22 research outputs found

    Primary uncleansed 2D versus primary electronically cleansed 3D in limited bowel preparation CT-colonography. Is there a difference for novices and experienced readers?

    Get PDF
    The purpose of this study was to compare a primary uncleansed 2D and a primary electronically cleansed 3D reading strategy in CTC in limited prepped patients. Seventy-two patients received a low-fibre diet with oral iodine before CT-colonography. Six novices and two experienced observers reviewed both cleansed and uncleansed examinations in randomized order. Mean per-polyp sensitivity was compared between the methods by using generalized estimating equations. Mean per-patient sensitivity, and specificity were compared using the McNemar test. Results were stratified for experience (experienced observers versus novice observers). Mean per-polyp sensitivity for polyps 6ย mm or larger was significantly higher for novices using cleansed 3D (65%; 95%CI 57โ€“73%) compared with uncleansed 2D (51%; 95%CI 44โ€“59%). For experienced observers there was no significant difference. Mean per-patient sensitivity for polyps 6ย mm or larger was significantly higher for novices as well: respectively 75% (95%CI 70โ€“80%) versus 64% (95%CI 59โ€“70%). For experienced observers there was no statistically significant difference. Specificity for both novices and experienced observers was not significantly different. For novices primary electronically cleansed 3D is better for polyp detection than primary uncleansed 2D

