can write the following system of equations based 

on (2.1): 

𝑥̇"(𝑡) = 𝑓"(𝑥#(𝑡), 𝑡) = 𝑥#(𝑡)        (2.35-a) 

𝑥̇#(𝑡) = 𝑓#(𝑥"(𝑡), 𝑥#(𝑡), 𝑡) = 	
"

].//
N−𝑘$%%𝑥"(𝑡) − 𝑐$%%𝑥#(𝑡) + 𝐹$(𝑥", 𝑡)O  (2.35-b) 

The fixed point must 𝑓"(𝑋", 𝑋#) = 𝑓#(𝑋", 𝑋#) = 0. The stability of the fixed points 𝑋" and 𝑋# is 

checked by finding the Eigenvalues 𝜆 of the Jacobian matrix (2.36): 

∇/𝐹 = �

G%0
G/0

G%0
G/$

G%$
G/0

G%$
G/$

�         (2.36) 

If all 𝜆 of the fixed point are negative, the fixed point is stable. If at least one 𝜆 of the fixed point 

(𝑋", 𝑋#) is positive, the fixed point is unstable. 
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It is useful for this dissertation to look at the parameter-space of MEMS devices to find the areas 

of stability and instability, and to distinguish chaos and order. In this case, one may look at a generic 

discrete dynamical system in the form: 

𝑋(𝑡 + 1) = 𝐹(𝑋(𝑡), 𝛾)	          (2.37) 

Where 𝛾 is a parameter of interest. For a MEMS device, this parameter may be the mass, stiffness, 

damping, voltage amplitude, or some other parameters. The system is solved for the fixed points 

as well as other solutions, such as periodic orbits (oscillations), analytically or numerically. The 

solutions are plotted against the parameter of interest 𝛾 to produce the bifurcation diagram. FIG. 

2.10 presents an example of a well-known bifurcation diagram of the logistic map. The dynamical 

system starts with a single fixed point at 𝑎 < 1 then splits into two solutions: a stable solution (top 

branch) and unstable solution (bottom branch). As 𝑎 increases, the dynamical system experiences 

multiple successive period-doubling bifurcations ending in chaos. 

 

Figure 2.10 Bifurcation diagram of the Logistic map 𝑥(𝑡 + 1) = 𝑎𝑥(𝑡)[1 − 𝑥(𝑡)] showing the evolution from order to 
chaos as the parameter 𝑎 changes. 

In addition to the bifurcation diagram, the Lyapunov exponent is required to assess ascertain chaos 

is present at some value of 𝛾. The Lyapunov exponent (𝐿𝑦𝐸) is a measure of the change in the 

dynamical system response due to small perturbation. Systems with positive 𝐿𝑦𝐸 amplify 

perturbations while systems with negative 𝐿𝑦𝐸 attenuate them. Thus, a system is chaotic if: 
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1. The system is aperiodic, 

2. 𝐿𝑦𝐸 is positive. 

For a discrete map, such as (3.26-a), 𝐿𝑦𝐸 of the orbit {𝑥", 𝑥#, … } is formulated as 

𝐿𝑦𝐸(𝑥") = lim
D→O

"
D
olnk𝑓Q(𝑥")m + lnk𝑓Q(𝑥#)m + ⋯+ lnk𝑓Q(𝑥D)mr 	   (2.38) 

Noting that 𝑥# = 𝑥(2) = 𝑓k𝑥(1)m. 

For the continuous map case, the differential equation (2.33-b) is discretized through numerical 

integration. Equation (2.38) is then applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

28 

Chapter 3 

NEURAL NETWORKS AND RESERVOIR COMPUTING 

3.1. Feedforward Neural Networks 

Feedforward neural networks (FFNNs) are the simplest forms of neural networks (Fig.1). The 

dynamics of simple FFNN of 𝑁 neurons can be expressed using (3.1) 

𝑦N(𝑘 + 1) = 𝜎k∑ 𝑤NV𝑦V(𝑘)_
V`" + 𝜃N +∑ 𝑤V𝐼V(𝑘)6

V`" m     (3.1) 

Where 𝑦N(𝑘) is the state of the neuron 𝑖 at the 𝑘 timestep, 𝑤NV is the coupling weight from the 𝑗 

neuron to the 𝑖 neuron, 𝜃N is a constant bias, 𝐼V is the input to the 𝑗 input neuron, and 𝜎(. ) is an 

activation function. Sigmoidal functions are often used as they are smooth, differentiable functions 

with a finite range (0,1).  

𝜎(𝑥) = "
"9$<*

          (3.2) 

Where 𝜎(𝑥) is a sigmoidal function. 

FFNNs are structured in layers with unidirectional connections, starting from the input layer with 

𝑃 neurons and ending with the output layer with 𝑂 neurons. Connections are formed strictly from 

neurons of the 𝑀 layer to the neurons of the 𝑀 + 1 layer, thus 𝑤NV = 0, ∀𝑖 ≤ 𝑗. This connectivity, 

along with the governing equation of FFNNs, makes them ill-suited for time-series analysis. 

FFNN are optimized by minimizing the cost function of the neural network output through training 

𝑤NV within the network in a process called ‘backpropagation’. Training neural networks is a highly 

extensive computational task as the network size grows. 

3.2. Recurrent Neural Networks 
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Recurrent Neural Networks (RNNs) were developed to enable time-series analysis. In this 

architecture, neurons are organized in layers. However, neurons are allowed to self-connect. One 

of the simplest RNNs is the Elman network. The Elman network equation follows (3.2) while 

allowing for self-connection, thus 𝑤NV ≠ 0 for some 𝑖 = 𝑗. Despite its simplicity, Elman networks 

were shown to be effective as units in deep neural networks [77], compared to their computationally 

expensive counterparts. 

Despite its simple structure and effectiveness, this network is both discrete and lacking inertia, 

unlike physical devices. Instead, this dissertation considers a continuous counterpart to the Elman 

network named “Continuous-Time Recurrent Neural Networks” (CTRNNs). The dynamics of a 

CTRNN are given by (3.3) 

𝜏N𝑦̇N(𝑡) = 	−𝑦N(𝑡) + ∑ 𝑤NV 	𝜎k𝑦V − 𝜃Vm_
V`" + 𝐼N(𝑡)     (3.3) 

Where 𝑦N(𝑡) is the state of the 𝑖 continuous-time recurrent neuron (CTRN) at time 𝑡, 𝜏N is the time 

constant representing inertial, and 𝐼N(𝑡) is the input. While the change may seem small, the 

introduction of 𝜏 has been shown to change the orbit of the neural network response [78], enable 

inherent input signal averaging, and control the memory of the neural network; allowing the 

CTRNN to react to relatively long input signals [79]. The qualitative similarity between Equation 

(3.3) and the MEMS dynamics will be explored in Chapter 4. 

Training Elman RNNs and CTRNNs is a difficult task involving a process named backpropagation 

through time. In this dissertation, CTRNNs are trained through genetic algorithms to simplify the 

process of optimization. This, however, may also increase the optimization duration. 

3.3. Reservoir Computing 

Reservoir computing (RC) is a computational scheme that utilizes the high-dimensional 

transformation due to the interactions within a large network of sparsely, yet randomly, 
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interconnected neurons. Computation through high-dimensional projection can be best visualized 

through the “XOR problem”. In this problem, a classifier is tasked with learning the response of an 

XOR Boolean logic gate (⊕) (Table 3.1) and Fig.3.1(a). It can be proven that a single linear is 

insufficient for this classification. However, if the response variable (𝑎 ⊕ 𝑏) is mapped into a 

higher dimensional space, such as projection into 3D space, s single linear classifier (a plane) can 

be used for classification.  

Table 3.1: Truth table of 𝑋𝑂𝑅 problem 

𝑎 𝑏 𝑎 ⊕ 𝑏 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

 

 

 

 

 

  (a)      (b) 

A similar behavior is realized in RC. The connection of various nonlinear nodes (neurons) – called 

the Reservoir – results in a high dimensional project. The results of the RC are then simply extracted 

via a weighted sum of the neuronal state of the reservoir neurons using a linear classifier called the 

Figure 3.1 XOR problem. (a) A visualization of the XOR problem in 2D space. A single linear classifier in 2D space fails to 
perform the XOR problem. (b) If the response variable is projected into 3D space, this classification problem is achievable 
using a single linear classifier 
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readout circuit.  Interestingly, since the connection weights within the RC are randomized, they 

require little to no training beyond an initial parameter space searching. Instead, training RC is 

simply performed via training the readout circuit. If a linear readout circuit is chosen, then a simple 

linear regression, or a ridge regression [80], following (3.4) 

𝑊 = k𝑋J𝑋 + 𝑘\$a𝐼m
."(𝑋."𝑌)        (3.4) 

Where 𝑊 is the readout weight matrix, 𝑋 is the neuronal state matrix, 𝑌 is the expected output of 

the RC, 𝑘\$a is a small regularization constant and 𝐼 is the identity matrix. The sizes of 𝑊,𝑋, 𝑌 and 

𝐼 are 𝑁 × 𝑅, 𝑀 ×𝑁, 𝑀 × 𝑅, and 𝑁 × 𝑁, respectively. Where 𝑁 is the number of neurons in the 

reservoir, 𝑀 is the number of training samples, and 𝑅 is the number of reservoir outputs. The output 

of the RC, 𝑆, is then written as: 

𝑆 = 𝑋𝑊           (3.5) 

Multiple readout circuits can be connected to the same reservoir simultaneously, allowing the RC 

to perform parallel computing seamlessly. In fact, an ideal RC is theoretically capable of 

performing universal approximation [81].  

For a reservoir computing scheme to be successful, the reservoir should satisfy three requirements: 

Three requirements were loosely defined in the literature for a reservoir dynamical system:  

R1. Input separability  

R2. Possessing fading memory  

R3. Echo state property 

R1 signifies the system's ability to differentiate between two different inputs by mapping them to 

distinct outputs. This requirement is typically satisfied when the system possesses sufficient 

nonlinear complexity. While R2 and R3 tend to be correlated in most systems. These properties 
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represent the ability of the system to prioritize recent inputs and forget past inputs and eventually 

forget past inputs. The RC requirements are loosely defined in the literature. However, most works 

agree on the following requirements: 

For R1 to be satisfied, when a reservoir computing scheme 𝜓(. ) is subjected to two distinct input 

streams for the reservoir computer 𝑢"(𝑡) and 𝑢#(𝑡), the reservoir output is 𝑌" and 𝑌# such that 𝑌" ≠

𝑌#. This requirement is satisfied in the chaotic regime, where the system separates even extremely 

similar inputs. However, in practice, the separation property should take in consideration that 

similar inputs are still mapped to the same output to eliminate sensitivity to noise. Thus, operation 

in the chaotic regime is not ideal.  

Properties R2 and R3 are satisfied if the reservoir state is only a function of a finite number of past 

input values, up to 𝜏]. Mathematically, this can be written as (3.6): 

𝑥(𝑡) = 𝐹k𝑥(𝑡 − 1), 𝑢(𝑡 − 1), … , 𝑢(−∞)m = 	𝐹k𝑥(𝑡 − 1), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝜏])m (3.6) 

A particular example that satisfies R2 and R3 is operation around a fixed-point attractor. In this 

case, 𝑥(𝑡) = 𝐹k𝑥(𝑡 − 1)m = 𝑥(𝑡 − 1). However, here, the system exhibits simple dynamics, which 

makes it ill-suited for the separation property. Interestingly, there exists a region that offers great 

separation while retaining the echo state property. This region, named the edge of chaos, was 

previously found in Boolean RNNs applications to be ideal for computation [79] and later in 

reservoir computing [82]. In fact, there exists a hard edge between chaos in a lot of computational 

systems, at which computation is preferred. Bifurcation diagrams (Section 2.3) can be of great 

benefit to identify this region. 

In practice, however, a perfect RC is difficult to attain. Additionally, in their traditional form, 

physical reservoirs may be impractical to employ in hardware due to the need for hundreds or 

thousands of nonlinear nodes. This problem was recently solved through the development of delay-

based reservoir computing [39]. 
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In delay-based RC, physical nodes are replaced with virtual by utilizing a single nonlinear 

dynamical system. By definition, the state of a dynamical system is functions of their previous time 

states. Therefore, one can view such dynamical system as a network of serially connected neurons. 

If a delayed feedback loop is introduced, the system will then resemble a network of recurrent 

neurons instead. In this dissertation, the nonlinear dynamical system chosen is a MEMS 

accelerometer. 

It is noted here that reaching an attracting fixed point or a periodic orbit is analogous to neurons 

decoupling as the dynamical system state is bound to a fixed orbit. To avoid this, the system must 

retain transience. To this end, input modulation has been proposed as a means to force transience 

and enable RC [39]. In systems in which sensing and computing and decoupled, delay-based RC is 

performed. The input signal 𝑢(𝑡) is sampled-and-held at a frequency of 1/𝜏 to generate the signal 

𝐼(𝑡) following (3.7) 

𝐼(𝑡) = 𝑢(𝑖𝜏), 𝑖𝜏 < 𝑡 < (𝑖 + 1)𝜏, 𝑖 = 0,1,2, … , 𝑇 − 1     (3.7) 

Where 𝑇 is the total number of input samples captured by the sample-and-hold circuit. To modulate 

this signal, a periodic mask 𝑀 is applied following (3.8) 

𝐽(𝑡) = 𝐼(𝑡)𝑚(𝑗), (𝑗 − 1)𝜃 + 𝑖𝜏 ≤ 𝑡 < (𝑗)𝜃 + 𝑖𝜏, 𝑗 = 1,… ,𝑁 − 1   (3.8) 

Where 𝐽(𝑡) is the modulated signal, 𝑚(𝑗) is the discrete periodic mask, 𝜃 = 𝜏/𝑁 is the duration of 

each mask value and 𝑁 is the number of virtual neurons. The mask is chosen to be periodic to 

facilitate processing without losing information, as aperiodic masking is simply a single distortion. 

The random mask values are often chosen to be binary. However, tertiary and more complex masks 

may also be used. As transience is important in delay-based RC, the choice of random mask appear 

to have a substantial effect on the network response and the behavior of the virtual reservoir.  

Delayed-feedback may be introduced by utilizing the states of the dynamical system. While 

negative delayed-feedback was found to be useful to stabilize some nonlinear systems like MEMS 
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devices [83], the goal here is to introduce further nonlinearities and create recurrent connections. 

Thus, positive delayed feedback with a delay duration of 𝜏 and amplitude of 𝛼 is used instead here. 

The modulated signal is fed to the dynamical system, which changes its state. The states of the 

dynamical signal are collected at 𝜃 intervals as the states of the virtual neurons. In practice, these 

states are collected at intervals of 𝜃 + 𝛿, where 𝛿 is a small delay, to enable the dynamical system 

to react to 𝐽(𝑡) by accounting for its inertia. The neuronal state matrix is then written as 

𝑋NV = 𝑥(𝑗𝜃 + 𝑖𝜏), 𝑖 = 0,1, … , 𝑇 − 1, 𝑗 = 0,1, … ,𝑁 − 1     (3.9) 

It should be noted here that, unlike traditional RC schemes, delay-based RC generates neuronal 

outputs serially. This means that this scheme can only perform computing at 𝜏 intervals once all 

virtual neuron states have updated. Thus, there exists a tradeoff between the complexity of the 

reservoir, relating to the number of virtual neurons (𝑁 = 𝜏/𝜃) and the computational speed. 

Training is performed offline using linear regression, if a linear readout circuit is used. Other types 

of readout circuits may be used to incorporate nonlinearities into the readout rather than the 

reservoir [84] or to improve the performance of the RC scheme. However, in this thesis, linear 

readout circuits are strictly used to ensure most computation is performed at the sensor level. 
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CHAPTER 4  

MEMS DYNAMICS FOR COMPUTING 

Computation near the sensor node has been shown to solve some common problems in smart 

systems, such as latency. This process is named Edge Computing [14]. In this chapter, a 

neuromorphic computing scheme is demonstrated at the sensor level by utilizing a network of 

MEMS devices as a CTRNN. This approach is possible due to the nonlinear behavior of MEMS 

devices and their bistability in some operational regimes. 

In this chapter, two MEMS structures are considered, a SDOF electrostatically actuated straight 

MEMS device and a SDOF electrostatically actuated MEMS arch. Unless otherwise noted, the 

parameters of each MEMS device are given by tables 2.1 and 4.1, respectively. 

Table 4.1: MEMS arch parameters used in this chapter. 

Parameter Value 

𝐿 1	𝑚𝑚 

𝑏 30	𝜇𝑚 

𝑑 10.1	𝜇𝑚 

ℎ 3	𝜇𝑚 

𝜌 2330	𝑘𝑔/𝑚# 

𝐸 160	𝐺𝑃𝑎 

 

4.1. MEMS Dynamics Modification 

For a network of MEMS devices to be used as a hardware alternative to a CTRNN, the dynamics 

of a single MEMS device must be qualitatively similar to that of a single continuous-time recurrent 

neuron (CTRN). To this end, some critical behaviors of CTRNs and small CTRNNs will be 
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presented below with the aim to be duplicated by individual MEMS devices and small MEMS 

networks, respectively. 

 

Figure 4.1. Basic behaviors of a single CTRN. (a) Detection: a ramp input signal with a positive slope is applied resulting 
in an increasing CTRN response (solid line). Beyond some threshold value, a sudden response jump is noted, named 
“detection instability”. When a negative-sloped ramp signal is applied instead, the response of the CTRN decreases 
steadily (dashed line). A sudden response jump is observed below some threshold, named “reverse detection instability”. 
Note that the reverse detection instability threshold is lower than the detection instability threshold. (b)Memory: a 
rectangular input is applied to a CTRN. Prior to the introduction of the input, the CTRN state is negative. Once the input 
is applied, detection instability is noted. Finally, after the input signal dies out, the CTRN state decreases. However, it 
does not experience reverse detection instability. Thus, the final state of the CTRN is larger than the initial state (green 
lines). 

It is noted here that continuous time recurrent neurons (CTRNs) and Dynamic Field Theory (DFT) 

[32] neuronal populations are discussed interchangeably due to the mathematical similarities of 

both models. Detection, memory and selection are described as the building blocks of neuronal 

population behaviors. The former behaviors are inherent to individual neuronal populations, and 

thus, CTRNs, while the later behavior is exhibited in small networks.  

4.1.1. Dynamics of a single CTRN 

A single CTRN, or alternatively, a single neuronal population, should exhibit both detection and 

memory. Detection in the context of neuronal populations refers to a sudden response jump due to 

the introduction of a sufficiently large input signal (detection instability) or due to the removal of 

an input signal (reverse detection instability), as shown in FIG.4.1. Psychologically, detection 
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explains how a certain sensory input, received by the human central nervous system, can trigger an 

event (such as a motor action) once it exceeds a threshold value. Memory refers to the ability of a 

CTRN to maintain its state once an input is removed. Psychologically, it explains how a memory 

neuron can maintain the effects of strong stimulus after it is no longer present in order to decide 

future actions. 

