101 research outputs found

    Electromigration behavior and reliability of bamboo Al(Cu) interconnects for integrated circuits

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1999.Includes bibliographical references (leaves 103-108).by V.T. Srikar.Ph.D

    Analysis of critical-length data from electromigration failure studies

    Get PDF
    An accurate estimation of the Blech length, the critical line length below which interconnect lines are immortal, is vital as it allows EDA tools to reduce their workload. In lines longer than the Blech length, either a void will inevitably nucleate and grow until the line fails, or the line will rupture. The majority of failure analyses reveal voiding as the failure mechanism however recent analysis suggest Blech length failures are characterised by simultaneous [6] voiding and rupture, and a non-zero steady-state drift velocity. This paper provides an alternative interpretation of results

    Evolving microstructure: Mechanisms of electromigration in stressed aluminum-copper and copper films

    Full text link

    Electromigration time-to-failure analysis using a lumped element model

    Get PDF
    This thesis presents a theoretical and computer simulation of electromigration behaviour in the Integrated Circuit (IC) interconnection, with a particular emphasis on the analysis of the time-to-failure (TTF) produced through the Lumped Element model. The current and most accepted physical model for electromigration is the Stress Evolution Model which forms the basis for the development of the current Lumped Element Model. For early failures, and ignoring transport through the grain bulk, the problem reduces to that of solving the equations for stress evolution equation on the complex grain boundary networks which make the cluster sections of the near-bamboo interconnect. The present research attempts to show that the stress evolution in a grain boundary cluster network mimics the time development of the voltage on an equivalent, lumped CRC electrical network. [Continues.

    New methodologies for interconnect reliability assessments of integrated circuits

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2000.Includes bibliographical references (leaves 245-251).The stringent performance and reliability demands that will accompany the development of next-generation circuits and new metallization technologies will require new and more accurate means of assessing interconnect reliability. Reliability assessments based on conventional methodologies are flawed in a number of very important ways, including the disregard of the effects of complex interconnect geometries on reliability. New models, simulations and experimental methodologies are required for the development of tools for circuit-level and process-sensitive reliability assessments. Most modeling and experimental characterization of interconnect reliability has focused on simple straight lines terminating at pads or vias. However, laid-out integrated circuits usually have many interconnects with junctions and wide-to-narrow transitions. In carrying out circuit-level reliability assessments it is important to be able to assess the reliability of these more complex shapes, generally referred to as "trees". An interconnect tree consists of continuously connected high-conductivity metal within one layer of metallization. Trees terminate at diffusion barriers at vias and contacts, and, in the general case, can have more than one terminating branch when the tree includes junctions. We have extended the understanding of "immortality" demonstrated and analyzed for straight stud-to-stud lines, to trees of arbitrary complexity. We verified the concept of immortality in interconnect trees through experiments on simple tree structures. This leads to a hierarchical approach for identifying immortal trees for specific circuit layouts and models for operation. We suggest a computationally efficient and flexible strategy for assessment of the reliability of entire integrated circuits. The proposed hierarchical reliability analysis can provide reliability assessments during the design and layout process (Reliability Computer Aided Design, RCAD). Design rules are suggested based on calculations of the electromigration-induced development of inhomogeneous steadystate mechanical stress states. Failure of interconnects by void nucleation in single-layermetallization, as well as failure by void growth in the presence of refractory metal shunt layers are taken into account. The proposed methodology identifies a large fraction of interconnect trees in a typical design as immune to electromigration-induced failure. To complete a circuit-level-reliability analysis, it is also necessary to estimate the lifetimes of the mortal trees. We have developed simulation tools that allow modeling of stress evolution and failure in arbitrarily complex trees. We have demonstrated the validity of these models and simulations through comparisons with experiments on simple trees, such as "L"- and "T"-shaped trees with different current configurations. Because analyses made using simulations are computationally intensive, simulations should be used for analysis of the least reliable trees. The reliability of the majority of the mortal trees can be assessed using a conservative default model based on nodal reliability analyses for the assessment of electromigration-limited reliability of interconnect trees. The lifetimes of the nodes are calculated by estimating the times for void nucleation, void growth to failure, and formation of extrusions. The differences between straight stud-to-stud lines and interconnect trees are studied by investigating the effects of passive and active reservoirs on electromigration. Models and simulations were validated through comparisons with experiments on simple tree structures, such as lines broken into two limbs with different currents in each limb. Models, simulations and experimental results on the reliability of interconnect trees are shown to yield mutually consistent results. Taken together, the results from this research have provided the basis for the development of the first RCAD tool capable of accurate circuit-level, processing sensitive and layout-specific reliability analyses.by Stefan P. Hau-Riege.Ph.D

    Multiscale microstructures and microstructural effects on the reliability of microbumps in three-dimensional integration

    Get PDF
    The dimensions of microbumps in three-dimensional integration reach microscopic scales and thus necessitate a study of the multiscale microstructures in microbumps. Here, we present simulated mesoscale and atomic-scale microstructures of microbumps using phase field and phase field crystal models. Coupled microstructure, mechanical stress, and electromigration modeling was performed to highlight the microstructural effects on the reliability of microbumps. The results suggest that the size and geometry of microbumps can influence both the mesoscale and atomic-scale microstructural formation during solidification. An external stress imposed on the microbump can cause ordered phase growth along the boundaries of the microbump. Mesoscale microstructures formed in the microbumps from solidification, solid state phase separation, and coarsening processes suggest that the microstructures in smaller microbumps are more heterogeneous. Due to the differences in microstructures, the von Mises stress distributions in microbumps of different sizes and geometries vary. In addition, a combined effect resulting from the connectivity of the phase morphology and the amount of interface present in the mesoscale microstructure can influence the electromigration reliability of microbumps

    Multiscale microstructures and microstructural effects on the reliability of microbumps in three-dimensional integration

    Get PDF
    The dimensions of microbumps in three-dimensional integration reach microscopic scales and thus necessitate a study of the multiscale microstructures in microbumps. Here, we present simulated mesoscale and atomic-scale microstructures of microbumps using phase field and phase field crystal models. Coupled microstructure, mechanical stress, and electromigration modeling was performed to highlight the microstructural effects on the reliability of microbumps. The results suggest that the size and geometry of microbumps can influence both the mesoscale and atomic-scale microstructural formation during solidification. An external stress imposed on the microbump can cause ordered phase growth along the boundaries of the microbump. Mesoscale microstructures formed in the microbumps from solidification, solid state phase separation, and coarsening processes suggest that the microstructures in smaller microbumps are more heterogeneous. Due to the differences in microstructures, the von Mises stress distributions in microbumps of different sizes and geometries vary. In addition, a combined effect resulting from the connectivity of the phase morphology and the amount of interface present in the mesoscale microstructure can influence the electromigration reliability of microbumps
    corecore