    ๋ฌผ์งˆ ํ˜ผํ•ฉ๋น„์œจ๊ณผ ๊ตฌ์กฐ์  ํŠน์ง•์˜ ํ†ตํ•ฉ ์žฌ๊ตฌ์„ฑ ๋ชจ๋ธ์„ ์ด์šฉํ•œ ์ „์ž์  ์žฅ์„ธ์ฒ™ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 8. ์‹ ์˜๊ธธ.๋Œ€์žฅ ์ปดํ“จํ„ฐ ๋‹จ์ธต ์ดฌ์˜ ์˜์ƒ์—์„œ ์กฐ์˜ ์ฒ˜๋ฆฌ๋œ ์ž”์—ฌ๋ฌผ์„ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•ด ์ „์ž์  ์žฅ์„ธ์ฒ™ ๋ฐฉ๋ฒ•์ด ์ด์šฉ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ „์ž์  ์žฅ์„ธ์ฒ™ ๋ฐฉ๋ฒ•์—์„œ ๊ฒฐํ•จ์˜ ์ฃผ์š” ์›์ธ์ด ๋˜๋Š” ๋ถ€๋ถ„ ์šฉ์  ํšจ๊ณผ์™€ ๊ฐ€์„ฑ ์ƒ์Šน ํšจ๊ณผ๋ฅผ ๋™์‹œ์— ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฌผ์งˆ ํ˜ผํ•ฉ๋น„์œจ๊ณผ ๊ตฌ์กฐ์  ํŠน์ง•์˜ ํ†ตํ•ฉ ์žฌ๊ตฌ์„ฑ ๋ชจ๋ธ์„ ์ด์šฉํ•œ ์ „์ž์  ์žฅ์ฒญ์†Œ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ € ๋Œ€์žฅ ์ปดํ“จํ„ฐ ๋‹จ์ธต ์ดฌ์˜ ์˜์ƒ์—์„œ ๊ณต๊ธฐ, ์กฐ์˜ ์ฒ˜๋ฆฌ๋œ ์ž”์—ฌ๋ฌผ, ๊ณต๊ธฐ์™€ ์กฐ์˜ ์ฒ˜๋ฆฌ๋œ ์ž”์—ฌ๋ฌผ ์‚ฌ์ด์˜ ๊ฒฝ๊ณ„ (๊ณต๊ธฐ-์ž”์—ฌ๋ฌผ ๊ฒฝ๊ณ„), ๋Œ€์žฅ์™ธ๋ถ€์˜ ์—ฐ์กฐ์ง๊ณผ ์กฐ์˜ ์ฒ˜๋ฆฌ๋œ ์ž”์—ฌ๋ฌผ ์‚ฌ์ด์˜ ๊ฒฝ๊ณ„ (์—ฐ์กฐ์ง-์ž”์—ฌ๋ฌผ ๊ฒฝ๊ณ„), ๊ทธ๋ฆฌ๊ณ  ๊ณต๊ธฐ, ์—ฐ์กฐ์ง, ์กฐ์˜ ์ฒ˜๋ฆฌ๋œ ์ž”์—ฌ๋ฌผ์ด ๋งŒ๋‚˜๋Š” ๊ฒฝ๊ณ„ (๊ณต๊ธฐ-์—ฐ์กฐ์ง-์ž”์—ฌ๋ฌผ ๊ฒฝ๊ณ„) ์˜์—ญ์„ ํฌํ•จํ•œ ๊ฒฐ์žฅ ์š”์†Œ๋ฅผ ๋ถ„ํ• ํ•œ๋‹ค. ๋ถ„ํ• ๋œ ๊ณต๊ธฐ์™€ ๊ณต๊ธฐ-์ž”์—ฌ๋ฌผ ๊ฒฝ๊ณ„ ์˜์—ญ์— ๋Œ€ํ•ด์„œ๋Š” ๊ฐ ๋ณต์…€์˜ ๋ฐ€๋„๊ฐ’์„ ๋™์ผํ•˜๊ฒŒ ๊ณต๊ธฐ์˜ ๋Œ€ํ‘œ ๋ฐ€๋„๊ฐ’์œผ๋กœ ๋Œ€์ฒดํ•จ์œผ๋กœ์จ ์ž”์—ฌ๋ฌผ์„ ์ œ๊ฑฐํ•œ๋‹ค. ๋ฐ˜๋ฉด์— ๋ถ„ํ• ๋œ ์—ฐ์กฐ์ง-์ž”์—ฌ๋ฌผ ๊ฒฝ๊ณ„์™€ ๊ณต๊ธฐ-์—ฐ์กฐ์ง-์ž”์—ฌ๋ฌผ ๊ฒฝ๊ณ„ ์˜์—ญ์— ๋Œ€ํ•ด์„œ๋Š” ๋ฌผ์งˆ ํ˜ผํ•ฉ๋น„์œจ๊ณผ ๊ตฌ์กฐ์  ํŠน์ง•์„ ๊ณ„์‚ฐํ•œ๋‹ค. ๋ฌผ์งˆ ํ˜ผํ•ฉ๋น„์œจ์€ ๋‘ ๋ฌผ์งˆ๊ฐ„ ํ˜น์€ ์„ธ ๋ฌผ์งˆ๊ฐ„ ์ „์ด ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ์˜ˆ์ธกํ•˜๊ณ  ๊ตฌ์กฐ์  ํŠน์ง•์€ ํ—ค์‹œ์•ˆ ํ–‰๋ ฌ์˜ ์•„์ด๊ฒ ๋ถ„์„์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๊ณ„์‚ฐํ•œ๋‹ค. ๊ณ„์‚ฐ๋œ ๋ฌผ์งˆ ํ˜ผํ•ฉ๋น„์œจ๊ณผ ๊ตฌ์กฐ์  ํŠน์ง•์„ ์ด์šฉํ•˜์—ฌ ์—ฐ์กฐ์ง-์ž”์—ฌ๋ฌผ ๊ฒฝ๊ณ„์™€ ๊ณต๊ธฐ-์—ฐ์กฐ์ง-์ž”์—ฌ๋ฌผ ๊ฒฝ๊ณ„ ์˜์—ญ์— ์†ํ•˜๋Š” ๊ฐ ๋ณต์…€์˜ ๋ฐ€๋„๊ฐ’์ด ์žฌ๊ตฌ์„ฑ๋œ๋‹ค. ๋ฌผ์งˆ ํ˜ผํ•ฉ๋น„์œจ๊ณผ ๊ตฌ์กฐ์  ํŠน์ง•์˜ ํ†ตํ•ฉ ์žฌ๊ตฌ์„ฑ ๋ชจ๋ธ์€ ๊ฐ ๋ณต์…€ ๋‚ด์˜ ์—ฐ์กฐ์ง์˜ ๋ถ€๋ถ„ ์šฉ์ ์„ ์œ ์ง€์‹œํ‚ค๋Š” ๋™์‹œ์— ์กฐ์˜ ์ฒ˜๋ฆฌ๋œ ์ž”์—ฌ๋ฌผ์˜ ๊ฐ€์„ฑ ์ƒ์Šน ํšจ๊ณผ๋กœ ์ธํ•ด ์•ฝํ™”๋œ ์ž”์—ฌ๋ฌผ์— ์ž ๊ธด ๋Œ€์žฅ ์ฃผ๋ฆ„ ๋ฐ ์šฉ์ข…์ด ๋ณด์กด๋  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ์ œ์•ˆ๋œ ์ „์ž์  ์žฅ์„ธ์ฒ™ ๋ฐฉ๋ฒ•์—์„œ๋Š” ๋ถ€๋ถ„ ์šฉ์  ํšจ๊ณผ๋กœ ์ธํ•œ ์—ฐ์กฐ์ง-์ž”์—ฌ๋ฌผ ๊ฒฝ๊ณ„์˜ ๊ณ„๋‹จ๋ฌด๋Šฌ ๊ฒฐํ•จ๊ณผ ๊ฐ€์„ฑ ์ƒ์Šน ํšจ๊ณผ๋กœ ์ธํ•œ ์ž”์—ฌ๋ฌผ์— ์ž ๊ธด ๋Œ€์žฅ ์ฃผ๋ฆ„ ๋ฐ ์šฉ์ข…์˜ ์ง€๋‚˜์นœ ์„ธ์ฒ™ ๊ฒฐํ•จ์„ ํ”ผํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด ์„ธ ๋ฌผ์งˆ๊ฐ„ ์ „์ด ๋ชจ๋ธ์˜ ์—ฐ์‚ฐ ๋ณต์žก๋„๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋‹จ์ˆœ ์„ธ ๋ฌผ์งˆ๊ฐ„ ์ „์ด ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋‹จ์ˆœ ์„ธ ๋ฌผ์งˆ๊ฐ„ ์ „์ด ๋ชจ๋ธ์—์„œ๋Š” ๋‘ ๋ฌผ์งˆ๊ฐ„ ์ „์ด ๋ชจ๋ธ์„ ๋ฐ˜๋ณต ์ ์šฉ์‹œํ‚ด์œผ๋กœ์จ ์–ป์–ด์ง„ ์„ธ ์Œ์˜ (๊ณต๊ธฐ-์—ฐ์กฐ์ง, ๊ณต๊ธฐ-์ž”์—ฌ๋ฌผ, ์—ฐ์กฐ์ง-์ž”์—ฌ๋ฌผ) ๋‘ ๋ฌผ์งˆ๊ฐ„ ํ˜ผํ•ฉ๋น„์œจ์„ ๊ตฌํ•˜๊ณ  ์ด๋ฅผ ์‚ผ๊ฐํ˜•์„ ์ด์šฉํ•œ ๋ฌด๊ฒŒ์ค‘์‹ฌ์ขŒํ‘œ ์ƒ์—์„œ์˜ ๋ณด๊ฐ„๋ฐฉ๋ฒ•์„ ์ด์šฉํ•ด ํ•˜๋‚˜์˜ ์„ธ ๋ฌผ์งˆ๊ฐ„ ํ˜ผํ•ฉ๋น„์œจ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ์—ด๊ฐœ์˜ ์ž„์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ œ์•ˆํ•œ ์ „์ž์  ์žฅ์„ธ์ฒ™ ๋ฐฉ๋ฒ•์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋ฐฉ์‚ฌ์„  ์ „๋ฌธ์˜์— ์˜ํ•œ ์žฅ์„ธ์ฒ™ ํ’ˆ์งˆ ํ‰๊ฐ€์—์„œ ์ œ์•ˆ ๋ฐฉ๋ฒ•์ด ๋ฌผ์งˆ ํ˜ผํ•ฉ๋น„์œจ์„ ์ด์šฉํ•œ ๊ธฐ์กด ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ๋” ๋†’์€ ์ ์ˆ˜์˜ ์žฅ์„ธ์ฒ™ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ํŠนํžˆ ์ž”์—ฌ๋ฌผ์— ์ž ๊ธด ๋Œ€์žฅ ์ฃผ๋ฆ„ ๋ฐ ์šฉ์ข…์ด ๋” ์ž˜ ๋ณด์กด๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์ž”์—ฌ๋ฌผ์— ์ž ๊ธด ๋Œ€์žฅ ์ฃผ๋ฆ„ ์˜์—ญ์„ ์ˆ˜๋™ ๋ถ„ํ• ํ•˜์—ฌ ์ œ์•ˆ ๋ฐฉ๋ฒ•๊ณผ ๊ธฐ์กด ๋ฐฉ๋ฒ•์— ์˜ํ•œ ์žฅ์„ธ์ฒ™ ๊ฒฐ๊ณผ ์˜์ƒ์—์„œ ํ•ด๋‹น ์˜์—ญ์˜ ํ‰๊ท  ๋ฐ€๋„๊ฐ’๊ณผ ์ฃผ๋ฆ„ ๋ณด์กด ๋น„์œจ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ์—์„œ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ž…์ฆ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ๊ธฐ์กด์˜ ๋‘ ๋ฌผ์งˆ๊ฐ„ ์ „์ด ๋ชจ๋ธ๋กœ๋Š” ์ž˜ ํ•ด๊ฒฐ๋˜์ง€ ์•Š์•˜๋˜ ๊ณต๊ธฐ-์—ฐ์กฐ์ง-์ž”์—ฌ๋ฌผ ๊ฒฝ๊ณ„ ์˜์—ญ์—์„œ์˜ ์‚ฐ๋“ฑ์„ฑ์ด ํ˜•ํƒœ์˜ ๊ฒฐํ•จ์— ๋Œ€ํ•ด์„œ๋„ ์ œ์•ˆ ๋ฐฉ๋ฒ•์—์„œ๋Š” ๋‹จ์ˆœ ์„ธ ๋ฌผ์งˆ๊ฐ„ ์ „์ด ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ๊ณต๊ธฐ-์—ฐ์กฐ์ง-์ž”์—ฌ๋ฌผ ๊ฒฝ๊ณ„ ์˜์—ญ์—์„œ์˜ ๊ฒฐํ•จ์„ ์ œ๊ฑฐํ•˜๊ณ  ์ „์ฒด ๋Œ€์žฅ์˜ ํ‘œ๋ฉด์ด ๊นจ๋—ํ•˜๊ฒŒ ์žฌ๊ตฌ์„ฑ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.Electronic cleansing (EC) is the process of virtually cleansing the colon by removal of the tagged materials (TMs) in computed tomographic colonography (CTC) images and generating electronically cleansed images. We propose an EC method using a novel reconstruction model. To mitigate partial volume (PV) and pseudo-enhancement (PEH) effects simultaneously, material fractions and structural responses are integrated into a single reconstruction model. In our approach, colonic components including air, TM, interface layer between air and TM (air-TM interface) and interface layer between soft-tissue (ST) and TM (ST-TM interface), and T-junction (i.e., locations where air-TM interface with the colon wall) are first segmented. For each voxel in the segmented TM and air-TM interface, CT density value is replaced with the pure material density of air and thus the unexpected ST-like layers at the air-TM interface (caused by PV effect) are simply removed. On the other hand, for each voxel in the segmented ST-TM interface and T-junction, the two- and three-material fractions at the voxel are derived using a two- and three-material transition models, respectively. For each voxel in the segmented ST-TM interface and T-junction, the structural response is also calculated by rut- and cup-enhancement functions based on the eigenvalue signatures of the Hessian matrix. Then, CT density value of each voxel in ST-TM interface and T-junction is reconstructed based on both the material fractions and structural responses to conserve the PV contributions of ST in the voxel and preserve the folds and polyps submerged in TMs. Therefore, in our ST-preserving reconstruction model, the material fractions remove the aliasing artifacts at the ST-TM interface (caused by PV effect) effectively while the structural responses avoid the erroneous cleansing of the submerged folds and polyps (caused by PEH effect). To reduce the computational complexity of solving the orthogonal projection problem in the three-material model, we currently propose a new projection method for the three-material model that provides a very quick estimate of the three-material fractions without the use of code-book, which is pre-generated by uniformly sampling the model representation in material fraction space and used to find the best match with the observed measurements. In our new projection method for the three-material model, three pairs of two-material fractions are calculated by using the two-material model and then simply combined into a single triple of three-material fractions based on the barycentric interpolation in material fraction space. Experimental results using clinical datasets demonstrated that the proposed EC method showed higher cleansing quality and better preservation of submerged folds and polyps than the previous method. In addition, by using the new projection method for the three-material model, the proposed EC method clearly reconstructed the whole colon surface without the T-junction artifacts, which are observed as distracting ridges along the line where the air-TM interface touches the colon surface when the two-material model does not cope with the three-material fractions at T-junctions.Docto