For both detection and memory properties to be satisfied, detection instability and the reverse 

detection instability must occur at differing input levels, 𝐼b and 𝐼Y, respectively. Therefore, there 

are some input levels 𝐼Y < 𝐼 < 𝐼b such that the DFT neuronal population response can take one of 

two values, depending on whether the input is increasing or decreasing, thus, depending on the 

initial condition. Dynamically, this response is named Bistability. Hysteresis, which exists in 

bistable regimes, is of profound importance for computation. 

Three well-known MEMS operational regimes exhibiting hysteresis: 

1. The pull-in regime in electrostatic MEMS devices. 

2. The snapthrough regime of MEMS arches. 

3. The bistable regime in low-parasitic capacitance, electrical-resonance driven electrostatic 

MEMS. 

4.1.1.1. The pull-in regime in electrostatic MEMS devices 

The bistable response in a MEMS CTRN arises from the coexistence of two stable response fixed 

points simultaneously. Strictly speaking, pull-in is an instability rather than a bistability. However, 

as it exists in any simple attracting electrostatic MEMS structures, it is discussed here nonetheless. 

The difference between instability and bistability is highlighted in FIG.4.2 and FIG.4.3. The 

bifurcation diagram of a DFT neuronal population (FIG.4.2,a) shows a double-saddle-node 

bifurcation, which separates the potential well of the DFT neuronal population response into two 

wells (not shown here). Each well is stable, resulting in bistability. The system can jump from one 
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stability well to another if sufficient input signal is applied. Moreover, the response of the neuronal 

population depends on the input amplitude. At low input amplitudes, only a single (stable solution 

exists). At higher input strengths, 3 solutions exist: two stable solutions (black points) and one 

unstable solution (grey point) separating them (FIG.4.3,b).  

 

Figure 4.2. Bistability exhibited in a DFT neuronal population (similar to a CTRN). (a) Bifurcation diagram of the DFT 
neuronal population showing a double saddle-node bifurcation with respect to the input strength (amplitude of 𝐼(𝑡)). 
This bifurcation enables the coexistence of two stable solutions (solid lines). (b) Corresponding response phase portrait 
showing the existence of 3 solutions: two stable and one unstable, corresponding to the x-axis intersection. We note 
here that some input strengths only allow for a single stable solution. 

Contrary to the DFT population, the MEMS device experiences a single saddle-node bifurcation 

(FIG.4.3,a) at pull-in. Thus, only one potential well exists in this case and bistability is not attained. 

The phase portrait of the MEMS device (FIG.4.3,b) shows this case holds for any input (voltage) 

value. Despite this observation, however, hysteresis is still exhibited for a MEMS device in the 

pull-in regime, as shown in FIG.4.4. In fact, the pull-in instability corresponds to a rapid response 

jump similar to detection instability (FIG.4.4,a). Hysteresis shown in FIG.4.4,b ensures that reverse 

detection instability (following the red line) is lower than the detection instability (blue line), thus 

enabling memory as well. Therefore, even in their basic behavior, a single electrostatic MEMS 

device, operated around pull-in, exhibits both detection and memory. While this approach may be 

appropriate for some applications, other applications may be hindered due to the response cap at 
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pull-in, due to electrode contact. Additional concerns of utilizing this method include stiction and 

surface wear due to frequent operation around the pull-in regime. 

 

Figure 4.3. Response of a simple SDOF electrostatic MEMS device. (a) Potential energy of the MEMS device and 
bifurcation diagram (as a function of voltage) showing a single saddle-node bifurcation occurring at pull-in, after which, 
instability ensues. It is noted here that the stable solution is represented by a well in the potential energy plot. (b) Phase 
portrait of MEMS response showing the existence of only two solutions. A stable solution (low amplitude, black dot) and 
an unstable solution (high amplitude, grey dot). The onset of pull-in is shown as a red point. 

4.1.1.2. The snapthrough regime of MEMS arches 

The potential problems of utilizing MEMS in the pull-in regime can be solved when hysteresis is 

achieved prior to contact. A commonly analyzed regime of instability is the snapthrough regime 

in MEMS arches. The response of a SDOF MEMS arch are described using (4.1) [74] 

AK(75&
B

𝑥̈(𝑡) + A(F.//
B

𝑥̇(𝑡) + #8-1L5
(6

(𝑥(𝑡) + 𝑏!) +
8-1L5
B(6

(𝑥#(𝑡) − 𝑏!#)𝑥(𝑡) =
&7&)!"!#

$

4c-d-./(+)e6
 (4.1) 

Where 𝜌	is the mass density of the microbeam, L is the length of the microbeam, Acs is the cross 

sectional area, x is the deflection from the equilibrium point (with no force, positive in the direction 

away from the substrate) and the dot operator represents temporal derivatives, 𝑐$%% is the damping 

coefficient, E is the Young modulus of elasticity, 𝐼F is the second moment of area of a straight 
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microbeam with the same dimensions about the microbeam’s neutral axis, b0 is the initial midpoint 

elevation, and As is the surface area. 

 

Figure 4.4. MEMS response around pull-in showing both a response jump (a) and hysteresis (b).  

Assuming high damping, the first term in (4.1) can be dropped. Equation (4.1) can be further 

simplified by defining the variables in Table 4.2 to resemble a nonlinear ODE with a cubic 

nonlinearity in the form:   

 𝜏̃𝑥̇(𝑡) + 𝑘 "𝑥(𝑡) + 𝑘 A𝑥A(𝑡) = 𝐶¡ + 𝑓¡(𝑥)       (4.2) 

Equation (4.2) can consequently be written in a form similar to a CTRNN equation (3.3):  

𝜏𝑥̇(𝑡) = −𝑥(𝑡) + 𝜃 + 𝑤""𝜎7\FM(𝑥) + 𝐼0102(𝑥, 𝑉! + 𝑉;)                  (4.3)  

where the constants and the parameters are also defined in Table 4.2. We note that the feedback 

function of an arched microbeam 𝑤""𝜎7\FM(𝑥) also exists in a straight clamped-clamped beam due 

to mid-plane stretching, where 𝑤"" is the ratio between the cubic nonlinear stiffness 𝑘A to the linear 

stiffness 𝑘". However, in a straight beam 𝑘" far exceeds 𝑘A by orders of magnitude, leading to a 

very small gain 𝑤"". In contrast, the initial curvature of an arch microbeam reduces the linear 

stiffness to an effective linear stiffness of 𝑘" = 𝑘∗ − 𝑏!#𝑘A. Thus, as the initial curvature increases, 

𝑘" decreases until it reaches the same order of magnitude of 𝑘A. Once 𝑘A becomes appropriately 
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larger than 𝑘", snapthrough is observed and the bistability behavior, similar to the DFT neuronal 

population, is observed. This behavior is noted in FIG.4.5. Bistability is observed when 𝑏! =

	−4	𝜇𝑚 and 𝑏! = −3	𝜇𝑚 while 𝑏! =	−2	𝜇𝑚 results in no bistability. 

 

Figure 4.5 Bifurcation diagram of a MEMS arch with various mid-point elevations. Bistability is observed when 𝑏= =
	−3𝜇𝑚 and 𝑏= = −4𝜇𝑚 while it is absent when 𝑏= =	−2𝜇𝑚. 

Table 4.2: Parameters of equation 4.3 

Parameter Definition 

𝛼 =
𝑐$%%
𝜌𝐴F<

 Damping parameter 

𝜔]" = 22.3733¢
𝐸𝐼

𝜌𝐴F<𝐿4
 

First modal frequency of a straight 

clamped-clamped beam 

𝑘∗ =
16𝜋4

1502
~
𝜔]"#

𝛼#
�	 

Linear stiffness of a straight 

clamped-clamped beam 

!! = −4	&'

!! = −3	&'

!! = −2	&'

To pull-in
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𝑘" = 𝑘∗ − ~
𝑏!#

𝑑#
� 𝑘A 

Linear stiffness of an arched beam 

𝑘A = 0.065𝑑#
𝐴F<
𝐼
𝜔]"#

𝑘"
 

Cubic stiffness 

𝜏 =
𝛼
𝑘"
	 Time constant	

𝑤"" =	−
𝑘A
𝑘"

 Self-feedback 

𝜃 =
16𝜋4

1502
𝑏!𝜔]"#

𝛼#𝑑	𝑘"
 

Offset 

𝐼0102(𝑥, 𝑉0102)

=
Γ(𝑥(𝑡), 𝑉0102)

𝑘"
 

Input (excitation) signal 

𝜎7\FM = 𝑥A Feedback function 

  

As an example of MEMS arch as a neuronal element, a MEMS arch with parameters given in Table 

4.1 is used. To enable bistability, the initial midpoint elevation is chosen to be 𝑏! = 3	𝜇𝑚. These 

dimensions are commonly used in the literature for MEMS arches [74]. The response of this MEMS 

device is shown in FIG.4.6. In this figure, detection instability occurs when the input voltage 

exceeds the snapthrough (jumping from the low deflection region to the high deflection region) 

voltage, or the detection voltage 𝑉b 

and reverse detection instability occurs when the input voltage is below the release voltage, or 

reverse detection voltage 𝑉Y. This figure resembles the neuronal response in FIG.4.1. The bi-

stability and hysteresis in the arched beam can also be used to simulate a memory behavior. In this 

case, the MEMS is initially biased with a bias voltage. Once the MEMS is excited by an additional 

input signal (a step function in this case), it drives the MEMS to snap-through, achieving high 

deflection. Once the input signal is removed, the MEMS remains on the top branch of the 

bifurcation curve if the bias voltage, 𝑉!, satisfies 𝑉! > 𝑉Y (FIG.4.6,b). 
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Figure 4.6 (a) Bifurcation diagram of a single MEMS arch showing the detection process. Hysteresis is also shown in this 
regime via the snapthrough process. Note the lack of amplitude capping in this case. (b) Memory behavior of the MEMS 
arch. The MEMS device is biased using 𝑉= = 75𝑉. The MEMS is later excited using a step signal with an amplitude 𝑉> =
20	𝑉. 

4.1.1.3. The Bistable Regime in Low-Parasitic Capacitance, Electrical-Resonance Driven 

Electrostatic MEMS 

Bistability can also be introduced to straight MEMS devices by utilizing self-feedback. This can be 

achieved by utilizing electrical resonance to drive the MEMS device. As ideal MEMS devices are 

modeled as variable capacitors, an external inductor is added to the circuit to create an electrical 

resonant (LC circuit). Additionally, a resistor is added externally to limit the current in the circuit. 

An ideal MEMS RLC circuit is shown in FIG.4.7,a. while a realistic model of the MEMS circuit is 

shown in FIG.4.7,b. This model is based on the experimental design, shown in chapter 7. Parasitic 

capacitances 𝐶g_h" and 𝐶g_h#, and parasitic resistances 𝑅g_h" and 𝑅g_h# are introduced due to 

the use of coaxial, BNC, cables to interface with the inputs and outputs of the circuit. The MEMS 

device itself is modeled in the middle branch having a parallel resistor 𝑅66 and capacitor 𝐶6 to the 

MEMS variable capacitance 𝐶0102. An additional serial parasitic resistance 𝑅62 is also present in 

the realistic model. Additional explanation about the dynamics of the MEMS device within an LC 

circuit is also found in chapter 7. 
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Assuming the MEMS is actuated using an AC source only with a frequency Ω	 ≫ 	𝜔], which is 

usually the case when operating about the electrical resonance frequency, the forcing function can 

be written as 

𝐹$ =
&7&()?@ ijk(l+))$

#d-./(+)e$
         (4.4) 

Expanding the squared term using trigonometry: 

(𝑉7h cos(Ω𝑡))# = 𝑉7h# P
"
#
+ "

#
cos(2Ω𝑡)T = )?@

$

#
+ 𝑉7F# cos(2Ω𝑡)    (4.5) 

 

Figure 4.7. Electrical model of the MEMS device. (a) Ideal MEMS RLC circuit, excluding all the system and source parasitic. 
(b) Schematics of the MEMS circuit including the parasitic capacitances (𝐶ABC:, 𝐶ABC;, and 𝐶D) and parasitic resistances 
(𝑅E, 𝑅DD). The characteristic impedances of the cables (𝑅ABC:, 𝑅ABC;) are insignificant at low frequency and are ignored 
in the circuit. While 𝑅F is the output resistance of the source, 𝑅GB is the input impedance of the oscilloscope, which is 
significantly large in magnitude. The output voltage is read across 𝐶ABC;. 

Linearizing the system, such as the output of the MEMS equals the superposition of the output of 

the two terms in (b). The MEMS will attenuate the second term (with a frequency much higher than 

the resonance frequency) while viewing the first term as a DC input equivalent to: 

𝑉bh$mUNP;n$D+ =
)?@
√#

= 𝑉Y02        (4.6) 

Electrical resonance amplifies 𝑉bh$mUNP;n$D+. Thus, VMEMS, can be approximated by: 

𝑉0102 = 𝛽(𝑥) )?@
√#

= 𝛽(𝑥)𝑉Y02        (4.7) 
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where VRMS is the root-mean-square of the AC signal and  𝛽(𝑥) is the electrical gain; assuming a 

simple RLC circuit, is given by:  

𝛽(𝑥) = "

cpd".q$(h(/)e$9dqYh(/)e$r
       (4.8) 

where 𝐶(𝑥) is the equivalent capacitance of the MEMS, BNC cable, and peristatic capacitances. 

Thus, the voltage amplification is a function of the MEMS deflection that induces a negative 

feedback. This is true as the MEMS deflection increases due to voltage amplification, the 

capacitance of the MEMS resonator changes, which shifts the electrical resonance frequency, 

attenuating the input voltage signal, changing the electrical resonance again, and the cycle keeps 

repeating until the MEMS reaches its final stable attractor. By activating this passive feedback, and 

by assuming the MEMS is to run in ambient air, relaxing the need for the expensive vacuum 

packaging requirement for a typical MEMS [85], where the inertial term can be ignored, the MEMS 

dynamics equation transformed to a form that resembles the neuronal population dynamics 

equation as shown in (4.9), assuming sufficiently high damping: 

𝜏𝑥̇(𝑡) = 	−𝑥(𝑡) + Γs[𝑉! + 𝑉(𝑡) + 𝛽(𝑥)𝑉Y02, 𝑥(𝑡)]     (4.9) 

Where Γ$[. ] is a nonlinear kernel due to electrostatic actuation around the electrical resonance, 

given by (4.10): 

Γ$k𝑉, 𝑥(𝑡)m =
&7&())$

#d-./(+)e
         (4.10) 

The resemblance between neuronal dynamics and (4.9) are confirmed in FIG.4.8, where bifurcation 

diagrams and phase portraits of the MEMS are plotted. FIG.4.8,a shows an ideal comparison 

(assuming very low parasitic capacitance) between the response of the MEMS to a normal DC input 

exhibiting a saddle-node bifurcation at 𝑉0102 ≈ 120	𝑉and when the MEMS is actuated around the 

electrical resonance, where the MEMS can avoid pull-in almost entirely and experience a bi-stable 

dynamic. FIG.4.8,b shows the phase portrait of the MEMS dynamic with electrical resonance 
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activation. The figure confirms that by activating electrical resonance, the MEMS dynamic is 

transformed to resemble the neuron dynamic. Next, this new transformed MEMS dynamic are 

utilized to simulate the two basic operations of a single CTRN neuron; detection and memory. 

FIG.4.9,a represents the use of the MEMS device as a detection neuron by utilizing the bi-stability 

jump of the MEMS at some critical voltage (𝑉b). As the voltage increases, the MEMS microbeam 

steadily deflects towards the stationary electrode until 𝑉	 = 	𝑉b, where the MEMS exhibits a sudden 

jump, changing its fixed (equilibrium) point to one closer to the electrode (forward sweep – Blue 

solid line). This represents the detection instability. Later, when the voltage is reduced slowly, the 

MEMS steadily deflects away from the stationary electrode and remains this way past 𝑉	 = 	𝑉b , 

exhibiting hysteresis. The MEMS rapidly converges to the lower branch when 𝑉	 = 	𝑉Y (backward 

sweep – Red solid line); representing the reverse detection instability. 

 

Figure 4.8 The MEMS dynamics including the effect of electrical resonance. (a) Bifurcation diagrams comparing the 
MEMS dynamics with and without electrical resonance activation. (b) Phase portrait with electrical resonance 
activation. 

FIG.4.9,b shows the response of the MEMS device as a memory by maintaining a high amplitude 

position even when the input voltage, 𝑉ND, is removed. The MEMS is initially biased with a 

combination of AC and DC signals (𝑉!). 𝑉! is chosen such that it exceeds the reverse detection 

critical voltage 𝑉Y. The MEMS exhibits low deflection initially. Then, it is excited by an AC signal 

Voltage (V)

!(µm)

Electrical
resonance 

activation Typical 
actuation

Pull-in 
Instability 

%

!̇

Voltage 
increase

Stable fixed point
Unstable fixed point

(a) (b)

20 40 60 80 100

10

20

30

40

-1

-5 0 5 10 15 20 25 30
-2

0

1

2

3



 
 

47 

such that (𝑉ND 	+ 	𝑉! 	> 	𝑉b) which triggers the bi-stable jump of the microbeam to a high amplitude 

position. The excitation signal is then removed, but the MEMS stays on the upper branch of the 

bifurcation diagram (Fig.10a) since (𝑉! > 𝑉Y). Thus, the microbeam retains “memory” of the input 

signal. This memory is retained until it is cleared by having 𝑉! 	< 	𝑉Y which leads the MEMS into 

the lower branch of the bifurcation diagram. 

 

Figure 4.9 Theoretical investigation of a MEMS behavior as a neuron. (a) Detection neuron by producing high amplitude 
jump when activated, through detection instability. (b) Memory neuron by retaining high amplitude position after the 
excitation signal is lost (remembering the excitation signal). 

4.1.2. Dynamics of a small CTRNN 

Selection is a building block of neuronal populations according to DFT. This behavior allows 

neuronal populations to favor a certain event over another. The coupling between multiple 

connected neurons, resulting in multiple local peaks, can be used to explain more advanced 

behaviors such as the selection process [32], in which global inhibition maintains one peak due to 

a certain sensory input while suppressing others. This inhibition behavior can be realized for two 

interacting neuronal populations (FIG.4.10) by having negative coupling strength for 𝑤"" and 𝑤"# 

in (3.3) describing their coupled dynamics. 
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Figure 4.10 The dynamics of two neuronal populations. Arrow indicates excitatory input and circle indicates inhibitory 
coupling. 

The coupling between the two MEMS neurons is shown in Fig.4.11, where the following variables 

are defined:  𝑉" = (𝑉ND)" + Vj" −𝑤"#𝑉tU+#		,𝑉# = (𝑉ND)# + Vj# −𝑤#"𝑉tU+", 𝑉tU+" = 𝑉"H"(𝑥), 

𝑉tU+# = 𝑉#H#(𝑥).	𝑉N is the output voltage of the 𝑖+M OP Amp, (𝑉ND)", 𝑉ZN are the input and bias 

voltages of the 𝑖+M MEMS, 𝑉tU+N   is the output voltage of the 𝑖+M MEMS 𝑤NV is the gain of the 

connection from the 𝑗+M MEMS to the 𝑖+M MEMS, generated through an OP Amp, and 𝐻N(x) is a 

transformation function between deflection and voltage for the 𝑖+M	MEMS. The above gains can be 

tuned through the resistors and will signify the magnitudes of inhibition and amplification in the 

circuit. A similar arrangement was used to couple memristive devices for computing purposes. In 

this circuit, operational amplifiers are used to sum/subtract the voltages and isolate the MEMS 

neuron circuits from one another. Passive mechanical coupling between MEMS devices is also 

possible by introducing multiple microbeams sandwiched between the excitation electrodes.  
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Figure 4.11 Electrical connection between two MEMS devices. In such connection, the voltage signal across one MEMS 
is used to inhibit the response of the other MEMS through the differential amplifier. 

We note that this design can only be achieved because the external negative coupled term is a 

function of the MEMS displacement. Thus, the voltage across the MEMS offers a feedback signal 

that may be used to inhibit the other MEMS device producing a selection mechanism. 

Figure 4.12 shows an example of the selection process using two arched-beam MEMS neurons. In 

FIG.4.12,a, we show their dynamics response. In the figure, any MEMS deflection exceeding 3μm 

is a snap-through response that will close/short the MEMS circuit with a stopper that is connected 

to the MEMS substrate. FIG.4.12,b shows the input voltage for both neurons. The figures show 

that initially both neurons are biased by 20 V and 24 V, respectively. By itself, the bias voltage is 

not enough to trigger snap-through for any of the MEMS. However, at 1 ms, a 90 V was added to 

the MEMS #1 resulting in snap-through response and closing the MEMS circuit. Thus, the second 

MEMS neuron is subjected to a negative, inhibitory, voltage equals to 𝑉"𝐻"(𝑥). So even later at 3 

ms, 80 V was added to the second MEMS, the second MEMS stayed in the OFF state. However, 

when the input voltage at the first MEMS dropped to its bias voltage, the second MEMS exhibited 

snapthrough and closed its circuit. 

 

Figure 4.12 The response of two MEMS neurons demonstrating the selection process. (a) MEMS deflections, representing 
the state of the CTRN neurons. (b) Input voltages to each MEMS device. 

Other interesting dynamics can arise from the interactions between two MEMS devices, such as 

the emergence of periodic orbits [78] as shown in Fig.4.13. In this figure, the two MEMS devices 

(b)(a)
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are biased by 𝑉Z" = 𝑉Z# = 20V and the second MEMS neuron is excited by an input voltage (𝑉𝑖𝑛)# 

= 70V, while the first MEMS is not excited. To achieve the periodic response, we set 𝑤"#> 0 and 

𝑤#"< 0. In this case, when the Neuron #2 snaps-through due to (𝑉𝑖𝑛)#, the circuit is closed and the 

output voltage excites the first MEMS neuron because 𝑤"# > 0. However, when the first MEMS 

snapsthrough, this inhibits the second neuron because 𝑤#" < 0, thus releasing the second MEMS. 

However, this release would also cut off the voltage supply to the first MEMS, thus allowing the 

second MEMS to snap-through again. The continuous repetition of this process produces the period 

orbit of Fig.4.13. 

 

Figure 4.13 The response of two MEMS neurons demonstrating the emergence of a periodic orbit in the system when a 
DC supply is applied to MEMS#2. Top: Full view. Bottom: Zoomed view. 
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4.2. MEMS CTRNN Experimental Analysis 

To demonstrate dynamical changes of a MEMS network response experimentally, two identical, 

electrostatically-actuated double-cantilever MEMS accelerometers were used. Each of the MEMS 

microbeam has dimension given in Table 2.1. Despite its large in-plane dimensions, this device 

retains the same qualitative behaviors as smaller MEMS devices [73], including hysteresis and 

bistability, which are essential for neuro-inspired computing. The two MEMS devices were coupled 

in a small network as shown in Fig.4.14. A data acquisition device was used to record the voltage 

across the MEMS devices and to produce the required coupling. Due to the slow response time of 

the MEMS devices used here (a fundamental resonance frequency of 190 Hz), the effects of analog-

to-digital convergence (A/DC) and digital-to-analog convergence (D/AC) delays were negligible. 

Alternatively, operational amplifiers in series can be used to couple the MEMS devices in the 

network to bypass these delays and operate the system in a purely analog fashion. In this work, 

programmatic coupling was used as it offers more flexibility in choosing coupling weights. The 

effective voltage across a MEMS device in the constructed network is given by (4.11): 

 

Figure 4.14 The network connection circuit. The two MEMS devices are actuated by a signal from the data acquisition 
device that is externally amplified. Each MEMS is connected to a 4 MΩ resistor, to reduce the current flowing at pull in, 
and a 100 kΩ for voltage division. 

𝑉01029 = 𝑉ND9 +𝑤NV𝑉ZU+H        (4.11) 
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When the MEMS devices are uncoupled (w12 = w21 = 0) and the electrostatic force acting upon 

either of them exceeds their stiffness force, the microbeam collapses (pulls-in) as shown in 

Fig.4.15(a). Hysteresis and bistability are evident in the figure between the pull-in voltage (Vpull-in) 

and the pull-out voltage (Vpull-out). The MEMS devices are then coupled through mutual negative 

feedback (w12 < 0, w21 < 0) and each device is actuated with a square signal with an amplitude 

equal to its corresponding pull-in voltage, as shown in Fig.4.15(b). Initially, both MEMS devices 

are actuated with V = Vpull-in. However, only MEMS1 is allowed to switch to a high state (ON) while 

MEMS2 remains in a low state (OFF) because of the negative feedback signal inhibiting the 

response of MEMS2. Therefore, MEMS2 is only allowed to switch ON when: (1) MEMS1 switches 

OFF and (2) MEMS2 encounters a high input signal. Both conditions were met at t = 5.5s, causing 

MEMS2 to switch ON. Similarly, MEMS1 was also inhibited at t = 6.7s, when MEMS2 was active. 

This behavior demonstrates the production of selective switching (priority bias) due to coupling, 

where the system only responds to the faster of two signals. This also represents a winner-takes-all 

(WTA) network, where the activation of one “neuron” leads to the inhibition of other “neurons.” 

Self-oscillation allows a network of coupled MEMS devices to oscillate using a single DC source, 

as shown in Fig.4.15(c). This behavior is attainable using V1 = Vpull-in1, V2 = 0, w12 < 0 and w21 > 

0. The positive feedback, w21, ensures that MEMS2 is excited when MEMS1 pulls-in. In constrast, 

if MEMS2 pulls-in, it inhibits MEMS1 because of its negative feedback, w12. Consequently, this 

pulls-out MEMS1 and cuts the voltage from MEMS2. Finally, as MEMS2 pulls-out, this allows 

MEMS1 to pull-in again, thus completing the cycle. The interaction of the two MEMS devices here 

creates a Hopf bifurcation, which explains the self-oscillation. 

Selective switching and self-oscillation were previously reported as characteristics of dynamical 

neural fields and continuous-time recurrent neural networks (CTRNNs). Thus, a small network of 

MEMS devices is shown to exhibit some computationally favorable characteristics. 
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Figure 4.15 The experimental dynamics of two coupled MEMS devices. The MEMS devices are inherently non-oscillatory 
due to high viscous damping when operated at atmospheric pressure. (a) Device characterization for MEMS1 and 
MEMS2, showing pull-in (110V and 165V, respectively) and pull-out (66V and 73V, respectively) voltages and regions of 
hysteresis. (b) The dynamic that arises from coupling the two MEMS through mutual negative feedback (𝑤:; =	𝑤;: =
	−1) showing that if one MEMS device is activated, the other device is attenuated. Thus, the response of the system 
depends on the timing of the input. MEMS1 is pulled-in initially so it turns ON first. (c) Oscillatory dynamics generated 
by using positive and negative feedback in the system (𝑤:; = −1,𝑤;: = 	1), which leads to limit cycle under DC input. 

4.3. Chapter Conclusions 

This chapter shows the use of MEMS devices to simulate the behavior of continuous-time recurrent 

neurons and neuronal populations from the DFT, capturing the behaviors of detection, memory and 

selection. An analogy between the nonlinear dynamics of CTRN and the nonlinear dynamics of 

overdamped bistable MEMS structures was made. We have introduced bistability in a MEMS 

device by triggering its electrical circuit resonance. Operating the MEMS around its circuit’s 

electrical resonance was also shown experimentally to significantly amplify the voltage across the 



 
 

54 

MEMS. Moreover, we have developed a coupled model for the MEMS circuit accounting for the 

parasitic components in the circuit and the MEMS equations of motion to simulate a CTRN. 

Finally, a single CTRN and multiple coupled CTRN behaviors were simulated using a MEMS 

arched beam.  

This chapter shows that a MEMS with electrical resonance activation or initial curvature retains a 

similar dynamic to that of a CTRN. Thus, making it a prominent candidate as an analog-based 

building block of a new type of computing unit that is based on the human neuron. Thus, the new 

MEMS neuron-computing unit could create truly analog brains compounded from devices that 

respond to stimuli in a similar fashion to human neurons. The use of this new analog computing 

unit by utilizing its underlying physics can provide a platform to cope with high computing power 

requirements.  

This chapter mainly focuses on recreating the behaviors of individual CTRNs or small CTRNNs 

using MEMS devices. Chapter 5 builds on the results of this chapter by investigating the 

computational ability of MEMS CTRNNs to perform both pure computation and colocalized 

sensing and computing.  
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Chapter 5 

Computation using MEMS networks [APL paper + ASME 2020] 

In the context of neural networks, computation mainly involves regression problems and 

classification problems. In the former, the neural network is expected to find a numerical value, 

such as predicting future stock prices or expecting the price of houses. The latter problems involve 

categorizing an event into two or more classes. In robotics, computation may also include trajectory 

planning and even some aspects of control. In this chapter, a MEMS network is used as an analog 

CTRNN based on the analogy between individual MEMS and CTRNs that was found in Chapter 

4. Two computational tasks are considered here: an active categorical preceptor problem is 

investigated to test the pure computational ability of MEMS devices; and a simple acceleration 

waveform classification task is chosen to test the colocalized computational abilities of MEMS 

sensor CTRNNs. 

5.1. Pure Computation Using a MEMS CTRNN 

In this section, an active categorical preceptor, proposed by Beer [86] [87], is used to demonstrate 

object classification and tracking in a MEMS network. The goal of the network is to control a 

virtual robot (an agent) to catch falling circular objects and avoid falling line objects. This task is 

illustrated in Fig.5.1,a. The robot is equipped with seven equiangular linear-proximity sensors and 

two motors, moving the robot transversely. The computational MEMS network is composed of 

three layers: an input layer (7 MEMS), a computational layer (5 MEMS) and an output layer (2 

MEMS), as shown in Fig.5.1,b [86] [87].  

For this simulated network, MEMS arches are used due to their bistability via snap-through 

instability (buckling through the undeformed section). Moreover, MEMS arches maintain their 

stability beyond snap-through, thus allowing for further deflection, if necessary. The dynamics of 

a MEMS arch are governed by [74] (4.3). 
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Figure 5.1 (a) Active categorical perception problem. The agent (controlled unit), modeled as a circular object, is 
equipped with 7 proximity sensors, depicted as dashed lines, is expected to categorize a falling object and act according 
to its shape. The agent is actuated via two motors attached to each side. (b) The recurrent neural network map used in 
this study, showing 14 total MEMS neurons: 7 input neurons, 5 computational, recurrent neurons and 2 output neurons. 
The connection map of the sensors network shows: (1) the one-to-one connection between the proximity sensors’ output 
and the neurons in the input layer as well as the all-to-all connections between the neurons in the input layer. (2) The 
forward connection between all input neurons to all computational neurons, the all-to-all connections between the 
computational neurons as well as the recurrent, self-feedback connection in each of the computational neurons. (3) The 
forward connection between all computational neurons to all output neurons and the all-to-all connection between the 
output neurons. Finally, the figure shows the output signal of the network to actuate the motor. 

The MEMS microbeam dimensions are given in Table 4.1. The initial midpoint elevation 𝑏! is zero 

for MEMS in the input and output layer, while it is unspecified in the recurrent layer as it will be 

optimized in the training process. 
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The MEMS device is actuated electrostatically with a voltage 𝑉0102,N causing the ith MEMS to 

deflect by 𝑥N, measured at the microbeam’s midpoint (positive away from the fixed substrate). The 

voltage across each MEMS device in the network is given by (5.1) 

𝑉0102,N = �𝑉!,N + ∑ o𝑤<$D<Z\,V𝑉<$D<Z\,Vk𝐷Vm𝛿NVr0
V`" + ∑ o𝑤NV𝑉ZU+,Vk𝑥VmrD

VuN 	 , 𝑖𝑓	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.1) 

Where 𝑉0102,N is the effective voltage across the ith MEMS, 𝑛 = 𝑀 + 𝑅 + 𝑂 is the total number of 

MEMS in the network, where 𝑀 is the number of input MEMS, 𝑅 is the number of computational 

MEMS, and 𝑂 is the number of output MEMS (in our case 𝑀 = 7, 𝑅 = 5, 𝑂 = 2). 𝑉',N is the bias 

DC voltage applied to MEMSi, 𝛿NV is the Kronecker delta function, 𝑤<$D<Z\,V and 𝑉<$D<Z\,V(𝐷V)  are 

the weight applied to the input voltage from the jth sensor and the sensor’s output voltage as a 

function of its distance to the object, respectively. 𝑤NV is the connection weight between the ith and 

jth MEMS and 𝑉ZU+,Vk𝑥Vm = 𝑉0102,V 	(𝑥V − 𝑏!)/(𝑑 − 𝑏!) is the voltage output of the jth MEMS 

device as a function of its deflection. 

Within the input layer, each MEMS device is connected to a single proximity sensor. The proximity 

sensors transform the measured distances into a voltage signals following (5.2): 

𝑉<$D<Z\,N = 𝛼ND,N(𝐷N + 𝛽ND,N)					for					1 ≤ 	𝑖 ≤ 𝑀      (5.2) 

where 𝛼ND,N is the ith input sensitivity, associated with the 𝑖+M MEMS in the network, and 𝛽ND,N the 

ith bias. The sensor signal is inversely proportional to the distance, producing a signal Di as given 

by (5.3): 

𝐷N =		𝛼<$D<Z\,N 	²
v(!?I.(J%Kv

wLMN
³	        (5.3) 

where 𝛼<$D<Z\ = 10 is the sensor gain, 𝐿\;x is the distance between the intersection of the linear 

ray and the falling object and the center point of the agent, and 𝐿07y is defined as the maximum 

intersection distance, which is set to 220 units in this work. 
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Similarly, the output of the MEMS network is linearly transformed from a voltage signal to the 

robot velocity, according to (5.4): 

𝑥̇;a$D+ = 𝛼P$n(𝑉0102"A − 𝑉0102"4)       (5.4) 

where xagent is the position of the robotic agent along the x-axis, defined in Fig.5.1,a, the dot operator 

indicates temporal derivatives, and 𝛼P$n = 5 is the velocity gain. The velocity gain translates the 

MEMS deflection/capacitance change into agent movements. VMEMS,13 and VMEMS,14 are the output 

voltages of the two output-layer MEMS (MEMS13 and MEMS14), respectively, as calculated 

using (5.5): 

𝑉0102,N = 	𝛼ZU+,Nk𝑥N(𝑡) − 𝛽ZU+,Nm       (5.5) 

 where 𝛼ZU+,N is the output gain of the ith MEMS, 𝛽ZU+,N is the output bias. 

Training the MEMS parameters is achieved by optimizing the input sensitivities (𝛼ND,N) and biases 

(𝛽ND,N), coupling weights (wij), self-feedback through curvature (bo,i), voltage biases (V0,i) and output 

biases (𝛽ZU+,N). Due to the large number of parameters to optimize, a genetic algorithm is chosen as 

the training scheme using a Python code optimized for parallel processing. All other MEMS 

parameters are fixed to simplify the training process.  

The MEMS network information is stored within genomes, which are vectors of real numbers that 

contain all of the model parameters. The genomes are trained to maximize the fitness function, 

F(x), for all test sets. F(x) is given by (5.7) using the average fitness function of each set, f(x), in 

(5.6). 

𝑓N(𝑥) = ^𝑓ź
A
, where 	𝑓ź =	µ

|/8OH	.	/?P.Q7|
07y	bN<+;DF$

																			𝑜𝑏𝑗𝑒𝑐𝑡	𝑖𝑠	𝑎	𝑙𝑖𝑛𝑒	𝑖𝑛	𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜	𝑖

1 −	 |/8OH	.	/?P.Q7|
07y	bN<+;DF$

														𝑜𝑏𝑗𝑒𝑐𝑡	𝑖𝑠		𝑎	𝑐𝑖𝑟𝑐𝑙𝑒	𝑖𝑛	𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜	𝑖
  (5.6) 

𝐹(𝑥) ="
D
∑ 𝑓N(𝑥)D
N`" , where n is the scenario count in the dataset.               (5.7) 
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The training data set includes the object type as well as xagent and xob. The fitness function increases 

when the agent is close to a falling circle or when the agent is far from a falling line at the same 

vertical position. After evaluating the fitness function of the training data, a group of the best 

genomes is used to construct the first successful generation. The next generation is created by using 

a crossover function of the previous generation. This process is iteratively repeated at the end of 

each training set evaluation until a maximum iteration limit was reached or fitness function reached 

a satisfactory, predetermined value. The genomes of the final generation with the highest fitness 

function are stored as the optimized network parameter genomes. 

For the studied system, 256 fixed and variable parameters were included in the genome. The 

variables and their ranges are shown in Table 5.1. The genetic algorithm starts with a population 

of 3000 initial genomes that were generated randomly within the variable range. The best 100 

genomes of each generation are carried out to the new generation by utilizing two-point crossover 

and a mutation rate of 0.2. The training set is chosen to include 42 different scenarios. In all 

scenarios, the downward velocity of the object, 𝑦̇Z'V, and the agent 𝑦̇;a$D+ were fixed to 200 and 0 

units/s, respectively while the initial starting point of the agent, xagent , and object, xobj , are varied 

between -50 units and 50 units, and -15 units and 15 units, respectively. Finally, the genetic 

algorithm problem is solved using a 14 CPU VCore, 32 GB RAM server. The 100-iteration training 

process, with a concurrency number of 20, took 10 hours to run. In the final generation, the best 

genome is found to have a fitness function of 0.92. 

The simulated results of the trained MEMS network are presented in FIG.5.2 In general, the MEMS 

network was capable of performing the designated task; the virtual robot minimized the distance to 

the circular object and maximized the distance to the line object. FIG.5.2,b shows a sample of two 

successful runs. In both cases, the agent initially moved toward left, then either reversed course to 

catch the circular object or maintained its motion to maximize its separation with the line object. 

The object characterization process was performed within one second, as indicated by the minimum 
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point in the agent’s response time when following the circular object in FIG.5.2,c. The figure also 

shows the significant computational intensity in capturing a circle compared to avoiding a line, as 

the capturing task requires continuous tracking. In addition, capturing the circle showed greater 

dynamical richness, including an oscillatory behavior between 𝑀𝐸𝑀𝑆? and 𝑀𝐸𝑀𝑆"!, following 

the same behavior previously shown in FIG.5.2,c. This oscillatory response propagated to the 

output MEMS devices (𝑀𝐸𝑀𝑆"A and 𝑀𝐸𝑀𝑆"4) and into the motion of the agent. 

Table 5.1: Genome variables and their range 

 

 

 

 

 

 

 

The agent qualitatively behaved as expected in all successful cases. The only case of failure 

reported here is when the agent attempted to capture a circle when the system’s initial conditions 

are: 𝑥;a$D+ =	−50 units and 𝑥Z'V = 15 units. In this case, as the agent is at its maximum distance 

to the left of the object, the initial leftward motion may have caused the agent to lose track of the 

object, resulting in the erroneous decision. This error may be solved by training the system using 

test samples with greater separation distances between the agent and object. 

5.2. Colocalized Sensing and Computing Using MEMS Sensor Networks 

The biggest advantage of using MEMS devices for computing over other analog devices, such as 

sub-threshold transistors and memristors is their prevalence in smart systems as sensors. Thus, as 

Variable Min Value Max Value 

𝛼!",! 1 2.5 

𝛽!",! -1 4 

b0 0 4.00E-06 

𝑉$,! -50 50 

𝑤!% -35 35 

𝛼&'(,! 1 15 

𝛽&'(,! -1 4 
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MEMS networks demonstrate computational abilities (results of section 5.1) and possess the ability 

to sense input signals, such as force, acceleration, temperature, humidity, pressure, etc, MEMS 

sensors may be used as sensors and computing elements simultaneously. Thus, MEMS networks 

may be used to produce a new generation of smart sensors that output high-level information rather 

than analog or digital values. For a proof of concept, this section presents a small MEMS 

accelerometer network that can classify an input acceleration waveform into square waveform or 

triangle waveform, outputting 0V for the former and 5V for the latter. 

 

Figure 5.2. Simulated results from the trained MEMS network. (a) Successful and failed attempts to complete the task 
and the final separation distances between the object and the agent. (b) A sample of the agent’s motion when capturing 
a circle or avoiding a line, with initial conditions 𝑥RSTUVW =	−15 units, 𝑥>XUYW =	−50 units. Initially, the agent moves 
to the left, scanning the object, then, according to the object shape, it either reverses to the right to catch the object 
(circle) or move further away (line). (c) The dynamics of the MEMS in the computational layer normalized to the initial 
gap (g0) in the process of catching a falling line object. 

(c)

(b)

(a)
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Here, for the sake of simplicity, electrostatically driven straight MEMS devices, operated around 

the pull-in regime, are used as CTRN. The dynamics of each MEMS device within the network of 

𝑁 MEMS accelerometers are given using (5.8) 

𝑚$%%,N𝑧z̈(𝑡) + 𝑐$%%,N𝑧ż(𝑡) + 𝑘$%%,N𝑧N(𝑡) =
&7<,9d)!"!#,9(+)e

$

#d-9.|9(+)e
$ −𝑚$%%,N𝑦̈';<$(𝑡), 𝑖 = 1,2, … ,𝑁 

           (5.8) 

This equation is simply a base-excitation-driven SDOF MEMS equation, where 𝑦̈';<$(𝑡) is the 

base acceleration. In this equation the absolute position of the MEMS microbeam 𝑥(𝑡) is replaced 

by the relative position of the MEMS microbeam 𝑧(𝑡) = 𝑥(𝑡) − 𝑦(𝑡). To eliminate the pull-in 

singularity in simulation and avoid electrical contact in practice, stoppers are installed in each 

MEMS device at a distance 𝑧<,N. As such, (5.8) is overridden to 𝑧N(𝑡) = 𝑧<,9 and 𝑧̇N(𝑡) = 0 if it was 

found that 𝑧N(𝑡) > 𝑧<,N (section 2.2.3).  A schematic of the MEMS device is shown in FIG.5.3. 

 

Figure 5.3 The MEMS accelerometers are modelled as single degree-of-freedom spring-mass-damper systems, actuated 
both via base acceleration and electrostatic attractive forces. Stoppers are utilized in this design to avoid electrical 
contact. 

Coupling MEMS devices is performed electrically using the term 𝑉0102,N(𝑡): 

𝑉0102,N(𝑡) = 𝑉!,N +∑ 𝑤NV𝑉ZU+,V(𝑡)_
V`",VuN       (5.9) 
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where 𝑉!,N is the DC bias voltage for MEMS 𝑖, 𝑤NV is the coupling weight between MEMS 𝑖 and 

MEMS 𝑗, noting that 𝑤NV ≠ 𝑤VN necessarily, and 𝑉ZU+,V is the output voltage of MEMS 𝑗 given by 

(5.10): 

𝑉ZU+,V(𝑡) = 𝑉!,V𝑈k𝑧V(𝑡) − 𝑧<,Vm        (5.10) 

where 𝑈(. ) is a unit step function. Noting that self-connection, typically given by 𝑤NN, is essential 

for computation. While implicit, this recurrent connection is observed in the pull-in regime as 

evidenced by hysteresis. Here, the MEMS connections are forward and unidirectional (aside from 

the implicit self-feedback connection). Therefore, 𝑤NV = 0 if 𝑗 > 0. Moreover, we note that, while 

the MEMS dynamics are continuous in nature, the state of the MEMS neuron is only interpreted as 

a binary state in this work due to operation in the pull-in regime. It is still possible to assume that 

the MEMS state is analog in nature. However, this requires a means of measurement for the 

response of each MEMS device, defeating the purpose of using MEMS devices as sensors and 

computing elements simultaneously. 

The MEMS network is now tasked with classifying an input waveform into either ‘Square’ signal 

or ‘Triangle’ signal, as shown in Fig.5.4. The input waveforms are supplied as acceleration 

waveforms. Here, unlike other physical implementations of neural networks where inputs are 

electrical signals, the MEMS network used simultaneously performs sensing and computing 

simultaneously. For the MEMS CTRNN to perform the computational task properly, the size of the 

network and the connection weights between the MEMS devices are optimized. Optimization was 

performed manually by starting from a ladder diagram optimization scheme, assuming each MEMS 

device is a relay. Under that assumption, 5 MEMS devices are required to perform the 

computational task. The number of MEMS devices required is reduced to 3 by taking advantage of 

the dynamics of MEMS devices, namely inertia and hysteresis. 



 
 

64 

 

Figure 5.4 Classification task considered in this work. (a) Visualization of the binary classification problem. (b) MEMS 
network used for classification. The network is composed of three identical devices. Two devices receive an input 
acceleration signal and one device performs classification. 

The bias voltages were chosen such that 𝑉!," > 𝑉!,# to force MEMS1 to pull-in ahead of MEMS2 

when supplied by a ramped signal. MEMS1 and MEMS2 pull-in nearly simultaneously when a 

square acceleration signal acts on the CTRNN. The connection weights between the MEMS devices 

in the network are also optimized manually by taking advantage of the ‘selection properties’ of a 

network of a network of CTRNs [32]. Because of selection, the influence of input signals depends 

on the amplitude of the input signals as well as their temporal order. We note here that, due to our 

chosen method of weight optimization, the MEMS CTRNN will be able to classify any quasi-static 

acceleration signal. However, at acceleration frequencies close to the natural frequencies of 

MEMS1 and MEMS2, this method fails. Other optimization methods would be required to enable 

classification of such signals. 

The constructed network is made of identical MEMS accelerometes. The parameters of the MEMS 

devices are presented in Table 2.1. Additional information about the sensors used can be found in 

[73]. The MEMS devices are assumed to be electrically coupled using operational amplifiers to 

incorporate connection weights. Here, it is assumed that MEMS1 and MEMS2 are input neurons, 

directly influenced by the acceleration signal. MEMS3, however, is in the computing layer, thus, it 

is oblivious to the acceleration signal. This can be achieved by rotating MEMS3 such that the 

acceleration signal is perpendicular to the MEMS motion. This can also be achieved by reducing 
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the mass of MEMS3 such that the inertial forces are significantly reduced. In this work, the former 

approach is assumed.  

The MEMS CTRNN is subjected to a sequence of a square and triangle signal with an amplitude 

𝑦̈';<$ =	−5𝑔, where 𝑔 is the gravitational acceleration. The results of the MEMS CTRNN are 

shown in Fig.5.5. The shock signal excites both MEMS1 and MEMS2 (Fig.5.5,a and Fig.5.5,b, 

respectively). Initially, when a triangle signal is observed, MEMS1 pulls-in (at around -2g) first 

due to its higher bias voltage. Consequently, MEMS3 pull-in. When the acceleration signal ramps 

to -3g, MEMS2 pull-in. Since MEMS2 has a negative connection weight, it reduces 𝑉0102,A(𝑡). 

However, this reduction is insufficient to release MEMS3. Thus, MEMS3 remains pulled-in until 

the acceleration amplitude is reduced to below -2g. 

Alternatively, when a square signal is encountered, MEMS1 and MEMS2 experience a sudden and 

immediate change in amplitude, which results in them pulling-in (nearly) simultaneously. In this 

case, the voltage acting on MEMS3 is immediately equal to 𝑤A"𝑉!," +𝑤A,#𝑉!,# + 𝑉!,A. By design, 

this voltage is insufficient to pull-in MEMS3. Therefore, the output of MEMS3 remains low and 

square classification is performed. Interestingly, MEMS inertia is beneficial in this computing 

scheme as inertia prevents MEMS3 from pulling-in if MEMS1 pulled in momentarily prior to 

MEMS2. Moreover, inertia allows this scheme to be performed to classify imperfect square signals, 

such as signals generated from a shaker which tend to be trapezoidal in shape, assuming the signal 

ramp is sufficiently steep, since the MEMS devices will slightly lag the input signal. 

The results from Fig.5.5 also clearly demonstrate the importance of hysteresis in a MEMS CTRNN 

as inputs of equal amplitudes may lead to significantly different behaviors depending on past 

information. (see the areas marked by the red circle and black dashed circle in Fig.5.5,a-d, in which 

MEMS1 and MEMS2 are simultaneously pulled-in, yet MEMS3 can assume two different 

configurations). 



 
 

66 

 

Figure 5.5 Classification test results showing the response of MEMS1 (a), MEMS2 (b) and MEMS3 (c). (d) The effective 
voltage acting on MEMS3 𝑉[(𝑡). (e) The state of MEMS3 when subject to a triangle or a square signal. Note: the points 
marked by red and black circles in (a-d) represent points with similar MEMS1 and MEMS2 states but different MEMS3 
states, indicating the importance of memory in a MEMS CTRNN. 

5.3. Chapter Conclusions 

This chapter demonstrates the computational ability of MEMS sensors networks by performing 

non-trivial computational tasks in analog, at the sensor level. A network of non-sensory MEMS 

devices was shown to perform an active categorical perception task with a 92% accuracy, indicating 

the ability of MEMS networks to perform computation. Moreover, a small network of 3 MEMS 

accelerometers was capable of performing acceleration waveform classification in analog in the 

absence of analog-to-digital converters and digital processors. 

Computation is performed in the MEMS network by exploiting the inherent nonlinear dynamics of 

MEMS devices in the pull-in regime to mimic the behavior of a special class of artificial neurons, 

named continuous-time recurrent neurons (CTRNs).  

For simple tasks, training such a binary MEMS network offline is simple using ladder logic as a 

starting point. Additional modifications by considering MEMS dynamics can reduce the size of the 

(a) (b) (c)

(d) (e)
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network. For complicated tasks, such as active categorical perception problems, training, even 

offline, is computationally expensive. In this chapter, genetic algorithms were used to train the 14-

neuron CTRNN. Other training schemes, such as backpropagation through time may be used 

instead to train the MEMS CTRNN. Aside from offline training, online training may be possible 

by using memristive devices as capacitors to couple the MEMS devices. 

This chapter represents a simple application of intelligent sensory arrays that go beyond simple 

analog and digital sensing into the domain of classification. Such sensory arrays are expected to 

significantly reduce the computational load on processors in two ways: perform some 

computational tasks internally, and allow processors to sleep until a high-level signal of interest 

triggers an event (such as detecting a triangle signal, rather than relying on a simple signal threshold 

to trigger the event). 
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CHAPTER 6  

MEMS RESERVOIR COMPUTING FOR SENSING AND COMPUTING 

MEMS devices can perform computing by emulating the response of CTRNNs. In this case, MEMS 

devices are connected in a layered architecture, in which MEMS devices are only allowed to 

connect to other devices in their immediately succeeding layer. Recurrent connections are inherent 

in the pull-in, snapthrough and electrical resonance regimes (chapter 4). A critical limitation of 

MEMS CTRNNs, and of CTRNNs in general, is the difficulty of training. Especially when the 

number of neurons increases or when the network grows deeper with the introduction of a large 

number of hidden layers. Additionally, large MEMS CTRNNs requires using a large number of 

MEMS devices, which may conflict with the size constraints in systems such as wearable 

electronics or micro-robotics. Thus, MEMS CTRNNs may be appropriate to use for simple 

applications requiring a moderate number of neurons, or when training is performed offline. 

The challenges of MEMS CTRNNs can be addressed by changing the architecture of the MEMS 

network, creating a ‘reservoir’. By connecting a large network of MEMS devices using random 

connection weights, the input signals are projected into a higher dimensional space, simplifying the 

computing process. Indeed, the computing output of this network can be attained using a weighted 

summation of states of the neurons within the reservoir. In this case, training is performed using 

linear regression. This architecture is known as Reservoir computing (RC). 

Reservoir computing can be further leveraged to reduce the physical size of the MEMS sensing-

and-computing unit by using virtual reservoirs, rather than physical reservoirs, allowing one 

MEMS device to perform the task of hundreds of neurons [39]. 

This chapter shows the use of a single MEMS device to both computing tasks and colocalized 

sensing and computing tasks.  
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6.1. Reservoir Computing using Single MEMS Device 

In this section, the pure computational ability of MEMS RC is assessed. Therefore, the MEMS 

device is used only as a computational unit. The MEMS RC input(s) are electrical signals generated 

from external sensors(s). To this end, a single degree of freedom MEMS device is used in this 

section to create the virtual reservoir. The virtual reservoir generates 𝑁 virtual nodes in a serial 

fashion, creating one virtual node in 𝜃 time steps. The generation process concludes at time 𝜏 =

𝑁𝜃, after which, the MEMS reservoir generates the next time step of the virtual neurons. The 

nonlinear dynamics of the MEMS device are used to enable high dimensional mapping while the 

properties of the MEMS device as a dynamical system are used to create the virtual nodes. As 

explained in section 3.4, maintaining transience is the key to generating the virtual nodes and 

maintaining memory. To this end, the input signal passes through a modulation circuit (FIG.6.1,a) 

ahead of being fed to the MEMS device. 

The input signal 𝑢(𝑡) is sampled and held with a period 𝜏 to generate the signal 𝐼(𝑡) to reduce the 

need to read sensor data. The modulated signal is then generated by using a masking signal 𝑚(𝑡), 

such that 𝐽(𝑡) = 𝑚(𝑡)𝐼(𝑡). The exact generation scheme is explained in section 3.4 and a plot of 

the input transformation is shown in FIG.6.1,b. 

The modulated signal 𝐽(𝑡) is then fed to the MEMS device as an electrical signal. Additional input 

signals are also supplied to the MEMS reservoir to modify its dynamics appropriately. For this 

dissertation, the voltage supplied to the MEMS reservoir 𝑉0102, assuming a delayed feedback 

signal with a gain 𝛼 and period 𝜏 is added to the electrical input, is given by (6.1), if 𝐽(𝑡) is added 

to the DC signal, and given by (6.2) if 𝐽(𝑡) is added to the AC signal: 

𝑉0102 = k𝑉bh + 𝐽(𝑡)m + 𝑉7h cos(Ω𝑡) + 𝛼𝑥(𝑡 − 𝜏)      (6.1) 

𝑉0102 = 𝑉bh + k𝑉7h + 𝐽(𝑡)m cos(Ω𝑡) + 𝛼𝑥(𝑡 − 𝜏)     (6.2) 
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Figure 6.1 Input stage of the reservoir computing setup. (a) Schematics for the modulation circuit. (b) Signal 
transformations in the modulation circuit. 

Delayed feedback is also introduced in the MEMS reservoir circuit to facilitate recurrent 

connections for each virtual neuron in the reservoir. As the reservoir generates 𝑁 nodes in 𝜏 time 

units, the delayed feedback is set to 𝜏 to ensure self-coupling. The dynamics of the MEMS reservoir 

vary significantly based on the choice of delay time, as shown in FIG.6.2. In this figure, the delayed 

feedback loop has a gain of 𝛼 = 0.1	𝑉/𝜇𝑚. Positive delayed feedback is used here as the aim of 

the loop is to increase the dynamical complexity of the MEMS device rather than stabilizing its 

orbit. The bifurcation diagram shows the simulated response of a straight SDOF MEMS device 

with dimensions given in Table 4.1 is simulated. This MEMS device is driven using 𝑉7h = 30	𝑉, 
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𝑉bh = 58	𝑉, Ω = 0.78947𝜔D and various delay time 𝜏 values. At high 𝜏 values, the MEMS device 

experiences simple sinusoidal oscillation, as indicated by the upper and lower oscillation branches. 

As 𝜏 decreases, the MEMS response goes through a series of period-doubling bifurcations, starting 

at 𝜏 = 0.576/𝜔D, and leading to pull-in.  

 

Figure 6.2 Bifurcation diagram of a SDOF straight MEMS device as a function of delay time. Here, 𝑉\C = 30, 𝑉]C =
58,𝛺 = 0.78947𝜔Y. The MEMS device is disconnected from the modulated signal in this bifurcation diagram.  

The relationship between 𝜏 and 𝜃 thus may constraint the reservoir design, as certain operational 

regimes may only be accessible for low values of 𝜏. However, choosing a small 𝜏 along with a large 

number of virtual neurons 𝑁 will result in a very small 𝜃. Consequently, as 𝐽(𝑡) is typically a 

piecewise continuous function with a step size of 𝜃, the MEMS device may be excited with very 

fast signals, to which it will fail to react. This may lead to information loss at the RC level. 

Therefore, careful analysis of the MEMS reservoir frequency response, the input signal frequency 

components, the complexity of the computational task and the dynamics of the MEMS device must 

be performed to choose the best values for 𝜏 and 𝜃. The number of virtual neurons is then 

automatically computed based on 𝜏 and 𝜃. 
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The generation of the neuronal state matrix 𝑋 is achieved by sampling the MEMS response at 𝜃. 

For the duration of 𝜏, each sampled 𝑥(𝑡) is considered the state of a virtual neuron at the 𝑖+M time 

step. The state of each virtual neuron is updated once all virtual neurons have been generated, i.e., 

after 𝜏 time units. Thus, virtual neurons are generated serially in this scheme. This process is 

visualized in FIG.6.3. 

 

Figure 6.3 The process of constructing the neuronal state matrix from the MEMS response. 

Similarly, the output of the RC is only generated once all the virtual neurons have been generated 

at each time step, i.e., after 𝜏 time steps. This output is simply computed using weighted linear 

summation, as was previously shown in (3.5). 

The overall architecture of the MEMS RC scheme is shown in FIG.6.4, showing the input 

modulation stage (pre-processing), MEMS reservoir stage (processing), and output generation 

(post-processing) stage. Table 6.1 summarizes the significance of the values of 𝜃 and 𝜏 in each 

stage. 
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Figure 6.4 A comprehensive schematics of the MEMS RC architecture showing the input modulation stage (pre-
processing), MEMS virtual reservoir stage (processing) and weighted summation stage (post-processing). 

Table 6.1: Summary of temporal parameter significance in each RC stage 

 

The computational abilities of the MEMS RC are tested by performing a simple classification task 

using the accelerometer device. The classification task involves distinguishing between two input 

waveforms: rectangular waveform and triangular waveform, which is simple yet non-trivial [35] 

[88]. To perform this task, the MEMS RC architecture in FIG.6.4 is modified by utilizing two 

readout circuits rather than one, as shown in FIG.6.5. The readout circuits are used as signal 

classifiers, such that the rectangle (triangle) classifier outputs +1 if the input waveform is a 

rectangular (triangular) signal and -1 otherwise. 
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6.1.1. Classification Using a Simulated MEMS RC 

 The input signal is supplied as an electric signal to test pure computing. The reservoir parameters 

are setup as follows: 𝑁 = 100, 𝜃 = 1	𝑚𝑠, 𝜏 = 100	𝑚𝑠. The parameters are chosen to ensure 

transience is maintained while decoupling the virtual nodes from the 𝑖 timestep from other nodes 

at the 𝑖 + 1 time step [40]. For tasks with low memory requirement, such as classification, delay-

feedback may be forgone with limited impact to RC performance [89]. Hence, 𝛼=0 is chosen in 

this work. 

The chosen MEMS device is a commercial accelerometer with the following parameters: 𝑚$%% =

106	𝑚𝑔, 𝑐$%% = 0.78 × 10.A	𝑁. 𝑠/𝑚, 𝑘$%% = 159.1	𝑁/𝑚, 𝑑 = 42	𝜇𝑚, 𝐴< = 39.6	𝑚𝑚#. While 

the in-plane dimensions of the MEMS device (surface area) are large, the in-plane electrode 

separation is sufficiently small to recreate the nonlinear complexities observed in smaller MEMS 

devices. 

 

Figure 6.5 RC system design for the classification problem. This binary classification problem requires two readout 
circuits, one for each class. The classifiers outputs can be computed in parallel using the response of a single MEMS 
virtual reservoir. 

The MEMS device is biased using a biasing voltage of 𝑉bh =	3 V and 𝑉7h = 0	𝑉, amplified using 

a 20dB amplifier. The modulated input signal is constructed by applying a binary periodic 

modulation mask on the input waveforms and applied to the biasing voltage signals according to 

(6.2). The applied modulation mask can assume one of two states: 𝑤V ∈ {0.3,1}, which varies every 

𝜃 = 1 ms, with a 90% chance of taking the higher value of 1. The period of the modulation mask 
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is 𝜏 = 100 ms. The mask was optimized through trial and error. The input electrical waveform is 

applied prior to the amplifier, representing rectangular and triangular signals with an amplitude of 

3 V. The period of each waveform is chosen to be 14𝜏, which is much slower than the MEMS 

natural frequency, which prevents the MEMS device from classifying the input signals using a 

simple frequency response comparison. 

 

Figure 6.6 Simulated MEMS RC response. (a) Simulated outputs of the rectangle and triangle classifiers, represented 
by the blue squares and red triangles, respectively. (b) MEMS response due to the modulated signal. Insert: zoomed 

plot. 

The MEMS RC classification output is determined using a winner-take-all (WTA) scheme; 

defining success as the output of the classifier corresponding to the input waveform being higher 

than that of the other classifier. The success rate is calculated as: 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 = #J$<+NDa2$+hZ\\$F+hn;<<N%NF;+NZD<
#2;][n$<LDJ$<+NDa2$+

× 100%    (6.5) 

(a)

(b)
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The RC system is subject to a signal train of with a length of 610𝜏. Around 80% of the 

MEMS response data points are used to create the training set and 20% of the data points 

are used for testing. Training is performed using Ridge regression with 𝑘!"# = 1 × 10$%&. 

The results of this training is shown in FIG.6.6,a where the black solid line represents the 

input signal, and the blue squares and red triangles represent the outputs of the trained 

rectangle and triangle classifiers, respectively. In this test, the success rate was found to be 

95.4%. Majority of the misclassification occurs at the center of the triangle signal, where 

the RC classifiers predict rectangular signals, possibly due to the peak amplitude 

resembling the peak of a square signal after sampling. This misclassification is absent in 

the triangle signal valley. 

The MEMS simulated MEMS response is shown in FIG.6.6,b. It is shown that, despite the input 

waveform being in the quasi-static MEMS regime, the MEMS device retains a transience due to 

input modulation. 

6.1.1. Experimental RC Classification task 

The same task is repeated experimentally using a MEMS commercial accelerometer with the same 

dimensions. The MEMS device is placed in a vacuum chamber as shown in FIG.6.7 to control the 

operational pressure. The MEMS device is driven using a data acquisition module, which generates 

the modulated input signal 𝐽(𝑡). This signal is amplified with a gain of 20dB, similar to the 

simulation. The out-of-plane velocity of the MEMS device is captured using a laser vibrometer, 

which is later integrated after passing a high-pass filter to find the MEMS deflection. The states of 

the RC virtual neurons are consequently found by down-sampling the MEMS deflection at a 

frequency of 1/𝜃. Training is performed offline via Ridge Regression based on the MEMS 

response to the input signal and the chosen number of nodes, 𝑁. 
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Figure 6.7 Experimental setup for electrical waveform classification. The MEMS device is placed in a vacuum chamber 
to reduce pressure. The deflection of the MEMS device is attained by integrating the velocity signal from the laser 

vibrometer. 

The MEMS is first tested in the worst-case scenario of operation at atmospheric pressure (high 

damping due to the squeeze damping effect). Operating at atmospheric pressure results in rapidly 

decaying transients which may result in the development of a virtual reservoir with limited 

connectivity and low memory retention. The input to the MEMS device is a train of rectangle and 

triangle electrical signals with an amplitude equal to the	bias voltage. To evaluate the response of 

the RC as a function of the input signal frequency, the input signal frequency is varied from 

0.37%𝑓D to 102%𝑓D with a duty cycle of 50%. At each input frequency, the measured MEMS 

response is used to construct the virtual states matrix 𝑋 by down-sampling the measured signal at 

𝜃 = 1 ms. The virtual states matrix is then split into 80%-20% training-testing sets. The training set 

is used to optimize the output weights for two classifiers: A rectangle classifier (output = 1 for a 

rectangle input and -1 for a triangle input); and a triangle classifier (output = 1 for a triangle input 

and -1 for a rectangle input). Each classifier has a sperate weight matric 𝑊ZY (rectangle) and 𝑊ZJ 

(triangle) obtained from Ridge regression. These weights are used to classify the rectangle 

(𝑌Y$F+;Dan$) and triangle (𝑌J\N;Dan$) output, respectively. The testing set is used to evaluate the 

success of the RC scheme.  
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We find that, while operating the MEMS at atmospheric pressure increases squeeze film damping 

and may produce a shallow reservoir with sparsely connected nodes, it successfully classified input 

signals with relatively high frequency (Fig.6.8,a). Low input frequencies produce a quasi-static 

response, which is unsuitable for the reservoir computing scheme.  The performance of the RC 

scheme can be directly inferred from the success rate. An alternative measure of performance is the 

average separation distance between the reservoir outputs (𝑋 ×𝑊ZJ − 𝑋 ×𝑊Z2) , where the bar 

operator represents averaging, shown as the brown line in Fig.6.8,a. A higher average separation 

distance signifies a more ‘confident’ classification by the RC. We also test modifying the number 

of sampled nodes 𝑁∗ while varying 𝜃 to maintain the same τ value. Figure 6.8,b shows that 𝑁∗ =

25 produces a 98% success rate while reducing the required sampling rate in the system by 75% 

(𝜃∗ = 4	𝑚𝑠). This may indicate that some of the virtual nodes obtained at a higher sampling rate 

(𝜃 = 1	𝑚𝑠), might be redundant. It is noted here that the actual number of virtual neurons in the 

RC remains constant regardless of 𝑁∗, as they are generated by using a mask with values that differ 

at 𝜃 intervals. Thus, down-sampling to produce a lower 𝑁∗ is a post-processing step to reduce to 

computational burdens of the system, reducing the size of the 𝑋 matrix and the need for high-end 

sampling circuits at the readout portion of the RC. 

 

Figure 6.8 (a) Classifier accuracy as a function of the input frequency. At low input frequencies, the classifier fails to 
classify the input signal. However, as the frequency increases, the reservoir prediction accuracy increases to >99%. (b) 
MEMS RC classification performance at 𝑓/𝑓Y=20% when different 𝑁 are considered. 

(a) (b)



 
 

79 

The frequency-dependent success in the presented results limits the utilization of the MEMS RC to 

tasks with relatively high-frequency input. To extend the operating frequency to quasi-static inputs, 

the memory of the system needs to be improved by reducing the squeeze film damping. This is 

achieved by reducing the operating pressure. Towards this end, the MEMS RC is placed in a 

vacuum chamber as shown in Fig.6.7 and driven by an electrical signal at 0.37%𝑓D. Two types of 

variability are introduced separately to investigate the RC performance in classifying low-

frequency signals in the presence of noise: (1) colored noise due to a combination of low-frequency 

ambient noise and ground vibrations resulting from running the vacuum pump, and (2) parameter 

drift as pressure built up in the vacuum chamber after shutting off vacuum pump ahead of the 

experiment.  Despite quasi-static input and the introduction of noise, the MEMS RC is capable of 

performing successful classification. Figure 6.9. shows the classification success rate of the MEMS 

RC under the influence of pressure variation (99.8%, Fig.6.9,a) and colored noise (99.66%, 

Fig.6.9,b) at the low input frequency is on-par with previously reported results [35] [88]. 

 

Figure 6.9 Experimental classification of low-frequency signal using the MEMS RC (a) under parameter (pressure) drift, 
(b) and colored noise. The real-time results of the RC show success rates of 99.8% and 99.66%, respectively. 

6.2. Colocalized Sensing-and-Computing using a MEMS Reservoir Computer 

The main advantage of using MEMS as an RC is the ability to perform sensing and computing 

simultaneously. In this case, MEMS can directly extract complex information from its environment. 

(a) (b)
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However, as environmental signals measured by MEMS sensors are rarely electrical, the current 

input modulation technique is unsuitable. An alternative approach to input modulation is shown in 

(6.6), by employing input modulation as a voltage biasing term rather than the traditional input 

forcing term. 

𝐽∗(𝑡) = 𝑤V × 𝑉' , (𝑖 − 1)𝜏 + (𝑗 − 1)𝜃 ≤ 𝑡 < (𝑖 − 1)𝜏 + 𝑗𝜃, 𝑗 = 1,2, … ,𝑁 − 1  (6.6) 

where 𝐽∗(𝑡) is the bias time-multiplexing signal, which is piecewise constant for the duration 𝜃, 𝑤V 

is a period 𝜏	mask and 𝑉' is some DC bias applied to the electrostatic MEMS. The time-multiplexed 

signal is supplied to ensure the MEMS remains in transience to facilitate node coupling, which 

occurs when 𝜃 < 1/(2𝜋𝜁𝑓D), 𝜁 = 𝑐$%%/(4𝜋	𝑚$%%	𝑓D) is the damping ratio of the system, and 𝑓D =

(1/(2𝜋))kl𝑘$%%/𝑚$%%m is the MEMS fundamental natural frequency. This developed approach 

of bias time-multiplexing further improves the performance of the colocalized sensing-and-

computing RC by eliminating the need for analog-to-digital conversion, which is otherwise 

necessary for input multiplexing in traditional delay-based RC. It is noted here that 𝐽∗(𝑡) is used 

in-place of 𝐽(𝑡) in any consequent colocalized sensing-and-computing test. Furthermore, this 

approach enables the MEMS device to handle signals that have features with a duration smaller 

than 𝜏 that would otherwise be lost during the sample-and-hold operation. 

A simulated response of the MEMS sensor RC is shown in FIG.6.11. Here, the neuronal state 

matrix 𝑁 is 620×100. This matrix is split into a training set and a testing set with an 80%-20% 

ratio. Training is performed using ridge regression. It is noted here that the input signal period is 

2000 times slower than 𝜏. Despite that, the MEMS sensor RC manages to perfectly classify the 

input signal with 100% accuracy. 

Next, this simulated task is reproduced experimentally. The MEMS sensor is mounted into a 

vibration shaker, as shown in FIG.6.11, which can be programmed to generate a square-triangle 

acceleration waveform using a programmable controller using a built-in adaptive control scheme. 



 
 

81 

Acquiring the actual MEMS velocity, 𝑧̇(𝑡) is performed by measuring the total MEMS velocity 

𝑥̇(𝑡), using a laser doppler vibrometer, and the shaker velocity 𝑦̇(𝑡), by integrating the acceleration 

measured from an accelerometer mounted on the shaker. The MEMS deflection is then computed 

as 𝑧̇(𝑡) = 𝑥̇(𝑡) − 𝑦̇(𝑡). The synchronization between 𝑥̇(𝑡) and 𝑦̇(𝑡) is performed automatically 

using the shaker controller.  

 

Figure 6.10 MEMS RC output for the colocalized sensing and computing task showing a 100% success in the acceleration 
waveform classification task. 

The sensing and computing task is performed experimentally using an acceleration pulse train with 

a frequency of 1.1367𝑓D and an amplitude of 5 g, Fig. 6.12(a). The frequency as the smallest 

frequency capable of producing sufficiently high acceleration to enable MEMS motion under the 

influence of squeeze-film damping at atmospheric pressure. The MEMS device is forced into 

transience using the modulated signal, which modulates the biasing voltage rather than the input 

signal. The relative displacement of the MEMS device is shown in Fig. 6.12(b). Figure 6.12(c) 

shows the MEMS RC response sampled and held each 1 ms, 80% of the data points are used to 

create the training set and 20% of the data points are used for testing. After training, the MEMS 

network successfully classifies 99.6% of the testing data, which is on-par with similar RC schemes 

for this test [35] [88] and on-par with the results observed from Fig. 6.8. The success of this scheme 
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shows that the sensing and computing using RC is possible using a slight modification to the input 

modulation scheme. We note here that the similarity between the results from the MEMS 

computing and the MEMS sense-and-compute tasks suggests that operation in a vacuum may still 

be required in co-local sensing and computing tasks for low-frequency acceleration signals. 

 

 

Figure 6.11 Experimental setup for acceleration waveform classification. The MEMS device is fixed on a shaker. The 
MEMS response is measured as the difference between the microbeam and ceramic base deflections. The shaker is 
controlled through a dedicated adaptive controller. 

 

6.3. Regression Using Single MEMS Device 

Regression is one of the most popular applications of machine learning. The goal of regression is 

to find predict a numerical value based, rather than predicting a binary class. As there is an infinite 

number of possible solutions to regression problems, only a single output readout circuit is typically 

used, rather than a readout circuit for each class, as is used in classification problems. 

As a case study for the MEMS reservoir computer, a benchmark regression problem named 

‘nonlinear auto-regressive moving average’ NARMA is studied. In this problem, the MEMS RC is 

expected to find the response of nonlinear time-series based on current and past inputs [90]. 

NARMA is a class of problems based on the memory of the time-series. This section focuses on 
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NARMA10, a dynamical system that is dependent on inputs up to 10-time steps in the past. A 

NARMA10 dynamical system is modelled using (6.7): 

𝑦W9" = 0.3𝑦W + 0.05𝑦Wo∑ 𝑦W.N?
N`! r + 1.5𝑢W𝑢W.? + 0.1      (6.7) 

 

Figure 6.12 MEMS sense-and-compute scheme: (a) A sample of the acceleration signal generated by the shaker. (b) The 
response of the MEMS device and virtual node extraction. (c) Visualization of the virtual reservoir within the network. 
The response of the virtual nodes shown in this figure is used to compute the reservoir output after all the virtual nodes 
are updated. (d) Classification process based on the RC output. 

Where yk is the kth NARMA state and uk is the input at the kth time step. Following [39], u is chosen 

to be a random number such that 𝑢W 	 ∈ [0,0.2].  yk is complicated to fit due to the influence of past 

values on future responses, which makes this problem a compelling benchmark for nonlinear 

approximators. 
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Memory retention is crucial for this application; thus, the MEMS device is operated at a reduced 

pressure of 20 Pa using 𝑉bh  = 30 V with no AC voltage. The delay value, 𝜏 was chosen to be 0.9s 

and the feedback gain 𝛼 = 0.1 V/𝜇m was used. The modulation mask was chosen to be composed 

of a random sequence of ±0.5 and 0. To ensure sensitivity to inputs, J(t) was linearly scaled linearly 

5 times. The reservoir in this work was composed of N = 100 virtual nodes with 𝜃 = 0.002 ms.  

The NARMA10 simulations were carried out using a sequence of 6000 random inputs (M= 

length(u) = 6000). To ensure good linear fitting, the number of time steps, M, must be chosen such 

that M > N.  

A sequence of 6000 random inputs 𝑢 to construct the NARMA10 response 𝑌, which represents the 

target response for the system. The random input is also fed to the MEMS device after modulation 

to drive the system. The MEMS response to a random input array is shown in Fig.6.13. The 

response loses its periodicity due to the input modulation and delayed feedback, which is desirable 

to perform calculations. The response of the MEMS device is sampled at a period of 𝜃 = 2 ms and 

stored in a matrix 𝑋. This matrix is split into a training matrix and testing matrix as follows: the 

first 2000 rows of 𝑋 are discarded to eliminate the effect of initial conditions, the next 2000 rows 

of 𝑋 are chosen as the training set and the final 2000 rows of 𝑋 are chosen as the testing set. The 

training set is used to train the Weight Matrix, W, through linear regression. Equation 3.4 was used 

in the training process while setting 𝑘\$a = 1×10-21.  

The performance is evaluated by calculating the normalized root mean square error (NRMSE) as 

shown in (6.8): 

𝑁𝑅𝑀𝑆𝐸 = ^²"0
∑ (<9.x9)$!
9^0
(x~)$ ³		        (6.8) 

where si and yi are the ith element of the concatenated RC output matrix S and expected output 

matrix Y, respectively, and 𝑦¼ is the mean of the vector 𝑌. 
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Figure 6.13 (a) sample MEMS response to a random input, u(t). (b) zoomed view of response 

Using linear regression to train the weights of the MEMS reservoir using the training set yields 

NRMSE = 6.18%. The fitting results are shown in Fig.6.14,a by comparing the results of 

NARMA10 to the results of the MEMS reservoir using the training set again as a test set.  Next, 

the trained weights matrix was tested using the test set (Fig.6.14,b). The result of the test set is 

NRMSE = 6.43% which is predictably higher than NRMSE from the training set. However, it 

remains within an acceptable range. 

The interaction between nodes occurs due to the delayed feedback used in the reservoir circuit, 

which also allows past states to visibly influence the MEMS response. Another means of interaction 

between adjacent nodes occurs automatically through the reliance of each node on the information 

of previous nodes by virtue of the time-dependence of dynamical systems. However, these 

interactions are not sufficient to allow the MEMS device to capture the NARMA10 response. 

(a)

(b)
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Additional complexity was necessary, thus, unlike the classification task in previous sections, 

delayed feedback is required.  

In the absence of a modulation signal, the MEMS device reach a stable fixed point attractor when 

actuated, using moderate DC voltage excitation, or a stable periodic orbit if an AC signal is also 

introduced, after passing through a brief transient state. If the MEMS device is allowed to reach the 

stable periodic region, the system loses its time dependence, which decouples adjacent modes. To 

avoid this issue, the separation time between nodes (𝜃) is chosen such that it is smaller than the 

characteristic time (time constant) of the MEMS (𝜃 < 𝑇), as was used in this section. 

 

Figure 6.14 NARMA10 approximation (a) training set. (b) Testing set. Inserts: zoomed views. 

 

6.4. Potential of Beam Continuity 

(a)

(b)

(a)

(b)

(a) (b)
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MEMS devices have only been modeled as SDOF up to this point. Additional dynamical 

complexity can be accessed by utilizing the multi-degrees-of-freedom (MDOF) dynamics of 

continuous MEMS microbeams. If these modeshapes are excited in an appropriate fashion, probing 

a MEMS microbeam is akin to probing multiple coupled massed connected through elastic (spring) 

elements. In this case, probing the MEMS device at each time step θ produces more information 

than what is seen in SDOF MEMS devices or other RC systems. Consequently, it is expected that 

a lower number of nodes 𝑁 will be required to yield a satisfactory response for the RC. As 

computation is performed serially in virtual-reservoir-based RC schemes, this translates to 

computation faster than SDOF MEMS device. Moreover, since each modeshape has its own modal 

frequency, the response of the MEMS reservoir will have multiple timescales, which may offer 

higher computational capabilities (ensembled learners) [45]. 

Figure 6.15 shows a schematic of a 3 degree-of-freedom MEMS device represented by 3 point 

masses. The point masses are coupled to each other, as represented by the red springs and dampers. 

Each degree of freedom correlates to a modal coordinate 𝑢N(𝑡) in the Galerkin discretization. While 

the modal coordinates are solved for using multiple ordinary differential equations, there exists an 

internal coupling between the modal coordinates nevertheless. 

To demonstrate the potential of using MDOF MEMS devices, we contrast the response of an RC 

using a MDOF, multi-modeshape continuous MEMS microbeam with the results from an RC using 

a single-modeshape continuous MEMS microbeam a continuous MEMS microbeam. In both cases, 

the MEMS microbeam is excited using the input modulation shown in (6.2) to maintain response 

transience. Moreover, we compare these responses with a continuous MEMS RC device, driven 

with a modulated signal designed to independently excite multiple modeshapes simultaneously. 

In this study, a continuous MEMS arch with dimensions given in Table 4.2 is used. We model the 

MEMS arch using the first modeshapes to ensure accuracy. As a benchmark, the rectangle-triangle 

waveform classification task is considered. For this problem, we have found that the parameter 
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choice: 𝜃 = 0.2, 𝑁 = 40, 𝑉bh = 30	𝑉, 𝑉7h = 20	𝑉, 𝑓 = 24	, 𝑏! = 3.47	𝜇𝑚 are appropriate. 

Noting that 𝑓 and 𝜃 are non-dimensional parameters, normalized in section 2.2.2. The period of the 

input signals is fixed here to 7𝜏, regardless of 𝑁 to facilitate comparative analysis. A random binary 

mask with 𝑚N(𝑡) = {0,1} is chosen, where the values are equally likely to be chosen. The rectangle 

and triangle signals have an amplitude of 15	𝑉. The amplitude of 𝐽(𝑡) is amplified after being 

calculated using a gain of 15. 

 

Figure 6.15 Visualization of a continuous MEMS beam composed of three modeshapes. The continuous microbeam can 
be viewed as a spring-mass-damper system with three point-masses. Interactions between the modeshapes are 
represented by the springs and dampers enclosed in red dashed boxes, indicating interactions dependent on the modal 
coordinate 𝑢_(𝑡) and its time derivative 𝑢̇(𝑡), respectively. The stiffness and damping coefficient associated with each 
modeshape are represented by the springs and dampers enclosed in the green dashed box. 

Using these parameters, the MEMS response is split into a training set (80%) and a testing set 

(20%). The MEMS RC is then trained using linear regression to optimized the linear readout circuit 

weights for both the rectangular classifier and square classifier. Using this approach, when 𝑁 is 

chosen to be 40 nodes, a classification success rate of 100% is observed. 
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To complicate the classification task, the period of input signals is varied across the input 

waveform. In this case, the normalized period is randomly chosen from {1,2,3,6}, each with equally 

likely possibility to be chosen. Despite this additional complexity, the MEMS RC accuracy remains 

100%, as shown in FIG.6.16. 

 

Figure 6.16 Classification results using a continuous microbeam with 5 modeshapes. The input waveform consists of 
rectangle and triangle signals with different frequencies. 

To better assess the performance of the RC, we reduce the number of nodes in the reservoir. Here, 

we choose a very small number of virtual neurons 𝑁 = 1, 5, 10 and compare the classification 

accuracy. First, we compare the RC response when using a MEMS beam modeled using 5 

modeshapes: (a) when all the AC voltage is supplied at 𝑓 = 24 (near the first modal frequency), 

(b) when all the AC voltage is supplied at 𝑓 = 64 (near the second modal frequency) and (c) when 

half the AC amplitude is split in half between 𝑓" = 24 and 𝑓# = 64	(AC components close to both 

the first and second modeshapes). The results are shown in FIG.6.17. 
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Figure 6.17 Comparison of the classification accuracy of three MEMS RCs, each with a different AC input frequency: 
𝑓 = 𝑓: = 24 (blue), 𝑓 = 𝑓; = 64 (yellow) and 𝑓 = 𝑓: and 𝑓; (green). 

The three MEMS RC considered in this study perform slightly better than a coin-flip at 𝑁 = 1. 

However, as 𝑁 increases, it appears that the response of the MEMS reservoir with 𝑓 = 𝑓# = 64 

greatly outperforms the other two RCs. Interestingly, at high 𝑁, the RC driven using a combination 

of 𝑓" and 𝑓# performed the worst. Each modeshape should be targeted by the modal frequency 𝑓N 

corresponding to it, in a fashion similar to proof mass producing a high response amplitude at 

resonance. However, it is noted that this does not truly happen here as electrostatic forcing is 

quadratic in nature; thus, the frequency components of the input forcing cover a broader spectrum 

than what would be observed in linear forcing (see chapter 7 for additional information). 

The positive effects of modeshape interactions can instead be viewed when observing the MEMS 

RC performance when 𝑓 = 𝑓# is chosen. The interactions between the modeshapes is not explicit 

here. However, implicitly, the modeshapes interact with each other to improve the MEMS response. 

This may be more obvious when exciting around the second modal frequency compared to the first 

modal frequency because the first modal frequency is typically dominant in clamped-clamped 

structures, thus the higher order modeshapes, especially even ones, are overshadowed. 
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For the sake of ensuring accuracy in the previous sections, we also compare the response of the 

MEMS RC with 5 modeshapes with that of a MEMS RC with one modeshape to observe the 

response differences. Figure 6.18 shows that driving the MEMS RC at 𝑓 = 𝑓" yields worse results 

than MEMS RC driven at 𝑓#, whether the MEMS device is modeled as a SDOF or a MDOF. The 

only difference in response between the SDOF MEMS RC and MDOF MEMS RC at 𝑓" is a 

constant offset due to the influence of the disregarded modeshapes. The effects of these modeshapes 

on the RC response appear to be negative, supporting our previous findings. 

 

Figure 6.18 Comparison of the classification accuracy of three MEMS RCs: 𝑓 = 𝑓: = 24 (MDOF, blue), 𝑓 = 𝑓: (red, 
SDOF) and 𝑓 = 𝑓: (MDOF, yellow). 

The results of this figure show that our RC analysis in previous sections remains valid even when 

assuming a SDOF MEMS device. The accuracy discrepancy between simulated and experimental 

results may be due to disregarding higher order modshapes. 

The large number of neurons in RC is needed for high dimensional projection. However, if high 

dimensional projection is attained through the system itself, there may be less need for a large 

number of virtual in the RC. Since the processing time is equal to 𝜏 in reservoir computing schemes, 

decreasing 𝑁 would also reduce the processing time. This can significantly improve the 
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performance of the MEMS RC. Moreover, as mentioned previously, the use of multiple ‘virtual 

reservoirs’ for each modeshape introduces a multi-timescale property to the MEMS RC, which may 

enable the MEMS to perform intricate tasks by extracting short signatures from the low-frequency 

modeshapes and long signatures from high-frequency modeshapes in a fashion similar to the time-

constant tuning of CTRNNs. 

6.4. Chapter Conclusions 

The use of a single MEMS device to emulate a large neuronal reservoir is presented in this chapter. 

The MEMS reservoir was used to perform a classification task and a standard regression benchmark 

test: approximating the response of a NARMA10 system. 

The MEMS device operates as a reservoir of N nodes by creating temporally separated virtual 

nodes. This is achieved using the modulation mask m(t). The interaction between nodes occurs due 

to the delayed feedback used in the reservoir circuit, which also allows past states to visibly 

influence the MEMS response. Another means of interaction between adjacent nodes occurs 

automatically through the reliance of each node on the information of previous nodes by virtue of 

the time-dependence of dynamical systems. We note here that MEMS devices reach a stable limit 

cycle when actuated, using moderate AC and DC voltages excitation, after passing through a brief 

transient state. If the MEMS device is allowed to reach the stable periodic region, the system loses 

its time dependence, which decouples adjacent modes. To avoid this issue, the separation time 

between nodes (𝜃) is chosen such that it is smaller than the characteristic time (time constant) of 

the MEMS (𝜃 < 𝜏).  

The standard MEMS RC was shown to have a perform in the classification and regression tasks 

with over 99% classification accuracy for the former and RMSE = 6.43% for the latter. The standard 

RC scheme has been modified in this section to enable colocalized sensing-and-computing, 

eliminating the need for sample-and-hold circuit, analog-to-digital converters and external sensors 
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without sacrificing performance accuracy. This approach may enable the creation of new 

generations of smart, RC-based sensors, without using large networks of sensory elements. Such 

sensors will entirely utilize transience, increasing their speeds. Such sensors may be capable of 

performing edge computation by performing classification and/or prediction. For example, such 

sensors may be capable of compensating for interference due to measurement in nonlinear systems, 

such as compensation for flow changes due to the insertion of a flow rate sensor into a water pipe. 

The results in this chapter show experimentally that the collocal sensing-and-computing through 

MEMS devices result in good noise resistance, which is shows promise. 

Finally, this chapter presents the use of multi-modeshape continuous MEMS devices to enrich the 

response of the MEMS RC by introducing inherent modeshape coupling within the MEMS RC. 

This coupling is shown to improve the response of the MEMS RC, resulting in a higher degree of 

high dimensional mapping, evidenced by the improved RC accuracy even at lower number of 

virtual neurons. The use of multi-modeshape continuous MEMS RCs also introduces multi-

timescale responses associated with each modeshape, which may enable intricate computation, as 

evidenced from recent research results showing the effectiveness of using multiple reservoirs with 

different time scales. 

Despite these promising findings, the potential of using MEMS devices for colocalized sensing-

and-computing is hampered by the need for high voltages to drive MEMS devices, especially in 

nonlinear regimes, which are needed for RC. To address this critical challenge, chapter 7 introduces 

a passive means of response amplification in MEMS devices using ‘double resonance drive’. As a 

byproduct, the next chapter also explains the ability of MEMS devices, driven at electrical 

resonance to retain bistability, which was shown in chapter 4. 
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CHAPTER 7  

DOUBLE RESONANCE EXCITATION 

Electrostatically actuated MEMS sensors and actuators are extremely energy due to the low current 

flow in capacitive elements. This makes them convenient to use in smart systems, wearable devices 

and non-conventional robotics (soft-, micro-robotics). Despite that, electrostatic MEMS devices 

require a significant amount of voltage to drive, in the order of tens to a few hundred volts. 

Especially when MEMS devices are to operate in the nonlinear regimes. 

To amplify the output signal of MEMS resonant devices several approaches have been utilized, 

including driving them around their mechanical resonance frequency, optimizing designs [91] [92] 

[93] by increasing the MEMS structure surface area, reducing its stiffness, or narrowing the gap 

between the stationary and movable electrodes. However, these methods were not effective to boost 

the device response while reducing their operating voltage to a level compatible with 

complementary metal-oxide semiconductor (CMOS) technology. Moreover, most of these methods 

increase squeeze film damping [94], which is extremely detrimental in applications such as 

reservoir computing, and the risk of electrode stiction [95]. Other research has focused on utilizing 

parametric nonlinear resonance to increase MEMS dynamic deflection and enhance the output 

voltage [96] [97]. However, parametric resonance activation requires complex actuation techniques 

to modulate the stiffness and strict low damping conditions; and hence is limited for specific 

applications.  

Utilizing mechanical resonance is a common way of amplifying the response of MEMS structure. 

Previous works extended this concept using multi-frequency excitation signals to increase MEMS 

filter bandwidth [98], the signal to noise ratio in micro-gyroscope applications, [99] and the 

harvested energy in MEMS harvester [100]. Finally, as MEMS devices also act as capacitors; 

electrical resonance was utilized for detection through electrical resonant frequency shift in an RLC 
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circuit [101] and to amplify the MEMS response by forming an LC tank circuit or a resonant drive 

circuit [102] [103]. Triggering electrical resonance in such a circuit leads to a large voltage 

amplification across the MEMS device. However, due to the mismatch between the mechanical 

and electrical resonance frequencies, only static amplification can be achieved using a typical 

excitation signal. 

In this chapter, the MEMS response is amplified simultaneously activating its electrical and 

mechanical resonances (double resonance actuation). This developed amplification scheme is 

operational even when frequency mismatch exists by using a multi-frequency signal [104]. 

Moreover, the response change of MEMS devices due to electrical resonance drive is investigated. 

7.1. Double Resonance Excitation Introduction 

The dynamics of a single degree of freedom (SDOF) MEMS device are introduced in Chapter 2 by 

assuming the MEMS device is a perfect capacitor and assuming the lack of any parasitic 

components in the MEMS circuit. This model is valid for operational frequencies significantly 

lower than the electrical resonance frequency of the circuit. Thus, researchers often limit the 

operational range of frequencies to lower than the electrical resonance. 

To extend the range of the electrical model, one must consider the parasitic components of the 

resonator (Inductance – Ls, Resistance – [Rdielectric , Rplate , Rwires (very small)] and Capacitance - Cp) 

in the model as shown in Fig.7.1,a. In the figure, CMEMS is the variable capacitance and is the sensing 

element of the circuit. We note that the series Rplate and Rwires are very small and can be neglected 

in a circuit with external series resistance. Moreover, the parallel Rdielectric is very large and can be 

assumed an open circuit if the applied voltage is smaller than the breakdown voltage of the material. 

Therefore, we only consider these parasitic components Ls and Cp in this study.  

Utilizing the electrical resonance frequency requires building a resonance LC tank circuit. The 

MEMS circuit evidentially contains a small parasitic inductance. However, for practical use, the 
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addition of an external inductance 𝐿$/+$\D;n is necessary to reduce the system uncertainty and 

reduce the electrical resonance frequency. An external additional resistance 𝑅$/+$\D;n is also 

convenient to add to reduce current flow and avoid creating a short-circuit upon pull-in. In such a 

circuit, the total series inductance 𝐿$ and resistance 𝑅$ are given by (7.1) and (7.2), respectively 

𝐿$ = 𝐿< + 𝐿$/+$\D;n         (7.1) 

𝑅$ = 𝑅( + 𝑅$/+$\D;n         (7.2) 

Where 𝐿< is the series parasitic inductance and 𝑅( is a parasitic capacitance introduced with the 

addition of the external inductance. The MEMS circuit can be reduced into the simple form in 

FIG.7.1,b by disregarding some of the small parasitic components. 

In this model, the total MEMS capacitance 𝐶+Z+ is given by (7.3) 

𝐶+Z+ = 𝐶[ + 𝐶0102         (7.3) 

 

Figure 7.1 (a) A schematics for the equivalent circuit. The MEMS device is modeled as an imperfect capacitance with a 
small series (lead) inductance (𝐿`) and a variable capacitance (𝐶abaF) reflecting the change in capacitance because of 
the motion, parallel parasitic capacitance (𝐶D), a negligible plate resistance (𝑅Dc>WU) and an almost infinite parallel 
dielectric resistance (𝑅d_UcUVWe_V). All components aside from 𝐶abaF and 𝐶D	are negligible in the model. (b) RLC circuit 
consisting of the MEMS and an external resistance 𝑅UfWUeY>c and inductance 𝐿UfWUeY>c. In this figure, 𝑅U and 𝐿U are the 
equivalent resistance and inductance in the MEMS circuit, accounting for the external components. 
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Where 𝐶0102 is the parallel plate capacitance between the moving electrode and the stationary 

electrode. If fringing fields are neglected, 𝐶0102 is given by (7.4) 

𝐶0102 =
&7&

-./(+)
= 𝐶!

-
-./

        (7.4) 

Where C0 is the nominal capacitance. From (7.3) and (7.4), it is clear that the MEMS capacitance 

reduces to a variable parallel plate capacitance assuming no parasitic components in the circuit. 

The simplified series resonating RLC (resistor-inductor-capacitor) circuit in FIG.7.1,b with an 

electrical resonance frequency felectrical govern by (7.5): 

𝑓$n$F+\N;n =
"
#8

"
�(.h787

	         (7.5) 

This consideration results in a series RLC circuit govern by (7.6): 

𝐿$ 	𝑄̈(𝑡) + 𝑅$ 	𝑄̇(𝑡) +
"
h787

	𝑄(𝑡) = 𝑉ND(𝑡)       (7.6) 

Where 𝑉ND(𝑡) is the total input voltage applied to the RLC circuit at time 𝑡, 𝑄(𝑡) is the charge stored 

at the MEMS capacitor electrodes and the dot operator represents temporal derivatives.  As the 

electrical system is governed by a second-order differential equation, if the system is sufficiently 

underdamped, it exhibits a large response around its electrical resonance frequency. This leads to 

a large build-up of charge across the capacitances in the circuit. This corresponds to a voltage 

amplification across the MEMS device, 𝑉0102. To find 𝑉0102, (7.6) and (3.1) are solved 

simultaenously. 

Considering the cases where the electrical resonance is significantly far from the mechanical 

resonance, the following uncoupled, simplified, model can be alternatively used to compute the 

MEMS effective voltage 𝑉0102: 

By studying the total electrical impedance 𝑍$m of the circuit, we find that: 
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𝑍$m = 𝑅$ + 𝑋$ = 𝑅$ +
Vd(#��)$(.h787."e

(#��)h787
=	 (#��)�gh7879Vd(#��)

$(.h787."e
(#��)h787

   (7.7) 

Where 𝑋$ is the equivalent reactance of the circuit, 𝑓 is the AC frequency and 𝑗 is the imaginary 

number. Furthermore, under the assumption the MEMS device mechanical resonance frequency is 

far lower than the electrical resonance frequency of the RLC circuit, it is possible to solve for 𝑉0102 

using voltage division according to (7.8-7.10): 

𝑉0102 = 𝑉h = |𝑉h| cos(2πf𝑡 − 𝜙)       (7.8) 

�)@		
)9Q
� = "

cd(#��)Y.h787e
$9((#��)$(.h787.")$

		       (7.9) 

𝜙 = tan." N(#��)
$(.h787."

(#��)Y.h787
O        (7.10) 

The maximum voltage computed in (7.9) occurs around the electrical resonance frequency, 𝑓$. The 

actual frequency corresponding to the amplitude peak depends on the circuit damping, and hence, 

the total resistance 𝑅$. 

By analyzing equations (3.2) and (7.6), the force term of the mechanical system is a quadratic 

function with respect to the voltage while the force term of the electrical system is a linear function 

with respect to the voltage. Therefore, it is possible to activate the electrical resonance using a 

signal with at least one frequency component at the electrical resonance frequency. But to activate 

the mechanical resonance, an input voltage signal composed of two frequency components is 

proposed: 

𝑉 = 𝑉7h"𝐶𝑜𝑠2πf"𝑡 + 𝑉7h#𝐶𝑜𝑠2πf#𝑡	       (7.11) 

Then the electrostatic forcing becomes: 

𝐹$(𝑉) =
&7&

#(-./)$
()?@0

$

#
[1 + cos(4πf"𝑡)] +

)?@$
$

#
[1 + cos(4πf#𝑡)]   
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 +𝑉7h"𝑉7h#[cos{2𝜋(𝑓" − 𝑓#)𝑡} + cos{2𝜋(𝑓" + 𝑓#)𝑡}])    (7.12) 

Therefore, the frequency components of the force term acting on the mechanical system are 2f1,   

2f2,   f1- f2,   f1+ f2 as well as the DC component. Any of these frequency components of activates 

the mechanical resonance when it equals the magnitude of the primary resonance frequency. Thus, 

using a mixed-frequency signal with one component equal to the electrical resonance frequency 

while the other frequency is any of the frequency combinations results in at least one frequency 

equivalent to the mechanical resonance frequency and activates both resonances simultaneously. 

Here, the tested resonator has a very low resonance frequency that is far smaller than the electrical 

resonance frequency. Thus, the proper frequency component to be excited is f1- f2 which allows 

both f1 and f2 to activate the electrical resonance. 

The double resonance actuation scheme is used in this chapter on two MEMS devices: a large 

commercial accelerometer, which was previously used within this dissertation; and a small MEMS 

device. The former has a very small mechanical resonance frequency, which causes a large 

frequency mismatch, while the latter has a relatively large mechanical resonance frequency, which 

allows a simplified double resonance actuation scheme. 

7.2. Double Resonance in Large MEMS Structures 

A Sensata™ MEMS accelerometer consisting of an out-of-plane-displacement, electrostatic 

double-cantilever is used as the experimental design. The parameters of the structure can be found 

in Table 2.1. Using Lyncee Tec’s digital holographic microscope (DHM), the out-of-plane 

displacement that corresponds to the mechanical response of the resonator under investigation is 

measured. The experimental setup is shown in Figure 7.2. The stroboscopic module drives the 

circuit, composed of the resonator and an external inductor. The input signal and the voltage across 

the resonator are measured through different virtual channels in a data acquisition system. 

7.2.1. Experimental Characterization 
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Initially, the device is driven at atmospheric air and with a low input voltage to reduce the vibration 

and the transient deflection of the resonator, therefore, reducing the structure to a constant 

capacitance and measuring the gain of the circuit shown in FIG.7.3. The electrical resonance 

frequency, corresponding to a gain of 13 times, is found to be 64.6 kHz. Using the nonlinear fitting 

tool in MATLAB, the experimental data is fitted into the model of the series RLC circuit using 

equation (7.9). The fitted RLC circuit parameters are presented in Table 7.1. While imperfect, the 

fitting curve captures the general electrical behavior of the circuit, showing that the circuit is more 

complex than a simple RLC circuit with a variable capacitance. Because the model is close enough 

to the circuit response, it is the model considered for the rest of this article. Also, FIG.7.3 shows 

the experimental time-response of different input signals and output signals used to obtain the gain 

of the circuit.  

 

Figure 7.2 Experimental setup: (a) circuit connection showing the accelerometer and the external inductor. (b) 
equipment used for measurements: data acquisition system, DHM, and stroboscopic module. 

 

 Table 7.1: MEMS circuit parameters extracted from fig.7.3 

Parameter Definition Value 

𝐿$ Total circuit series inductance 25.66 mH 

𝑅$ Total circuit series resistance 799.2 Ω 

𝐶! Nominal MEMS capacitance 10 pF 

𝐶[ Circuit parasitic capacitance 224.74 pF 

 

MEMS accelerometer

External inductor

NI ELVIS II

Stroboscopic 
module

Digital holographic 
microscope

(a) (b)
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Figure 7.3 Electrical circuit identification plots including: (a) Circuit frequency response showing the amplification 
(gain) of the voltage across the capacitance with respect to the input voltage. Resonance was detected at fe = 64.6 kHz 
with 13 times gain. b-d: time history response at different input frequency values. 

7.2.2. Response Comparison: Mechanical Resonance, Electrical Resonance, Double 

Resonance 

Next, we compare the response of the MEMS accelerometer to mechanical resonance only, to 

electrical resonance only, and to double resonance. The ambient pressure was reduced to around 

20 Pa to overcome the high viscous damping and the accelerometer was excited near its mechanical 

resonance, using the 2V AC-amplitude signal of 190 Hz. Consequently, the amplitude of the out-

of-plane deflection reaches around 20 nm as shown in FIG.7.4,a. Afterwards, we stimulated excited 

the accelerometer by using a 2V AC-amplitude signal of 60.8 kHz near the electrical resonance 

frequency.  We expected the voltage of the resonator to be amplified to up to five times the input 

voltage in FIG.7.3. However, the MEMS device attenuates the effect of the voltage amplification 

and thus, reduces the deflection to 10nm as the AC excitation frequency gets far from the 

mechanical resonance frequency (FIG.7.4,b). Therefore, to trigger the electrical resonance and to 

amplify the voltage output, we need an enhanced signal that excites the high-frequency electrical 

(a)

(b) (c) (d)
f
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resonance and low-frequency mechanical frequency simultaneously. Using a signal with two 

appropriate frequency components (a beating signal): One component of the proposed AC 

excitation signal is chosen to be near the electrical resonance, while the absolute difference between 

the two frequency components should be near the mechanical resonance magnitude. We 

experimentally obtained this signal by driving the resonator with two AC signals of 60.8 kHz and 

60.61 kHz. The resonator responds to the difference between the two signals (190 Hz), while the 

electrical circuit amplified the two input components. The use of the mixed-frequency signal results 

in a large vibration amplitude of 275 nm (FIG.7.4,c). Therefore, we show that we can use a small 

AC actuation voltage to trigger a large mechanical deflection of the resonator while simultaneously 

amplifying the voltage across it through double resonance excitation. 

 

Figure 7.4 The experimental out-of-plane deflection of the resonator for three different cases: (a) close to the mechanical 
resonance frequency, a sinusoidal signal of 180 Hz and 2V of amplitude generates a deflection amplitude of 20 nm. (b) 
Relatively close to the electrical resonance of the circuit, a sinusoidal signal of 60.8 kHz and 2V of amplitude generates 
a deflection amplitude of ~10 nm. (c) A mixed signal composed of two frequencies: 60.8 kHz and 60.61 kHz, each with 1 
V of amplitude, generates a deflection amplitude of 275 nm. 

7.2.3. Double Resonance Frequency Response 
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As we have two frequency components, we perform frequency sweep by fixing one of the excitation 

frequencies (f1) while sweeping the other frequency (f2). Figure 7.5 shows experimentally and 

numerically the frequency response of the resonator when driven with f1 = 60.8 kHz and f1 = 63.1 

kHz, respectively, while sweeping f2. Each frequency component has an amplitude of 1 VAC. In both 

cases, the responses of the resonator are compared to the response a single sinusoidal input force 

around the mechanical resonance with an amplitude of 2V as a reference. The pure AC signal is 

swept from 85 Hz to 107.5 Hz, where the input frequency is halved for a pure AC signal because 

of the frequency doubling when using one AC source. 

 

Figure 7.5 Double resonance excitation using a beating signal composed of two voltage sources each with an amplitude 
of 1V: (a) A frequency of f1=60.8 kHz, and (b) A frequency of f1=63.1 kHz and f2 is swept both cases. Experimental results 
are shown with crosses and simulation is shown by a dashed line. Both cases are compared to the experimental and 
numerical simulation frequency response when excited classically by a single AC source at a frequency range of (85 Hz 
– 107.5 Hz) at 2V, that has a maximum amplitude of 0.1 𝜇𝑚. 

While driven by a single AC source, the resonator has a maximum amplitude of 0.2 𝜇m at 97.5 Hz. 

However, the resonator has a higher maximum amplitude of 1.3 𝜇m with a 13 times amplification 

(Fig.7.5,a) and 3.16 𝜇m at 195 Hz with a 30 times amplification (Fig.7.5,b) while driven by a double 

resonance excitation . Higher amplitude is when f1 = 63.1 kHz because it is closer to the electrical 

resonance frequency of the circuit compared to f1 = 60.8 kHz.  
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The experimental response is then compared to the simulation results obtained by solving (3.1) and 

(7.6) simultaneously, considering the capacitance change due to the MEMS deflection and taking 

into account squeeze film damping. The solution is obtained numerically using the Runge-Kutta 

method assuming zero initial conditions. 

We note here that the fitted model of section 7.1 does not converge quite as well with the dynamical 

experimental data at frequencies around the mechanical resonance frequency. This might be 

because of the complicated motional components involved in the circuit or the additional parasitic 

in the circuit influencing the behavior of the RLC circuit more significantly at this point. Therefore, 

to create a better fit, the same nonlinear fitting program was used to perfectly fit an RLC circuit 

into the electrical frequency response of the electrical circuit in FIG.7.3 around the frequency of 

interest. For instance, the points around f=60.8 kHz were perfectly fit by an RLC-circuit model. 

The fit fails outside a small range, however. Utilizing this local fitting, we simulate the behavior of 

the resonator at 60.8 kHz using a fit and the behavior at 63.4 kHz using another fit. The simulated 

response, in either case, is shown in FIG.7.5 with dashed lines. The local fit appears to closely 

match the experimental data in both figures. 

Next, we construct a three-dimensional plot of the mechanical response of the resonator as a 

function of the two excitation frequencies (f1 and f2), with frequency components of VAC = 1V each 

in FIG.7.6. However, we replace 𝑓# with Δ𝑓 for the sake of clarity and to simplify the identification 

of the mechanical resonance frequency. The figure shows relative maxima around f1 =64.6 kHz and 

𝛥𝑓=195 Hz, which correspond to the electrical resonance frequency and the mechanical resonance 

frequency, respectively. Regardless of the value of f1, the electrical and the mechanical resonances 

can individually amplify the input signal even without interacting with each other. Moreover, a 

higher vibrational amplitude equals 8.9 𝜇𝑚 at f1 = 64.6 kHz and 𝛥f = 195 Hz which corresponds to 

the electrical circuit resonance and the mechanical resonance, respectively, showing the 

constructive addition of the effects of electric and mechanical amplification. The double resonance 
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actuation maintains the linear-vibrational-response of the resonator. This makes double-resonance 

excitation a powerful excitation method that can be used to actuate any MEMS or NEMS device 

with no regards to the internal design of the device and without changing the overall response 

behavior of the MEMS accelerometer. 

 

Figure 7.6 Three-dimensional plot of the simulated frequency response as a function of the excitation frequencies f1 
and (f2 = f1 + 𝛥f). The voltage of each signal component is V1 = V2 = 1 V. The experimentally obtained points are in red. 

Here, the existence of a large amplitude regime is formed by the intersection of the electrical 

resonance regime and the mechanical resonance regime. This high amplitude far exceeds the 

individual contribution of either resonance. This behavior can only be accessed by classical 

actuation means if the resonator is carefully designed to have an electrical resonance frequency 

close to the mechanical resonance frequency. While this imposes tight design tolerances, such as 

the need to greatly control the circuit parasitic, it remains possible. However, without changing the 

actual mechanical design, we showed using a double resonance to trigger the two primary 

resonance frequencies of the systems simultaneously. While this actuation method requires an 

additional voltage source, the actual voltage requirements are significantly lowered due to the large 

amplification of the signal. 

The linear large vibrational amplitude is a notable achievement that is not possible for classical 

parallel-plate resonators actuation. This is explained by the interaction between the mechanical 

Double-resonance
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deflection and the capacitance of the circuit inducing an inherent feedback in the system. As the 

maximum amplitude of vibration increases, the capacitance of the resonator changes, which shifts 

the electrical resonance frequency and attenuates the input voltage signal. This can theoretically 

reduce the risk of the pull-in voltage of the system. It should be noted that this effect depends on 

the parasitic capacitance of the circuit. When the ratio of the parasitic capacitance to the nominal 

capacitance is small, the system retains better stability at high amplification. However, as this ratio 

increases, the attenuation becomes less significant and the system starts behaving like the classical 

behavior but at significantly higher amplitude for a given input voltage. 

7.2. Double Resonance in Small MEMS Structures 

In this section, a small, micro-fabricated MEMS structure, driven using double resonance 

excitation, is studied. The size of the MEMS device allows double resonance activation using a 

single AC source when a sufficiently large inductance is used. Alternatively, the multi-frequency 

excitation signal discussed in section 7.1 can be used. 

The fabricated clamped-clamped microbeam resonator, is shown in FIG.7.7,a. The microbeam is 

fabricated on a silicon wafer coated with 500 nm of thermally grown silicon dioxide (SiO2) layer. 

The lower electrode is formed by pattering the Cr/Au layer that is sputtered on the wafer surface. 

The microbeam is composed of a 4.2 𝜇m polyimide layer coated from top with 50/200 nm Cr/Au 

layer. This layer is used to define the beam dimensions and act as hard mask to protect the beam 

during the reactive ion etching (RIE). The upper electrode is formed by coating the beam from 

bottom with 50/200/50nm of Cr/Au/Cr. The Cr is used to enhance the adhesion of the polyimide 

layer with other materials. The two electrodes are separated by 3.3 𝜇𝑚 amorphous silicon layer. 

This layer is etched at the final stage of the fabrication to define the air gap. 
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Figure 7.7 (a) A schematic of the clamped-clamped microbeam resonator, and a table showing different materials used 
for fabrication and their properties. (b) The measurement circuit showing the MEMS resonator, a voltage source (DAQ), 
external inductor, parasitic resistor, and measurement devices (Laser Doppler Vibrometer for the measurement of the 
mechanical response, and a digital multi-meter to record the voltage across the MEMS capacitor for the electrical 
characterization). 

We characterized the mechanical and electrical properties of the MEMS resonator by studying 

the frequency response near the mechanical and electrical resonances. The mechanical resonance 

frequency of the fundamental mode was measured to be around 123 kHz using white noise signal 

excitation. The MEMS device is electrically modeled as a nominal parasitic capacitance 𝐶[, formed 

by the deformable MEMS microbeam and the substrate beneath it, connected in parallel to a series 

branch of motional resistance, motional capacitance, and motional inductance, donated by 𝑅0, 

𝐶0102  and 𝐿0 , respectively. We create a resonant 𝑅𝐿𝐶  circuit drive by connecting the MEMS 

device to a variable external inductance 𝑅$/+$\D;n, which results in a total resistance equal to 𝑅$, 

Fig.7.7(b). The circuit’s total resistance 𝑅$ is the equivalent parasitic resistance from the wires and 

the internal resistance of the inductor 𝐿$ . In our experiments, we varied 𝐿$ to control the series 

𝑅𝐿𝐶 resonance frequency and the voltage gain across the MEMS capacitor 𝐶0102. The frequency 

sweep for electrical resonance characterization was conducted at ambient pressure to minimize the 
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effects of the MEMS deflection on the electrical parameters of the MEMS circuit, by introducing 

a high squeeze-film damping. 

The frequency response for characterizing the pure electrical resonance is conducted by an 

impedance analyzer, as shown in Fig.7.8. We identified electrical resonance by one of the two 

methods: (i) by monitoring the amplitude of the circuit conductance G with respect to the frequency, 

Fig.7.8,a,  where the electrical resonance corresponds to a global conductance maximum, and (ii) 

by monitoring the voltage across the MEMS capacitor 𝐶0102, where the maximum voltage is 

achieved at the electrical resonance frequency as shown in Fig. 2(b). The increase in the 

conductance is due to the circuit reactance 𝑋$ going to zero at resonance, as shown in (7.13) and 

(7.14): 

𝑋$ = 2𝜋𝑓𝐿$ − 1/(2𝜋𝑓𝐶+Z+)        (7.13) 

𝐺 = 𝑅$/(𝑅$# + 𝑋$#)         (7.14) 

 

Figure 7.8 (a) Variation of electrical resonance frequency with respect to inductance. For higher inductance values the 
total resistance value increases, hence, a drop in the conductance value is expected. (b) Frequency response of the 
voltage across the MEMS device (with 𝐿U = 0.5mH) that shows voltage amplification for two different small input 
voltages of 300mV and 400mV. 

Next, we compare the response of the MEMS device with simultaneous activation of electrical and 

mechanical resonances to that actuated using conventional mechanical resonance alone. Fig.7.9,a 

shows the response of the device operated at atmospheric pressure, with VDC = 30V and for various 

! (kHz)

Vo
lta

ge
 (R

M
S)

! (kHz)

(a) (b)



 
 

109 

AC voltages. We note that for this experiment, we have disconnected Le. Fig.7.9,b shows the 

response of the double resonance driven circuit at the same pressure but with VDC = 10V. In order 

to activate double resonance, the electrical resonance frequency was tuned to be near the 

mechanical resonance frequency by using Le = 4 mH. To compare the two actuation methods, we 

find the product VACVDC that results in similar maximum vibrational amplitudes. For instance, to 

achieve a response of 0.7 𝜇m, the required product of VACVDC without electrical resonance is 750 

V2 compared to only 50 V2 when both resonances are simultaneously activated. Thus, as the DC 

component of the signal remains unamplified, we show an effective 15 times voltage amplification 

of the AC actuation signal by driving the MEMS resonator with double resonance drive. 

 

Figure 7.9 The frequency response of the MEMS resonator at atmospheric pressure when driven with: (a) mechanical 
resonance alone for VDC = 30V (no external inductance was used in this experiment). (b) Double resonance drive with 
VDC = 10V and Le = 4 mH (electrical resonance = 116 kHz).   

While double resonance activation was simple to achieve for the experimental results shown in Fig. 

7.9,b, due to the proximity of the systems’ mechanical and electrical resonance frequencies, this 

might not be the case for general MEMS devices. To overcome this limitation, we introduce a 

multi-frequency excitation signal composed of a beating signal with two frequency components: f1 

and f2. Note that we do not use any DC bias for this experiment. Due to the quadratic voltage term 

shown in equation (2.2), the frequency spectrum of the resulting electrostatic force include 2f1, 2f2, 
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(f1+f2), and (f1-f2) frequency components.  Therefore, for double resonance activation, either f1 or f2 

is selected to be around the electrical resonance frequency while at least one of the forcing spectral 

components is made to be equal to the mechanical resonance frequency. To demonstrate this 

concept, we show in Fig.7.10, the response of the MEMS resonator to a multi-frequency input 

signal with electrical resonance frequency at 308 kHz and a mechanical resonance frequency at 123 

kHz (a mismatch of 185 kHz). We note that this experiment was also conducted under atmospheric 

pressure. In Fig.7.10,a, the input signal has a fixed frequency component, f1 = 308 kHz at different 

VAC1 values, near the electrical resonance frequency, while the second frequency component f2, was 

swept such that (f1-f2) is near the mechanical resonance (123 kHz). This resulted in voltage 

amplification of VAC1 across the MEMS resonator (capacitor) due to the electrical resonance and 

overall forcing amplification, hence, higher amplitude of motion.  

In contrast, when both f1 and f2 are far from the electrical resonance frequency, significantly higher 

input voltages are required to achieve comparable results, as shown in Fig.7.10,b. For instance, to 

achieve an amplitude of 0.36 𝜇m, the product of VAC1VAC2 is 1176 V2 while the required VAC1VAC2 

with double resonance drive is about 39 V2. Thus, Fig.7.10,b demonstrates a voltage amplification 

gain of ~30 through double resonance excitation. This amplification is almost twice the 

amplification obtained in Fig.7.10,b by matching the resonator electrical resonance to its 

mechanical resonance using a larger inductor. We attribute this higher gain to the flexibility of 

using a smaller external inductor, and hence less parasitic resistance in the circuit, when matching 

the two frequencies is not required. Finally, to demonstrate the increase in the quality factor of the 

system, we compare the response of the MEMS device with and without double resonance 

activation, Fig.7.10,c. Each case utilizes a multi-frequency signal excitation such that f1 and f2 

produce a forcing signal that has a frequency-spectrum component equal to the mechanical 

resonance frequency. A significant increase in the quality factor of the MEMS resonator and a 
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vibrational amplitude amplification of ~30 times was found when the system was driven using 

double resonance drive. 

 

Figure 7.10 Frequency response of the MEMS device for two cases. (a) Double resonance excitation: f1 is fixed at the 
electrical resonance (308 kHz), VAC2 = 6.5 V and f2 is swept such that |f1-f2| is around the mechanical resonance. We 
show multiple values of VAC1 in this figure. (b) Mixed frequency excitation away from the electrical resonance frequency: 
f1 is chosen arbitrarily far away from the electrical and mechanical resonance frequency (80 kHz) with VAC2=42 V while 
f2 was swept such that f1+f2 is around the mechanical resonance frequency. We show multiple values of VAC1 , however, 
we show that to achieve similar deflection in (a), significantly more voltage is required. (c) Shows the increase in the 
quality factor when the resonator is operated using double resonance (blue circle, VAC1= 3V, VAC2=6.5V, f1=308 kHz, f2 = 
170 to 210 kHz, feffective=f1-f2) compared with the case when electrical resonance is not active (red triangle, VAC1=3V, VAC2= 
7 V, f1=80 kHz, f2= 20 to 60 kHz, feffective = f1+f2). Here, feffective is a frequency near the MEMS mechanical resonance 
frequency. 

7.3. Response Modification for Computing 

Another possible advantage of electrical resonance actuation, even in case of a frequency mismatch, 

is the ability to amplify the static deflection of MEMS devices, as previously demonstrated 

previously by [102] [103]. This is because of the quadratic relationship between the input voltage 
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forcing and the electrostatic forcing. Thus, the electrostatic actuation force using a single AC signal 

with a frequency 𝑓$ ≫ 𝑓] can be approximated as: 

𝐹$ =
&'d�!.�)%57$ 9!.�)%57$ hZ<(48%.+)�e

#(-./)$[d(#8%.)Y.h787e
$9(".(#8%.)$(.h787)$]

                      (7.15) 

As the MEMS device attenuates signals with frequencies that far exceed its resonance frequency, 

the term 0.5𝑉;F+# 𝐶𝑜𝑠(4𝜋𝑓$𝑡) in the numerator is negligible. Thus, the forcing in (17.5) is static with 

an amplified amplitude. We note here that the gain attained using this approach is not constant as 

the total capacitance of the system depends on the MEMS deflection. The gain is highly variable 

when Ctot ≅ CMEMS since the MEMS deflection will shift the electrical resonance frequency of the 

system away from the supply signal frequency, which is typically constant. This shift would reduce 

the gain of the system. This interaction can be seen as an internal feedback in the system. 

Interestingly, increasing the parasitic capacitance of the MEMS system tends to eliminate this 

internal feedback effect if the parasitic capacitance far exceeds the MEMS variable capacitance. In 

this case, the capacitance change due to the MEMS deflection will have a negligible effect on the 

overall capacitance of the system, which leads to a nearly constant electrical resonance frequency 

during operation.  

The inherent internal feedback of MEMS devices with a low parasitic capacitance is very useful. 

Theoretically, it can allow the MEMS device to operate far beyond the traditional stability regime, 

significantly reducing the risk of pull-in. A very large parasitic capacitance leads to the usual saddle 

node bifurcation response of the MEMS device, which leads to the pull-in instability at deflections 

larger than 1/3 of the gap between the electrodes. Interestingly, for some moderate 𝐶[ value, a 

response bistable similar to that of a MEMS arch around the snapthrough regime. At that point, the 

parasitic capacitance is large enough to case instability in the intermediate section of the bifurcation 

diagram (FIG.7.11,a), which separates the previously single stable branch into two branches, 
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creating bistability. This behavior is very useful for computing applications, such as using a 

network of MEMS devices as a CTRNN, as was demonstrated in chapter 4. 

Figure 7.11,b theoretically demonstrates the effects of parasitic capacitance on the response of the 

electrical resonance-driven MEMS clamped-clamped beam from section 7.2 using the following 

input signal parameters f1 = 116 kHz, felectrical = 308 kHz and VDC2 = VAC2 = 0 Volt. The voltage 𝑉7h" 

was swept to show the effects of internal negative feedback at higher deflection for different ratios 

between the paratactic capacitance and the MEMS nominal capacitance 𝐶[/𝐶0102values. As 

anticipated, increasing this ratio reduces the internal negative feedback and increases the deflection 

of the MEMS device. 

 

Figure 7.11 The use of electrical resonance as a means to enhance the static response of MEMS devices by increasing 
the MEMS deflection due to voltage amplification. The voltage amplification is more pronounced when Cp/CMEMS is high. 
(a) A simulated response of a SDOF MEMS device from section 7.1 showing bistability at moderate 𝐶D/𝐶abaF values. 
(b) A simulated response of a MEMS microbeam from section 7.2 showing large response amplification at high 
𝐶D/𝐶abaF due to the lack of internal feedback. The response amplitude is lower when the parasitic capacitance smaller 
(black line) due to the presence of internal feedback. 

7.4. Conclusions 

In conclusion, this chapter a passive means of signal amplification to enhance the MEMS actuation 

signal by utilizing electrical resonance. Two different schemes are demonstrated to utilize this 

signal to improve the dynamical response of MEMS resonators. The first approach relies on tuning 

the electrical resonance frequency to coincide with the mechanical resonance frequency, using a 
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variable external inductor, which is viable when the two resonances are proximate. A more generic 

approach to activate electrical and mechanical resonances simultaneously is also shown by 

actuating the device using a multi-frequency signal. In this case, one of the signal’s frequency 

components was near the electrical resonance. The other component was chosen such that at least 

one of the forcing spectral components (such as f1+f2 or f1-f2) matches the MEMS mechanical 

resonance. In both the cases, a high amplitude response was recorded. An increase in the quality 

factor of the resonator response was also shown. We note that the activation of simultaneous 

electrical and mechanical resonances does not require any changes in the design of MEMS devices. 

However, the electrical resonance frequency and its corresponding voltage gain may differ between 

similar devices due to parasitic capacitance and resistance variation. More precise fabrication and 

tuning of external electrical components (inductor, capacitor) can be used to alleviate this issue. In 

addition, one can tune the series-connected external inductor or use an external variable capacitor 

in parallel with the MEMS device to tune the electrical resonance, if needed. Nonetheless, the 

simultaneous electrical and mechanical resonance activation scheme demonstrated here may 

alleviate the need for CMOS incompatible high AC voltage source or amplifiers for actuating these 

devices, especially where high AC input signal is necessary, such as, nonlinear operation of 

M/NEMS actuation and/or operation at moderate to atmospheric pressure.  

The presented approach can also be utilized to extend the operational range of MEMS devices by 

introducing internal negative feedback, assuming a low parasitic capacitance. More importantly for 

this dissertation, the proposed approach is very appealing for MEMS computing applications as 

operation around electrical resonance with moderate parasitic circuit parasitic capacitance 

generates a bistable behavior in the MEMS device that can be used to emulate a continuous-time 

recurrent neuron (CTRN). Moreover, since the voltage signal is amplified through electrical 

resonance, the MEMS neuron will require up to an order of magnitude less voltage to operate, 

eliminating one of the biggest MEMS computing challenges. 
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CHAPTER 8  

FUTURE RESEARCH DIRECTIONS 

This thesis demonstrates the use of MEMS devices for colocalized sensing and computing both in 

the CTRNN architecture and the RC architecture. This section discusses potential future directions 

stemming from the presented results. 

8.1. Investigating MEMS Parameter Space 

A major obstacle in the reservoir computing field is the vague definition of the RC requirements 

and the lack of dynamical understanding of the systems proposed for computing. Consequently, 

researchers are forced to analyze the utilized dynamical system as a black box, which is optimized 

by scanning the parameter space – by trial and error. This limitation also resulted in the lack of 

baseline for comparing various RC systems. 

Bifurcation analysis can be used as a starting step to address this problem. Using this approach, the 

dynamical complexity of the MEMS system can be assessed in order to qualitatively reach a 

suitable dynamical regime. The MEMS dynamics may be tuned by applying a positive delayed 

feedback to reach an overall effective regime of operation for a fixed input voltage. The edge of 

chaos is said to be ideal for computation. More specifically, the edge of chaos is known for having 

maximal information. However, research show that retaining maximum information does not 

necessarily translate to optimal computational performance. Moreover, work involving the edge of 

chaos only considered autonomous dynamical system (with no inputs). RC and CTRNNs process 

information attained from their inputs. Thus, edge of chaos may be inappropriate. Hence, the 

regime of maximal performance may vary for different inputs (biasing signal and sensed signal). 

Thus, to reach optimize the response of the MEMS device, hyper-parameter dynamical study is 

required. The dynamical studies requirement may be investigated by utilizing some terminology 

from the field of Boolean networks by creating an approximation model to represent the average 
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response of the network with respect to the hyper-parameters. Furthermore, by studying the basin 

of attraction of the approximate model attractors, we may be able to visualize the capabilities of 

the dynamical system for input separation and for classification. 

The computational power of the MEMS reservoir will be assessed using a Memory Capacity test. 

In this test, a piecewise constant input signal 𝑢(𝑡) is fed to the MEMS reservoir such that: 

𝑢(𝑡) = 𝑎V , (𝑗 − 1)𝑇 ≤ 𝑡 < 𝑗𝑡, 𝑘 = 1,… , 𝐽      (8.1) 

where 𝑎V is the 𝑗+M value of the input signal and 𝑇 is the duration of each input value. The reservoir 

is expected to retain memory of its previous inputs. i.e, recalling 𝑢(𝑡 − 𝑘𝑇). To identify the MEMS 

capabilities, the correlation between the MEMS RC output and the delayed input signal for a wide 

range of delays [105]: 

𝑀𝐶 =	∑ 𝑅#[𝑢(𝑡 − 𝑘𝑇), 𝑦(𝑡)]	C
W`"        (8.2) 

where 𝑀𝐶 is the memory capacity measure calculated based on delays 𝑘 = 1,… , 𝐾 and 𝑅#[𝑎, 𝑏] is 

the 𝑅# statistical measure between the random variables 𝑎 and 𝑏. Memory capacity is widely used 

in the literature as a benchmark for computational performance. 

Another measure of interest in this objective is the susceptibility to noise. Practical implementation 

of any computational method impels the RC system to retain some degree of noise-resistance. 

Indeed, this embodies the requirement R2 of RC. Thus, noise susceptibility test is both a test of 

real-life applicability and the fitness of the MEMS device to perform RC computation. To this end, 

noise will be introduced to the reservoir input signals, the reservoir mask and/or the reservoir 

feedback to address most possible points of noise injection in practice. 

8.2. MEMS Response Tuning via Nonlinear Operation 

A notable benefit for utilizing MEMS devices for simultaneous sensing and computing is the 

abundance of methods to induce nonlinearities. Nonlinearities like veering and internal resonance 
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can facilitate differing degrees of interaction between the MEMS modeshapes, allowing response 

flexibility and additional nonlinear richness. Other nonlinearities induced from alternative 

excitation schemes can be used to amplify the MEMS response and provide additional complexity 

(such as excitation based on a moving boundary), other schemes can eliminate the pull-in instability 

while retaining dynamical complexity (by utilizing repulsive electrostatic forcing due to fringe 

fields). 

A possible future direction is to model the influence of these various instabilities on the response 

of a MEMS virtual RC ensemble based on the scheme developed in this dissertation. Additionally, 

nonlinearities may be added as means to encode additional environmental conditions (such as 

temperature and pressure, in addition to acceleration), thus, allowing the developed MDOF MEMS 

RC to perform both as an ensemble computing unit and an ensemble sensing unit, to create 

intelligent, specialized sensing and computing units. 

Finally, there may be merit to studying the MEMS response using nonlinear excitation schemes. 

For instance, using a moving boundary allows for the possibility of either dynamically changing 

the MEMS stiffness and natural frequency based on the position of the boundary, allowing a 

flexible tuning of the MEMS response to improve the computational performance of the RC for a 

larger bandwidth.  

8.3. MEMS Colocalized Sensing-and-Computing in Unconventional Robotics 

Unconventional robotics is an emerging field of research focusing, among other things, on soft and 

micro-robotics. Robots in this field require intricate control as they often experience complex 

mechanical deformations or operate in complex-to-model fluidic environments. Due to power and 

size constraints in these systems, classical control schemes are typically inappropriate to use. The 

developed colocalized sensing-and-computing MEMS RC scheme in this dissertation, however, 
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may prove to be useful for such robotic systems as it requires minimal analog components in 

addition to the MEMS sensor. 

A possible future research may involve simulating and train a soft- or micro-robot equipped with a 

MEMS accelerometer RC to follow a predefined trajectory or maintain stability. This research 

direction is similar to the active CTRNN categorical preceptor problem conceptually. However, 

further complexities are introduced in this case by considering the dynamics of the robot. 

Ultimately, MEMS RC may be introduced into the body of the non-conventional robot as a smart 

robotic sensor, enabling true morphological computing [106]. 

8.4. Local Biomonitoring via Printable Smart Tattoos 

Wearable devices promise great improvement to public health. However, due to a combination of 

inconvenience to use and expense, they have yet to live up to their potential. Printable and flexible 

electronic technologies may enable the fabrication of inexpensive, truly wearable electronics for 

biomonitoring. The battery life of these devices may be significantly enhanced by the use of the 

MEMS computing schemes introduced in this dissertation, by eliminating, or significantly reducing 

the need, for cloud computing. Thus, theoretical and experimental research into the use of 

colocalized MEMS sensing-and-computing schemes appears to be a natural extension to this 

dissertation. 
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CHAPTER 9  

CONCLUSION  

In this dissertation, we presented multiple methods to use MEMS devices for colocalized sensing 

and computing. First of which is using networks of MEMS devices to emulate continuous-time 

recurrent neural networks (CTRNNs). To this end, we identify the dynamical properties necessary 

for each MEMS device to emulate an individual CTRN. Pull-in, snapthrough and electrical 

resonance were shown to satisfy these conditions. Reservoir computing (RC) is the second scheme 

presented in this dissertation, in which a single MEMS device doubles as a sensor and a reservoir 

of virtual neurons. MEMS devices were found to be particularly useful as continuous structures as 

they introduce additional complexity through modal interactions. Additionally, we propose a novel 

MEMS actuation method to significantly reduce the voltage required to drive MEMS devices in 

order to facilitate the use of MEMS devices in their nonlinear regimes. Finally, we concluded this 

dissertation by discussing future research directions that may stem from this work. 
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Appendix A: Composite Microbeam Analysis 

To simplify the study of our composite microbeam, we utilize an equivalent beam model to 

represent our microbeam as a single layer beam using the equivalent area method. The neutral axis 

of the single-layer equivalent beam was attained by considering a beam with the same first moment 

of area as that of the composite beam. Thus, the position of the single layer microbeam, 𝑦¼, is 

obtained using (a1): 

𝑦¼ ∑ 𝐴N3
N`" =	∑ 𝐴N𝑦N3

N`"                                                             (a1) 

where 𝑦N represents the location of the neutral axis of layer i along the y-axis, and 𝐴N is the cross-

sectional area of layer i calculated by adjusting the width of every layer such that 𝑏N,$%% = 𝑏N𝐸N/𝐸". 

See Fig.A1. 

 

Figure A1 Neutral axis of the multi-layered microbeam 

After calculating the neutral axis position, it is possible to find the effective modulus of elasticity 

of the single layer microbeam, 𝐼F,$%% using the parallel axis theorem on the microbeam transformed 

section: 

𝐼F,$%% = ∑ 𝐼F,N3
N`"          (a2) 

Where 𝐼F,N  is the second moment of inertia of layer i that can be computed as follows: 

𝐼F," =
'0M06

"#
+ 𝑏"ℎ" N

M0
#
− 𝑦¼O

#
        (a3) 

𝐼F,N =
'9M9

6

"#
+ 𝑏NℎN ∑ NℎV +

M9
#
− 𝑦¼O

#
V`",V�N       (a4)  
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where ℎN and 𝑏N are the thickness and width of layer i, respectively. Finally, the effective flexural 

rigidity, (𝐸𝐼F)$%%, and mass per unit length, (𝜌𝐴F<)$%% can be attained by simply summing the 

flexural rigidity and mass per unit length of all layer in the composite microbeam: 

�
(𝐸𝐼F)$%% = ∑ 𝐸N𝐼F,N3

N`"

(𝜌𝐴F<)$%% = ∑ 𝜌N𝐴F<,N3
N`"

        (a5) 
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