    Multi-scale and multi-spectral shape analysis: from 2d to 3d

    Get PDF
    Shape analysis is a fundamental aspect of many problems in computer graphics and computer vision, including shape matching, shape registration, object recognition and classification. Since the SIFT achieves excellent matching results in 2D image domain, it inspires us to convert the 3D shape analysis to 2D image analysis using geometric maps. However, the major disadvantage of geometric maps is that it introduces inevitable, large distortions when mapping large, complex and topologically complicated surfaces to a canonical domain. It is demanded for the researchers to construct the scale space directly on the 3D shape. To address these research issues, in this dissertation, in order to find the multiscale processing for the 3D shape, we start with shape vector image diffusion framework using the geometric mapping. Subsequently, we investigate the shape spectrum field by introducing the implementation and application of Laplacian shape spectrum. In order to construct the scale space on 3D shape directly, we present a novel idea to solve the diffusion equation using the manifold harmonics in the spectral point of view. Not only confined on the mesh, by using the point-based manifold harmonics, we rigorously derive our solution from the diffusion equation which is the essential of the scale space processing on the manifold. Built upon the point-based manifold harmonics transform, we generalize the diffusion function directly on the point clouds to create the scale space. In virtue of the multiscale structure from the scale space, we can detect the feature points and construct the descriptor based on the local neighborhood. As a result, multiscale shape analysis directly on the 3D shape can be achieved

    Computer-aided detection of polyps in CT colonography

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore