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ABSTRACT 

This thesis presents a theoretical. and computer simulation of Electromigration 

behaviour in the Integrated Circuit (lCs ') interconnection , with a particular 

emphasis on the analysis of the Time to Failure (TTF) produced through the Lumped 

Element model. 

The current and most accepted physical model for Electromigration is the Stress 

Evolution Model which forms the basis for the development of the current Lumped 

Element Model. For early failures, and ignoring transport through the grain bulk, the 

problem reduces to that of solVing the equations for stress evolution equation on the 

complex grain boundary networks which make the cluster sections of the near­

bamboo interconnect. The present research attempts to show that the stress evolution 

in a grain boundary cluster network mimics the time development of the voltage on 

an equivalent, lumped C-R-C IIelectrical network. By solVing the node voltage 

equation by a Matrix approach, the Time to Failure at a particular node along any 

complex grain boundary can be obtained when the local stress at the node reaches 

some threshold value. The present work also introduces the concept of the Signal or 

Elmore delay to estimate the Electromigration Time to Failure. 

The models are applied to various grain boundary configurations including the single 

grain boundary, example of a complex grain boundary clusters and more realistic 

grain boundary structures. The current model is validated by comparirig the results to 

those from existing literature. The current model enables the effect of the 

microstructuraJ or geometrical properties ~!! the Time to Failure to be analyse in 

greater detail. A log-normal distribUtlOn"1ias,beeri 'Obtained by both the Lumped 

element model and the signal d~lay ap;ro;Uni~iion niefuod. 'The time-scale obtained 
. .; 

for the Mean Time to Failure and the DeviatioifTime!to)Failure are within the range 

of the experimental results of existing referen"es.~, ,::~.:"j, 
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CHAPTER 1 

OVERVIEW OF ELECTROMIGRATION AND AIMS OF THE STUDY 

1.0 Introduction 

Interconnection technology is one of the most critical areas in VLSI and ULSI 

fabrication. With the· increasing complexity of VLSI and ULSI circuits, 

interconnections may take up almost 65% of the chip area, are therefore there is a 

growing concern that the reliability of the interconnections will be a major factor 

limiting the reliability of the chips[Ghate, 1986]. The predominant failure modes 

limiting the reliability ofinterconnects are electromigration, corrosion and the stress­

induced formation of voids. [Ghate, 1986] 

Electromigration has been the subject of scientific study for about 140 years when it 

was first observed in 1861 by Geradin, the subject is still very much of interest to 

researchers whose work is often supported by major le manufacturers. [Ho and Kwok 

,1988],[Llyod,1994].The failure mechanism was identified shortly after the 

production ofintegrated circuits in early 1960s, and has been a major reliability issue 

with le. manufacturers ever since. The recent interest in electromigration is closely 

related to the ever-present goal of producing more circuit functions on a single chip 

where the technology has progress from small scale integration(SSI) to very large 

. scale integration (VLSI). The latter, consisting of more than 10 6 devices per chip, is at 

present giving Way to ultra large scale integration (ULSI). 

The advancement of the le technology is made possible by the ability to shrink the 

dimensions of some critical device features such as the interconnect size where the 

width of the aluminium interconnect (line width) has shrunk from several microns to 

0.28 microns in 1998 ,currently it is 0.18 microns and by 2010, the line widths of 0.07 

microns are projected[Ohring,1998],[SIA roadmap]. The continual circuit integration 

and scale reduction has a negative impact on le reliability, since current densities and 
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device operating temperature increase. which exacerbates the problems of , 

electromigration[Malone and Hummel,1997]. 

1.1 The Electromigration Process . 

Electromigration refers to the migration of metal atoms due to the impact of moving 

electrons. It is also cal1ed electro-transport and is essentially a phenomenon of 

diffusion of atoms activated by the transfer of momentum from a stream of electrons 

in the presence of an electric field It can also be referred as the mass transport of 

metal atoms due to the momentum exchange resulting from the collisions of the metal 

atoms with the current conduction electrons. The result is a net flux of metal atoms 

which generally migrate in the same direction as the current flux 

[Black,1969],[Sigsbee,1973],[[Ho and Kwok,1989]. This literature refers to the study 

conducted by Professor Huntington and co-workers in 1961 which also explains ,the 

mechanism of electromigration which are now widely used and accepted :-

A metal ion which has been thermally activated and is at its saddle point(lifted out of 

its potential wel1 and is essential1y free of the metal lattice ), is acted on by two 

opposing forces in an electrically conducting single band metal. The two forces are:-

i) The electric field applied to the conductor wil1 exert a force on the activated ion 

in a direction opposite to the electron flow. 

ii) The rate of momentum exchange between the conducting electrons col1iding with 

the activated metal ions wil1 exert a force on the metal ion in the direction of the 

electron flow. 

The force on the ion due to the electric field is quite small due to the shielding by 

electrons therefore, the dominating force is that of the 'electron wind'. As a result, 

activated metal ions which are upstream (in terms of electron flow) from a vacancy, 

have a higher probability of occupying the vacancy site than do other near neighbour 
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ions which surround the vacancy. Metal ions therefore, travel towards the positive end 

of the conductor. The displacement of metal ions creates vacancies which move 

toward the negative end. The vacancies condense to form voids while the ions 

condense at certain discontinuities to form dendrites, whiskers, or hillocks. 

The formation of voids will reduce the effective cross-section of the metal lines and 

increase the current density. Increase in current density gives rise to localised heating 

which then creates a temperature gradient As a result, electromigration occurs at an 

accelerated rate and causes line to open circuit Whereas hillocks and whiskers can 

cause an electrical short circuit to the nearby conductors and even fracture the oxide 

layer surrounding the conductor. Hillock is a term applied to any perturbation or 

mass accumulation on a metalline due to electromigration or mechanical stresses. A 

whisker is a growth from the surface of a single crystal aluminium.[Sabnis,1990] Fig 

1.0 shows the voids and hillocks taken from the reference of [Gangulee and D' 

Heurle, 1973] 

(a) (b) 

Fig 1.0 Scanning electron micrograph showing (a) the voids at the cathode end 

and (b) hillocks near the anode end of AI interconnect. 

3 



1.2 History and overview of Electromigration 

1.2.1 Early study on electromigration 

The first obserVation of the atomic motion or diffusion in a metal conductor under 

the influence of an applied electric field was reported by Geradin in 1861 where 

. the metals under study are molten alloys of lead-tin and mercury-sodium. It was not 

until much later in .1953 in a study on mass transport of Hume-Rothery alloys that 

Seith and Wever made the important observation relating to the nature of the driving 

force for electromigration. They found that the atomic motion is not determined 

solely by the electrostatic force imposed by the applied field but also depends on the 

direction of the motion of charge carriers. Later Seith introduce the idea of ' 

electron wind' to account for induced mass transport, an idea which laid the 

foundation for the basic understanding of electromigration[Ho and K wok,1988]. 

Theyalso introduced the 'marker motion' technique now known as 'vacancy flux' 

method to measure the induced mass transport which became one of the standard 

measurement of electromigration The 'marker motion' technique used the 

displacement of the surface markers(scratches or indentations) along the length of a 

metal wire to measure the changes in the sample dimension as a result of the creation 

and annihilation of vacancies. [Ho and Kwok,1988]. 

The concept of the 'electron wind' driving force was first formulated by Fiks in 1959 

and Huntington and Grone in 1961. They employed a 'ballistic' approach to treat the 

collision of the moving atom with the charge carriers. In their work, Huntington and 

Grone showed that, beside the initial and final states of charge carriers to be 

considered, the spatial variation of the force experienced by the moving. atom has 

also to be considered in the collision process. This led to the idea that the 'electron 

wind' also depend on the type of defect and the atomic configuration of the 

migration path. The formulation of the driving force was a major contribution to the 

study of electromigration as it became possible then to probe directly the 
. 

interaction of the mobile defects and the charge carriers. [Ho and K wok,1988]. 
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In the 1960s, research activities basically focused on the investigation of bulk 

materials. The interest in electromigration concentrated on self-electromigration in 

pure metals and later extended to alloys and liquid metals, work done by Huntington 

inl974 and Rigney in 1977 respectively. [Ho and Kwok,1988] 

1.2.2 Study of the electromigration transport mechanism in thin conductor film 

The interest in electromigration took a drastic turn in the late 1960s when it was 

identified as causing cracks in aluminium conductor lines in Integrated circuits (le's). 

It was discovered that the electromigration was the cause of failure in the thin 

aluminium film where the opening up of holes or voids near the cathode was 

observed by using TEM.[Blech and Meieran,1969].Local thinning of the aluminium 

film was also observed by using TEM which was attributed to the lack of adherence 

of films to the substrate.[Rosenberg and Berenbaum,1968]. 

-
This finding resulted in many more research activities in studying electromigration in 

. thin film conductors. Most of the studies in the late 60's and in 70's were aimed at 

the rather practical problem of conductor line failure, or the 'cracked stripe' problem 

in microelectronics integrated circuits. These studies were carried out in thin films 

prepared by evaporating metal atoms onto insulating substrate and at moderate 

temperatures of about half the absolute melting point. These studies show that 

electromigration occurs primarily along the grain boundaries based both on the 

observed low activation energy (EA'" 0.S-0.6eV) while monitoring changes in 

electrical resistivity[Rosenberg and Berenbaum,1968] and also by direct electron 

microscopic observations (EA'" 0.7±0.2 eV)[Blech and Meiren,1969].This low 

value of activation energy E A is the evidence that the electromigration is the process 

of diffusion along grain boundaries. For lattice self-diffusion E A is about 

l.3eV[d'Heurle and Rosenberg,1973].The above results were supported by 

experiments on a single-crystal aluminium films which resulted in no indication of 

electromigration-induced failure[ d'Heurle and Ames, 1969]. 
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~------------------------------........... 
1.2.3 Study of the cause of interconnect failure -flux divergence 

Electromigration alone will not cause aluminium interconnects to fail. The failure 

also requires flux divergence where damage (e.g. voids or hillocks) are formed. 

Voids can grow and link together to cause electrical discontinuity in conductor lines 

which leads to open-circuit failure. Hillocks can also grow and extrude out materials 

to cause short-circuit failure between adjacent conductor lines. It can also break 

through the passivation or protective coating layers and lead to subsequent corrosion­

induced failure. 

The 'flux divergence' refers to the imbalance of atomic flux caused by inhomogenity 

of parameters controlling the diffusion process from, macroscopic design parameters, 

such as length and width, to microstructura1 features such as grain size distribution, 

film orientation and grain boundary characteristics. This aspect of electromigration 

damage has shifted the focus of the investigation to that of understanding 

electromigration at the level of structural defects in thin film materials. 

Non-uniformity in the grain size at a junction between a fine and a coarse grained 

area, is a flux divergent site where hillock formation has been observed[ Attardo and 

Rosenberg,1970]. The flux divergence occurs because the number of atoms migrating 

to the junction through the fine-grain side exceeds that migrating out of the junction 

through the coarse-grain side. Voids and hillock formation are frequently observed at 

grain boundary triple points where three or more grain boundaries are 

joined[Berenbaum,1970J. 

The present study of electromigration in very fine conductors derives from the 

development of very large-scale integrated (VLSI) circuits. The interconnects are not 

only small in dimensions, they are also assembled into a multilayed structure with a 

certain combination of conductors and insulators. The multilevel interconnect scheme 

is to keep the CR delay low ( as CR delay depends on the length of interconnect) to 

provide the required speed performance. The linewidth of thin-film interconnects has 

6 



to be reduced to the submicron range in order to provide the required device density. 

The impact of scaling on the electromigration can give rise to two kinds of 

problems. One problem is due to increase in the current density and the other is from 

the reduction in device dimension. The current density will increase linearly with size 

reduction for FET devices (kj) and approximately with the square of the dimensional 

scaling for Bipolar devices (k2 j), where k is the scaling factor and j is the unsealed 

current density[Dennard et al.,1974]. In addition to the effect of the driving force due 

to the increase in j, the j 2 P increase in the Joule heating can raise the conductor 

temperature, making higher atomic diffusivity and enhanced e1ectromigration. With 

the projected high current density in submicron metal lines, there is increasing 

concern over electromigration-induced failures. With the reduction in interconnect 

line width beyond the submicron range, the grain size has approached that of the line 

width (the so called bamboo structure). This constitutes a significant change in the 

microstructure of the conductor line and the behaviour of electromigration. 

1.2.4 The development of electromigration failure models 

A standard engineering test for electromigration is the lifetime test. This is an 

accelerated test in which a group of test structures is electrically stressed until all of 

the specimen 'fail', where the failure is identified as a complete loss of conduction or 

some critical increase in electrical resistance. The Time To Failure or TTF of 

electromigration-induced failure is generally considered to follow a log-nonnal 

distribution.[ Agarwala et al.,1970],[Attardo and Rosemberg,1970], [ Thompson and 

Cho,1986],[Attardo et al.,1971]. This result is based both on experimental findings 

and by computer model simulation. The median time to failure or t50 is the measure 

by which the electromigration reliability of a particular metallization scheme is 

compared to another for a given set oftest conditions. The commonly used empirical 

model for the median time to failure ,t 50, is 

t50 = ~ exp(~) 1.1 

where, 
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tso= mean time to failure, A= a constant which contains a factor involving the cross­

sectional area of film. j= current density, Q= an activation energy, k= Boltzmann's 

contant, T= film temperature, 

which is popularly known as the 'Black's Equation[ Black,1969]. Naturally 

activation energy, Q, is of particular interest, because being in the exponential, it has 

a heavy influence on tso.Clearly increasing the activation energy will increase the t". 

Should the activation energy increase by 0.1 e V, t". will increase by a factor of 55 at 

room temperature and a factor of20 at 125 0 C[Spitzer,1969]. The activation energy is 

the measure which determines the kind of diffusion or migration mechanism is 

taking place whether it is through surface, grain boundary or bulk(lattice).The 

exponent n is also a much debated issue because the studies conducted on thin films 

have not provided a consistent result. 

Early experimental results[Black,1969],[d'Heurle,1971] account for values of n 

between 2 and 3 while there is some theoretical argument to support 

n=I[Sigsbee,1973] and n=2[[Black,1969],[Shatzkes and Lloyd,1986], [Trattles et 

al.,1994].The most widely use value for n is 2 [Malone and Hummel,1997] 

The model by Black is purely empirical and the accuracy lies in the fitting of 

parameters such as the value for n and Q. Lloyd argued that if there is no physical 

model, any values for the fitted parameters can be chosen and if there are changes in 

the failure mechanism between the stress conditions and use conditions, 

extrapolations will be invalid[Shatzkes and Lloyd,1986],[Lloyd,1994]. 

As a result [Lloyd et al., 1986,1994]developed a physical model which described the 

electromigration by a drift-diffusion mechanism of atoms or vacancies. In the Drift­

diffusion model, the transportation of metal atoms may be alternatively be viewed as 

a drift-diffusion of vacancies c in a direction opposite to that of the atomic flux. The 

general drift-diffusion equation is given below is :-
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J=DDc 
Ox 

DZ*epjc 
kT 

where J is the vacancy flux 

D is the diffusion coefficient 

c is the vacancy concentration 

Z*e is the effective charge 

p is the material resistivity 

j is the current density 

k is the Boltzmann's constant 

T is the operating temperature( 0 K) 

1.2 

The first term represents the concentration gradient-driven backflux diffusion and the 

second term the current-driven (drift) or the electromigration flux. Combining this 

with the continuity equation, the drift-diffusion equation can be transformed to the so­

called 'electromigration equation' of the form:-

Dc _ ((PC _ Z*epj Dc) 
at - D Ox2 kT Ox 

1.3 

The failure time of an interconnect is determined by employing some boundary 

conditions to the above equation and it is based on the time to reach a critical vacancy 

supersaturation. 

An alternative physical model was proposed by [Korhonen et al.,1993(l)] to describe 

the mechanical stress C1 arising under electromigration. A one-dimensional equation 

which describes this model is given below:-

Ocr = ~[DBn (Ocr + Z· epj)] 
at OxkTOx n 

where C1 = stress 

B= coefficient depends on the elastic properties 

n = atomic volume 
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The equation describes the evolution of the stress and was derived in the case of 

vacancy equilibrium with the stress. Interconnect failure was associated with the 

build-up of the critical level of stress[Korhonen et al.,1993]. At present Korhonen's 

model is widely used to analyse the electromigration-induced failures in near-bamboo 

lines[Sarychevet al.,1999] .The models differ only in the treatment of the continuity 

equation. A detul comparison between the two model will be discussed chapter 2 . 

1.2.5 The study of structural effects on the Mean Time to Failure 

It is clear that the structural characteristics of the interconnect (macro and 

microstructure) are related to the mean time to failure t so. These may be split·· 

between microstructural effects and macrostructural. 

i) Microstructure 

A number of early studies were carried out to investigate .the effects of the 

microstructure of thin films or interconnect on the electromigration mean time to 

failure t so' The Increase of electromigration t so with increasing grain size has been 

reported for aluminium conductors with a width exceeding several 

microns[Learn,1971]. In particular [Attardo and Rosenberg,1970], showed a linear 

relationship between grain size and the mean time to failure tso.The number of grain 

boundaries that are found in a given width of interconnect is inversely related to the 

average size of its grains. The bigger the size of grain ,the smaller the number of 

grain boundaries available for atomic migration, therefore tso will increase. Non­

unifonnity in the grain size causes a different number of atoms migrating from the 

fine-grained side to the coarse-grained side. With a mixture of grain' sizes, there are 

bound to be some regions where the number of grain boundaries is different from the 

number in adjoining regions. The transitional zone between each region is similar to a 

grain boundary triple junctions, therefore damage will tend to occur at this points. 

The mean time to failure t" is found to decrease with an increase in the standard 

deviation of the grain size[Agarwala et aI.,1972]. 
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When an interconnect is patterned from a film whose grain size is larger than the 

intended interconnect width, the result will likely look similar to a chain of single­

grained segments. Such an arrangement is called a 'bamboo' structure: In a perfect 

. bamboo structure there are no triple junctions and there is no continuous pathway 

provided down the interconnect by the few grain boundaries. The angl~ at which they 

transverse this span is important. 

If the transversing boundary is inclined at any angle other than 90° with respect to the 

downwind direction, then there will likely be some migration at the boundary. A void 

may form on the edge of the interconnect at the upwind end of that grain boundary 

segment. In any case, the absence or near absence of triple junctions and the lack of 

continuous network pathways should lead to a larger t".This observation has been 

confirmed by experiment. [pierce and Thomas;1981),[Gangulee and d'Heurle, 1 973]. 

ii) Macrostructure 

The macrostructure of an interconnect inCludes such factors as size and shape, as well 

as the composite structure and composition of the entire metalllzation scheme. The 

grain boundary network that happens to be captured when an interconnect is patterned 

depends on the length and width ofthe pattern taken. A large number of unfavourable 

structural features, such as triple junctions, is captured along the length of a patterned 

interconnect as the length is increased. 

It has been found that t so decreases with increasing interconnect line length 

[ AgarwaIa et al.,1970),[English et al.,1974). Experiment conducted by AgarwaIa et 

al. has also shown that t" increases with linewidth, where lifetime is observed to 

increase linearly with an increase in the stripe width. An empirical relationship was 

constructed for t" versus line length and line width [AgarwaIa et al.,1970). 
i 

,. 
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(a(w») 
t.,=A.w.exp -e-

where 

A is a constant 

w is the line width 

a is a constant that depends on w 

e is the line length 

1.5 

However, there are also studies that show that t., increases due to decreasing 

linewidth.(Kinsbron,1980],[Iyer and Ting,1984],Vaidya et al.,1980]. They foimd out . 

that t" start to increases below 2 microns. This relates to a bamboo structure where 

the linewidth is smaller than the average grain size. 

1.2.6 Techniques for extending the Mean Time to Failure 

\ 

It is a standard procedure to 'passivate' chips, that is to encapsulate them with a 

protective coating. Coating of aluminium interconnects has been reported to improve· 

its electromigration lifetime. The effect of coating of aluminium film of large grains 

with Si0 2 glass has shown an increased activation energy from EA = 0.84eV to 

EA =.l.2eV i.e the activation energy for self-diffusion of aluminium in bulk or lattice 

(higher lifetime) [ Black,1969].Other experiment involving coating with alumina- , 

silicate glass also shows an. improvement in lifetime[Spitzer,1969]. Both of these 

references conclude that the coating will inhibit surface diffusion. 

However there is another theory by [Ainslie et al.,1971] which proposes that the 

coating actually impedes the growth of hillocks and whiskers, which reduces the 

formation of cracks. It waS also proposed that the coating will be effective only for 

very thin films applied with relatively thick coating. 
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Another material which is also used as coating of aluminium film is silicon 

nitride[Blech,1976] which appears to slow down the surface diffusion. Overcoating 

. of SiO 2 glass and silicon nitride are at present cOinmonly used as passivation layers. 

In addition to retarding electromigration through surface transport, these overcoat 

layers enhance electromigration resistance of aluminium by causing grain size growth . 

during the overcoat deposition and reflow process .[Sabnis,1990).Interconnect 

cladding layers of Ti, TiN, W,and TiW arc also used to prevent interdiffusion 

[Malone,1997]. Another way of extending the interconnect lifetime is by adding small 

amounts of metallic impurities into the aluminium. Common impurities include 

copper, chromium, nickel,magnesium , and titanium.[Sabnis,1990). Copper is the 

most widely used element for alloying with aluminium producing higher activation 

energy and larger t" than pure alumiilium.[Sabnis,1990). At present, many studies 

are also geared towards the research on the effect of Cu on the microstructure of Al 

and the electromigration lifetime of interconnect[ Domenicucci, et al., 1996] 

1.3 Lifetime Reliability Issues of Electromigration 

The reduction in scale has driven interconnects into the 'bamboo' region, where 

interconnect widths are the order of a single grain diameter. In such structures one 

expects that the median-time-to-failure or t" for electromigration will be greatly 

increased due to the lack of grain boundaries available to carry metal atoms and there 

is now plenty of experimental data [Agarwala et al.,1970],[Attardo 

et al.,1971],[Kinsbron,1980],[Cho and Thompson,1989] to support this. However, the 

t" is not the most important feature from a reliabilty point of view, and ,importantly, 

the same experiments show that in bamboo structures, the standard deviation or the 

shape factor cr sd is also greatly increased as shown in Fig 1.1. 
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Figl.1 Median time to Failure (MITF) and Deviation time to Failure(DTI'F) 

vs Iinewidth/grain size ratio. Figure taken from [Cho and Thompson,1989] 

Based on the assumption of log-normal statistics, extrapolation of data regardIng the 

time-to-failure (TTF) at say 0.01% cumulative failure is strongly dependent on the 

shape factor, as a result cr sd is much more important from the point of view of 

reliabilty analysis where early failures occurs (an IC might have 10 6 interconnects, so 

0.01 % would mean 100 failures). Indeed, since for lognormal t" = exp( cr)t .. , a small 

increase in cr sd will be enough to nullify, or even reverse, any increase in MTF gain 

from the bamboo grain structure. Therefore greater knowledge of the full statistics of 

TTF is needed before we can sure of the validity of standard reliability analysis. 

Another aspect of reliability concern regards the actual probability distribution of the 

interconnect lifetime due to electromigration -induced failure. Electromigration 

failure is traditionally believed to follow a lognormal distribution as mentioned in 

. section; 1.2.4. However, the lognormal distribution cannot be scaled with length. The 

failure of a full interconnect is usually described by the well-known weakest link 

model[Agarwala et a1.,1970],[Cho and Thompson,1989],[Vaidya et a1.,1980]. IfF(t) is 

the probability that the lifetime of a failure unit is smaller than t, then the 
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corresponding probability for the entire interconnect line, assuming n identical 

independent failure units is, 

1.6 

In general the form of distnbution F n (t) should also exhibit the lognormal 

distribution, but it does not (if the lognormal distribution is used for F(t». Therefore 

the assumption that the failure distribution lognormal is questionable[Lloyd and 

Kitchin, 1991]. 

1.4 Aims of the Study 

1.4.1 Study Objectives 

1. To develop an equivalent electrical model by replacing the stress evolution 

equation (eqn 2.33) with a time development of a pseudo-voltage on an equivalent 

lumped eR network. 

2. To develop the electromigration failure statistics for a realistic representation of 

complex grain boundary networks of near bamboo interconnects. 

3. To investigate and analyse the statistics that been developed specifically whether 

it exhibits the lognormality and is if so what is the standard deviation( or the 

shape factor) (j sd . 

4. To develop the 'Elmore delay' method of approximating the TTF and then make 

a comparison analysis to the model under study. This will verify the validity of 

the model and allow rapid estimates of TTF for a given structure enabling 

statistics to be obtained rapidly. 

5. To investigate the factors thataffect the TTF and its distribution. 
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1.4.2 Study Methodology 

In order to achieve the objectives specified above, the study will be organised as 

follows:-

1. First it is needed to develop a lumped CR network which will replace the drift­

diffusion model for describing the stress build-up in a single grain. Later on the 

model will. be analysed and verified by comparing the simulation results with 

other existing work found in the literature. 

2. It is then necessary to calculate the statistics and the distribution for the time to 

failure (TTF) (including (1 sd and lognormality) for the equivalent lumped CR 

network of an example of a complex grain boundary network. The work will 

involve:-

i) Establishing a CR circuit network which models the complex grain 

boundary structures in terms of the grain boundary lengths, their 

orientations and vacancy diffusion coefficients. The statistics of these . 

parameters are presumed to be known from existing literature. 

ii) The equivalent network is then simulated to obtained the long-time stress 

build-up. 

iii) The TTF and its statistics are created by assuming a failure threshold for 

each network. 

. 3. The equivalent CR network is always made from parallel capacitors to ground and 

series resistors. The electromigration problem becomes identical to calculating the 

signal delay in a general CR networks with 'stored charge. Such networks have 

been studied in detail for digital CMOS timing problems. The 'Elmore delay' 

gives a very good approximation to the delay time. An analysis will be made using' 
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this method to obtain the TTF which will then be compared to the. 'exact 

solution' for both a single grain boundary and complex grain boundary structures. 

4. A single interconnect may be considered to be made from a number of grain­

boundary networks connected in series. If each of these acts as an independent 

link, failure should occur at the weakest link model. Using the model above the 

effect of the links may also be investigated. To achieve this, a Voronoi network 

which represents the realistic grain structure of an interconnect will be created 

and the statistics of the TTF will be developed. 

1.5 Thesis Outline 

In Chapter I, a brief overview of the technological importance of Electromigration 

studies on the VLSI and ULSI are discussed. Also the term electromigration is defined 

and its historical background, and an overview of the studies based on experimental 

and theoretical models, are briefly described. Further brief descriptions of important 

factors (such as the microstructure and macrostructure) on Electromigration 

behaviour and lifetime are given. Techniques for extending the lifetime under· . 

Electromigration and reliability issues affecting the interconnection technology are 

also discussed. Finally the objectives of the current study and its methodology are 

outlined. 

A detailed literature survey on the research development on Electromigration are 

discussed in Chapter 2. These includes the overview of the 'state-of the art' 

specifications of the interconnect technology. The literature on the experimental 

aspects and their results are reviewed in detail. Next the development of the physical 

model of electromigration, which relate to the lifetime, are discussed. These range 

from the first electromigration model by James R. Black, the classical theory . of 
, 

Huntington and Grone, to the continuum models which includes the drift-diffusion 

model and the current and most accepted stress evolution model. The main 

differences, advantages and disadvantages between the drift-diffusion model and 
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stress evolution model are also discussed. 

Chapter 3 discusses the development of the lumped element model and the signal 

delay method for producing the Time to· Failure. A detailed description of both 

methods is presented. The Chapter also includes some of the initial results to 

demonstrate the validity of the lumped element model and that of the signal delay 

method. 

Chapter 4 discusses in detailed the development of the program codes to perform the 

various task of the lumped element model. These are basically to i) demonstrate the 

validity of the model ( as in the single grain boundary case ),ii) simulate the 

stress/vacancy concentration profile and iii) simulate a realistic representation of 

interconnects by employing the Voronoi technique and most importantly iv) to 

simulate the Time to Failure of the interconnect so as to produce its statistical 

distribution pattem 

Chapter 5 discusses the various simulations undertaken , their results. analysis and 

meaning. There are three main categories of experiment simulated i) single grain 

boundary interconnect. ii) a more complex grain boundary network and iii) the more 

realistic representation of the complex grain boundaries. 

Chapter 6 sununarises all the important observations results and analysis and the 

conclusions. Some recommendations for improvement and further work are also 

included. Chapter 7 provides the list of all references used in the thesis. 
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CHAPTER 2 

A REVIEW OF LITERATURE ON ELECTROMIGRATION 

2.0 Introduction 

Recent technological developments and advancement in. computer-aided circuit 

design have ushered in an era of very-large scale integrated circuit (VLSI) with a 

million or more devices integrated on a single chip. However advanced or 

complicated the technology is, metal film stripes or interconnections are used to 

connect this large number of devices to form a complete VLSI circuit. The 

interconnect technology was initiated by the independent work of Jack S. Kilby, an 

engineer at Texas Instruments and Robert N. Noyce, a scientist at Fairchild, who then 

patented their ideas on how to interconnect transistors, capacitors and other active 

and passive components on a single piece of siIicon.[Ghate,1986]. At present, the 

connections required to integrate a large number of components on a chip consume a 

large area of the chip, and to minimise signal delays, multilevel interconnections 

separated from each other by insulating layers are employed. 

The present trend of interconnection technology employs a few hnndred meters of 

0.35 microns wide interconnects per chip distributed among 4-5 metaIIization levels 

( CMOS technology of 1995), and it is projected that by 2010 there will be 7-8 

metaIIization levels containing 10,000 meters of interconnects that are only 0.07 

microns wide[Ohring,1998]. The patterned interconnects will exhibit a strong 

bamboo morphology with grain boundaries approximately perpendicular to the stripe 

axts. 

As the technology advances, the research activities on electromigration are also active 

today because electrornigration itself remains a complex phenomenon involving 

many variables [Sabnis,1990][Ohring,1998]. Therefore, despite many years or 
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research, there is still a lot to be understood. Modem demands such as the 

miniaturisation of IC require continuous research work on various platforms such as 

the experimental and the theoretical and also in the development of new methods of 

testing electromigration. At present the links between the experiment and the theory 

are rather weak and are sometime based on speculation.[ Kircheim,199I].The 

knowledge of failure modes or the physics of failure is extremely important in 

interpreting the data gathered under accelerated test conditions. 

In this chapter, a review of the present or latest stUdy on electromigration is 

presented. The review will cover the present intercounect technology, 

electromigration experiments· on pulsed current, methods of testing and· the . 

development of· models relating to the electromigration-induced failure of IC 

interconnects. The existing models· will be of particular interest where comparison 

can be made, based on the results it offers, the assumptions it makes and the ability to 

be used in accelerated testing. Existing research shows that the study . of 

electromigration-induced failure in IC interconnects is at present focused on:-

a) Experiments on electromigration under pulsed currents 

b) Improvements in testing methods 

c) The development of the physics of failure or the failure model 

2.1 Overview ofthe Interconnect Technology 

The IC's interconnects serves a variety of functions on an IC. These are: 

i. Contacts between the first layer of metallization and the substrate 

electrodes, 

ii. Gate interconnects, 

Hi. Interconnects of the metallization layers, 

iv .. Vias contacts between the levels of the multi-level metallization .. 
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Metallization is the tenn· that refers to the total sum of all applications of metal films 

in the fonnation of silicon metal contacts and multilevel interconnections. 

[Ghate,1982]. The characteristics and materials for interconnects vary to satisfY the 

appropriate electrical requirements. A low ohmic resistance is a dominant criterion, 

which arises from the nature of the interconnect lengths. The interconnect resistance 

should be as small as possible to avoid 12 R losses, and to minimise the interconnect 

RC time constant (per unit length) in order to obtain the fastest possible perfonnance. 

For FET lCs ,vacuum-deposited aluminium films are widely used for connections 

within integrated circuits because it has low resistivity of around 3 

~O/cm[Herbst, 1996], they are compatible with the fabrication process and are cost 

effective. Aluminium-alloy films have replaced pure aluminium films to enhance the 

reliability of les interconnections. Examples include the use of aluminium-silicon 

alloy to minimise contact pitting, aluminium-copper alloy to improve resistance to 

electromigration and aluminium-copper-silicon to resist both. 

Bilayer and trilayer films with gold as the principal conductor are also used for 

interconnections where considerations of reliability outweigh cost and ease of 

processing. As gold films adhere poorly to silicon dioxide, refractory metals such as 

MO,Ti:W and TilPt provide the necessary adhesion to the silicon dioxide .and act as a 

barrier layer between the silicon contact and the gold films. 

Early MOS les used aluminium as the gate and interconnection material, but it is 

observed that this is not compatible with high-temperature processing. Later with the 

discovery that polysilicon films produced by the chemical decomposition of silane 

gas, is compatible with MOS silicon processing, was a breakthrough for producing 

large-scale-integrated MOS circuit using single and double polysilicon layers as 

multilevel interconnections[Ghate, 1986]. 

As le technology developed , it became necessary to use two or more levels of 

connections to achieve higher packing densities, shorter propagation delays and 

smaller chips. The basic elements of a two-level interconnection scheme are 
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'crossovers' and 'viasl
. A crossover is a second level lead that crosses a flIst-level 

lead and is separated from it by an insulator layer. A via is a location for a level-to­

level contact. Examples of metal-insulator combination are AVSi0 2 /AI, 

AVpolymide/Al, Ti:W/AI-CuI Si0 2 1 Ti:W/AI, and Ti:W/AulTi:W/Si0 21 

Ti:W/Au.[Ghate,1986]. Aluminium and gold provide the desired low-resistance 

interconnections, and Si0 2 or polymide(an organic material applied like a paint) 

provides the necessary insulation between the layers. 

The state-of -the art for AI interconnects in lCs are summarised below[Malone, 

1997],:-

1. . Metal Composition: alloy of aluminium (1-4% Cu). Claddings may be included. 

2. Local operating temperature: approaching 100 0 C. 
( 

3. Current density: Ix 10 6 Alcm 2
. 

4. Linewidth: 0.35 microns. 

5. Thickness: < I microns. 

6. Giaiti structure: near-bamboo or bamboo. 

7. Interconnect architecture: multileveled, with tungsten plug interlevel splices. 

With this specification in relation to the grain structure, interconnects should be 

resistant to electromigration, but in reality the advantage of this is reduced by the 

increase in current density and operating temperature. The absence or near absence 

of grain boundaries does not prevent the migration of Cu and Al along other paths. 
. . 

Recent studies have revealed that erosion voids and sIitlike voids were observed in 

single-crystal Iines[Joo and Thompson, 1997]. In the current study, AI is considered 

and not Cu because to set up a theory, we need to compare with experiments and 

many more results exist for Al than for Cu. 

2.2 Electromigration study under pulsed currents 

At present, research is also geared towards the understanding of how electromigration 

occurs under pulsed current conditions. In the past, the vast majority of both 
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experimental and theoretical work on electromigration in AI and AI-alloy films, and 

its effect on conductor lifetime in lCs, has concentrated on de constant-current 

(reference to Chapter 1). However, many integrated circuit interconnects carry pulsed 

signals or current, therefore jt is important to have an understanding about the nature 

of the problem so as to assess adequately the enhancement of the electromigration 

. lifetime which have been reported in the literature. [English, et al.,1972], 

[Schoen,1980].[Gui, et al.,1998][English and Kinsbron,1982],[Liew; et al.,1990]. 

It is not the intention of the present research to discussed in detail all the literature 

concerning the electromigration behaviour under pulsed current, but to give some 

. highlights on few results and the present focus of study. The basic difference between 

the dc and pulse testing is that in dc testing the atoms are under a constant influence 

of electron wind, whereas in the pulse testing the damage that may occur during 

pulse-on time has an opportunity to relax during the subsequent off-time. 

The first study of electromigration behaviour under pulse current was an experiment 

conducted by [English et al.,1972] on thin film oftitailium-gold alloy. The study was 

to compare the effects of several different sets of pulse conditions, ranging in. 

frequency from 10-4 to 10 4 Hz, and in the duty cycle from 10% to 70 % of a square 

pulse train. Each pulse treatment was applied for 100 on-time hours for every test 

The final analysis was conducted through a scanning electron microscope (SEM) 

where it was observed that the samples exhibited a range of results i.e. heavy damage, 

moderate damage and no damage. The main conclusion from the experiment was that 

the electromigration damage is a complex phenomenon depending on the pulse 

frequency and the duty cycle. 

The damage pattern observed was explained by the authors under the assumption that 

electromigration damage is the result of a local build-up of vacancy concentration at 

some point of flux divergence. The build-up of vacancy concentration takes place . 

rapidly at first, but eventually slows doWn when approaching some maximum level of 

supersaturation. During powering, the level of supersaturation will be reached during 

the time span of a sufficiently long pulse, but will decay during the off-time between 
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pulses. A study by [Rosenberg and Ohring,197l], estimates that the time to reach 

maximum supersaturation is 100 seconds for the case of aluminium. The authors 

suggested that some critical level of supersaturation had to be maintained or exceeded 

for a sufficient length oftime, the • incubation time', in order for damage to nucleate 

. in the form of voids. They also suggested that voids were stable against any relaxation 

effects associated with the time between pulses. Heavy damage in the sample was 

found. 

Another analysis was done [Rosenberg and Ohring,1971],in which the on-pulse length 

is shorter than the 'incubation time', but long enough to produce a large 

supersaturation of vacancies on one pulse. In this condition, no damage or void 

nucleation occurs. The reason being that the unpowered intervals are long enough to 

allow annealing reduction of local vacancy supersaturation or in other words it 

produces a consider~ble driving force for recovery before the next powered interval 

begins. For very short on-times and off- times, each pulse produce a relatively small 

increase in the vacancy supersaturation, and each following off- time allows little 

recovery, the supersaturation will then. increase in small increments eventually 

reaching the critical level after many cycles when void nucleation will occur. 

. However another study to relate the lifetimes in very sinall aluminium conductor 

elements, under pulsed current at low duty cycle, and stressed with current density 

above lxl07 Alcm 2 
, shows that the time to failure decreases rapidly with increased 

current density above 2xlO 7 Alcm 2 • Failure appeared to be accelerated by the 

temperature increase by Joule heating during each pulse, and it was concluded that 

the failure mechanism was complex, involving temperature-accelerated 

electromigration, temperature cycling and chemical interactions with the film's 

substrate.[Kinsbron; et al., 1979] 

A model was developed by [Schoen, 1 979]; to take account· of the effect of 

temperature cycling and damage relaxation upon electromigration lifetime. It is 

based on the fractional lifetime consumed per pulse interval which is a function of 

film temperature. The fractional lifetime consumed per pulse is computed assuming 
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the temperature in the film is an exponentially increasing function of time while the 

pulse is on. Damage relaxation during the pulse off- time is given by a time constant 

exhibiting the same activation energy as the dc electromigration lifetime i.e. self­

diffusion in grain boundaries. Film temperature during the pulsed off-time is assumed 

to decrease exponentially with time. The assumptions are valid only when pulse on 

and pulse off- time exceeds the thermal time constant. The author claimed that the 

model has been applied to the experimental conditions used by Miller ,and the results 

shows a good agreement between the predicted and the measured lifetime as a 

function of pulse duty cycles for a frequency of 250kHz. 

A numerical simulation model was recently developed to investigate the effect of 

temperature cycling on electromigration behaviour under pulsed current stresses.[Gui, 

et al.,1998]. The model is based on solving two partial differential equations which 

governs the physical processes. The temperature fluctuations has been given as a 

function of the ~ulse repetition frequency. They found that the temperature of the 

meiallization remains at an average constant value at an operating frequency above 

10 MHz and temperature oscillations reaches a maximum ampiitude when the 

frequency is lower than 250 Hz. 

Another explanation[English and Kinsbron, 1983] was given for the enhancement of 

lifetimes due to pulse current. They maintain that the enhancement of lifetime is not 

due to the relaxation or recovery of damage during the pulse off time but is due to a 

decrease in the mass transport rate, which decreases by a factor equal to the duty 

cycle. They argue. that past studies have been conducted using current density at and 

above 4x 106 A I cm2 and were difficult to interpret due to the presence of thermal 

transients as well as the general elevation of temperature above ambient. They 

observed that the rate of mass transport per unit of on time is essentially constant, 

regardless of duty cycle, so long as the current density is not so high as to produce 

significant Joule heating on each pulse. The frequency range used was O.ot-l0s Hz 

with ~ current density range of IxlO 4 to 2xl06 Ncm 2. 
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From the few studies indicated above, it is clear that the assumptions that the damage 

can be recovered during the off -times between pulses, thus causing the enhancement 

oflifetimes, is not universally accepted. Some of the literature published to discussed 

this issue include [Lloyd and Koch,1988],[Li, et al.,1992],[Ohfuji and Tsukada.,1995]. 

In an experiment using an ac bridge technique, the resistance of the line is found to 

increase linearly in time during current stressing and, when the current was 

interrupted, the resistance was seen to decrease. The decay is not purely exponential, 

but a combination of decay modes, each with its own characteristic decay time 

constant[Lloyd and Koch,1988]. This behaviour is also observed in another 

experiment using also an ac bridge but employing different testing method i.e. by 

. using an early resistance changemeasurement(ECRM)[Niehof et al.,1993]. Lloyd and 

Koch offered an explanation for this behaviour, in which the resistance increase was 

due to the supersaturation of vacancies produced through structurally induced mass 

flux divergence. The decrease in resistance is more complex, where the small time 

constant refers to the decay of vacancy supersaturation, and the longer time constant 

due to relaxation of tensile and· compressive stresses. This mechanism is also 

supported by [Li et al.,1992].Meanwhile Niehof and co-worker give the same 

explanation for the increase of resistance, but for the decay of resistance they 

assumed that the unstable microvoids .will evaporate causing the resistance to recover. 

In another study, it was suggested that the resistance decay was the result of several 

processes such as the decay of vacancy supersaturation, the concentration relief of 

mechanical stress, the motion of dislocations and the dissociation of vacancy­

hydrogen complexes[Ohfuji and Tsukada,1995]. A study of the effect of duty cycle of 

pulsed dc currents on the critical length-current density product was performed 

[Frankovic et al., 1996]. In this study, it was shown that for a pulse frequency of 100 

kHz, the jl c product increaSes as the pulse duty cycle is decreased, meaning that for a 

given current density, the Blech (1 c) length becomes larger with decreasing duty 

cycle., The duty cycle dependence of the Blech length (I c ) means that 

electromigration resistance could be increased with small duty cycle. With small duty 

cycle would decrease the atomic flux but also increases the number of 
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interconnections that become sub-Blech-Iength (less than le) which are resistant to 

electromigration damage. 

The effect of duty cycle on lifetime of aluminium interconnect is also of interest to 

researchers. The literature concentrates on the duty cycle dependence on the mean 

time to failure tso. [Harrison,1988],[Liew, et al.,1990],[Clement,1992],[Dwyer,1996], 

[Gui, et al.,1998]. Their work are basically to find the suitable exponential number m 

to the modified Black's Equation for pulsed current i.e. 

2.1 

A value of m=I is produced by the on-time model in which it is assumed that damage 

only occurs during the period in which the current flows, whereas m=n=2 is called the 

average current density model. Among the researchers who develop theoretical 

predictions m=2 [Gui,et el.,1998],[Dwyer,1996], ],[Liew, et al.,1990][Clement,1992]. 

A larger value of m indicates a larger t so , and in such a case the lifetime is said to be 

enhanced. The average current density model predicts enhanced lifetimes. A range of 

value for m has been reported from other researchers ( m=I-7.S) in the literature by 

[Malone and Hurnmel,1997] . 

At present, the main issues of interest in the study of electroniigration under the 

pulsed current can be summarise as below:-

1. The effect of the duty cycle on electromigration lifetime is not 

clear. 

2. The interpretation of the enhancement of lifetimes due to the 

effects of damage recovery and the temperature cycling are not 

convincing yet and are complicated. 

3. There is a large variation of values for 'm' of the . duty cycle 

dependence in the equation of the mean time to failure. 
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----------------------............. ... 
4. Limitation of the pulse frequency, no higher than 1 MHz in most 

studies. 

2.3 Electromigration Failure Models under constant dc current 

Electromigration lifetime experiments are usually conducted in accelerated test 

conditions where test samples are subjected to higher than usual levels of accelerating 

variables such as temperature and current density. The results are then used to make 

predictions about the lifetime during actual use conditions using the acceleration 

factor derived from the parameters used. The validity of the whole procedure 

depends on the usage of correct failure or physical models. If other failure modes are 

present but not recognised in the data analysis, seriously incorrect conclusions will be 

derived[Meeker and Escobar, 1998]. In view of this problem, several models to 

describe the electromigration failure in thin -metal conductor stripes have been 

proposed over the years which vary from empirical and the semi-empirical to the 

physical models. In this section, a review of these models will be made and 

compared based on their advantages and disadvantages and their ability to produce 

the statistics of the failure times and the characteristics of its distributions. 

2.3.1 The first electromigration failure model 

The first electromigration failure model was the empirical model of James R. 

Black[Black, 1969(a)] which is the first to express a formulation of the mean time to 

failure, t 50 and this model was mostly accepted. The equation of the mean time to 

failure introduced by Black is:-

2.2 

where 

t50 = mean time to failure 

A = a constant which contains a factor involving the cross-sectional area of the film 
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j = current density 

Q = an activation energy 

k = Boltzman's constant (8.62x IO-5 eV IK) 

T = film temperature (Kelvin) 

The paper by Lloyd [Lloyd, 1994], discussed the drawbacks of Black'smodel based 

on the j -2 dependence and the disadvantage of purely empirical models. Lloyd 

pointed out that although the model is fairly well accepted, it is in disagreement with 

solid state physics which indicate that the driving force for electromigration should 

have a current exponent of -1. He also referred to other arguments which relates the 

j -2 dependence to Joule heating. He argued that Joule heating can produce different 

and unbounded values of n (the exponent value of j). For failure to occur, flux 

divergence must occur which may be caused by temperature gradient produce by 

Joule heating. As the current density is increased not only will the temperature and 

the flux increase exponentially but also the flux divergence will increase. Therefore, 

he argued that the n would rise without bound and would be very sensitive to applied 

current . Therefore it would be very difficult,· if not impossible, to make 

extrapolations to other conditions such as a flux divergence caused by structural 

defects. The disadvantage of this model as Lloyd pointed out is that when there are 

changes in the failure mechanism between the stress conditions and the use 

conditions, the extrapolations will be invalid because of the incorrect fitting 

parameters. In addition Black's model does not describe the statistics of the Time to 

Failure which are very important in analysing the failure behaviour due to 

electromigration. 

2.3.2 The Electromigration Failure Model Based on Classical theory 

In this model [Attardo, et al.,1971], the authors attempt to relate the time to failure 

t f to various structural divergences which may be present in the conductor. The 

structural divergences considered in this model are due to the differences in grain 

size, grain-boundary mobility, and grain-boundary orientation with respect to the 
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electric field. The statistical distributions of divergences due to these attributes are 

empirically determined. A computer is used to simulate both the structure of a thin­

. film conductor and its time to failure. The model is then used to predict the 

dependence of the conductor reliability on the microscopic design features such as 

grain size distribution, conductor length and width. However the model that is used 

in the simulations is not 'realistic' ( where a simple and fixed structure of grain 

boundaries is used) if compared to the 'Voronoi' technique which are one of the 

method used in producing realistic interconnects. 

The model employs the diffusion mechanism of vacancies along the grain 

boundaries. The derivation of the model starts by employing the vacancy flux 

equation use by [Ghate, 1967], which actually originated from the classical theoIY by 

Huntington and Grone[Ho and Kwok,1989] i.e.: 

J v = (~;).DvZ * ejp 

where 

J v = Vacancy flux 

N v = density of diffusing vacancies 

k = Boltzmann's constant 

T = absolute temperature 

Dv = vacancy diffusion coefficient 

Z* = effective charge of ion 

e = charge of electron 

p = film resistivity 

j = current density 

2.3 

The magnitude of the vacancy flux divergence, oJ v IOx which is equal to the rate of 

vacancy accumulation at the divergent site is related to the failure time by :-

2.4 
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The failure is defined as the time it takes to accumulate a critical number of vacancies 

N~ ,so that the Time to Failure te is given by the equation below:­

Ne 
v 2.5 

and since the number of vacancies necessary to cause an open circuit is dependent on 

the width of the conductor, they derived the general equation:-

(
aN )-1 

tf =CW at
V 2.6 

where C is a constant of proportionality and W is the uniform width of the conductor. 

Therefore, failure time is directly related to the width of the conductor and inversely 

related to the magnitude of the flux divergence within it. 

Next Attardo and co-workers worked on the distribution of the parameters that cause 

flux divergences. For the grain boundary mobility or diffusivity they used the results 

of [Hoffinan and Tumbull,1954] and also from [Li,1961] to get the value ofa critical 

angle a of misorientation between two adjacent grains. For the triple point 

. divergences they assume the distribution function of the angle IjI which the grain 

boundary makes with the electric field is uniform between 0 ° and900 
. The grain size 

distribution was obtained experimentally and found to follow a lognormal 

distribution, while the mean grain diameter was obtained by assuming a square shape 

for each grain. The time to failure distribution was established by assuming that each 

grain boundary has a unique mobility associated with it( a random angle a) , oriented 

at some random angle IjI with respect to the electric field and the magnitude of flux 

divergence at each location is calculated by taking the difference in the sum of the 

mobilities into and out of a given section of the conductor. The equation that does 

that is:-
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2.7 

where A is a mobility constant 

The simulation of the time to failure was performed on a IBM 360 model 50 

computer and the results obtained are surmnarise below:-

1. mean time to failure t so decreases with increasing conductor length. 

2. standard deviation cr of the failure distribution decreases with increasing 

length 

3. mean time to failure t50 increases linearly with increasing width in the 

range from 0.2 to 1 mm. 

4. mean time to failure t 50 increases with mean grain size if the variance of 

the grain size is kept constant. 

5. mean time to failure t50 decreases 'with increasing variai:tce of grain size 

distribution if the mean grain size is kept constant. 

6. life distribution forelectromigration failure approximates a lognormal 

distribution. 

Another study[ Schoen,1979], employed the same model as Attardo and co-workers 

and used the Monte Carlo method to simulate the dependence of electromigration 

lifetime on the parameters of linewidth, line length, and film grain size. In their work. 

a computer is used to create hypothetical lines having the same grain size distribution 

as real films. Each line is broken into sections and the grain boundary structure of 

. each section is simulated statistiCally. The grain boundary orientation and diffusivity 

are. simulated and the time to failure of the section is computed. The time to failure of . 

the entire line is determined by the minimum failure time of a critical section which is 

defined as the section having the greatest imbalance of vacancy flux. This procedure 

is repeated on many hypothetical lines to build up the failure time distribution for the 

real lines. 
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. The Monte Carlo simulation results shows similar results to those obtained by Attardo 

when analysing the effect on mean time to failure t50 of the various parameters. The 

. time to failure distribution was found to follow the logarithmic extreme value 

statistics when the grain size is comparable or exceeds the linewidth (near bamboo 

structure). In this situation, sUrface electromigration was assumed to play a dominant 

role in determining electromigration lifetime. For Iinewidth that exceeds the grain 

size, the time to failure followed a lognormal distribution. 

In another study [ Marcoux, et a1.,1989] , a 2D simulation model is developed by 

using a Hewlett-Packard computer. The model employed a Monte Carlo technique to 

generate two-dimensional geometrical patterns that simulates the grain structure of 

thin metal films by Voronoi tessellations. A Voronoi tessellation is a partitioning of. 

the plane into cells bounded by polygons. These cell represents a carpet of metal 

grains from which a section is cut to produce the interconnect line. The software 

calculates the statistical characteristics of the grain structure and. simulate the 

distribution of the parameters below:-

• the area distribution of grain size 

• the diameter distribution of the grains 

• the distribution of lengths of grain boundary segment 

• the number of triple points 

• the number of vertices 

The common feature ofMarcoux et a1; model with the current work( lumped element 

model), is the ability to demonstrate the distribution of the length of grain boundary 

cluster. Extra features of the current work which are not in Marcoux et al. simulation 

results are i ) number of grain boundary in a cluster and ii) number of cluster in an 

interconnect which are analysed to find their effect on Time to failure. 

The Marcoux et al. model uses Fortran program to approximate the steady state 

behaviour of the temperature and current density j distribution. For the grain boundary 

mobility or diffusivity D, eqn(2.8) is used:-
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D=D0 exp(E A / kT)Sin(~). 

where e is the misorientation (tilt angle) of adjacent grains grain 

E A is the activation energy 

Do is the mobility constant 

2.8 

When these parameters have been worked out, they are substituted into the atomic 

flux equation:-

where 

p = Po (I + a(T - To)) is the resistivity at temperature T, a is temperature 

coefficient of resistance 

Z~e = is the effective charge 

Nb = is the atom density in the grain boundary 

j c = is the stress-induced counter current density term which is temperature 

dependent. 

2.9 

In this model, the parameters that are analysed which affect electromigration life time 

are i) current density ii) temperature and iii) linewidth 

The results of the study are summarise below. 

1. The mean time to failure t 50 decreases linearly with increasing 

current density for a fixed line temperature, with Joule heating the 

decrease is non-linear. 
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2. The mean time to failure decreases linearly With decreasing 

Iinewidh (grain size> Iinewidth),however with further decrease in 

linewidth, the Mean Time to Failure and also the standard 

deviation increases. 

3. The time to failure exhibits a lognormal distribution 

An improvement to the classical model ofHuntington and Grone which includes the 

'backflux' force in the equation for electromigration atomic flux of eqn(2.3) was 

introduced by[ Trattles, et al., 1994] . In this model, the electromigration damage is 

reduced to some extent by a 'backflux' force which is related to the build-up of a 

stress gradient and a concentration gradient along the conductor caused by the 

accumulation and depletion of metal. Therefore , the model solves the transport 

equation for atomic flux along a grain boundary in the presence of an electric filed, 

stress gradient and concentration gradient. 

In the model it is assumed that the main cause of the flux divergence is the grain . . . . 
structure of the conductor and that these divergences occur at the triple-point 

junctions of the grain boundaries. Also in the model, the angle of mismatch e 
between neighbouring grain lattices and the orientation angle IjI of the grain boundary . 

with respect to the current flow are similar to that of [Attardo, et al., 1971]. When 

the electric field is applied to the conductor the divergence in the ion flux at the triple 

points results in the creation of a non-uniform ion concentration and a change in the 

stresses at these locations. It is assumed that the change in ion concentration between 

the two triple points is linear along the boundary and that there is no migration into or 

out of the grains. It is also assumed that the changes in stress at the triple points are a 

result of the material accumulation or depletion. An increase in ion concentration will 

result in a compressive stress at the triple point while a decrease in ion concentration 

will result in a tensile stress. It is also assumed that a linear change in stress exists 

along the grain boundary. The void is formed only after a critical tensile stress has 

been reached. There is also a critical compressive stress that the conductor can 

withstand before deformation takes place and hillocks grow. These critical stresses' 
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are the cause of the incubation period where there is rio observable degradation of the 

conductor. 

Lifetime tests and resistance measuring technique are performed on a set of five 

conductors with different grain structures. The time to failure analysis of the 

conductor stressed with varying conditions (variation of current density arid 

temperature) found the current density exponent of the Black Equation to be 

approximately 2.3. When stress and, diffusion are not included in the model n=1 is 

found This indicates the value n"" 2 has been contributed by the localised stress and 

diffusion acting against the elctromigration force. The results from the simulations 

suggest that the resistance measuring technique provide a more accurate estimation of 

the activation energy Q than lifetime tests and the current-<iensity exponent' n was 

determined to be 2. A direct correlation between the time to failure and the rate of 

. resistance changes was found when all conductors and stress conditions are 

considered together gives a relationship of the form:-

2.iO 

where R", = the rate of relative resistance changes 

2.3.3 The Continuum Models ofElectromigration Failure 

At present, a number of continuum models of electromigration failure are used to 

solve electromigration problems[Liu, et al.,1998]. The popular continuum models 

referred to are the vacancy drift and back diffusion model [Shazkes and Lloyd,1986] 

and the stress evolution model [Korhonen et aI., 1993]. The latter model is now being 

Widely used and has gained wide acceptance[ Clement and Thompson, 1995], and 

has been used to analyse electromigration-induced failure in near-bamboo lines.[ 

Sarychev, et al.,1999]. In this secti~n, the literature that apply the drift diffusion 

36 



model will be reviewed first and then followed by a review on the stress evolution 

model. 

2.3.3.1 The Drift Diffusion Models 

The vacancy drift and back diffusion model popularly known as the drift diffusion 

model, gained early acceptance since the model developed by [Shazkes and 

Lloyd,1986], successfully was able to derive the j -2 dependence of Black's model for 

the mean time to failure tso' The model was developed by treating both the Fickian 

diffusion (due to a vacancy concentration gradient) and mass transport due to the 

e1ecromigration driving force concurrently. Under an applied stress current, 
.. \ . 

momentum transfer from the conduction electrons causes matter migration. As the 
. . 

concentration of the metal atoms increase there is an associated back-diffusion .. The 

general drift-diffusion equation derived by [Shazkes and Lloyd,1986] is:-

J = D ac _ DZ*epjc 
v Ox kT 

where 

J v = is the vacancy flux 

D = is the diffusivity 

. Z*e = is the effective charge 

p = line resistivity 

j = the current density 

k = Boltzman's constant 

T = temperature 

c = is the vacancy concentration 

2.11 

The first term arises from the vacancy concentration gradient -driven backflux 

diffusion and the second term represents the current-driven (drift) or electromigration 

flux. Note that, eqn(2.11) is in fact eqn(2.3) with vacancy concentration c replacing 

the density of diffusing vacancies N v' but now with a back-diffusion term. In the 

one-dimension drift-diffusion model, the failure time is considered as the time to 
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reach a critical vacancy level at divergent sites i.e. the lifetime is believed to be 

determined mainly by void nucleation. In the study, the equation (2.11) and the 

continuity equation (2.12) is applied to a boundary conditions representing a semi­

infinite solid with a perfectly blocking boundary. The combination of these two 

equation gives rise to an equation which is normally known as the 'electromigration 

equation' [Korhonen et a!., 1993]. 

The continuity equation :-

aJ+ac=O 
& at 

Combining eqn(2.ll) and eqn(2.12), we obtained the electromigration equation:-

c3c = D( a2
c _ Z· epj c3c) 

at &2 kT Ox 

2.12 

2.13 

By taking the solution at the blocking boundary and assuming that the failure would 

occur when the vacancy concentration reached a critical level, c'" , a new equation 

for time to failure can be deriveq. The boundary conditions use in Shazkes and Lloyd 

model are :-

c(- oo,t) = co' , 

Jv(O,t)=O, . 

where Co = vaCaDCY concentration at equilibrium for zero stress' 

This boundary condition represents a perfectly blocking boundary at x=O . 

Eqn(2.13) is solved by using the Laplace transform method and the solution is given 

by eqn(2.14) 

(
z*epjD)( m 

c(x,t)=coerfc 2kT. VD) 2.14 

giving a time to failure of:-
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2.15 

This model can be characterised as a nucleation dominated failure [LloydI994], 

where the failure is determined by the build-up of a critical vacancy concentration 

(usually at a terminal or blocking grain boundary) which then quickly leads to 
; 

failure. [Tammaro and Setlik, 1999]. 

~ The model has been analysed for a range of boundary conditions in particular for the 

case of a finite aluminium stripe with blocking contacts at both ends.[Shatzkes and 

Lioyd,1986],[Clement, 1992]. The model has also been applied to the case where a 

blocking contact at one end and a constant vacancy supply at the other[Dwyer, et al., 

1994]. These boundary conditions could represents the experimental situations in 

which electromigration is occurring along a stripe joining it large contact pad to an 

on-chip device. This model has also been applied to a finite line to compare the 

nonstationary period (nucleation model) and the stationary period(void growth model) 

to explain the r 2 dependence[Kircheim and Kaeber, 1991]. They found that void 

growth model also exhibits the j -2 . Recently [Tammaro and SetIik, 1999] claim that 

. n=2 is the limiting behaviour of the nucleation models. The first two of these 

studies will be discussed here because of their significance towards the present work 

where their vacancy concentration time dependent equations will be used for 

comparison. 

The study by [Clement,1992], involves the assumption that the boundaries at x=o and 

x= £ are completely blocked such that no vacancies are allowed to pass ( x indicates 

the distance along the interconnect, x=o and x= £ corresponds to the blocking 

boundaries), that is 

J(O,t)=O and J( £ ,t)=O 

This corresponds to a situation that vacancies are conserved which could be 

maintained in a system where a thick strong passivation would preclude changes in 

the volume of the conductor. The other assumption made is that the 
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initiaIlbackground vacancy concentration is to be unifonn at the equilibrium value, 

that is:-

c(x,O)=c, 

Here we define the direction of the electric field to be in the negative x direction. The . 

vacancy flux is described by the drift - diffusion equation:-

.vc Dc •. 
J= -D---Z ePJ 

Ox kT 
2.16 

The vacancy concentration c as a function of space and time c(x,t) can be obtained by 

combining with the continuity equation below:-

vJ ac 
-+-=0 
Ox at 

to give a drift-diffusion model of the Fokker-Pianck type equation :" 

where 

ac(x,t} 
at 

c is the vacancy concentration 

vc(x, t} 
aD Ox 

D is the diffusion coefficient or diffusivity 

Z• . . e.p.J . th drift 
(l = k. T IS e coefficient 

2.17 

2.18 

( the equation above and others from the literature have been altered to be compatible 

with the present study in order results may be compared ) 

The general equation for the vacancy concentration as a function of length and time is 

given as:-
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[(
. klt.x 2k1t klt.X) (a.x (k; 2 a

2£2) Dt)] Stn-----COS-- xexp --- It +-- --
£ a.£ £ 2 4 £2 

In steady state, 

c( x, 00) a. £. exp{ - a. x) 
Co l-exp(-a.£) 

and 

_:..... -=a::.£ __ c -
max - 1- exp( -ai) 

The summary of the results of the studyare:-

2.19 

2.20 

2.21 

i) Under dc stress conditions,the electromigration-induced vacancy concentration 

build-up at a blocking boundary saturates with time for finite length £; The level 

at which vacancy concentration build-up saturates, decreases with decreasing j 

and £. 

ii) A threshold value of j £ is required to cause failure base on the assump~on that 

the vacancy concentration at the blocking boundary must reach a critical value to 

initiate void formation. The maximum vacancy concentration c max (Eqn(2.21) is 

dependent on a£ or j {Z ;;p) . This results agrees with the result obtained by 

experiment [Blech,1976]. 

iii) The vacancy build-up as a function of time has a j -2 current density dependence 

below saturation. 

Another study employing the drift-diffusion model was [Dwyer, et al.,1994].The 

study involve the assumption that vacancies are being collected at x= £ to form a 

void, making a blocking boundary. The condition on the vacancy flux J at x= £ is: 

J(£ ,t)=O 
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At the other end of the stripe, vacancies·are supplied from the contact pad in such a 

way to maintain a constant vacancy concentration Co at x=O. The boundary condition 

at x=O is 

c(O,t)=c, 

The drift-diffusion model of the Fokker-Planck type is again:-

1 Oc(x, t) il'c(x, t) Oc(x, t) 
D ill Ox' (l Ox 2.22 

The general solution to equation 2.22 is obtained by the method of Lap lace transform, 

which yields the subsidiary equation of the form:-

. ( ) !aexJ- a(e_x)l ~ 
c X,s 1 s P\. 2) . a s 
--=-+--;====~==;===~~=~===========xsmh -+-x 2.23 

Co s a 2 s ~2 sa. ~2 s 4 D 
-+-xcosh -+-e--sinh -+-e . 
4D 4D2 4D 

The residues are found at the roots of the denominator and it is found that for ae > 2 

there is one real root and infinite series of imaginary roots and for ae < 2 it has an . 

infinite series of imaginary roots. The vacancy concentration is normally interested at 

x= e. The real roots occurs at 

tanh11 2 
11 a.e 

. ~2 s 
where 11 = -+-e 

4 D 

The imaginary roots occurs at 

tanl; _~ 
I; - a.e 

2.24 

2.25 
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where 

~
2 S 

±i1;= -+-( 
4 D 

Both the roots can be found by graphical methods, 

The complete solution for the vacancy concentration is rather cumbersome and it has 

been found that the error in ·neglecting all but the first transient term is very small. A 

simpler expression for the vacancy concentration is thus 

For the case <11 ,;; 2 

and for the case <11 ~ 2 

2.27 

In the steady-state 

c(l(, t~ 00) exp(ax) 
c, 

2.28 

so that the condition for supersaturation, c(x,t) = c* becomes 

c __ c(x=l,t~oo) -exp(a.l)=~ 
Co' Co Co 

2.29 
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where c* or Ccr is the critical vacancy concentration 

The summary of the results form the stUdy are:-

1. The saturation time t sat increases exponentially with current 

density j. 

2. The time to reach a given critical vacancy concentration c* or 

failure time varies as j -2 . 

3. The breakdown or failure time is proportional to the critical 

vacancy supersaturation concentration c .. or c" 

These two models described above are based on a single grain boundary structure of 

an interconnect or as treating the interconnect as a single homogenous segment­

neglecting microstructure. 

There are several other studies· conducted by Lloyd and co-workers with the drift­

diffusion model of electromigration. failure[Lloyd and 

Kitchin,1991],[Lloyd,1991],[Clement and Lloyd,1992],[Lloyd and Koch, 1992]. In 

the study by Lloyd and Kitchin, a statistical model of electromigration is developed 

based on the extension of the failure model of Shatzkes and Lloyd which 

incorporates the statistics of microstructure and the variations in the activation energy 
r· . 

for grain-boundary conditions. The boundary condition applied somewhat arbitrarily 

are a 'semi-perfect' blocking barrier boundary, which would not completely stop the 

flux but reduce to some background level. The barrier is also assumed to lower the 

diffusivity in the same manner. The failure time t f is defined as the time to reach an 

. arbitrarily defined critical vacancy concentration c" . Under these conditions, the 

model is valid for passivated interconnects, i.e. there is a boundary condition that 

would allow a vacancy supersaturation to take place. The models assumes a 

lognormal distribution for grain size and for the activation energy for the self­

diffusion in grain boundary. The failure distribution function F(t), for an element 

( made up of two adjoining segments separated by a barrier) are found not to be 

lognormal. The cumulative density function or CDF of an interconnect which is 
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compOsed of a number of failure elements based on the 'links in a chain' or ' weakest 

link model' is found to be approximated by multilognormal distribution. 

A mathematical model based on the drift-diffuison equation to predicts the damage 

morphologies are develop [Lloyd and Koch, 1992]. The study is based on the concept 

that an electromigration induced mass flux divergence will create a local vacancy 

supersaturation in the grain boundaries and a steady-state vacancy concentration 

profile will be established where the vacancy generation rate is balanced by the rate at 

which vacancies diffuse to the surface via the boundary or through the lattice. The 

damage is in the form of crack-like voids and the thinning 'of an area near the grain 

boundary. The model is use to predict the failure morphology, where the appearance 

of the failures should vary with temperature. At low temperature, failure should be 

look like a crack, whereas at higher temperature, thinning will be experienced. 

In another study conducted by [ Lloyd , 1991], the previous study of [Shatzkes and 

Lloyd,1986] are reviewed and commented. The author comments that although the 

model correctly deals with the kinetics of grain boundary diffusion and predicts the ' 

r 2 dependence of lifetime, the geometrical effects of the grain boundary structure are 

not considered. [he author also argues that the earlier models can only be used to 

describe the process which leads to the generation of an initial void, but does not 

describe the whole failure process.' Since there must be two distinct stages to 

electromigration-induced failure, the failure time can be expressed as the sum of the 

time required to nucleate a void, and the time it takes the void to grow and form an 

open circuit. Once a void is formed, the earlier model in reference of [Shatzkes and 

Lloyd,1986] will be no longer valid. The void ~ll pOssesses a free surface which is 

not present in a passivated film. With this free surface acting as a sink, the high 

electromigration-induced vacancy concentration described in the earlier model of 

'[Shatzkes and Lloyd,1986] cannot be suppOrted. The flux divergence will still be 

present, but instead of building an excess vacancy concentration, the flux divergence 

will feed vacancies into the void leading to c=c 0 model at the void end. 
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2.3.3.2 The Stress Evolution Models 

One of the first to study the mechanical stress arising due to electromigration was 

Blech and co-workers [Blech,1976],[Blech and Herring, 1976] who explained the 

origin of the stress gradients and introduced the concept of a threshold length-current 

density product (j l) for electromigration. The metal atoms transported (via 

electromigration) to a blocking boundary build up a compressive stress with the 

highest level at the boundary. The resulting stress gradient will contribute to the 

driving force for mass transport. In the presence of a blocking boundary, a stress 

gradient could form which would act against the electromigration force and 

eventually stop mass flow. The critical length-current density product (j l) is due to 

the limitations on the stress that the conductor metal can sustain. If a maximum or 

'yield' stress is reached, no further transport of atoms is possible because the 

electrical driving force is balanced by a compressive stress gradient which causes an . . 

equal but opposing driving force. Above this maximum stress, the stress gradient 

required to stop the mass flow can no longer be maintained and electromigration will 

continue and the aluminium deforms plastically which is commonly manifested in 

hillock formation. For short lines, however, the stress gradient can be maintained 

without exceeding the maximum stress. The electromigration force equation in. the 

presence of stress gradient is given below [Blech and Herring, 1976]. 

F = Z*epj-n Ocr 
Ox 

2.30 

Since the study by Blech, many more studies were carried out to produce a physical 

model for stress evolution in interconnectS. These include the works by 

Kircheim[Kircheim, 1992& 1993],and also the work by Korhonen and co­

workers.,[Li, et al.,1992],[Korhonen et al, 1993]. In the study [Kircheim,1992] , the 

author proposes a model of electromigration in which generation of tensile and 

compressive stresses in grain boundaries during electromigration is caused by the 

annihilation and production of vacancies. The model is based on the two coupled 

partial differential equations for vacancy concentration and stress; In the development 

of the stress model, Kirchheim assume that the vacancies C v are in equilibrium with 
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the stress Ci i.e. if Ci changes then Cv· also changes immediately by the following 

relation:-

IQCi) 
Cv = COy eXI\ kT 

where 

COy is the vacancy concentration at zero pressure(stress) 

Q is the atomic volume· 

Ci is the hydrostatic stress. 

2.31 

The tensile stress (Ci >0) increases the vacancy equilibrium concentration and 

therefore the magnitude of the material flux, i.e. shorten the lifetime of an Al lines. 

When the vacancies are in equilibrium with the stress, the vacancy flux equation of 

the drift-diffusion model will be modified by the inclusion of equation (eqn.2.31) 

giving rise to: 

2.32 

Note that by combining with eqn(2.32) and (eqn2.31), eqn(2.32) also reduces to 

eqn(2.11) of the drift-diffusion model. 

The model also assumes that the Time to Failure is defined as the time necessary to 

reach a critical stress Ci er. The important results from the work of[ Kirchheim, 1992] 

is that the Time to Failure is proportional to the current density j -n where the current 

exponent n varies from 1 at low critical stress (± 10 MPa ) and 2 at high critical stress 

(300Mpa). However the statistical distribution of the Time to Failure is not performed 

and the model does not include the continuity equation with a source/sink term. 

Early work of Korhonen and co-workers proposed a model to predict the variation of 

lifetimes due to temperature and current density [Li, et al.,1992]. According to the 
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. model, the failure of interconnect lines occurs through the rapid nucleation of voids 

. by thermal stress. Small voids are trapped and grow at grain boundaries. After· 

reaching a critical size, voids then begin to migrate and coalesce until the line is 

severely damaged. Failure times are determined by the largest/fastest growing void in 

a line. For low current density j , an approximate r2 dependence of the lifetime is 

expected, and for higher currents they predict a large current dependence because the , 

voids are expected to start migrating immediately upon the application of higher 

currents. They also found that for grain sizes smaller than the Iinewidth, the 

temperature dependence is characteristic of grain boundary diffusion , and for near 

bamboo structure lines, it approaches that of the lattice diffusion. For thermal stress· 

induced voids already large· , the lifetime is determined by. current-induced 

coalescence and is proportional to the surface diffusion coefficient and a j-1 

dependence. 

In a later work, Korhonen et. al., developed a model which describes the mechanical 

stress arising from electromigration in a commed metalline which is deposited on an 

oxidised silicon substrate and covered by a rigid dielectric passivation. [Korhonen, et 

al.,1993(1)]. The stress evolution model equation derived by Korhonen et al. is given 

below (a complete description will be presented in Chapter 3) :-

2.33 

where 

D.Bn . th ffi . diffu·· K kT IS e e ectlve SlVlty 

G= Z ;pj is the electromigration driving force 

Eqn (2.33) is an extension of eqn(2.32) which accommodates the continuity equation 

with a· source/sink term. 
, 

The model shows the evolution of the stress assuming 

vacancy equilibrium with the stresses and that failure was determined by the build-up 

of a critical level of stress. In the model, the stress state is purely hydrostatic and 

constant across the line cross section. It is a one-dimensional model which depicts a 
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thin interconnect having a columnar grain structure where all grain boundaries are 

perpendicular to the substrate. The material transport along the interconnect line is 

assumed to be affected by grain boundary diffusion only. The model has been applied 

for a semi-infinite and finite line with blocking boundaries and with constant 

diffusion coefficient. It assume that the line is fmite and initially has thennal-induced 

voids and a diffusion coefficient dependent on vacancy concentration. 

. . 
The stress evolution model has also been applied to an interconnect line consisting of 

several clusters of grains,(with at least one grain boundary along the line) and several 

. bamboo grains.[ Korhonen, et al.,1993(2)]. On the application of current; flux 

divergences arise due to the different diffusivities in the bamboo and cluster grains. 

The bamboo grain effectively blocks the atomic flux at the ends of the cluster section. 

The electromigration flux depletes atoms from the cathode end of a cluster and 

accumulates them at the anode end, thus creates a stress a which opposes the 

electromigration flux. As time increases, the electromigration flux creates an 

oscillating stress pattern. A schematic diagram of the interconnect line used in the 

study and the stress distribution due to electromigration are shown in Figs 2.1 and 2.2 

respectively. 

electrons ---_ 

-

gth (L) 
amboo ~ it--

voi cluster leh 

b 

Fig.2.1 A schematic diagram of the cluster and bamboo sections of an 

interconnect line. 
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Fig2.2 The stress distribution during electromigration. Initial stress 

(small dots), fmal stress (solid line), stress at medium times(broken lines) 

The failure distribution of the model in Fig 2.1 is found to be consist of :-

1. Early failures in interconnect line which contain clusters length L 

greater than the critical length ( l>L er), because only grain 

boundary diffusion needs to be involve. 

2. Long term failures where short clusters are distributed among long 

bamboo segments, because bulk or lattice diffusion dominates the 

lifetime. 

3. Medium term failures where bamboo sections are short enough for 

the failure units to start interacting. 

In another study [Knowlton,et al.,1997], the stress evolution model has been used to 

simulate the effects of grain structure on the time to failure. Realistic continuous film 

and line microstructures have been generated by a grain growth simulator with a 

large population of samples of lines in order to obtain meaningful failure time 

distributions for a variety of line characteristics and testing conditions. This enables 

the prediction of the occurrence of the failure mechanism as a function of linewidth, 

line length, critical stress, postpattem armealing time and current density. A log­

normal distribution of grain sizes with a value of 0.28 for the standard deviation C1 sd 
I 

has been used for the simulation of the film. Interconnect lines of widths and lengths 

(relative to the median grain size dso ) are then etched from this film. The failure 
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criterion for a line' was taken to be the time at which the maximum stress in the line 

reached a predefined critical or failure stress cr er • It was also assumed that the criticaJ 

stress cr er is uniform along the line length, although there is evidence lines are more 

likely to fail at locations where contamination is present (such that cr er varies with 

position). The model has been applied to the boundruy conditions such that 

o{O,t} = cr{L,t} = cro or J .(O,t) = J .(L,O = 0 which represents a line ending in two 

large contact pads( constant stress) or two studs( zero atomic flux). 

The results of the simulation shows that the time to failure, as wen as the failure 

mechanism, is strongly dependent upon the critical stress. Polygranular mechanisms 

win dominate if cr er is 100Mpa or less since the line contains clusters long enough to 

support stresses due to grain-boundruy diffusion. If cr er is 400Mpa , the line win 

survive much longer, failure win require significant diffusion through the bamboo 

grains, and transgranular failure mechanisms win dominate. 

The simulations have been carried out for 10 samples of lines with zero-stress 

boimdruy conditions and a Jinewidth-to-grain-size ratio of 0.5. Whencrcris sman, the 

lines fail due to polygranular mechanism since the clusters can easily support a stress 

large enough for failure. If the critical stress is large, the failure is due to transgranular 

mechanism. In both cases, the failure distribution is monomodal since only one 

failure mechanism is active. The failure distribution for the case of an intermediate 

critical stress is bimodal since both failure mechanisms are active, accounting for the 

large deviation in failure time. The standard deviation cr sd for large critical stress is 

also quite large, the authors reason that the large variation arises from the fact that 

. the maximum line steady-state stress achieved is sensitive to the spatial distribution of 

polygranular clusters along the line. A line in which the clusters are distributed 

relatively evenly along its length win survive longer than a line in which the clusters 

are distributed unevenly along its length. For the effect of length and linewidth, shows 

M1TF rises dramatically as does the standard deviation DTTF with decreasing 

linewidthlmedian grain size. The line length also affects the number of clusters. Since 

shorter lines are less likely to contain long cluster, the MTIF is higher than the 

longer lines. The standard deviation DTTF is also found to increase. The results from 
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the model is consistent with experimental on near-bamboo AL-Cu lines such as 

[ Cho' and Thompson,1989]. The study also includes the effect of postpattem 

annealing of interconnect and the results shows an improvement of lifetime for 

narrow lines. Postpattem annealing will results in the reduction of the number and 

lengths of clusters. Not only the cluster shrink, but long clusters,may also split into 

two smaller clusters as large grains within a polygranular cluster can grow to span the 

width of the line. As a result the number of clusters which are longer than the critical 

length is reduced. 

The study on the effect of the stress dependence of the atomic diffusivity on the stress 

evolution due 'to electromigration was conducted by [park and Thompson, 1997]. 

They modelled the time evolution of the stress along interconnects through the use of 

a one-dimensional simulation as a function of current density. As a source for atomic 

flux divergence sites, a polygranular cluster region was introduced into the bamboo 

interconnect as a region of finite length with higher diffusion coefficient. The model 

assumes that the ends of the interconnects were at zero stress. The stress becomes 

tensile at the cathode end of the polygranular cluster and compressive at the anode 

end" The results of the simulation shows that the peak tensile stress first increased to a 

maXimum of about 200 MPa and then decreased to a very small value, while the peak 

compressive stress continuously increased to maximum of about 400 MPa The' 

behaviour was explained by the effect of the stress on atomic diffusivity. The atomic 

diffusivity. is larger in the tensile region that in the compressive region, therefore 

faster kinetics are applied in the tensile region and the peak tensile grows faster than 

the peak compressive stress during the initial time period. Such fast kinetics in the 

tensile region quickly leads to a quasi-steady state. At longer times, diffusion in the 

bamboo' regions dominates the evolution of the stress. The peak tensile stress 

continues to decrease and the peak compressive stress continues to increase until a 

true steady state is reached, in which a minimum flux through the interconnect results 

in a small maximum compressive stressin the true steady state. The simulation results 

shows that the peak tensile and the compressive stresses in the steady state are 

dependent on the length and location of the polygranular and the current de~ity. 
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A stress-evolution model was used to find the steady-state of the mechanical stress in 

interconnect lines was developed by [Gleixner and Nix, 1998]. The model is based in 

two dimensions, to take account of the effects of bamboo boundaries on the 

maximum stress which may develop, which the earlier stress-evolution model of 

Korhonen et.al, ignored. The model assumes that the mass transport is along the 

sidewalls and the grain boundaries, where diffusion along these paths is much faster 

than the line bulk. The results of the simulation reveals that the presence of bamboo 

grain boundaries may substantially increase the maximum electromigration stress, 

and the simulations on bounded interconnect segments show that variations in grain 

size may lead to large standard deviation in the maximum stress as line length 

decreases. 

Despite the very different underlying physics, where under the stress evolution model, 

the current-induced flux creates a stress-directed counterflux, .which retards 

electromigration damage, while the drift-diffusion or the 'electromigration equation' 

the counterflux arises due to the vacancy concentration gradient, both models have a 

similar mathematical formalism. In fact a number ofpapers[Clement and Thompson, 

1995],[Clement, 1997],[Liu, et ai, 1998] has showed it is possible to transform the 

Stress Evolution model into a drift-diffusion equation with an effective diffusion 

coefficient which is proportional to the vacancy concentration. 

The other main difference between the two models is that in the drift-diffusion model 

used by researchers mention in earlier sections does not include the effect of sources 

or sinks of vacancies. The study of [Clement and Thompson,1995],[Clement,1997] 

include the recombination/generation effect and use the Stress Evolution model ill 

terms of the drift-diffusion equation. The electromigration-induced transport of 

vacancies will change the local vacancy concentration and the stress. Korhonen et al. 

also assumes the vacancies are in equilibrium with the stress. They pointed out that 

dislocation climb is a mechanism by which the equilibrium between the stress and the 

vacancy concentration can be maintained. 
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The largest portion of the transported . vacancies will be taken up in 

recombination/generation by climbing dislocations either in the grain boundary or at 

lattice dislocation, thereby changing the local stress. A very small number of 

vacancies will go into changing the local vacancy concentration to maintain local­

equilibrium with the stress. Since the concentration of vacancies is very small. in 

comparison to the concentration of atoms, dislocations must climb only infinitesimal 

distances to restore the local vacancy concentration. With the inclusion of the 

recombination/generation effect, a drift-diffusion equation is derived once again but 

with the critical difference that the diffusion term D v which is replace by D a BQ / kT, 

which leads to an important differences in the time scale. [Korhonen,et al.,1993] 

pointed out that the vacancy concentration gradients can be created in a matter of 

seconds because of the almost negligible small mass transport and the other hand, 

stress evolution in interconnect lines during electromigration can last hundreds of 

hours. With the result obtained from these studies, it is shown that the analysis of the 

drift-diffusion equation in the interconnect network will cover both the current 

continuUm models of electromigration failures. 

Finally [ Duan & Shen,2000] proposed an alternative failure criterion, that 9f a 

critical accumulation of flux divergence instead of the critical stress. He argue that 

the divergence of atomic flux , rather than the stress, are more appropriate in 

characterising the electromigration damage using the one-dimensional stress 

evolution model. This is based on the numerical analysis of the nanoindented single­

crystal aluminium which shows that i) duringelectromigration, the maximum tensile 

stress and the mllximum atomic flux divergence do not generally appear at the same 

location in a metalline and ii) the location of voiding predicted by the maximum fltiX 

divergence criterion is more in line with experimental observations [ Joo et aI., 1998 

and 1999] than the predicted by the maximum stress criterion. Using the critical stress 

failure criterion" voiding should occur at the cathode end of the fast-diffusion 

. segment. However analysis shows that the maximum flux divergence does not occur 

at the exact cathode end of the fast diffusion segment, but instead it appears near the 

cathode end but outside the fast diffusion segment. 
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However, the suggestion of [Duan and Shen,2000] that the voiding criterion is based 

on a critical accumulated flux divergence is shown to be equivalent to the widely 

accepted critical stress criterion ofKorhonen based on the study by [Dwyer and Wan 

Ismail, 2001]. Solving the stress equation (eqn(2.33», Duan and Shen find that the 

two criteria give different voiding points. However , it is clear that by integrating 

eqn(2.33), these two criteria are in fact identical where the stress and the atomic flux 

are related by the equation below:-

t aJ A 
Cj(x,t) = BnJ ""&dt 

o 
2.34 

In the study, the Dwyer and Wan Ismail (Appendix C)are able to reproduce the 

figures of [Duan and Shen,2000] for stress evolution and for the atomic flux , but are 

not· able to reproduce the figure for the accumulated flux divergence, which in the 

study is found to be proportional to the tensile stress and thus is in line with 

eqn(2.31) Also for nanoindented single crystal aluminium line, the theoretical 

position of maximum stress lies outside the indented region if standard 

Electromigration models are to be assumed. 

2.4 Summary 

A survey of the literature, related to the electromigration problems in the interconnect 

of Integrated Circuit has been presented in Chapter 1 and 2. The past and present 

study of electromigration is reviewed with a focus on the physical and experimental 

nature of electromigration- induced failures. 

The literature review have given an overview of electromigration which includes a 

review of the history and some salient features regarding electromigration. The failure 

mechanism of an interconnect is presented where the main cause is due to the 

presence of a flux divergence. The effects of the microstructure and macrostructure 

on the lifetime are also discussed. A brief description of the models of 

electromigration-induced failure are also presented. Various techniques of extending 
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the lifetime of interconnects due to electromigration are also being discussed where 

AI interconnects are being switched to Cu interconnect for next three generations of 

IC designs. The remainder of the thesis concentrates on AI for which most results are 

known. 

Electromigration Time to Failure statistics are normally assumed to follow a 

lognormal distribution both from data produced by experimental observation and 

from models simulation. However this distribution cannot be scaled with length when 

considering the 'weakest link' model. Also from experimental data, it is also shown 

that the Median Time to . Failure (MTTF) , which is used as the standard 

measurement for electromigration, increases in the near-bamboo type of interconnect, 

however the standard deviation (DTTF) are also increases giving rise to reliability 

concern where early failures occur minimising the advantage of the increase in the 

MTTF. 

A complete review of the various models of electromigration-induced failure are 

made where focus is made to compare the different underlying physics offailure and 

the assumptions made in deriving the models and also the results they produce. The 

continuum models which comprise of the drift-diffusion and the stress evolution 

model are discussed in detail to establish their main differences , advantages and 

disadvantages. The past and the current work on the stress evolution model is 

reviewed extensively. 

The main points to note for the remainder of this thesis are that:-

(i) Currently, the most widely accepted model of Electromigration is Korhonen's 

stress evolution model. 

(ii) Studies using this model are generally one dimensional. Thus microstructure has 

been averaged across the linewidth so that interconnects are treated as having 

cluster sections with fast diffusion D fast and bamboo sections with slow diffusion 

D slow. Aside from this the microstructure detail is washed out. 
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(Hi) The stress in the calculations have been assumed to be hydrostatic and uniform 

across the linewidth which assumes passivation and substrate do not fix the 

metaIlisation position. This is unrealistic. 

57 



CHAPTER 3 

THE DEVELOPMENT OF THE LUMPED ELEMENT MODEL 

3.0 Introduction 

A number of physical models now exist to describe the electromigration problem 

which range from the empirical, such as Black's original equation[Black, 1969],and 

the semi-empirical, such as that reference ofHu and co-workers[Liew,et al.,1990], to 

the more quantitative continuum descriptions which includes the drift-diffusion 

model [Shatzkes and Lloyd,1986],[[Lloyd and Kitchin,1991 and 

1994],[Clement,1992],[Dwyer, et al.,1994],[Kirchheim and Kaeber,1991] and the 

Stress Evolution model [Korhonen et al.,1993]. Korhonen's model has received a 

great deal of interest in the literature and must now be considered to be thd currently 
j 

accepted model for Electromigration. The continuum models are more attractive as 

they do not use arbitrary fitting parameters . However , these models have been 

largely applied to the very simplest case of an interconnect whose properties, at 

position x along the line, are averaged over its width and thus do not include the 

microstructure in a realistic manner. Although the results for this special case are 

encouraging ( a j -2 dependence is found for the lifetime defined here as the time to 

reach a critical stress cr er) it does not really provide a sufficient test for. the validity of 

the models. Beyond producing an inverse-square dependence on dc current, a second 

and vital test for any model is that of its ability to predict the correct statistical 

distribution of observed lifetimes, traditionally believed to be lognormal[ Cho and 

Thompson,1989][Thompson ,1990][Liew, et a!., 1992],[Joo and Thompson ,1994]. 

The present work largely considers the theoretical aspects of the electromigration 

problem where a new approach is developed to investigate microstructural effects 

(lengths of grain boundaries, diffusivities, and angle of orientation) on the failure 

time. The development of the lumped element model will be based on the Stress 

Evolution model which is now the most accepted model in describing 

electromigration. Within the Stress Evolution model, the current work will attempt to 
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-- ----------------------------------------------------------------------

demonstrate that the equation which describes the evolution of stress within the 

interconnect is equivalent to a slow (compared to original drift diffusion model) 

non-linear drift-diffusion equation description of the vacancy build-up. In the current 

model , it is assumed that the electromigration failure is caused when the stress 

reaches some critical yielding value of critical stress "er or equivalently a vacancy 

concentrationc er (eqn(2.31). The current model attempts to demonstrate that a good 

approximate description of the stress evolution in a grain boundary network can be 

obtained by considering, instead, an equivalent electrical problem on a lumped CR 

network. Using this approximation it is then possible to calculate the interconnect 

lifetimes or Time to Failure using commonly available software packages such as 

PSpice or Matlab. 

The CR network obtained can also be utilised to predict an approximation to the 

failure time by involving Elmore's delay time[Elmore,1948]. This method is used by 

CMOS circuit designers to obtain rapid estimates of the time-delays in complex 

circuits. Just as with the supersaturation threshold for the electromigration lifetime, 

the CMOS time-delay is the time for some variable( a voltage in this case) to reach a 

given threshold. 

3.1 Some background of the stress evolution models 

The microstructure of a modem interconnect is characterised by" a series of 

polygranular cluster regions separated by a number of single grains spanning the 

linewidth as shown in Fig 3.1." Such', interconnects are said' to possess a ,. near­

bamboo' microstructure. 

polygranular cluster bamboo 

Fig"3-. t Schematicm typicalnearbamboo"graim;tructure" interconnect" 
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Atomic diffusion is much greater along the grain boundaries than it is along the 

sidewall or through the grain bulk, so that matter migrates, at least at first, along the 

grain boundary networks that make up the cluster regions. The result is a mass 

accumulation downwind of the electron current where it is deposited in the grain 

boundaries at climbing dislocations producing a local compressive stress. Likewise, 

mass is depleted upwind producing a local tensile stress[Blech and Herring, 1976]. 

The resulting stress gradient causes a driving force that opposes the electromigration 

force, eventually leading to a non-equilibrium steady state[Gleixner and Nix, 1998]. It 

is generally argued that interconnect failure will occur if the stress reaches some 

critical value Ocr. This cannot occur if the grain boundary cluster length is too short , 

as insufficient stress will arise, a pheomenon known as the Blech length effect[Blech 

and Herring, 1976],[Knowlton et al.,1997] 

In a typical interconnect, the evolution of the stress can be seen to pass through three 

distinct regions[Blech,1976]. First a quasi-steady state is reached in the cluster 

sections due to matter transport along the grain boundary. Second, the stress fields 

within· these sections then stay roughly constant as significant stress develops in the 

single-grain bamboo sections. Finally stress coupling between the cluster sections 

occurs. 

The distribution of cluster and bamboo sections results from some stochastic process 

(possibly described by the Voronoi network of Thompson and co-workers[Cho and 

Thompson,1989]. Likewise the diameter of an individual grain is generally taken to 

have a lognormal distribution, grain orientation possess a roughly uniform distribution 

(0-90° )[Kircheim and Kaeber,1991], while the atomic diffusion coefficient for a 

given grain boundary depends upon the crystalline faces of the two grains from which 

it is made. Fig 3.2(a) shows a dislocation model of a small-angle grain boundary. The 

line between points a and b corresponds to a boundary. Fig 3.2(b) shows the 

relationship between the tilt angle (a) , Burgers vector of dislocation( b), and the 

spacing between the dislocations (d). 
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(a) (b) 

Fig 32(a) The dislocation model of a small-angle grain boundary 

(b) The geometrical relationship between 9,the angle of tilt, 

b, the Burger vector and d, the spacing between dislocations 

The distribution of the diffusion coefficient for low angle tilt grain boundary is given 

by the equation derived by Turnbull and Hoffman [Kirchheim and Kaeber, 1991] :-

D. sin ~ ........................... 0° (9(36° 

3.1 

D.sinlS0 ........................ .36° ~ 9 ~ 120°. 

where D is constant and 9 is the tilt angle of the grain boundary. In addition the 

effective charge Z· e may vary between grain boundaries. As a result the Time to 

Failure (TTF) for a particular metalisation process is itself a stochastic variable. 

Most models for the evolution of stress are one-dimensional( most notably reference 

[Korhonen ,et aI., 1993]). In this model, the microstructural effects and the 

electromigration current are averaged over the linewidth. 'This leads to an effective 

diffusion coefficient of :-
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3.2 

where D~B is the atomic diffusion coefficient for migration along the grain boundary 

network, Il is the width of the grain bounda!)' and W is the linewidth. Essentially 

Korhonen et al. argue that matter inclusion in the grain boundaries may be treated as 

a simple, unifonn increase in the thickness of the grain boundary. The rigid 

passivation and substrate layers provide a simple volume constraint, which produces a 

hydrostatic pressure on the aluminium. Ignoring the traction between the grains and 

substrate and the grains and the rigid passivation layers leads to a homogenous 

hydrostatic stress again rendering the problem of one-dimensional. A more plausible 

constraint was considered by Gleixner and Nix , who included the traction at the 

surface, effectively treating the grain boundary as a Mode 1 crack stretching from the 

passivation to the substrate. The constraint on free energy minimisation, in this case, 

being a unifonn pressure at the grain boundary interface rather than the uniform 

interface displacement assumed by Korhonen. Finite Element calculations then show, 

that the stress field is not homogenous within a cross-section of the interconnect, but 

rather is localised around the grain boundary. The one-dimensional model can thus 

only really be considered as an approximation, as it cannot model, for example, the 

effects of a non-unifonn distribution of bamboo-grains [Gleixner and Nix ,1998]. 

Gleixner and Nix consider the steady-state of a typical intercom'lect, by evaluating 

the stress field on a stick-network of grain boundaries. The aim of the current work is 

to look at a means of modelling the stress evolution ,on an interconnect of an arbitrruy 

microstructure, by considering the matter transport on the cluster networks. For early 

failures, stress evolution is confined to the individual cluster sections [ Blech ,1976] 

and thus the present model seeks only to study the stress evolution in an arbitrruy 

single polycrystalline cluster, represented by a stick-network. 

3.2 Stages of the development of the present model 

The development stages of the lumped element model shall be as follows:-, 
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i. The description of the stress evolution model under electromigration on a network 

of one-dimensional grain boundaries 

ii. The development of the exact steady-state solution for a single polygranular 

section of columnar grains 

. iii. The development of the distributed CR network in a single grain boundary 

iv. The development of the lumped C-R-C IT network in a single grain boundary. 

v. The analysis of the accuracy of the C-R-C IT network-

vi. The development of the Matrix representation of the C - R - C IT networks 

vii. The development of the signal or Elmore delay in estimating the Time to Failure 

viii. The non-linear solution for concentration dependent D( (1) 

In the development of the model, the assumptions of the pseudo-one-dimensional 

network and of modelling the exact distributed CR transmission line by the lumped 

elements are the only approximations made 

3.3 The description of the stress evolution model 

In electromigration , the total atomic flux density is generally taken to be 

3.3 

where C1 is the normal tensile stress on the grain boundary, C A is the atomic 

concentration, D A is the atomic diffusion coefficient, Z· is the effective 

electromigration charge, e is the electron charge, p is the resistivity of the film, j is the 

applied current and Q is the atomic volume, k is the Boltzman's constant, T is the 

operating temperature and i is the unit vector along the interconnect 

[Korhonen, et a1.1993]. Electromigration occurs largely as a result of electron 

scattering from the metal atoms, biasing the hopping probability in the downwind 

direction. This probability is mainly limited ~Y the concentration of vacancies C v and 

consequently varies with the stress. Equivalently one may view the matter transport as 
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a vacancy flux in the opposite direction. With this equivalence, the relation 

IlvCv = 11 A CA must hold for the atom and vacancy mobilities 11 A and 11 v, and then, 

kT 
provided that the mobilities satisfy the Einstein relation DAY = -z" 11 AY, we 

, e' 

obtain 

3.4 

The limiting factor for vacancy diffusion is then the atomic concentration CA' which 

can be taken to be constant (CA = ~ , thus the vacancy diffusion coefficient D v is 

also constant and independent on stress cr. The electromigration vacancy flux may be 

written as [Korhonen ,et al.,1993] 

_ DyQCy(a)(,", z·epj .) 
Jy - kT va+ Q : 

Vacancy continuity [Korhonen,M.A.,1993] implies that 

OCv 
V.Jv+--at+Y=O 

3.5 

3.6 

The final term on the left-hand side of eqn(3.6) describes the dynamics of the vacancy 

sources and sinks. 

The current model is developed by using the model of Korhonen et al. and taking 

into account the decoupling of the stresses between grain boundaries [Gleixner and 

Nix,1998] and also including the effects of the microstructure on the stress evolution. 

The model is developed by considering the stress evolution on the grain boundaries 

( where all variables are indicated by a superscript GB). In this case the vacancy 

current along a columnar grain boundary in the direction r is given by 

JGB _ Dy QCy (a) '"' GB Z ePJ . GB GB ( • .) 
y - kT vaN + Q :. ~ 3.7 
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and the vacancy continuity yields 

acGB 
V.J~B + ;: +yOB = 0 3.8 

The term yOB describes the vacancy recombination at the grain boundary. In order to 

proceed the expression for this recombination rate and also a relationship between the 

normal stress on the grain boundary and the local vacancy concentration must be 

obtained. It is assumed that the vacancy concentration is kept roughly in thermal 

equilibrium with the normal stress[Korhonen ,et a\.,1993] and is given by 

OB >'ON 
(

n GB) 
CV "'cOexp kT =c(r,t) 3.9 

where Co is the vacancy concentration in stress free material 

It is also assumed that the recombination of the vacancies occurs through dislocation 

climb, creating a local tensile stress field ogB, normal to the grain 

boundary. [Korhonen , et al.,1993]. Thus 

acGB 
GB A 

OON =-B GB 
CA 

acGB 
where yGB = A 

at ' 

3.10 

C~B is the atom concentration in the grain boundary ( '" a-I) and B is a coefficient 

which depends upon the elastic properties of the metal (ranges. from 0.5 to 0.75 times 

the Young's modulus for Al.)[Korhonen et al.,1993(1)]).Note the model assumes a 

linear and elastic relationship between stress and strain. The vacancy dynamics is 

described by the following cycle. First, deposited atoms are overwhelmingly 

incorporated at climbing dislocations which leads to a very slow increase in the local 

compressive stress, or equivalently , a slow decrease in the local tensile stress, at 

downwind sites. Second, the vacancy concentration is assumed to change quickly 
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with the tensile stress and thus C ~B (r, t) decreases typically at downwind sites and 

typically increases at upwind sites with the stress. 

From eqn.(3.9) 

GB .. ON 
(

n GB) 
CV '" Co exp kT 

" GB _ kT """GB 
vaN - GB UVv ncv 

The equation of the recombination is given by:-

cGB 
80

GB 
"GB =_-A- N 
• B'Ot 

substituting eqn(3.11) into eqn (3.12) gives 

By using the values of the parameters used by Korhonen et.al, 

where, 

k= BotIzman's constant= 1.38 x 10 -23 JI("! 

T= operating temperature in Kelvin = 500K 

B= 50 Gpa= 50xl0 9 Nm 

n = atomic volume =lx 10 -29 m3 
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--------------------------............. 

The inequality above means that the middle term in the continuity equation of 

eqn(3.8) can be ignored. The new continuity equation is given below 

V.J~ +yGB = 0 3.14 

The stress evolution for a single columnar grain boundary in the direction of the 

interconnect (x) is derived below :-

If the stress is hydrostatic (o~~ = o(X» at all points in a plane perpendicular to the 

stripe length, then averaging over the width of grain boundary, gives 

The average recombination 

where 15 = width of grain boundary, 

W= average grain size 

from eqn(3.12) gives the average recombination by the equation below 

3.15 

and subtituting y GB in the continuity equation (3.14) 
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· Z*epj 
whereG= n 

Then 

rearranging gives 

(~).( C~B).( oo:B) 

Then 

Ignoring the dependence of C~B (cr) on cr and if ~; «1, the first term on the right 

hand side is a diffusion term with diffusivity 

3.17 

which is equivalent to the equation of [Korhonen et al.,1993] 

3.18 

DGBCGB 

h GB V v wereDA = GB 
CA 

from eqn(3.4) 

Therefore the complete stress evolution equation over time is given below:- . 
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3.19 

The difference between the effective grain boundary diffusion coefficient Dtff of 

eqn(3.18) and the diffusion coefficient for the bulk DB using the values of 

[Korhonen,et al.,1993] and [Knowlton ,et al.,1997] are calculated below:-

D • = 3xl 0-16 m2 Is = effective diffusion coefficient for the entire cross section 

oD2B = 3xlO-22 m3 Is' 
0= grain boundary width = 1 x 10 -9 m 

Cv 
-=10-7 

CA 

and assume the grain size W= 10-6 m 

from eqn(3.2), 

The atomic grain boundary diffusion coefficient 

D GB Da' W _ 3xl0-
16

xlxl0-
6 

3xl0-13 m 2 s-1 

A o~_ Ixl0-9 

from the relationship eqn(3.4) 

The vacancy diffusion coefficient at grain boundary 
D~B = 3xl0-13 m2s-1.107 = 3xl0";;m2s-1 

BQ 50xl09 .10-29 

kT = 1.38xl 0-23 .500 
100/1.38=72 
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-- ------------------------------

Therefore, the effective vacancy diffusion coefficient 

Devff ( I)) ( GB)(Bn)(C~B) = W· Dv kT CXB 

D~ 
lxl0-9 6 7 

= lxl0-6 .3xl0- .72.1xl0-

D~ 

h Bulk d·ffi .. - D. - 3xl0-
16 

10-18 2-1 
T e I US1Vlty - D B= 200 - 200 = 15x m s 

where 200 is the ratio ofD. to DB [Knowlton, et al.,1997] 

which means that D ~ff > DB. Thus the effective diffusion along grain boundary is 
much faster than actual diffusion through bulk. 

With the early failures occuring in cluster sections acting independently,equation 

(3.16) must be solved on the grain boundary network in each cluster section. Note that 

a (J v = 0) quasi steady-state is reached on the grain boundary network long before it 

is reached through diffusion via the bulk because the true bulk vacancy diffusion is 

much smaller than the effective grain boundary diffusion coefficient as shown above. 

Early failure, though, will occur through vacancy transport along grain boundaries 

within a cluster section, as the maximum stress that arises is obtained first on the 

grain boundary network. Thus, the analysis of earlier failures in a single cluster, needs 

only to consider the transport along the grain boundary network and not the later bulk 

diffusion[Blech,1976]. Stresses in the grain bulk, and hence vacancy concentrations, 

arise as a result of grain boundary stresses and not bulk vacancy diffusion .. 

The equation describing the stress evolution at a grain boundary may equally be 

expressed in terms of the derived variable c(r,t), defmed in eqn(3.9), which is closely 

related to the vacancy concentration in the grain boundary Cv(r,t). Therefore, in 

terms of this variable , the vacancy concentration c(r,t) build-up for a single 

columnar grain boundary in the direction of the interconnect (x) are derived below 

:-
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From the Korhonen et al. equation 

GB __ Dv Qc OON Z epJ . GB (GB •. ) 
Jv - kT Ox+Q~ 

but (in terms of variable c(r,t» 

~GNB __ kT ,,_ 
v Qc "" from eqn(3.11) 

J
GB __ D~BQC(kT oc z'epL) 
v - kT Qc Ox + Q ~ 

the vacancy recombination rate is given by:-

GB = (W) (CXB) (kT Gc) Y Il' B . Qc at 

and from the continuity equation eqn(3.14) 

V.J~B+yGB=O 

substituting into the continuity equation above 

(W) (CXB) (kT Cc) 
+5'S'Qc' at =O 

rearranging 

(W) (CXB) (kT Gc) =~(DGB(Cc z'epjc)) Il' B . Qc' at Ox v Ox + kT 

(Gc) ((Il)( B )(Qc) GB(02C z'epjCc)' at = W' CXB . kT Dv . Ox2 +kT"" Ox 

(Cc) =((~) (~)(Qc)DGB (02C z·q.P.j.oc) 
at W . CXB kT V' Ox2 + kT Ox 

Therefore, the vacancy build-up equation is ~ven below:-
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3.22 

and eqn (3.20) can be replaced by 

GB _ D~BOC(kT ac z'epj .) 
Jv - kT OcOx + 0 ~ 

GB(i1c ) = -Dv Ox +ac 3.23 

eqn(3 .22) is then replaced by 

3.24 

where 
. Z'epj 

alS "J(f (this variable will be used in the later section in the 

development of the lumped element model) 

Bothequation(3.22) and equation(3.l9) of Korhonen et.al's stress evolution model 

are non-linear Partial Differential Equation's(pDE). Therefore significant progress 

can only be made by linearisation. In both cases linearisation , relies on the fact that 

the ratio c/c o = exp(OO'~B IkT) does not change appreciably from unity. Setting 

D"'D~ in eqn(3.22) reduces it to a linear drift-diffusion type, exactly equivalent to 

the Electromigration Equation model of LIoyd and co-workers, except that now 

c(r,t)(=Cv(r,t»varies much more slowly as a result of the recombination affecting 

the diffusion coefficient as in eqn(3.l7).- The difference between eqn(3.22) and the 

Electromigration Equation (eqn(2.12) is one of time scale. A suitable analogy is the._ 

eventual flooding of a region despite possessing a very good drainage system. The 

Electromigration Equation model does not allow 'drainage'(recombination), so 

vacancy levels change very rapidly. 

Eqn(3.22) must be solved on each grain boundary of a polygranular section of the 

interconnection, which are represented as a stick-network of one-dimensional 

columnar grain boundaries. The conditions on c(r,t) at the intersection of two or more 
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grain boundaries are those of continuity. Integrating eqn(3.14) at an intersection of 

grain boundaries ij, .... etc. yields 

LoJi(n,t) = 0 
i 

3.25 

where i is the grain boundaries which join at node n and the current densities 

(I J v(n, t)l= J i (n, t) on grain i) here are defined out of the node n; /)i is the width of 

the i-th grain boundary, ci(n,t) is the 'vacancy concentration' at the intersect on 

grain boundary i at time t and the sum is over all the grains boundaries making the 

intersection. 

3.4 The development of the exact 'steady-state' solution 

In the development of the present model, the steady-state solution for a single 

polygranular section of colunmar grains represented by a one-dimensional stick­

network is considered first. This will be useful, as it is indicative of those nodes at 

which failure is likely and also leads to the well-known length effect for 

electromigration failure. But more importantly, the solution suggests a means of 

investigating the approach to the quasi-steady· state and which will lead to an 

estimation of the failure time. 

In the steady state both J v (r) and Dv (r) are constant along grain boundary i, and 

are equal to J i and D i respectively. An auxiliary function v( r) is introduced and is 

defined according to . 

c( r) = exp( a.r). v(r) 

where a=Z*epj/kT 

From eqn(3.23) 

and after rearranged becomes 

3.26 
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8c{r). Jj 
--+ClC=--

()r D· I 
3.27 

and this takes in the form of a linear equation of the first order and can be solved by 

the integrating factor method where the Integrating factor (l.F)= eJ -aCt = - e -ru . 

Eqn(3.27) are now in the form of 

8c(r) eJ-aCt = _!.L eJ-u·dr 
iJr . D .. 

I 

but from eqn(3.26), c( f) = ear. v(r) 

therefore 

o ( ) J. 
iJr v(r) = -exp( -Cl.r) ~. 

I 

( 

3.28 

Note that continuity of c(r,t) at a grain boundary intersection ( eqn(3.25» also implies. 

continuity of v(r,t) at those points. Integrating eqn(3.28) along the one-dimensional 

grain boundary (rj,fj+l) yields 

3.29 
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Eqn(3.29) has the appearance of a random resistor network with v(rJ as a (quasi) 

voltage at the node at r i and J i that of current. The resistor values are distributed 

according to 

3.30 

where 0 i is the width of the grain boundary i, d is the thickness of the grain boundary 

assumed to be thickness of metaIIisation. The topology of the electrical network is 

identical to the topology of the grain boundary network. An equivalent electrical 

circuit is obtained by placing a node at each edge or triple point and replacing the 

. grain boundary between the connected nodes by the appropriate resistor Ri' The 

diffusion coefficient Di is constant along a grain boundary, eqn(3.30) allows for 

extra nodes to be introduced, this divides the grain boundary into two (or more) 

resistors leaving the total sum unchanged. The extra resistor values can be calculated 

by using the same equation (3.30). To simplifY the model, all the grain boundaries 

have been assumed to have the same average width Si = S and shall take the units of 

the area such that Od = 1. 

3.5 The development of the distributed eR network for a single grain 

boundary 

As described in the last section, the steady-state of the stress /vacancy build-up result 

mimicked exactly a random resistor network. It is common in previous (one­

dimensional) models [Korhonen M.A.et.al, I 993] to ignore the dependence of D eff on 

stress, then the time development of the system mimics exactly a distributed 

inhomogeneous eR transmission line as derived below. At this point it is useful to 

introduce the following equivalent electrical circuit identification 

i.) v(r,t) = c(r,t) exp(-a.. r) 

ii) R( )
= exp(-a..r) 

r D(r) 
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Hi) C( r)= exp( a.r) 

where v= pseudo voltage, 

c= charge/vacancy concentration, 

R=resistance per unit length, 

C= capacitance per unit length. 

Along a single grain boundary, the vacancy flux of equation (3.23) can be write in 

Laplace- space as the pair 

[oc J' J=-O Ox -ac 

oJ . 
-+sc-co =0 
Ox 

and from eqn(3.28) 

o() J;(r) 
Or v(r,t) = -exP(-a.r)O;(r) 

3.31 

3.32 

3.33 

Equations 3.32 and 3.33 may be written for an arbitrary grain boundary, in terms of 

the pseudo-voltage (v(r,s» and current (J(r,s» in the Laplace domain as 

V.J;(r,s) = -sc(r,s)+co 

J;(r,s) 
V.v(r,s) = -exp(-a.r) O;(r) 

3.34 

3.35 

After substituting the equivalent electrical circuit identification (i)-(iii) ,the equations 

(3.34) and (3.35) becomes the transmission line pair 

V.J;(r,s) = -sC(r)v(r,s) +Co 3.36 

- V.v(r.s) = R(r).J;(r.s) 3.37 
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Eqns(3.36) & (3.37) represents a linear but inhomogenous transmission line system 

where the ' line capacitance' increases exponentially while the line resistance 

decreases exponentially with x, the distance down the line. Both these eqns ( 3.36 and 

3.37) expresses an important point, i.e. the vacancy concentration equations can be 

transformed exactly into transmission line equations. This means that it is possible to 

model the line exactly with a distributed CR network of series resistance and parallel 

capacitance. The only approximation made in solving the problem will be to replace 

the distributed transmission line with a finite number of lumped capacitors and 

resistors which will be described in the next section. 

3.6 The development of the lumped eR network for a single grain boundary 

By using the same approach as in section 3.5, the vacancy build-up equation along a 

single grain boundary in Laplace space is given by the eqn(3.31) and (3.32) 

J=-D[: -(lc] 
oJ 
-+sc-co =0 
Ox 

3.31 

3.32 

In the literature, analytical solutions to the above problem exist in the analysis of a 

single one-dimensional grain boundary of length £ . [ Shatzkes and Lloyd 

,1986],[L1oyd and Kitchin ,1994],[Clement, 1991],[Lloyd,and Kitchin,1994] and 

[Dwyer.,et aI., 1994] . Two typical cases are considered corresponding to a blocking 

boundary (J( £, t) = 0) at the downwind end and, at the upwind end, either Case(A); 

where cr(O, t) = o (equivalent to c(O,t)=c o ); or Case (B) where J(O,t)=O. 

The vacancy concentration c(x,s) and the vacancy current J(x,s) at the boundaries x=O 

and x= £ can be related by a transfer matrix T and a U vector with appropriate 

boundary conditions. Thus, integrating eqn(3.31) and eqn(3.32) 
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[
C(£,S)] = J C(O,S)] + u 
J(£,s) .1LJ(0,S) 

The T and U matrices are given by 

1 [/3+ exp(/3+£) - /3_ exP(/3_£) 

T /3+ - /3_ ~exP(/3_£) - exp(/3+£)) 

and 

.. [1 ] 
U = c: (1 - T) aD 

exP(/3_£) - eXP(/3+£) ] 
/3+ eXP(/3_£) - /3-(/3+£) 

3.38 

3.39 

3.40 

where /3:(s) = ~ ±~~2 + ~ and 1 is the identity matrix=[~ ~J. The value of /3: 

is derived by [Dwyer, et al. 1994] and is reproduced as shown below. 

From eqn(3.24), the vacancy build-up equation 

Taking the Laplace Transform of the left hand side gives 

sc-co 
D 

Co let u= c - - therefore su = sc-c 0 
s 
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and du = dc 
dx dx 

substitute into eqn(3.42) becomes 

su d2u du 
-= -+0.­
D dx2 dx 

This is an ODE which has solution of the fonn 

u = el3x 

therefore eqn(3.43) becomes 

I3x 
~ = 132e13x _ o.j3el3x 

D 

cancelling the common tenn, eqn(3.44) becomes 

S 2 - = 13 -0.13 
D 

and after rearranging 

132-0.13-~=0 . D 

. th d - b±.Jb2 -4.a.c . 
SolvlDg e eqn(3.45) by the usual metho = 2 gIves 

.a 

3.43 

3.44 

3.45 

3.46 

The two special cases as mentioned earlier are analysed. For case A (i.e. c(O)=c 0 and 

J( l )=0), the input and output matrix are shown below 

[
C(l,S)] = [Tu 
J( l,s . T21 

T12 ]. [C(O,S)] +[U1 ] 
T22 J(O,s) U2 

3.47 

with the boundary condition, eqn(3.43) becomes 
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[
C(£,S)] = [TU 
o T21 

3.48 

By expanding the matrix eqn(3.48) 

3.49 

o 3.50 

and sol~ng for J(O,s) gives 

3.51 

substituting eqn(3.S1) into eqn(3.49), gives 

3.52 

In this case, the time constants depend upon the zeros ofT 22 and these occur when 

3.53 
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In case B (i.e. J(O)=J( £ )=0), the matrix equation is shown below 

[
c(£, S)] = [Tu 
o T21 

By expanding the matrix eqn(3.54) 

c( £,s) = Tu.c(O,s) + 0 +U1 

o = T21'C(0,S) + 0+ U2 

therefore 

U2 () U2·Tu U c(O,s)= -T and c £,s = T. + 1 
. 21 21 

and the time constant depend upon zeros ofT 21' These occur when 

exp(IU) = exP(J3.£) 

3.54 

3.55 

3.56 

3.57 

3.58 

The above matrix equations are in terms of the input variables [ c(O,s),J(O,s)] and 

output variables [c( £,s),J(£,s)]. For the equivalent electrical circuit in terms of the 

pseudo-voltage (v)and current (J), a transfer matrix t , connecting the input variables 

[v(O,s),J(O,s)] to the output variables [v( £,s),J(£,s)], can be obtained by manipulating 

the transfer matrix T which connects [ c(O,s),J(O,s)] and [c( £,s),J(£,s)]. Thus. 

TI2 eXP{-ai)] = [eXP{-al) 
T22 0 

0] [Tu TIl] = 
1 T. T e.T 

21 22 

3.59 

Referring to the earlier cases of A and B, and provided that the matrix elements 

t22 = T 22 and t 21 = T21 have dominant poles near s=O, the long time behaviour of 

v(x,t) is determined by the small s behaviour ofv(x,s). 

The t matrix (eqn 3.59) is approximated by expanding the transfer matrix T (eqn3.39) 

in small s, and the final equation is shown below :-
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I++(exp(-al)+a£-I) _[I-eXP(-al)]_ bs 
a D aD 

t= 3.60 

- Jl(eXP(al)-I)+ bseXP(a£)] I++(exp(a£) -a£-I) La aD 

where 

b= a2~2 (£- ~ +(~ +£)exP(-aI)) 3.61 

The t matrix in eqn(3.60) has the identical form as that of a single IT - section 

(tn) with capacitors C. and C 2 and resistorR as shown in Fig3.3, except for the two 

terms containing b . 

1 

R 

T T 
Fig 3.3 The equivalent C-R-C circuit (IT) with node 0 at x=O and node I at 

x=£ 

The transfer function of the C-R-C is derived below:-

i) For resistor circuit in series 

----C=RC]----I 2 

V2=V.-I.R 

12 = I. 

In terms of matrix equation 

V2 
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ii) For capacitor circuit in parallel 

1 

VI = Vl 

Il = II - sCi VI where i= 1,2 

In terms of matrix equation 

3.62 

3.63 

The final transfer function of the whole circuit is obtained by multiplying the 3 

individual transfer function i.e. 

. [1 0] [I -R] [1 0] 
tI1 = _ sC

l 
1 . ° 1 . - sC

I 
1 

_[I 0] [1+SCIR 
tI1 - Cl' C -s l -s I 

[
I + sC,R -R] 

to = _ s(C, + C
2 
+ sC,C

2
R) 1 + sC2R 

3.64 

Equating eqn( 3.64) and eqn(3.60), the capacitor and resistor values are derived as 

shown below 

R = _I-_ex--,-,P(c...-_al...:...) 
aD 

C _ exp(-al)+a.l-I 
1- a(I':"exp(-a.l») 
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exp(a£)-a..l-l 
C2 = ( ) a. 1- exp(- a..l) 

3.67 

The results obtained above has justified two important points. For the first point, the 

component values derived in equation 3.65-3.67 have satisfied the equation used in 

the development of the transmission line consisting of distributed CR network of 

series resistance and parallel capacitance i.e. 

~jl 1 ~.. . 
C1+C2 = exp(a..r)dr and R = D f exp(-a..r)dr 

~ ~ 

3.68 

with r; = 0 and r ;+1 = l. The approximation used was to divide the total capacitance 

of that part of the network between the nodes 0 (r; ) and l(r;+I) into two lumped 

capacitors Cl and C 2 and to lump the resistance into a single component R. 

The second point is that, a single IT -network used to model the medium-ta-Iong time 

behaviour of the vacancy in a single grain boundary for case A is the best choice 

possible. However a single IT-network are unable to model case B accurately since 

the matrix element T 21 = t21 (eqn (3.48) & eqn(3.61)) is poorly approximated by the 

occurrence of the b term. 

Let us refer back to the existing literature where two typical cases were considered. A 

single grain is considered to be parallel to the interconnect and thus the co-ordinate 

along the grain boundary to be x. For case A , where a single grain boundary with a 

constant vacancy supply at x=O and a blocking boundary at x= l, the vacancy build-up 

has been obtained [ Dwyer,et al.,1994]. In the approach to the steady state, the . 

vacancy concentration at x=l was approximated by (see Chapter 2):-

c(l, t) p( A) --"'ex a.~ 
Co 

3.69 
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The +(-) is taken in the case a.f. < 2(a.f. > 2) and 1;/ is the roots, respectively, of the 

imaginary(real) solution to tanhl; = 2: with the smallest roots. The time constant in 
. a~ 

eqn (3.53) may be approximated by 

exp( a.f.) - af.:...l 
t~ 2 aD 

3.70 

as proven by the ratio of the time constant between the approximation and the exact 

value showriin Fig 3.4. 

i.4 

1.2 
(i) 

;0 
'~ 1.0 -" " ." .,. 0.8 

:f:! 
(ii) 

. ." 
i i ~ 0.6 

:" 
I :0 
i :0.. 

0.4 

0.2 

0 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 

Fig 3.4 (i)Pole values-the variation of the ratio of (exp( a.f.) - a.f. -1) / a 2 f.2 to 

the exact time constant as a function of a.f.. (ii) Residue values-the ratio of the 

coefficient of the dominat time exponential to (exp( a.f.) -1) 

It is also interesting to note from Fig3.4 that the coefficient of the exponential term in . 

eqn(3.69) is approximately exp( af.)-l for a very wide range of values of a.f.. As a 

result eqn(3.69) can be recast by 

c(f.,t) ( ) J a
2
Dt ] 

~ = exp( al) - - 1 + exp( al) . exl'[.- exp( al) _ a.f. -1 3.71 
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c(t,t) = Co exp(at)- (-Co +Co eXP(at>).exp[ - exp(;;~~t -1] 
multiplying both side by exp( - at) gives 

c(t,t)exp(-a£) = Co -(co':' Co eXP(-a£»).exp[ - eXp(;;~~£-l] 

3.72 

As introduced earlier where v(x,t) = c(x,t).exp(-ax), eqn(3.72) represents the 

response of the series CR circuit with the initial condition c(x,t=O)=c 0 i.e. 

v(x,t=O)=co exp(-ax). With the approximate time constant obtained, and with the 

resistor value chosen·to be the 'steady state' value calculated as in eqn(3.65), the 

component values can be calculated 

from eqn(3.70) 

RC 
exp(a£)-at-l 

t= '" 2 aD 

and eqn(3.65) 

therefore 

gives 

R = ;:;..l-....;e:.:.:xp(!:.!....-.:::.at~) 
aD 

C _ exp(at) - a.£ - 1 
2 - a(l-exp(-a.t») 

Looking at the grain boundary from the opposite end one sees the same problem, but 

with a~ -a. This symmetry implies a second capacitor at x=O given by 

C _ exp(-a£)+a.£-l 
1 - a(l-exp(-a.t») 
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It should be note here, from Fig3.4 that the fit to the time constant is significantly 

less good for the case <l. r < 0 i.e. when the electrical current is from the blocking 

boundary to a vacancy sink. 

In the case of a grain boundary blocked at both ends, case B, the approach to the 

steady state is again dominated by a single (although different) time exponential 

[ Lloyd and Kitchfu , 1991]. The vacancy concentration build-up are given by the 

equation below:-

2 2 a.£ 
c(x,t) a£.exp(ax) na £ [1+exp(-T)] 
~~"" + x 

Co exp(a.£)-1 (a2£2 ).2 
--+n2 

4 

[ .Jnx) 2n Inx)] (ax) [( a2£2 Dt)]" Sl~ T + a.£ CO\ T xexp 2" xexp - 7t
2 
+-4-7 3.73 

The time constant in eqn(3.73) is unfortunately not well approximated by the source 

free response of the IT-equivalent circuit. This arises for the same reason as for case 

A when a. r < O. Nevertheless, these results for the single grain structure suggest the 

use of the equivalent CR network as a possible means of approximating the approach 

to the steady state in complex grain boundary networks, and consequently a means of 

estimating interconnect failure times. 

As another example to illustrate the results of the lumped circuit method, we model 

the stress build-up in a line consisting of a pair of fast diffusing regions separated by a 

bamboo grain as in reference[Korhonen, et al., 1993(2)]. The three regions are each 

modelled as a single C-R-C IT section with the bamboo allowing a small amount of 

diffusion either through the grain bulk or along the stripe sidewaIl as in Fig3.5 below 
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r~lOOD"T D=D o !~'OOD"l 

T T T 
Fig3.5 The physical structure and a rather crude equivalent electrical network 

The components values for each II- section are given by eqn(3.49-3.51) and for 

simplicity, it is assumed that all regions have the same length. The values of a.t are 

thus the same for all sections, the only difference being the resistor and capacitor 

values. The single-grain section has a much smaller diffusion coefficient(D= Do), and 

thus a much larger resistance( eqn(3.49), than the polygranular sections(D=lOODo) . 

The equivalent circuit has two time scales; a short time scale over which the fast 

diffusing sections reach a (quasi)-steady state and a longer time scale over which the 

whole system reaches a steady state. The build-up to the quasi-steady state is shown 

in Fig 3.6 Note that, at node 2, the stress is not a monotonic function of time, this 

reflects the fact that the grain boundaries between the node pairs(l,2) and (3,4) 

quickly, and independently, reach a quasi-steady state before moving towards the 

final non-equilibrium steady-state. At node 2 and 4 it is noticed that the stress is 

positive( due to tension where vacancy are building-up which leads to void formation) . 

and at node 1 and 3 the stresses are negative ( due to compressive stress arising from 

the accumulation of atoms). 
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2 3 4 

Node Position 

Fig 3.6 The stress build-up (profile) at nodes l,2,3and 4. The different lines indicates 

the stress distribution at various time. Initial stress ,t=O(thick line),stress at 

t=O.2(broken line) , t=O.4(dash double dot),t=O.6(dash dot),t=O.8(thin line), and 

t= 1. O( dash line) 

3.7 Analysis on the accuracy of the C - R - C IT elements 

The accuracy of the tu matrix can be increased by including more sections in the 

transmission line. This corresponding to adding more nodes and thus more capacitor 

and resistor IT -sections. It is clear that a large number of C-R-C IT elements will 

lead to a very accurate solution while two capacitors and a single resistor leads to a 

sufficiently accurate solution for a single grain boundary in case A. Cascading two 

IT -sections of length f produces a transmission matrix of the correct form leaving 

t U(Il) and t U(22) unaltered to first order in s. However the accuracy of both t U(12) and 

t U(21) are increased. This is particularly important for the case B grain boundary 

where it is the roots of t U(21) are important. 

Introducing n-l equally spaced nodes on a grain boundary divides it into n equal 

segments. The total transfer matrix for the n cascaded IT - sections from x=O to 

x=n( = L is the product of the n individual matrices i.e. 
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3.74 

T n (ne) may then be obtained by first diagonalising the matrix et n (e). If the 

eigenvalues of this matrix are ;I..+andA._, then by induction, 

(Tn.lI -;l.._);I..~ + (Tn.l1 -;l..+);I..~ 
;1..+ -;1.._ 

;l..D _;l..D 
Tn.2I ;1..+ -;1..-

+ -

;l..D _;l..D 
Tn.12;1..+ -A-

+ -

(Tn.lI -;1.._ );I..~ - (Tn.l1_ -;1..+ );I..~ 
;1..+ - A_ 

where the eigenvalues (;I..+andA._) satisfy the characteristic equation 

;1..2 -(exp(ae)tn.l1 + tn.zz);I..+exp(ae) = 0 

Note that by setting ne = L,and taking the limit .e ~ 0 orn ~ 00, one obtain 

3.75 

3.76 

3.77 

so that as n~ 00, T n(L.s) ~ T (the T matrix of eqn(3.39». The question now is how 

few sections are needed to achieve an acceptable level of accuracy. 

The improvement in accuracy obtained by including extra IT - elements is apparent 

from observing the roots of T n.21 (n£,s) = O.in eqn(3.75). These occur at ;I..~ = ;I..~ 

which, according to eqns(3.64) and (3.76), corresponds to ;1..+ and s values of 

3.78 
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or 

1+ exp( -a£) _ 2exp( _ w) co~ m7t) 
2 n W<O 

I-exp(-w) 
3.79 

where m=I,2, ... n-1. The root closest to s=O, will dominate the approach to the steady 

state. This corresponds to m=l, which give maximum cancellation in the numerator, 

i.e. 

1+e J_ aL)_ 2exJ_ aL)coI7t) 
D XI\. n P\ 2n 'n D (D) 

S(1) = - L2 . ~ aL) naL = - L2 F (aL) 
I-e --

n 

3.80 

From eqn(3.80), as n~ 00, S(I) tends to the correct limit of _ ~ .( a:L2 +7t2) to 

which it is compared in Fig3.7 for various values ofn. An accuracy of around 3% is 

obtained for n=S, i.e. five IT -sections, more or less independently of the projected 

grain length aL. Also it is noticed from Fig 3.7 that other poles (s=sm,m=2,3 ... , 

lying further from s=O) become less and less well represented as m increases, 

however this 'is not such a problem in the approach to the quasi-steady state provided 

that the residue at the first pole is correct. This residue can be calculated in the 

normal way, for example for case B, the blocked-locked case, at x=O 

c(x=O,t~oo) A 
= +--+ .... . 3.81 

s S-SI 

where SI is given in eqn(3.80). For a grain oflength L made from nIT- elements each 

oflength £ = L , the residue A can be obtained by usingd'Alembert'srule as 
n 
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I 

A=lim -(S-SI)U2 (L,s) = -U2 (L,SI) _G(ni(a£)= 
.... ~ T21 (L,s) OT21 (L,SI) 

Os 

2coa
3L3(1 + exp( -aL / 2)) sin2 (7t / n) 

where R, Cl ,C2 are given in eqns(3.65),(3.66)and (3.67). It is important to observe 

again that, as DR is independent of D, the residue A only depends upon n and the 

value of aL. Fig 3.8 again indicates that five n -sections will give an accuracy for A 

better than 5% over the range aL between 0 and 5. 

10 [ 

90~ ______ ----------------------

80 I-

~ 70~_ _----
= --------

"? 60_ 
;> 

" ;,c.: SO 

40~---------------------__ --__ -.-------­
-----------

30 -

20 

10 ~ __ ........... __= ..... =_=,..".="=::_::::==""'-= -----
O~ ____________________________________ __ 

0.0 1.0 2.0 3.0 4.0 5.0 

aL 

Fig 3.7 Exact( solid) and approximate( dotted) positions of the first three poles as 

a function of a£(n=5) in the blocked-blocked case. 
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Fig 3.8 Exact and approximate value of residue (coefficient) at the lowest order pole 

for (i) n=3 and (ii) n=5 in the blocked-blocked case 

3.8 The development of the Matrix representation of theC - R - C IT 

networks 

In the last section, it has been mentioned that for better accuracy, a grain boundary 

should be represented by more than 1 section of the C-R-C IT circuit (5 sections wilI 

produce a satisfactory accurate representation of the vacancy concentration). This 

corresponding to having more nodes and thus more capacitor and resistor IT -sections. 

Fig 3.9 Example of Node i in a network 
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For a network of N+ I nodes( where N= total number of resistors in the network, the 

extra node is for the extra capacitors ), will yields a set of simultaneous in the node 

voltages {Vj(t),i = O,I, .... N}where the equationfor the current flowing into node i 

(example for a node i in Fig 3.9) is given as 

3.83 

Let us choose the source node to be node 0, i.e. c(O,t)=V 0= Co and assume that the 

node ° is only connected to node I so that IIR(i.o)= ° except for the case i=1. This 

merely means that the grain boundary connected to the void has at least one node 

between the void end and the next triple point. Eqn(3.83) may be rewritten as 

3.84 

where (i= 1,2, .... N) and in matrix form as 

dV c 
£ dt (t) = Q.V(t) + R

O ~ =QV(t)+U 
10 

3.85 

where £ is the (NxN) diagonal matrix of node capacitances, V (t) is the (Nxl) vector 

ofpseudo-voltages (excluding Vo), ~ is a vector in the direction ( 1,0,0, ... 0) and Q. 

is the (NxN) conductance matrix With components 

1 
Gij =--, 

R( .. ) 
I.) 

I 
GU=-LR <i:j> (i,j) 

where < i:j > = set of nodes j connected to node i. 
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The voltage V(t) at each node (particularly the edge and triple point) and hence its . 

equivalent vacancy concentration (given by the equation c(t)=V(t)exp( <Ix» can be 

evaluated by integrating the eqn(3.85). The complete solution starting from the 

creation of the matrices and solving the matrix equation is discussed in Chapter 4. 

Finally the Time to Failure is determined once the vacancy concentration c(t) reaches 

. some threshold value (failure criterion given by c er = nc 0 where n is the appropriate 

number). 

3.9 The signal (Elmore) delay approximation of Time to Failure 

One method to estimate the Time to Failure based on the vacancy build-up to some 

threshold value is to use the signal or E1more delay technique. The signal 

(Elmore )delay technique is well known in modelling timings for CMOS circuits 

[Elmore,1948]. Delay in an RC network is manifestation of the inertia of a system. 

One way to quantify delay, as suggested by [Ehnore,1948] , is to take the first order 

moment ( essentially the mean value) of the Impulse Response. 

Consider first a system with zero initial pseudo-charge( i.e. no vacancies at t=O). In 

thi ·d· V th· Vj(t). th U· S R th s case COnsl enng 0 as e mput, -- IS e mt- tep esponse so at 
Co 

IdVj • I . d --d IS the Impu se Response. The Urut-Step Response ten s to Co 
Co t 

monotonica1ly and consequently the Impulse Response is always positive [Lin and 

Mead ,1983]. In addition Vj(t=O)=O guarantees that d~ (t=O)=O through 

eqn(3.83). This leads to an Impulse Response at node i similar to that shown in Fig 

3.10 and defmes the delay ( T Di) as the time between the original impulse at node 0 

and the mean value of the resulting Impulse Response at node i. The Impulse 

Response has a unity area so..!.. ddY; may be considered a probability density 
Co t 

function (pdf) and consequently the delay is simply its first-order moment In the field 
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of CMOS design this is known as the signal delay at node i . [ Elmore·, 

1948],[Rubenstein, et al., 1983] 

Impulse 

Response 

•..............• 

TDi 

Fig 3.10 The definition of signal delay 

The notion of delay can be extended to the case of non-zero initial 'charge' 

(i.e. vacancies present initially) required here by using a normalised impulse response 

as the total area is now 1- Y; (0) rather than unity.The original definition of delay 
Co . 

T Di by [Elmore ,1948] with no initial charge is given by 

"'dV, 1· 
TDi = It-I -dt 

o dt Co 

Thus the redefined delay T Di with initial charge is given by 

'" dV:· 1 
It-I-dt 
o dt Co 

TDj = Vj(O) 
1--­

Co 

Integrating eqn(3.88) by parts ,an equivalent vector representation is obtained 
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1[ ~(t)} .~! ~(s)] 1-- t It ----
o - Co ... 0 s Co 

T = 
[1- ~(O)] [!_ ~C~O)] 3.89 

-D 

- Co 

where Yes) is the Laplace transform of V(t). Although eqns(3.88) and (3.89) are 
- -

identical, eqn(3.89) are better for analysis purposes. This is because from eqn(3.89), 

the large time behaviour of each of the network pseudo-voltages, and hence the 

vacancy concentration at each node, may often be approximated by the steady-state 

term and the single decay term which is obtained through the first(smallest) s term. In 

the approach to the quasi steady state, the node voltages can be approximated by 

3.90 

Ocr. 

If the critical stress is (J er then c· = e kT is the critical vacancy concentration, thus 

the critical voltage for failure at node i is V *\ = C * exp(~a.ri)and the time to failure 

at that node can be easily calculated from eqn(3.90) 

The signal delay T D for the C-R-C n network is derived below. 

From eqn(3.85) the matrix equation of the pseudo voltages at all nodes is given as 

can be rewritten as 

dV . co: 
C-=(t) = GV(t)+­
- dt - RIO 

dV . co: 
-=(t) = C-1GV(t)+­
dt = = RIO 

and applying Laplace transform equation 3.91 becomes 
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C e 
s. V(s)- V(O) = £-I.Q..V(S)+ R O ~ 

10 

C e 
s. V(s) - £-1.2;. V(s) = V(O) + R:o ~ 

after rearranging 

V(s) = (s!-£-IQ)-I( V(O) + ::0 ~) 
where! is the identity matrix, V (0) is the initial voltages. 

Inserting eqn(3.92) into eqn(3.89) becomes 

3.92 

The terms in s -1 is cancel here , therefore with a slight abuse of standard vector 

notation, 

[ 
V(O)] 1 ( co) I-=-- ID =--. G-1.C. V(O)--.e 
Co Co = = - RIO -

The initial condition of the network is represented by the voltages . V (0) and the 

network is driven towards a final value of col. The fact that there is no dc path to 

ground and v( <X> )=lmeans that 

3.94 
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where -G-1 = R (It turns out that the matrix-G defined by eqn(3.86) is a Stieltjes 
...... =- , -

or S-matrixso G-I always exists = R) 
, - = 

Therefore the equation above becomes 

[1- V(O)]XD =-G-1.C.[I- ~(O») 
Co = = - Co 

3.95 

or 

[ 
V(O)} , [" ~(O») 

I-=-, D = R.C. 1---
Co = = - Co 

3.96 

The signal delay at a particular node i is derived below. 

Note that as defined in previous sections, V(O)= coexp(-ax), therefore 

[
1- V(O)] = 1- coexp(-ax) ,1-exp(-ax) 

Co Co 
3.97 

Substituting eqn (3.97) into eqn(3.96), and hence 

the signal delay at node i is given by the equation below 

LR ijCj (1- exp( -ux j » 
TIJi ="",j~------

(1- exp( -uxi » 3.98 

The calculation of the delay can be seen to derive from the inversion of the matrix G 

to obtain !i = -Q -I • In some cases, such as tree structures with a single source, the 

matrix element Rij may be simply read off. This is obvious by considering a general 
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tree structure with conductance matrix G and a single source at node O. The current . = . 

flowing into the source node is the sum of the currents from each of the capacitors. 

The voltage drop between node 0 and node i due to the current from the capacitor at 

dV. 
nodej is RijC j dt' where R;j is the resistance of the unique path between node i 

and the source node 0 that is common with the unique path between node j and the 

source. Thus the total voltage drop to node i is 

3.99 

Many of the cluster networks making up a typical near-bamboo interconnect will have 

tree structures so that it will be possible to identify the (ij) component of R = ":G -I • - -
In general the calculation of delay will involve a special or more complex matrix of 

!. The creation of the special matrix!i is discussed in the development of the 

program code in Chapter 4. Finally the failure time te or Time to Failure (TTF) can 

be estimated as the fIrst time that a node reaches its failure criterion of 

V;· = c· exp( -<XXi)' Thus from eqn(3.90) 

V*i =co-(co - V(O)i)exp( - T~) 

(co - V(O)i)exp( - T:) = Co - V *i 

J t) Co - V*i 
exlll - TOi = Co - V(O)i 

taking logs on both sides gives 

(_~) = In[ Co - V*i ] 
TOi Co - V(O)i 

therefore 
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or 

. { (Co:" V(O);)} 
te = ~ To;ln Co _ V"; 3.100 

As an example we compare the signal delay with an exact solution below. A single 

grain of length .e and supplied at x=O, with initial vacancy concentration c(x,t=O)= 

co' which has been divided into a number of segments is a special case of the tree 

netViork. In the limit ofN -)0 ex> , the signal delay at x along the grain is 

x dC I dC 
(l-exp( -ax»)TD(x) = ! R(y) Dy (l-exp(-ay»dy+ R(X)! (exp(ay)-l) dy dy 

3;101 

i.e 

3.102 

Thus the vacancy concentration along the grain is given as 

c(x,t) = Co exp(ax)(l- (1-exp(-ax»)ex{ - TD~X)J 
3.103 

The time development of the vacancy concentration along the grain boundary, given 

in eqn(3.103) is compared to the exact solution ofreference[Dwyer,et al,1994] in Fig 

3.11 for al=2,D= I and reduced times of ~ = 0.1,0.2,0.4,0.66,10.0. It is 

clear that eqn(3.103) gives a good approximation to the exact values for large times 

(>"" 02) and that the failure time in this case is "" 0.66. This would Correspond to a 

grain boundary length of around 8 j.Ull giving a Time to Failure of around 7.2 hr. 
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Fig 3.11 Signal delay approximation compared to the exact solution at all points . 

along a single grain boundary blocked at x= t and supplied at x=O, at reduced times 

Dtll' =0.1.0.2,0.4,0.66,10.0 

3.10 The non-linear solution-concentration dependent D( (1) 

In the previous sections, the effective diffusion coefficient has been· set to a constant 

value as in most previous references as mentioned earlier. In actual fact, the effective 

diffusion coefficient depends upon the local stress/vacancy concentration, this arises 

. from the more complicated form of the continuity equation. In· this case, for the 

single, one dimensional grain boundary studied here, the equivalent transmission line 

equations become 

exp( C(x)J(x) 
V'v(x) = 

102 

l 3.104 

·3.105 
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The resistor values are· identical to those of eqn(3.65). This is expected as the steady 

state is independent ofD. On the other hand the capacitance per unit length depends 

Co 
upon the local pseudo-voltage, C(x,t)= v(x, t) . To get a reasonably accurate approach 

to the steady state , the capacitor values calculated from the steady state voltages 

obtained in section 3.5 can be used. In the steady state, the node voltages are often 

equal and the value of the capacitance per unit length is Co • This leads to capacitor 
. . V(O 

vales for a section oflength .e given by 

3.106 

where the appropriate v.. values has to be obtained first from the random resistor . . . 

network in section 3.5. The network may be reasonably well approximated by lumped 

elements with voltage dependent capacitors. 

3.11 Summary 

In this chapter, the stress evolution model has been discussed in greater detailed and 

the equation based on the original model by [Korhonen, et al.,1993] has been re­

derived. Under electrornigration, the equation which descnbes the evolution of stress 

within an interconnect, is equivalent to a non-linear slow drift-diffusion equation 

description of the vacancy build-up which is the focus of the current work 

It has been shown that,provided that the vacancy flow through the grain boundary 

network can be reasonably mapped on to an underlying network of one -dimensional 

grain boundaries, two important points can be drawn. Firstly, the steady state solution 

for an arbitrary grain boundary network, with arbitrary conditions, behaves exactly as 

a similar network of random resistors. Secondly, by ignoring the dependence of the 

diffusivity D on stress cr (as also been considered in other references), the Iinearised 

drift-diffusion equation can be transfonned exactly into a distributed CR transmission 
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line equivalent with inhomogeneous capacitance per unit length and resistance per 

unit length. 

These two observations combine to demonstrate the possibility of treating vacancy 

build-up in a grain boundary network approximately by an equivalent electrical 

network of lumped elements. It has also discussed that vacancy build-up in a single 

grain may be approximated by a CR transmission line made from (typically five) 

cascaded C-R-C IT sections. 

Once the C-R-C IT circuit is produced, a matrix representation approach is used 

for obtaining the voltages and hence the vacancy concentration (by the relationship 

V =c.exp( - (XX)) of a particular node. By makirig use of some threshold or critical 

value of c· the Time to Failure can be obtained. The signal or Elmore delay 

apptoximation method is also described as a alternative way of producing the Time to 

Failure. 

In this chapter also, a few examples on the vacancy concentration build-up using the 

current model and the signal delay.are compared to the available references so as to 

justify some of the assumptions and the approximations used and to validate the 

current model. More detailed experiments involving single grain. complex grain and 

realistic grain boundary will be discussed in Chapter 5. 
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CHAPTER 4 

SOFIWARE DEVELOPMENT 

4.0 Introduction 

An important aspect of the study is to develop programming codes to test and 

simulate the model that has been developed in Chapter 3. Choosing a suitable 

software package is very nearly as important in developing the model itself. The 

criteria in choosing suitable software are basically i) that it is able to solve and 

compute the mathematical equations of the model ii) it can work with matrices iii) it 

is able to handle graphics iv) it is a PC based software running on Microsoft Windows. 

v) it is easy to access vi) and is user friendly i.e; easy to use and easy to check for 

errors. With these criteria in mind, MATLAB® was thought to be the most rightful 

choice over the others, such as PSpice, for implementing the task. 

MATLAB® is a technical computing software for high-performance numeric 

computation and visualisation. It integrates numerical analysis, matrix computation, 

signal processing, and graphics in an-easy-to-use environment where problems and 

solutions are expressed just as they are written mathematically. MATLAB stands for 

matrix laboratory.[ MATLAB®, 1992]. 

Apart form the ability to work with matrices the extensive availability of built-in 

functions and toolboxes will help reduce the overall prograniming time. These built­

in functions and toolboxes are programming codes that calculate, solve or simulate 

certain algorithms that may be time consuming if developed by the user. The 

program codes have been developed using a PC Pentium i with processor speed of 

166 MHz and 32Mbyte RAM and also on a mini computer system in Computer Aided 

Engineering (CAB) laboratory of the Electronic & Electrical Engineering Department 

in Loughborough University. 
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4.1 Stages of developing the programming codes 

The development of the software followed a systematic approach. Once a model is 

developed, the progrnmming code will be developed soon afterwards to test the 

model functionality, the results obtained are then compared to relevant results in the 
. . 

literature. This is to ensure that the model developed behaved appropriately giving 

similar or better results than those in the literature, confirming that the model is valid. 

This will also provide a way forward to work on more complex and demanding 

models. Therefore, the development of the programming codes has been done 

through a number of stages which could be identified as follows 

i) development of programmmg codes for an interconnect with a 

homogeneous microstructure .i.e. a· single grain boundary or an 

interconnect with same kind of microstructure at all points. 

ii) development of programming codes on example of cluster network with 

more complex grain boundaries microstructure. 

iii) development of programming codes for realistic computer generated 

intercorinect samples consisting of a number of clusters each with a 

complex grain boundary microstructure. 

The programming structure for MA1LAB® consists of main program files (script 

files) and subroutine files (function files); One of the main advantages in organising 

the codes in this way is for ease in detecting and correcting errors. The program codes 

that have been developed basically involve solving the relevant equations from the 

exact theoretical model, the Lumped element model and the Signal (Elmore) delay 

method. The program codes that have been developed and tested in successive stages 

are as follows ;-

A. Program codes for simulating the vacancy concentration response and the Time to 

Failure of a single grain boundary sample of interconnect based on the lumped 

element model. The codes consist of creating files which comprise of;-
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i) function files for calculating the resistors,· capacitors and its initial 

voltages values 

ii) function files for creatirig the G matrix of resistors and the C 

matrix( diagonal) of capacitors 

Hi) a function file for creating VIN vector of initial voltages of capacitors' 

iv) a function file for creating the U vector of the boundary/initial conditions 

v) a script file for simulating the vacancy concentration. 

B. Program codes for simulating the vacancy concentration response of a single 

grain boundary based on the exact solutions ( relevant references from 

literature). 

i) script file for simulating the vacancy concentration response of a single 

grain boundary with both ends blocked (reference from[ Clement, I 992]): 

ii) script file for simulating the vacancy concentration response of a single 

grain boundary with one end supplying vacancies and the other· 

blocked. [reference from [Dwyer, et al.,1994]). 

C. Program codes to calculate the Time to failure of a single grain boundary 

interconnect based on the two cases (B(i)and B(ii» using 

i) the lumped element approximation. 

ii) the exact theoretical model. 

iii) the Signal( Elmore ) delay approximation. 

D. Program codes for simulating the vacancy concentration response of an example 

single cluster interconnect consisting of five grain boundaries using the Lumped 

element model. The codes consist of the foIJowing files. 

i) function files for calculating the resistors, capacitors and initial v'oltages 

values 

ii) function files for creating the G matrix of resistors and the C 

matrix( diagonal) of capacitors 

iii) a function fIle for creating VIN vector of initial voltages of capacitors 
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iv) a function file for creating the U vector of the boundaJy/initial conditions 

v) a script file for simulating the vacancy concentration, Time to Failure and 

other relevant data for analysis. 

E. Program codes for simulating the vacancy concentration response of computer 

generated, realistic samples of interconnects which consist of a number of 

clusters with complex grain boundaJy structure based on lumped element 

model. The . codes consist of the following files 

i) function files for creating Voronoi network representing the metalisation 

film. 

ii) functionfiJes for simulating the annealing processes. 

iii) function files for creating the interconnect samples consisting of a number 

of clusters of complex grain boUndaries structure. 

iv) function files for calculating and storing geometrical properties of the 

grain boundaries. 

v) function files for labelling the nodes and the grain boundaries. 

vi) function files to calculate the Time to Failure of the interconnect sample 

based on the lumped element model and the signal delay and thus 

producing the data on the lifetime statistics. 

4.2 Single grain boundary with one end blocked 

A program code simalllg.m has been developed to simulate the vacancy 

concentration response for a' single grain boundaJy with one end supplying the 

vacancy concentration and the other end being blocked. The program codes 

incorporate the exact theoretical . solution based on the work by [Dwyer,et 

al.,1994].The main objective of the program code is to make a comparative study 

between the lumped element model with that of the exact solution. Fig. 4.1 shows the 

flow chart of the program code. 

The program code consist of three main processes, these include i) the simulation of 

vacancy concentration based on the lumped element model ii) the simulation of the 
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vacancy concentration based on the exact solution Hi) the determination of Time to 

failure using the Lumped element model, the exact solution and the signal delay. 

The vacancy concentration response for the lumped element model is produced by 

computing the matrices of conductance G, capacitance C , pseudo voltages VIN and 

matrix U. Prior .to producing these matrices, functions files were developed to 

calculate the component values of the resistors, capacitors and the pseudo voltages.· 

Detailed explanation on the calculation involve will be given later. For the 

tl)eoretical model, the vacancy concentration build-up is simulated using eqn( 2.26) 

for the case (XI,; 2 and eqn(2.27) for the case (Xl:. 2 as described in Chapter 2. 

The purpose of slmaDll!-m is to simulate the vacancy concentration build-up for. single gmin where one end is blocked 

and ha .. vacancy supplyc. al the oth .... The program will compare the results of the work by [Dwyer. etaI .• 1994). with 
th.lumped element modeI.and the signal delay method 

Userlnput 
nosim= number of simulation required 

I simno= 1 I . 

~ 
.... rlnput 

X"" length of gmin boundary 
d= vacancy diffusion coefficient 
o 0 = initial vacancy coocentration at zero stress 
er ... the critical vacancy concentration 

theta". angle of orientation 
alpha = drift oomponenl 

alpha elf=aIpbax oos(thets) = the effective drift cornpooenl 

1 gm.-.... 
mpfile to create the resistor matrix 0 

1 
"""'_m 

m·fiIe to create capacitor matix C 

..... Iooe.m. 
m-tile to crate initial voltage matrix VIN 

. ! 
1UDalOIIe.m 

';'-file tn CMAIe the tI m.M. 

! 
The simulatioo of the voltage respanso is dooa by the following process:-

i) assignment of the duration of time ... t 

ii) disgooalisingthe matrix of QoC-'O. 
iit) solving the voltage n:spoose by the equatioo:-

V = S-I(s. V1N.exp'" )+s-'(o-'s. u.exp'" )-S-'D-1S. U 

! 
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the conversion of the voltage response to vacancy concentration response is 
obtained by the equation;-

Cv = V x exp 1lphadI'.x • C v is the vacancy concentration 

1 
the time to failure is determined by inteqJolating between the data points of the 
vacancy concentration C v and the time l The command ofMatlab 
to do the this is :-

TIF = in1erp I (C v • t, critical vacancy conoentration) 

! continue 

simulation of the exact solution I 

~no yes 
get the ... 1 roots get the imaginary roots 

rroolm iroot,m 

solve eqUation 2,22 and solve equation 2.23 
simulate the vacancy concentration simulate the vacancy concentration response 

1 
the time to fatlure is determine by inleIpolating between the data points of the 

vaesncy conoentration C v and the time l The connnand ofMatlab . 
to do the this is ;-

TIF = in1erp I (C v • t, critical vaesncy conoentration) 

1 
calculate the Time to failure by signal delay method 

1 
nnatone.m 
m-file for the resistance matrix RG 

1 
calculate the signal delay by the equation 

[ (1- ~) J ~(I-e(-.-~»)) 
TD= RG.C. (-alphacff.x) t TIF= ID. 

(I-c . ~.~ 
t V er= cr.e(-alpbaeff·X) 

, simno--simno +1 

produce the vaesncy conoentration response gyaph 
and the ICSUlts of Time to failure 

Fig 4.1 The program flow chart of simaIll g.m 
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· 4.2.1 Calculation of the component values (C,R and Vin) for the Lumped 

Element Model 

In the lumped element model, the equation for calculating the. components for. a . 

single section are:~ 

resistor value R( 1). = 

first capacitor C( 1) = 

second capacitor C(2) = 

l-exp(-a1phaeff*x) 

a1phaeff*D 

exp(-a1phaeff.x)+a1phaeff.x-l 

a1phaeff(l- exp( -alphaeft'. x) 

exp(a1phaeff. x)-a1phaeff.x-l 
a1phaeff(l- exp( -a1phaeff. x) , 

Vin(l) = 1 • Vin(2)=exp(-alphaeff.x)*Vin(l) 

where 

alphaeff= alphacos(O) • 

D is the diffusion coefficient 

4.1 

4.2 

4.3 

o is the grain boundary angle of orientation to the direction of electric field 

x is the length of the grain boundary/number of sections used. 

For example, if three sections are used to represent the grain boundary, there will be a 

total of 3 resistors with the values decreasing exponentially and 6 capacitors with the 

values increasingexponentially. The values of these components are calculated as 

follows:-

C(3) = exp(alphaeff. x) C(l), C(4) = exp(alphaeff.x)C(2) 

C(5) =exp(2.alphaeff.x).C(I). C(6)=exp(2.alpbaeff.x).C(2) 

R(2)=exp(-alphaeff.x)R(I) , R(3)=exp( -2.alphaeff.x)R(2) 
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The values above represents values for each individual section, once connected the 

actual calculation for the capacitors will have to take account the parallel connections 

between the sections, and thus there will be a total of 3 resistors and 4 capacitors. 

4.2.2 Creating matrices for solving voltage and vacancy concentration response. 

Creating the matrices version of the problem is based on solving Kirchoffs voltage 

and current laws by the mesh analysis technique. To describe this, consider a single 

grain boundary sample of interconnect which is represented by the C-R-C n circuit of 

2 sections as shown in Fig 4.2 below. 

VI 

RI 

:;:CI 

vs 

Fig 4.2 C-R-C circuit (2 sections) 

Analysing the circuit above 

VI = Vs therefore Cl dVI = 0 
dt 

11=12+ 13 

V2 T~ 

11 12 

:;C2 

11 = VI- V2 12=C2 dV2 13 V2 - V3 =C3 dV3 
RI' dt' R2 dt 

from equation 4.5, 

12=11-13 

therefore by substitution 

C2 dV2 = 
dt 

VI-V2 V2-V3 
RI R2 

R2 

. dV2 
t.e. C2d"t= -( ;1 +~2 )V2+(~)V3+(;I)VI 

dV3 (I) (I) also C3-= - V2- - V3 
dt R2 R2 
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4.4 

4.5 

4.6 

4.7 

4.8 
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These equations forms a set of simultaneous equations' which may be expressed as a 

linear matrix equation :-

[

dV2] [1 1 ' 1 ]. o ] Tt = -Rl- R2 R2 [V2]+ [VS] 
C3dV31 I'V3 RI __ __ __ 0 

dt R2 R2 . 

4.9 

The matrix is in the form of:-

dV 
C.-- =GV+U 

dt --
4.10 

where C is a diagonal matrix of capacitance,(excluding the IlISt capacitor Cl), G is 

the conductance matrix, Y is the vector of pseudo voltages of'the nodes and 

l! represents the vectors of the grain boundary conditions e.g; vacancy concentration 

held fixed at some vacancy supply point as in the example above. 

Equation 4.10 can be rewritten as :­

dV 
--=C-IGV+U 
dt --

Replacing matrix C-I G by Q matrix, equation 4.11 becomes 

d . 
-V=QV+U 
dt - --

By diagonalizing the Q matrix, the above equation becomes 

.!V=SDS-1V+U 
dt - --

d . 
dt(S~)= D(S~+S~ 

Integrating the above equation, yields 

SV=AeDt-D-ISU' 
- -

4.11 

4.12 

4.13 

4.14 

4.15 

Solving for A by taking the initial condition at t=O, V = V ,therefore gives 
- -0 
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SV =A-D-'SU 
-0 

therefore A = S v + D -I S U , herice 
- 0 -

substituting A into equation 4.15 hence becomes 

sy =(s~o +D-1.S."I!).expDt- D-lSl! 4.16 

Therefore the voltage equation becomes 

V =S-l(S.V .expDt)+S-l(D-lS.u.expDt)_S-ID-lSU 4.17. 
- -0 . 

The vacancy concentration build-up Cv is obtained by the equation below:-

Cv = V.e(alphooeff,x) 4.18 

This equation will be used in the simulation of the vacancy concentration response 

at any point along the interconnect line. In treating matrix problems, the arrangement 

of the terms in the equation above are very important as the matrices may not 

commute. This method of simulating the vacancy concentration response is 

applicable to single and complex grain boundary interconnects. 

4.2.3 Program codes to simulate the exact solution 

Two program codes are developed to find the real and imaginary roots for the case 

of al ~ 2 and al ::; 2 respectively. Two function files. rroot.m for finding the real 

root and imroot.m for imaginary roots will be fed into the script file simaIllg.m to 

compute the vacancy concentration build-up of the exact solution. At first an 

approximate value for the roots are determined by a graphical method. Once 

obtained, this value can be improved further by . applying the Newton-Raphson 

method. The Newton-Raphson method is used because it converges to a solution 

quickly. The Newton-Raphson formula is given by :-

where n is the number of iterations. 4.19 
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These programs are used only to find the best possible values for the real and 

imaginary roots. The accuracy chosen for these roots is 4 decimal places. The vacancy. _ 

concentrations are plotted on the same graph, so direct comparison can be made· 

between the exact solution and the lumped element model. The flow· charts of. 

rroot.m and imroot.m are as shown in Fig4.3 

4.2.4 The signal or Elmore delay method of approximating Time to Failure 

The signal or Elmore delay provides a means of estimating the Time to Failure of 

interconn~cts. This method is incorporated into the script file sililalllg.m 80 that 

direct comparison of the Time to FailUre can be made between the three solutions 

( lumped element model, exact solution and signal delay). The Program flow chart to'. 

create the matrixRG will be discussed later with the more realistic model of -

interconnect in section 4.7. 

The signal delay (ID) equation is shown below :-

[ 

(I-~) ] 

~RG.C. (l_e(-oJ~~ff.X») 

where ID = signal delay 

RG = a special resistance matrix 

C = diagonal matrix of capacitance 

VIN = initial voltages of nodes 

alphaeff = effective drift component of electromigration 

x = length alorig the grain boundary 

4.20 

The program will" compute this equation, and later will solve for the Time to Failure' 

by using the equation :-

4.21 

where 
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TTF = Time to Failure 

Ln = natural logarithm 

Co = initial vacancy concentration 

Oo-cr 

cr = critical vacancy = coe kT 

V er=' cr.exp(-alphaeff.x) 

4.3 Single grain boundary interconnect sample with two ends blocked 

A program code sg2ball.m has been developed to simulate the vacancy concentration 

response for a single grain boundary with both ends being blocked. The program 

codes incorporate the exact theoretical solution based on the work by 

[Clement,1992].Again, the main task or objective of the program code is to make the 

comparative study between the lumped element model with that of the exact 

solution. Fig. 4.4 shows the flow chart of the program code. 

The program code consist of three main processes which include i) the simulation of 

vacancy concentration based on the lumped element model ii) the simulation of the . 

vacancy concentration based on the exact solution iii) the determination of Time to 

Failure by the lumped element model, the exact solution and the signal delay. 

As in the previous section, the vacancy concentration response for the lumped 

element model is produced by computing the matrices of conductance G, capacitance 

C , pseudo voltages VIN and matrix U. For the exact solution, the complete vacancy 

concentration build-up is based on eqn(2.l9) as described in Chapter 2. 
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_ .. ----------------------c---

The PUIpOSes of the programs'rroot.m and imroot.m are to find the real and imaginary roots from equation 2.20 and 2.21. 

ifroots are real if roots are imaginary 

1 
display graphical solution display graphical solution 

of the roots of the roots 

1 1 
user inputs user inputs 

root= first approximation of root root::: first approximation ofroot 
decpt = accuracy of root in deep! = aCCUI1lCY of root 

solve equation 4.4 and store in solve equation 4.5 and store in 
variable a variable a 

solve the differential of equati0ll4.4 solve the differential of equation 4.4 
and store in variable b and store in variable b 

I OIVlO< 8/0 ana store m vanao,. y I I OlVlae IlID ana store m vanaDle y I 
1 1 

,.J.. 

4te (y) > deep 

iteration <15 "I numberofitemtions has exceed limit I 

root1=root-y 

iteration = iteration +11 

root = rootl I 

~ .~~t .~tion not suitable I 

T 
compute a,b.y 

display exact root and 
number of iterations 

rootl = root 
the correct root value is fed to the script file simalllg.m 

Fig4.3 The program flow charts for calculating the real roots and imaginary roots 
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The purpose of sg2baU.m is to simulate 'the vacancy concentration build-up for a single grain boundary where both ends are 
blocked. The program will compare the results of the work by [Clement,19921. with the lumped elemeot model. The Time 10 
Failure will be compared between the 'exact solutioo'of Clemenl. signal delay and the lumped model solution. 

Userbtput 
nosim== number of simulation required 

I sinmo== 1 I 

~ 
userlnput 

x= leugth of grain boundary 
d== vacancy diffusion coefficient 
c 0 == initial vacancy concentration at zero stress 
er == 'the critical vacancy concentration 
theta = angle of orientation 
alpha= drift compooenl 

alphaeff= alpha x cos(theta) the effective drift compooeot 

! 
crmatone.m 

m-file to create the resistor and capacitor matrix G 

! 
cmatone.m 

m-file to create capacitor matix. C 

vmatwo.m. 
m-file to crate initial voltage matrix VIN 

! 
tcooe.m 

,_fil_ t, "t. 

! 
The simulation of the voltage response is done by the foUowing process:-

i) assignment of the duration of time = t 
ti) dlagooalising the matrix of Q=C -1 G. 
iii) solving the voltage response by the equation :-

. v= S-I(S.VIN.expDt) +S:"'I( D-I.S.u.expDt) - S-ID-Is.U 

1 
the conversion of the voltage response to vacancy concentration response is 

solve by the equation;-

C v == V x exp a1ptwcff.x • C v is the vacancy concentration 

! 
the time 10 failure is determine by interpolating between the data points of the 
vacancy oonoentration C v and the time t. The command ofMatlab 
to do the this is :-

TTF - interpl(C v 9 t. critical vacancy concentrntion) 

! continue 
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simulation of the exact solution 
by solving . equation 2. 16 

! 
the time to failure is determine by interpolating betweeo the data points of the 

vacancy ~tion C v and the time l The command ofMatlab 
to do the this is :-

TfF = interp 1 (C v ,t, critical vacancy concentration) 

! 
calculate the Time to fai1me by signal delay method 

L 
nnatone.m 
m-file for the resistance matrix RG 

L 
calculate the signal delay by the equation 

[ (l-~) ] [(l_e(-~ff"))) Co = _ . (-~ff .• ) 
'fD:sRG.C. (-a1. haelf) t TIT ID.Ln V ' V cr- cr.e 

(I-Cl poX) l--il.· 
. ~.' 

! c 

simno=simno +1 , 

produce the vacancy concentration response graph 
and the results of Time to fuilure 

FIG 4.4 The program flow chart of sg2balLm 

4.3.1 Creating matrices for solving voltage and vacancy concentration 

response. 

The approach of simulating the voltage and vacancy concentration response is 

identical to that in section 4.2.2 . The only difference is in the treatment of the 

matrices. In this case the total charge in the system will be conserved. 

With reference to Fig 4.2 

3 

Total Charge (TC) = L C(i). V(i)lt=o 
i=! 

4.22 
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3 

TC- LC(i).V(i) 
VI = ;=2 

Cl 
4.23 

VI = TC _ C2.V2 C3.V3 
Cl Cl Cl 

4.24 

Therefore the earlier equation 4.7 becomes 

dV2 (1 1) ( 1) ( 1 )(TC C2.V2 C3.V3) 
C2"dt= - RI + R2 V2+ R2 V3+ RI Cl - Cl Cl 4.25 

AJterreannanging 

dV2 (11 C2) (1 C31 (TCl 
C2"dt=- RI+R2+RI.CI V2+ R2-RI.CiJ V3 + RI.CiJ 4.26 

. Therefore the linear matrix equation for the whole circuit:-

[

dV2] [1 1 C2 o ] "dt = - RI - R2 - RI. Cl 
C3 dV3 1 -- --

1 C3] [TC] ~21- RI.CI .[~~]+ OR!. Cl 4.27 

dt R2 R2 . 

The difference between equation 4.9 and 4.27 is in the G matrix and the U vector. 

4.3.2 The program codes to simulate the 'exact' solution 

This program tlg2blk.m is to simulate the exact theoretical solution for a single 

grain b~ndary with double blocking ends. The program enables the theoretical 

response of the vacancy concentration at various points on the grain be monitored. 

The original equations of reference[Clement, 1992] have been modified by replacing 

the positive sign of the ex to negative sign because the original equation deals with 

negative electric field. Another important term in the original equation that has been 

modified is that the solution is in the form of infinite series of summation. It is time 

consuming to compute for large values of k, a reasonable value of k=20 is chosen 

which would give a sufficiently accurate answer. This new equation is included in the 
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main program of sg2ball.m so that direct comparison can be made between 

theoretical and the simulated approach. 

4.4 The programs codes developed for single grain boundary 

The programs that have been developed are shown in the Table 4.1, 4.2 

No Program title Associate m-riles sub-m-files Description 

1 simalllg.m main program invo1ving simulation 

and combining with the theoretical 

solution and the elmore delay 

approximation. 

1. gmatone,m 1. ooeres.m ID develop the matrix of the 

resistors derived from the sub-m-

file which calculated the values. 

2. cmatone 1. onecap.m to develop the diagonal matrix of 

capacitor derived from the sub-m-

file which calculate the values of 

capacitors 

3. vmatone.m 1. onevolt.m to develop the initial voltage 

vectors derived from the sub-m·fi1e 

which calculated the values. 

4. umatone.m to develop the U vectors of the 

initial boundary condition 

S. mx>t.m program to fllld the real roots using 

Newton-Raphson method for the 

caseax>=2 
. 

6.imroot.m program to find the imaginary roots 

using Newton.Raphsim method for 

the case ax<=2 

. 
Table 4.1 Smgle gram boundary- Smgle blocking ends 
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- - - - - - - - --------------------------------------

No Program title Associate m-f"1Ies sub-m-files Des.rlptlon 

I sg2ball.rn main program involving simu1ation 

and combining with the theoretical 

solution. 

1. CIIhatone.nl 1. oneres.rn to develop the matri~ .fboth the 

2. ' resiston and capacitors derived 
onecap,m 

from the sub-rn-files which 

calculated the values. 

2. cmatone 1. onecap.m to develop the diagonal matrix·of 

capacitor derived from the sub-m· 

file which calculate the values of 
. 

capacitors 

. 3.vmatwo.m I. onevoltm 10 develop the initial voltage 

_on derived ftum the sub-m-fiIe 

wbioh oaIcuIated the values, 

4. tcone.m 1. ooeesp 10 calculate the total charge 

2. onevolt 

S.umatwo.m to develop the U veelors of the 

initial boundaty oooditioo 

t1g2blk.m main program involving simulation 

the theoretical solution of section 

3.1.2 

Table 4.2 Smgle gram boundary - Double blocking ends 

4.5 A representative example of a complex grain boundary network 

The next stage of program code development is to apply the lumped element model 

to complex grain boundaries. In reality, the metalisation film will undergo annealing 

and patterning processes during which the final interconnect samples .are produced. 

Many clusters with complex grain boundary microstructures are formed which run 

along the interconnect line. The parameters of these networks ( the vacancy diffusion 

coefficients, the lengths and orientation of the various grain boundaries) are 

statistically distributed making the lifetime also a stochastic parameter. It is the aim 

of these program codes to study the effect of these parameters on the electromigration 

. lifetime behaviour and to produce an interim statistical analysis of Time to Failure. 
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The model under study is a simple single,though realistic, cluster made up of 5 grain 

boundaries as shown below. In fact a number of other references have also used more 

or less this kind of model [Gleixner and Nix,1999],[Trattles, etal, 1994] to study 

electromigration behaviour. 

e, e, 
E A 

c D Electron CUJ'reot 

B e, e. F 

~Field 

Fig 4.5 The complex grain boundary model 

Two program codes netlbaIl.m( one end supplying vacancies with the others 

blocked) and net2baIl.m( all ends being blocked) have been developed to simulate 

the vacancy concentration build-up at various nodes and to determine the Time to 

Failure. It also incorporates the signal delay for estimating Time to Failure. The 

program flow charts are as shown in Fig 4.6 (netlball.m). and Fig4.7 (net2ball.m) 

In the simulation of the lumped element model,the cluster case has program flow 

which is identical to that of the single grain boundary interconnect.. The difference is 

merely in the number of grain boundaries, which will affect the various calculations 

of the components and their matrices and vectors. The flow charts describing these 

calculations will be shown later for a more realistic model of a complete interconnect. 
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--------------------------...... 
The purpose of netlbaILm is to simulate the vacancy concentration build-up for a complex grain boundary network where one 

end has a supply of vacancies Co and the others are blocked. The program will also compare the Time to Failure between the' 

Imnped model solution with the signal delay approximation. 

Userfnput 
nosim= number of simulation required 

I simno= 1 I 

~ 
user Input 

$= number of sections per grain boundary 
c 0= sup plyvacancyconcentration 
xl-,o = length of 5 grain boundaries 
d I-dS = vacancy di.ffusion coefficient of 5 grain boundaries 
er = the critical vacancy concentration 
theta l-thetaZ = angle of orienlation for 5 grain boundaries 
alphaem -alphaeff5 = the effeetive drift eornponent 

I 

I resmat_m I m-file to create the resistor matrixG 

J 
I 4::mat.m I m-file to create C8J>8.citor matrix C 

I matcrg.m. I m-file to crate initial voltaJle matrix VIN 

I 

I umaa.m I - .,. TT, 

I 
The simulation of the voltage response is done by the following process:-

i) assignment of the duration of time = t 

ii) diagona\ising the matrix of Q=C -1 G. 
ill) solving the voltage response by the equation:-

V = 8-1(8 . VIN.expDt) + S-I(O-ls.U.expDt)_ S-lD-1S.U 

1 
the con:version of the voltage response to vacancy wnceuttation is 

obtained by the equation:. 

Cv = V x exp alphacff..:c t C v is the vacancy concentration 

! 
the Time to Failure is detennined by inteIpOlating between the data points of the 
vacancy concentration C v and the time t The command ofMatI8.b 

to do the this is :- TI1' = interpl(C v • t. critical vacancy concentmtion) 

! 
continue 
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-- ------------------------------------------------------------

. 

calculate the Time to failure by signal delay method 

! 
nnatcgl.m 

m-file for the resistance matrix RG 

calculate the signal delay by the equation 

[ 

(1- V1N) ] {(I_e<_oI.ho"bl)) 
"TD=RG.C. (_~)' TIF'" TO.L V ,v cr =cr,e(-a1phacff.x 

(l-e .x) 1-~ 

Co 

simno=simno +1 

produce the vacancy concentration response graph 
and the data of Time to failure 

FIG 4.6 The program flow chart ofnetlball.m 
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The purpose of net2balLm Is to simulate the vacancy concentration build-up for a oomplex grain boundary where all ends are 

blocked. 

Userhtput 
nosim= nwnbel' of simulation required 

I simno= 1 I 

~ 
useriDput 

s= nwnber of sections per grain boundary 
Co"" sup plyvacancyconcentrotion 
x l-xS = length of 5 grain boundaries 
dl-d5 = vacancy diffusion coefficient of 5 grain botmdaries 
er = the critical vacancy concentration 
theta I-theta2 = angle of orientation for S grain boundaries 
alpbaeffl-alpbaeft5 = tbe effective drift component 

I 
cnnat.m 

m-file to create the resistor and capacitor matrixG 

1 
cmat.m 

m-file to create capacitor matrix C 

vmat.m. 
m-file to crate initial voltage matrix VIN 

1 
tcgr.m 

m-file to create the total charge matrix rc 
I 

umat2.m 
_m, .... H. , ... , 

1 
The simulation of the voltage response is done by the following process:-

i) assigmnent of the duration of time = t 

iI) diagonalising the matrix of Q=C -1 G. 
iii) solving the voltage response by the equation :-

V .. S-I(S. VIN.cxpDt) + s-t(O-IS.U.expDt) _ S-10 -IS. U 

.. 
the conversion of the voltage response to vacancy concentration response is 

solve by the equation :-

C v = V x exp a1phaefl'.x ? C v is the vacancy concentration . 

1 
tbe time to failure is determine by interpolating between the data points of the 
vacancy concentration C v and the time t. The command ofMatlab 

to do the this is :-
TIF = interpl CC v • t. critical vacancy concentration) 

1 
I sinmo-simno+l 

Fig 4.7 The program flow chart of net2ball.m 
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4.6 The programs codes developed for 'self generated' complex grain boundary 

The programs that have been developed are shown in the Table 4.3, 4.4 

No Program title Associate m-files sub-rn-files Description 

1 netlbaU.m main program· to simulate 

the vacancy concentration and 

calculate the TTF based on 

lumped element model and 

signal delay 

1. resmat.m 1. newres.m to develop the matrix of the 

resistors derived from the sub-

m-files which ealcu1ated the 

values of resistance . 
. 

2.cmat.m 1. newcap.m to develop the diagonal matrix 

of capacitors derived from the 

sub-rn-file which ealcu1ate the 

values of capacitors 

3.matcrg.m 1. inicrg.m to develop the initial voltage 

veetors derived from the sub-

m-file which ealcu1ated the 

values of the initial voltages. 

4. umat2.m to develop the U veetors orthe 

initial boundary condition 

Table 4.3 Complex gram boundary -one end has supply vacancy 

No Program title Associate m-files sub-rn-fiIes Description 

I net2ball.m main program to simulate 

the vacancy concentration and 

calculate the TTF based on 

lumped elemnt model 

1. crmat.m 1. newres.m to develop the matrix of both 

2. newcap.m 
the resistors and capacitors 

derived from the sub-m-files 

which ealculated the values. 

2.cmat.m 1. newcap.m to develop the diagonal matrix 

of capacitor derived from the 

sub-rn-file which calculate the 

values of capacitors 

3. vmat.m I. inicrg.m to develop the initial voltage 

veetors derived from the sub-

m-file which calculated the 

values. 
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4. tcrg.m 1. inicrg.m to calculate the total charge 

2. newcap.m constUned in the CM! 

S. mnatnew.m to develop the U vecton of the 

initial boundary condition 

Table 4.4 Complex gram boundary ·a1l ends blocked 

4.7 The development of program codes for realistic grain boundaries 

To obtain meaningful statistical data on the eIectromigration Time to Failure a more 

realistic model representing the interconnect must be developed. Many studies 

involving computer simulations on electromigration lifetime employ Voronoi 

tec\bnique to generate a realistic representation of interconnect [Joo and 

Thompson,1994],[Knowlton, et al.,1989],[Marcoux, et al.,1989] 

Voronoi techniques have also been employed in this part of the software 

development. MA1LAB® provides a built-in function to generate a Voronoi network 

consisting of straight lines joining the nodes. With this facility , a program code 

vrnoittf2.m has been developed in an attempt to produce realistic statistical data of 

electromigration Time to Failure. The process of obtaining the required data can be 

understood better by referring to process flow chart of Fig4.8 below. 

I Production of AI fCu Film by Voronoi method I 
! I Annealing treatment of A1/Cu film 

--r 
Production of interconnect samples 

Calculation of TTF of grain boundary 
clusters using lumped element model 

-carcilfatton of TTF of gram 60uiiQiiiY 
clusters using signal delay method 

lYetenrune the TTF of the mterconnect 
(the smallest time among the TTFs of 
grain boundary clusters) 

Figure 4.8 The program flow chart of the main processes 
for producing the Time to Failure for realistic interconnects 
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With reference to Fig.4.8, to obtain the electromigration lifetime of interconnect 

samples, the program needs to undergo several processes. The development of the 

program codes starts with creating the Voronoi network which will represent a 

conductor film , which in this study is aluminium or copper·. Once the film been 

created, it will often undergo an annealing process during where the grain will grow 

in size. The program code which simulates this process is the function file 

annealing.m. The main processes that are involved in the annealing treatment are i) 

grain growth ii) the annihilation of unsustainable grain boundaries . and iii) 

recombination of grain boundaries which allows for larger grains to grow at the 

expense of smaller ones. For the simulation of the annealing process, the algorithm 

for grain growth and the rules for annihilation and recombination, are based on the 

work by [Kawasaki, et.al, 1989]. 

After the annealing process, the Al film is patterned to form interconnect samples, 

. and the program code to do this is slice2.m. The program will simulate the slicing of 

the Al film into various number of interconnect samples depending on the desired 

width. Once the interconnect samples have been generated, the simulation of their 

Time to Failure can be achieved, a function file vrttf.m will do the simulations based 

on the lumped element model and the signal delay method. First, the Time to Failure 

of each cluster of grain boundaries will be calculated and then the minimum Time to 

Failures among the cluster in the sample will be considered to give the Time to 

Failure of the interconnect sample. 

For the whole simulation exercise, the ouly limitation of the program codes is in the 

calculation of the Time to Failure where the maximum number of grain boundaries 

per cluster is limited to eleven. A script file vrnoittf2.m has been developed to 

simulate the whole process and the program flow chart is shown in Fig. 4.9. 

• To be specific we have looked at Al because parameter values for Al are better 

known than for eu and more experimental results exist for Al. 
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~--------------------------......... .... 
anneallng.m 

m-file for the simulation of the annealing process 
of the Voronoi network 

flgvmoLm 
?,-file for the ~~on of. hard oopy of 

-r 
geometry.m 

m-fi1e for the calculation of the geometrical 
properties of the grain boundaries i.e. length 
of ~in boWldarles and the anale of orientation 

lablenode.m 
m-file for the making ofJabels for the nodes 
(vertices) and the grain boundaries 

... 
User input 

nosample = 
sample= I ( start cmUlIer) 

I • 
no ~ 
.~. 

sUce2.m 
m -file to produce the interconnect samples --. 

newgeom~",.m 

m -.fi1e to calculate the new values of the 
length and angle of grain boundaries 

... 
newnode.m 

m-file for making the new labels for the new 
nodes and the grain bmmdaries 

J. 

User Input 
nocluster= • clustemo=I(startcounter) 

no -~ 
Yes 1 

vrttf.m 
m-file to calculate the exact solution and 
Ehnore delay of the Time to Failure of 
the grain 1:xnmdaries clusters and hence 
the interconnect samples 

.j. 

I clustemo=clustemo+l I 
I sample=samplet 1 I 

.1 ~ 

end 

Fig4.9 The flow chart of the simulation of the Time to Failure 
for the script file vmoittf2. 
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4.7.1 The simulation of producing samples of AI films 

The samples of the AI films (consisting of the grain boundary clusters) are 

constructed by the Voronoi method as mentioned earlier. These grain boundaries are 

produced by using the available built-in function of the MATLAB® i.e. 

voronoi(vx,vy). The grain boundaries are all then straight lines connecting the vertices 

in the Voronoi diagram. 

4.7.2 The simulation of annealing process 

The annealing treatment of the Al films is simulated by increasing the size of the 

grains. A program code annealing.m has been developed to simulate this by using the 

rules developed in the Vertex model for 2D grain growtb[Kawasaki et.al,1989] which 

is suitable since it involves the manipulation of the co-ordinates of the vertices. The 

annealing treatment simulation will improve the Voronoi diagrams which are initially 

produce by the built-in function of MATLAB®. The simulation will exhibit the 

growth and the collision of grain boundaries processes where grain boundaries 

recombine or are annihilated when a grain boimdary length is forced below a critical 

value unsustainable. The program flow chart of the annealing process is as shown in 

Fig 4. 10 

First a Voronoi network is generated and its geometrical data is compute and stored. 

This process is done through a function file geometry.m. The geometrical data 

computed are i) lengths of the grain boundaries and ii) angles of orientation. A flow 

chart showing the process is shown in Fig4.11. 

The initial Voronoi network generated by the computer only provides information on 

. the co-ordinates of the nodes in terms of vx and vy. It is vital to labelthe nodes and 

the lines ( grain boundaries) connecting these nodes. This is needed for identification 

purposes for calculating the Time to Failure. A program code labgrain1.m has been 

developed to do this task and the flow chart describing the labelling process is shown 

in Fig.4.12. Although the nodes and their grain boundaries are labelled, there is not 

yet any information on how they are connected to each other. A program code 
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conmtrix.m is developed to solve this problem. All of the infonnation on the 

Voronoi network can then be stored, such as i) the connectivity between each node, is 

stored in matrix NODMAT. ii) the grain boundary identification numbers are stored 

in matrix GBMAT. iii) the length of the grain boundaries are stored in LGTHMAT 

and iv) the angle of orientation of the grain boundaries are stored in matrix 

ANGLEMAT. These matrices will be called when computing later processes such in 

the annealing and calculation of Time to Failure. Fig 4.13 shows the program flow 

chart of conmtrix.m. 

In the simulation of the annealing process itself, there are three main processes that 

are being simulated i.e. i) grain growth ii) grain boundary annihilation and iii ) grain 

boundary recombination for every time step. To simulate· this processes, three 

function files are developed i.e. i) grwth1.m for simulating the process of grain 

growth, ii) lamdal.m for classifying nodes which can fonn triangles (for annihilation) 

or switches( for recombination) and iii) triswl.m for simulating the annihilation and 

recombination process. Program flow charts to describe this processes,are as shown in 

Fig4.l4 , Fig 4.15, and Fig 4.16 for the grwthl.m , lamdal.m and triswl.m 

respectively. The equation use for simulating the grain growth is obtained from 

[Kawasaki,et.al,1989] and is given below :-

dri 1 (i) (rj -ri) 
-=-- L+=--+ 
dt Z' j Iri -rj! 

1 (i) 

Z = 6)::!ri - rj! 
J 

(i) = number of nearest neighbours of node i 

i 

L is the sum of all the nearest neighbours(nodej's) of node i 
j 

4.28 

4.29 

(rj_ri) is the difference between the co-ordinates of the nearest neighbours(nodej's) 

and the co-ordinates of node i. 

!ri_rj! is length of the line or grain boundary between node i and all the neighbouring 

nodesj. 
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~: is the rate of change of co-ordinate i with time t ( this will give the 

new co-ordinates after some time steps dt) 

For the program code lamdal.m, the nodes to be identified are those nodes which can 

form triangles and switches. These are those which satisfY the following criteria 

i) the length between any two nodes(the length of grain boundary) has become 

shorter than the critical vertex size £\. 

ii) the test for a triangle in the connectivity matrix NODMA T has been passed. 

The test for a node being part of a triangle is described below, based on an example 

from a Matlab book by [Biran.& Breiner, 1999]in a section on graph theory. With 

reference to the Fig4.I7 there is only one triangle,. 

VI 

Fig 4.17 

V3 

The connectivity matrix A = 0 1 0 0 

101 1 

0101 

0110 

Taking a cube = A 3 = o 3 1 1 

324 4 

1 4 2 3 

1 4 3 2 

V4 

The triangle is one having the length of path equals to 2 on the diagonal i.e. node 

V2, V3 and V4. This algorithm, i.e. first take the cube of the connectivity matrix 

NODMAT and then search for all nodes having a value equals to 2 on the diagonal 

entries of the matrix NODMAT, this will provide all the possible nodes that can form 

a triangle. This algorithm is applied in function files lamdal.m and triswl.m 
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The program code trisw1.m is developed to simulate the annihilation and the 

recombination process of the grain boundaries. The first step is to find all the nodes 

and their neighbouring nodes (those nodes that are connected to the identified grain 

boundaries). The annihilation simulation is described below:-

4.7.2.1 The recombination process 

An example of the recombination process is shown in Fig 4.18( a). 

4 
---+ 
+-

~4 

5-t:6 
Fig 4.l8( a) Recombination process. Here the length of grain boundary 

connecting nodes 2 and 3 has become less than Ll, so the switch occurs 

The algorithm to perform the recombination processes is:-

i) create a 90 0 rotational matrix ROTMA T 

ii) calculate the original co-ordinates (vxo,vyo )which is half way between nodes 2 

and 3 

iii) calculate the new co-ordinates of node 2 and 3 = original co-ordinates -vxo, vyo 

and then multiply by the. rotational matrix. This will rotate node 2 and node 3 

(90 0 clockwise). 

iv) select the appropriate neighbour nodes to node 2 and node 3 which needs to be 

recombined/switched ( i.e node 5 and 4 only) 

v) modify the connectivity matrix NODMAT so that node 4 is now connected to 

node 2 instead of node 3, and Node 5 connected to node 3 instead of node 2 

4.7.2.2 The annihilation process 

An example of the annihilation process is shown in Fig 4.18(b). 

1 1 

6 Fig 4.18(b) Annihilation 
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Here the area of the triangle {f
"

f.,f.} has become less than 11.'. It is considered 

unstable and vanishes. 

The algorithm to perform the annihilation processes is:-

i) find the centre point of node 2,3 and 4 and label the node as node 2 

ii) select the neighbours of each node of the triangle node 2,3 and 4 which are not 

part of the triangle i.e. neighbour node 1,5 and 6 

iii) modify the connectivity matrix NODMAT so that node 1,5 and 6 is connected to 

node 2. 

Userlnpnl 
number of random points to draw a voronoi diagram or network representing the At film 

plot the Voronoi diagram and get infoJmation on number ofwrtices of the original voronoi 
diagram 

m·file fur the calculation and storing of infoJmation on the geometrical properties of the original 
grain boundaries 

I ta6::,:i.m 
m- file fur meking tb.labels for the origiT nodes (wrtices) and the grain boundaries 

....... m 
m-file for meking a oonnectivity matrix of the nodes and for storing its information such as 
NODMAT= information on the oonnectivity ofnodes 
GBMAT • information on the oonnectivity of the grain boundaries 
LGlHMAT= information on the leogth of the grain boundaries . 
ANGLEMAT = information on the angle of orientation of the grain boundaries 

Userlnpul 
dm = number of time step needed 
time step - 0 ( start counter for the annealing process) 

Get new data on the number of wrtices after each time step in the annealing process 

geometry.m 
m-file for the calculation and storing of information on the geometrical properties of the new 
grain boundaries after each time step of annealing process 

lab8nJn2.m 
m- file fur making the label. for the new nodes (wrtices) and the grain boundaries after each 
time step of annealing process 
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c:onm.rlLlIl 
m-file for making a connectivity matrix of the new nodes and storing its information such as 
NODMAT= information on Ihe connectivity of.odes 
GBMAT = information on the connectivity of the grain boundaries 
LG11lMAT~ information on the length of the grain boundaries 
ANGLEMAT = infonnation on the angle of orientation oftbe grain boundaries 

grwlD •• m 
m-file for the simulation of the growing of the grains 

Iamdal.m 
m-file for the detection of the grain botmdaries which have the length less than the critical value 
for the.Jl;rain boundaries to armihilate or to switch 

triswl.m 
m-file for the simulation of the annihilation and the switching of the grain botmdaries prOcess 

output.m 
m-file for the plottinp; of new Voronoi network after each time step of the armealinp; process 

I times1ep=limeslep +1 I 
'1 

Fig4.10. Program flow chart of annealing.m end 

I geometry.m I 
! 

n= number of line (grain boundaries) 

\=,joining each vertices 

<7-
ye 

calculate the lenglh and angle of the grain boundaries 

Lxy(k)= J(vx2(k) - vld(k»2 + (vy2(k) - vyl(k»' 

Ihetarad(k)= tan-'ft2(k)-VYl(k») 
,(vx2(k) -vxl(k»)) 

k=k+1 

exit 

Fig 4.11 The program flow chart for calculating the length and angle of 
orientation of the grain boundaries of m-file geometry.m 
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uuuauze counter 
]0:1 
i=l 

I 
i- i + 1 

+ 

Fig 4.12(a) The program £low chart for labelling of nodes and its grain boundaries in the labgrainl.m 
This routine is for assigning a zero for redundancy vertices from the original array. 

initialization 
vxori = vx, vyori = vY 'n= nmnber oflines(gb) 

end 
Fig 4. 12(b) This routine is for eliminating the zeros. The final values of vxori and vyori are the 

co-ordinates of the nodes. To label the nodes and the grain boundaries, text and intZstr 
commands are used. 
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InItialization 
purpose Is to find the start aDd end nodes In terms oftbeir node nwnber 
n == total number of \IX, vy co-ordinates 
vxstrt = vxl, rys1rt = vyl 
vxend = 00, vyend = vy2 
actnodenum = index of the nodes! nodes number 
totnode == total nwnbel' of nodes 
nogb total number of groin boundaries 
gbnum = index of the groin boundaries! groin boundaries number 

k=1 

no 

i=l 

I vxstrt(l)= 8Ctnodenum(k)I 1+-• ......::,.ye.,;.' --.. ,-;::; 

vxend(I). actnodenum(k) Jo-f ......::..yes---~~ 

no 
i == i+l 

end 
vxstrt will store an array of the starting node number 
vxend will store on ""'y of the ending node numbres 

Fig 4. 13(a) The flow chart for the creation of the connectivity matrix in coruntrix.m file. 
This is the first part of the program where the vx strt and vxend coordinates and 
hence the vy co-ordinates are converted into their respective starting and 
ending node numbers. 
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initialization 
to build the matrix which store infonnation on i)connectivity ii)grain boundary DUm 

iii) length of the gntin boundaries iv) angle of the gntin boundaries 
nomember = total number of the starting nodes(vxstrt) which is equal 

to the nwnber of oounectivity path 
connect :: I (if there is a connection between two nodes. assign a I) 
nooonnect = 0 (if there is no oonnection between two nodes. assign il 0) 

NODMAT (iJ)=noconnect 
GBMAT(ij) =noconnect 
LGTIIMAT(iJ) =noconnect 
ANGLEMAT(iJ)=noconnect 

NODMAT(ij)= connect 
GBMAT(ij) = gnnumO) 
LGTIIMAT(iJ)~ LxyO) 

ANGLEMAT(ij)= ThetadegO) 

NODMAT( ij)= connect 
GBMA T (ij) = gbnumO) 
LGTIIMAT(ij) = LxyO) 
ANGLEMAT(ij)= ThetadegO) 

I (the rows of matrix) 

(the coltlDlDS of matrix) 

no 

es 
( the index number or the connectivity path 

no 

no 

yes 

no 

= 1+1 

'" j+l 

Fig 4. 1 3 (b) The second part of the program in which the matrices are built by comparing the contents 
of the vxstrt and vxend with the contents of NODMAT(ij). If equal, then connectivity 
exist and a 1 is assigned to the matrix ofNODMAT(ij) and ifno!, a 0 is assigned. 
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Initialization 
dt= 0.0001 the growing rate 
i = 1 

~ 
yes 

Store variables with data 
a = find all nodes connected to node(i) using the NODMAT 
z = the total nwnber of nodes connected to node(i) 

only 1 node connected 
z<=l 

no 

yes 

D(i) = 
J(vxo,/(I) - vxo,/(a(z»)' + (vyorl(l) - vyori(a(z»)' 

6 

New co-ordinates of vx=vxnew(i)=vxori{i) + (( __ 1 )d{ (vxori(l)-vxori(.(I») )) 
D(I) Jt'Xbri(1) - vxorl(.(I»)' + (vyorl(1) - vyorl(.(I»)' ) 

A similar equation holds for new co-ordinates ofvy by changing vxnew with vynew and vxori with vyori 

?'--no 

yes 

D(i) = 
J(vxorl(l) - vxori(.(I»)' + (vyorl{l) - vyori(a(\»)' + J(vxari(l) - vxorl(a(2»)' + (vyorl(l) - vyorl(a(2»)' 

6 

New oo-crdinates for vx 9'XIlewO)=vxoriO) + 

(( 1}t( (vxori{l)-vxori{a(I») ) ( (vxorl(l)-vxorl(a(2») )) 

- D(I) . J(vxori(l) -vxori(.(I»)' + (vyori{l) - vyori(a(I»)' + J(vxori(l) - vxari(.(2»)' + vxori(l) - vxori(a(2»), 

A similar equation holds for new co-ordinates of vy by changing vxnew with vynew and vxori with vyt?ri 

yes1 
I 

])(i)-
:i(vxorl{l) - vxori(a(l»)' + (vyori(l) - vyori(a(I»)' + :i(VXOri(1) -vxori(a(2»))' + (vyori(l) - vyor/(a(2»)' 

6 

+ :i(VXOri(1) - vxorl(a(1))' + ("."rl(1) - vyori(a(3»)' 

6 
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New co-ordinates of vx =vxnew(i)=vxori(i) + 

[( 1 r{ (vxori(I)-vxori(a(1») . ) ( (vxori(l) - vxori(092))) )) 

- D(I) J(VXOri(/) -vxori(a(1»)' +(~ri(/) -~ri(a(I))' + J(VXOri{l) -vxori(a(2»)' + vxori(.) -vxo'i(a(2»)' 

( (vxori(r)-vxori(a(m) ) 

+ J(vxori(/) - vxori(0(3»)' + (~ri(.) - vyori(a(3»)' 

equation is same for new co-ordinates ofvy by changing vx:new with vynew and vxori with vyori 

I i ... i +1 I 

end 

Fig 4.14 The program flow chart for grain growth in the m-file 
grwthl.m 
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initiazation 
i=l 
m=O 

1 

~ 
j = I I 

<? 
. LOTHMAT(iJ) 4. & LOTHMAT(iJ) '" 

m= m + 1 
Nodesl(m) = i 
Nodes2(m) = j 

j = j + I 

1 
i:o i + 1 

end I 
Fig 4.15(a) The flow chart of m-file lamdal.m. This first part of the program will list all " nodes having the grain boundaries length less than the critical vertex size .1. 

no...JlOOnode = total number of nodes in the list of Nodes I 
Nodes = • matrix <ontaining Nodes I and Nodes2 

L3=NODMAT' = the connectivity matrix NODMA T is tested for the presence of triangI.(fust stag.) 

I 
i=O 

m= 
.=0 

L 
nO ..!: 

;No --r::- final test for presence of triangle Recombination 
nooeo 

""m+l 'r.~ I "MM .. rd\\=2 • r ; ?\ "'M, .f; :.~o 
."'0+1 

'ell ----- SWlNODESI(e)=Nodes(i.I) 
.Nnd~ii ;\ SWlNODES2(e)= Nodes(i,2) 

~ 

.j. 1. 

~ I i=i+1 I 

Fig4.1S(b) Program flow chart of second part lamdal.m 
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The purpose oftrlswl.m is to identifY the nodes of the voronoi netwodc which mske up triangles and potentially swith. Once 
identified, the program will simulate the IIIlJlihiIation and recombination processes. 

lamdal.m 
m-file for I"" identification of the triangle and switch nodes 

1 
! I 

count the number of possible nodes thet make up count the number of possible nodes thet will 
trianp;les and store in variable No switch and store in variable No posswnodes 

redundant nodes in the list are ~ redundant nodes in the list are removed 
giving the aetual nodes thet can make up triangles giving the actual nodes thet will switch 
and store in variable TRlNODESI and store in variable SWJNODESI 

! ! 
find the other nodes that are attached to the compare the list of nodes in SWJNODESI and 
existing nodes ofTRINODESI by making use that ofTRINODESl, if same, remove the node 
of the oonneetivity matrix NODMAT and store from the list ofSWJNODESI. 
in variable NEXTRI. 

the nodes in NEXTRI are checked again for any assign a label for the nodes of SWlNODES 
additional nodes by making use of the connectivity and store in variable nmodel and ...... d.J. Make 
matrix NODMAT and store in variable ADDTR1NODES swnodei always have a higher values ofvy 

and store in new variable as nmodl and nmodJ 

the tednndant nodes in ADDTR1NODES are ~;;.;;;,.;;;, Uso -:.~--:, =a::~';;:, n._u 
~ and new list of nodes is stored in 

variable TRIAN boundaries at the same time. 

1 .. 
the nodes in TRIAN are tested for being port of a triangle find the neighbolllS of esch nodes of swnodi and 
and the final list is stored in variable . swnodj and store in variable NEI and NE] 

TRIANGLE 

1 
the nodes of the TRIANGLE .... labelled 
nodel = TRlNODEI 
node2= TRlNODE2 
n0de3JfRlNODE3 

count the DlDDber of triangles 
found in the'voronoi diagram 

and store in variable No TRIANGLE 

1 
calculate the ceotro of the triangle and 
store the new ooordinates of the centro 

. 'ablevxnew "" 

1 
find the neighbolllS for each of the node of the triangle 
and select the nodes which are not port of the triangle. 
and store in variable 8OInbl. seInb2, seInb3 

! 
make a oonneetion from the centro to the seInbl,seInb2 

and 8OInb3 by using the oonneetivity mstrix NODMAT 

Fig 4. 16 The program flow chart of triswl.m 
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respectively. Create a rotational matrix ROTMAT, 

which will rotate the nodes 90 0 clockwise 

modifY the existing oonneetivity matrix NODMAT 
by selecting the nodes which to be OOJlDected to 
the new position. The selected nodes are s~ 
in variable seJnei, seInej 

... 
the new coordinates of swnodi and swnodj are 
calculated and are stored in variable vxnew and 
vynew. Tbe process involves:-
1. calculating the centro point between swnodi 

and swodj and store in variable wo and vyo 
2. calculating the new points after making the 

90 0 rotation and store in variable NEWPTI 
and NEWPT2 = the original vx, vy ooordinates 
of swnodi and swno<lj minus ""0 and vyo 
respectively are multiplied by ROTMAT 

3. the new ooordinates are calculated by:-
vxnew(swnodi)=NEWJ>TI (1:)+""0 
vynew(swnodi)=NEWPTI (2,:)+vyo 
vxnew(swnodjr NEWPT2 (I.: ) + "". 
vyoew(swno<lj)= NEWPT2(2,: )+vy. 



- ---------------------------------------------------------------

4.7.3 The simulation for creating samples of interconnects 

Simulation is performed by the program code slice2.m where the Voronoi network is 

sliced into equal samples of interconnects. As the result of this slice, new points or 

nodes have to be recalculated and also the geometrical information such as the 

lengths and angles of orientation of the grain boundaries has to be updated The 

interconnect samples will consist of a random distributed of grain boundary clusters 

each of which will have its own characteristics such as: 

i) The number of grain boundaries making up the cluster 

ii) The length of each grain boundaries in the cluster 

iii) the length of the cluster (the spanning of the grain boundaries in the x 

direction i.e. in the direction of the moving vacancies) 

iv) The angle of orientation of each of the grain boundaries. 

The algorithm for developing the program codes is:-

i) trim the Voronoi diagram into film samples by using the axis function 

ii) slice of film into the interconnect samples by using the axis function 

iii) identify grain boundaries inside the sliced off area 

iv) calculate the new co-ordinates of the nodes inside the sliced area 

A program flow chart for the production of interconnect is as shown in Fig. 4. 19.The 

critical stage of the simulation is in the calculation of the new co-ordinates for the 

nodes inside the sliced area i.e. the interconnect sample. The calculation is based on 

the equation of straight line y =mx+c 

where 

y2-yl 
gradient m = x2 _ xl 

. (y2.xl) - (yl.x2) 
mtercept c = xl- x2 

Example: to calculate new co-ordinates for node I 

y2::O.5 I 2 

I Bb) 
<Sb3 

yl::O 3 4 
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Node 1= 
(y2 - c(gbl)) 

x co-ordinate = m(gbl) , and y co-ordinate = y2 

Node 4= x co-ordinate= (
Yl- c(gb3)) . 

m(gb3 ' and y co-ordinate = 0 

i) production of AI film 

Fim trim the Voronoi network to produce the sample fibn( I xl) 
xlcl= 0 (the start point of slicing x axis of the original Voronoi diagram) 
x2c 1 == 1 (the end point of slicing axis of the original; Voronoi diagram) 
ylcl= 0 (the start point of slicing yaxis of the original Voronoi diagram) 
y2cI=1 (the end point ofslicingy axis of the original Voronoi diagram) 

To execute the slicingprooess = axis([xlcl x2c1 ylcl y2cI]) 

ii) production of interconnect sample 

Seoond slice the Voronoi network to produce the interconnect sample fibn( «(y2c2·ylc2) x I) 
xlc2= 0 (the start point of slicing x axis of the original Voronoi diagram) 
x2c2=1 (the end point of slicirig axis of the original; Voronoi diagram) 
y I c2= user input 
y2c2= user input 
to execute the slicirig prooess = axis[ (x Ic2 x2c2 y I 02 y2c2]) 

initialise 
vxstrt =vxl 
vxend=vx2 
vystrt =vyl 
vyend =vy2 
k = I (counter) 

start and end value of grain boundmy oc-ordinates 
with the respective oc-ordinates of the slice(box), at I 

e co-ordinates must lie within the sliced 
(6 conditions) 

FIG 4. 19(a) The flow chart for the production of films and the interconnect samples. 
The first part of the program slice2.m produces the film and the 
interconnect samples and identifies the grain boundaries that are inside 
the sliced area. 
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lnItlaIisatlon 

gbinbox= all the grain boundaries in the slice area or box 
nogbinbox = the total number of grain boundaries found in the Ix 

! 
I I = I I 

. ~ 
"'t" 

assign new variables to the co--ordinates of the grain boWldaries 
x I (gbinbox(l))= vxs1rt(gbinbox(l) 
xl(gbinbox(l)=vxend(gbinbox(l) 
y I (gbinbox(l)joovys1rt(gbinboxO)) 
y2(gbinbox(l»)= vys1rt(gbinbox(l) 

! 
I 1=1+1 I 

.. 
end 

Fig4.19(b) The program flowchart from a part ofslice2.m assigns new 
variables for the co-ordinates of the grain boundaries 

I i =1 I 
no .1 

j <= nogbinbox 

Tyes 

calculate the gmdient m and the y intercept c of each grain 
boundaries in the box using the straight line equation ofy=mx +e 

gmdientm = 
y2-yl 

= 
(y2.xl)-(yLxl) --,0 

x2-xl xl-xl 

1 
li=i+IJ 

I end I 

Fig 4.19( c) The program flow chart from a part of slice2.m which 
calculates the gradient and the intercept c for each of the 
grain boundaries in the sliced area 
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-- - -------------------------------------------------------------------

j = 1 

no 

+ yes 

calculate the new co-<>rdinates of the start 
and end points of each of the grain boundaries 
and hence its nodes co-ordinates which lies 
inside the sliced area by using the straight line 
equation of y.:a mx + c 

end 

Fig4.19( d) The program flowchart from a part ofslice2.m calculates 
the new co-ordinates of the start and end of the grain 
boundaries and hence the co-ordinates of the new nodes 
in the sliced area or box 

After the simulation of the production of interconnect samples, the new nodes in the 

sliced area will undergo the several process i) calculation of the new geometrical 

properties ii) labelling of the new nodes and iii) and creating the new connectivity 

matrix. 

4.7.4 Simulation of the Time to Failure 

The interconnect samples are now ready for experiment in which the Time to Failure 

are now calculated. The program code that simulate this is vrttf.m and the program 

flow chart is shown in Fig 4.20 
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The purpose of the program is to calculate the Time to Failure of the interconnect samples. 
The calculation is based on the lumped model equation and the signal or Elmore delay estimation. 

Assignment or variables 

LG= length of grain boundaries after slicing process 
AO= angle of orientation of grain boundaries after slicing process 

common Input parameters 
co: I the vacancy concentration (stress (J = 0) 
cr-2 the critical vacancy concentration 
alpba=S th. electromigration fon:e 
Diff = 5 the effective vacancy diffusion 

. 

user Input 
GB= total nwnber of grain boundaries in a cluster 
LOB= nwnber of grain boundaries forming the longest path 
s = number of sections of eR circuit per grain boundaries 

I 

~ 
user input 
K( q) = th. leogth of each grain boundaries 

aog(q)= random generator betweeo 0 0 and 120 0 

I 

~ 
Diffusion coefficient 

d(q)= Diff .. in ( an~(q) 

.. 

6° <ang(q)< 12 d(q)= Diffx sin (18°) ..,.. 
user Input 

.- theta( q) = angle of orientation of each grain boundaries 
alphaeflt q) = alpha x theta( q) 

1 
vnnat4.m 

m-file to produce the resistor or 0 matrix 

1 
vemat3.m 

m-file to produce the capacitor or C matrix 

1 
vcrgma.m 

m-file to produce the initial charge or vm matrix 

! 
WIIIat3.m 

m-file to produce the U matrix 

! continue 
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1 
The simulation of the voltage response is done by the following process:-
i) assignment of the dmation of time = t 
it) diagonelising tha matrix of Q=C -I O. 
ill) solving tha voltage response by the equation :-

V. s-'(s. VlN.expDl)+ S-'(D-'s. u.expDl)_ SC1D-'S.U 

the conversion of the voltage response to vacancy concentration resjX>IlSe is 
solve by tha equation :-

Cv = V x exp aiphacfb .• C v is the vacancy ooncentration 

L 
tha time to failure is detennine by interpolating between the data points of tha 
vacancy concentration C v and the time t The command of Matlab 

to do the this is :-
TIF = interpl(C v ,~critical V8C8Iloy oonoentration) 

. 

to calcalete tha Time to failure by sigual or Ebnore delay method 

L 
elmore3.m 

create the resistor matrix RG 

1 
compute the sigoal or Ebnore delay using tha equation below:-
ED= Signal or E1more delay, R09llSistor matrix, C=capacitor matrix 
VIN"= pseudo or initial voltage matrix, 
x= tha length of the point along the grain booodery which is to be monitored 

Vcr- the critical voltage, TIFELMORE= Time to failure of sigual delay 

ED= 

RO.C-1(1_ ':) 
V _ (-~""".x) 

l_e(-a1P&dl'·lt) 
, er-cr.e 

TIFELMORE= [{l-e(--~)l) 
ED.LN V 

1-~ 
Co 

I end I 

FIG 4.20 The program flow chart of vrttf.m for the estimation of the 
Time to Failure of the grain boundary clusters/interconnect 
by using the lumped element model and the signal delay 
method. 
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- .. _-----------------------------------

The simulation of the Time to failure of the interconnect samples is done one sample 

at a time by inputting the information required below:-

i) Number of samples needed for the experiment 

ii) Number of clusters present in the sample (by inspection) 

Hi) The length of the cluster( by inputting the start and end node of the cluster 

will automatically calculate the length ) 

iv) The number of grain boundaries found in the cluster( by inspection) 

v) The number of grain boundaries forming the longest path (by inspection) 

vi) The length of the grain boundary (by inputting the grain boundary number 

will generate the length of each grain boundaries in the cluster) 

vii) The angle of orientation of the grain boundary (by inputting the grain 

boundary number will generate the angle of orientation) 

viii) The number of section of component per grain boundaries 

Once this information is fed into the system, the Time to Failure is calculated 

automatically using the lumped element model and the signal delay. Basically the 

process involved in the calculation of the Time to Failure is identical to that for the 

single and complex grain boundaries as mentioned earlier. The simulation of the 

Time to Failure using the Lumped element model is done by computing the matrix 

eqn(4.10) where the voltage response of a particular node is obtained through 

eqn(4.17) and the equivalent vacancy concentration response through eqn(4.18). 

Similarly, the. Time to Failure for signal or Elmore delay method is by solving 

eqn(4.20) and eqn(4.21). The matrices that are required in the simulation of the Time 

to Failure of realistic interconnects by both methods are as follows:-

i) the conductance matrix G ( created by function file vrmat4.m) 

ii) the capacitance matrix C ( vcmat3.m,) 

Hi) the initial charge matrix V1N (vcrgmat3.m) 

iv) the U matrix (vumat3.m) 

v) the signal delay or elmore resistance matrix RG - (elmore3.m) 
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4.7.5 Calculation oCthe lumped element components 

The calculation for the lumped element components i.e. the resistances and 

capacitances and the initial voltages for complex grain boundaries is identical to that 

of the single grain boundaries case, the only difference is to take account the extra 

grains boundaries that makes the complete network. The algorithm of calculating the 

components are as follows:-

a) calculation oC resistors values 

i) The first resistor values Cor each grain boundary in the cluster 

(1- e(-aJphaeff(z» .L(z») 
r1(z) = -'------~ 

alphaeff(z).d(z) 

where z = counter for the number of grain boundaries in the cluster 

L= xis, x= length of each grain boundaries, s= number of sections per grain 

boundary 

ii) All the resistors values Cor each grain boundaries that make up the longest 

path (Crom the start node to the end node of the cluster) 

example:_ 
first grain boundary = r(i)= e(-k.alphaeff(l).L(l» .r1(1) 

2nd grain boundary = rei) = e(-aJphaeff(1).x(1»-(y.alphaeff(2).L(2») .rl(2) 

3rd grain boundary = rei) = e(-alphaeff(l).x(l»-(aJphaeff(2).x(2»-(p.aJphaeff(3)L(3») .r1(3) 

where k,y and p is a counter. 

iii) All the resistor values Cor the wing grain boundaries 

example :-

first wing grain boundary=r(i) = e(-w.aJphaeff(LGB+l).L(LGB+l)).rl(LGB + 1) 

where k,y,p,w = counter, LGB = number of grain boundaries in the longest 

path 
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b) Calculation of capacitors values 

i) The first two capacitors value for each grain boundaries in the cluster 

(e (-alPbaeff(Z).L(1»+alPbaeff(Z).L(Z)-I) 
cl(z) - +------:-:,.-;--c::::-:-~ 

- (a1phaeff(z).(I- e(-alphaeff(z).L(Z») 

(e(alPhaeff(z).L(I»-alPhaeff(Z)L(Z)":I) 

c2(z) = ( ) a1phaeff(z).(I- e(-alpbaeff(z).L(z) 

where z = counter for the number of grain boundaries in the cluster, 

L= xis, x= length of each grain boundaries, s= number of sections per grain 

boundary 

ii) All the capacitors values for each grain boundaries that make up 

the longest path 

c(i) = e(k.alpbaeff(I).L(I» .cl(l) 
first grain boundary = 

c(i + I) = e(k.alpbaeff(I).L(I» .c2(1) 

c( i) = e(alphaeff(I).x(I)+(y.alpbaeff(2).L(2) .cl(2) 
2nd grain boundary = c(i + I) = e(alphaeff(I).x(I»+(y.alpbaeff(2).L(2» .c2(2) 

c( i) = e(alpbaeff(I).x(I)+(alphaeff(2).x(2)+(p.alphaeff(3).L(3») .cl(3) . 
3n1 grain boundary = c(i + I) = e(alpbaeff(1).x(I»+(alpbaeff(2).x(2)+(alpbaeff(3).L(3» .c2(3) 

where k,y and p is a counter 

iii) All the capacitors values for the wing grain boundaries 

.. c(i) = e(w.alpbaeff(LOB+l).L(LOB+l» .cl(LGB + I) 
first wmg gram boundary = 

c(i + I) = e(w.alphaeff(LOB+l).L(LOB+l» .c2(LGB + I) 

For the capacitance, after calculating all the values, it must be recalculated to take 

account the parallel connections throughout the network in the cluster. 
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4.7.6 The signal or Elmore delay resistance matrix (RG) 

*The resistance matrix RG ( R as used in section 3.9 of Chapter 3) for the signal 

delay is different from the G matrix of the Lumped Element model. The matrix 

depends on the point where the output is going to be monitored. The resistance will 

be the sum of all the resistance of the unique path between the input and the output 

that is common with the unique path. To illustrate this , an example is given below 

R3 R2 RI 
A 

C4 C3 C2 
..;); Cl 

R. ~ .. ~ .. ~ R' R' .. 
C 

D E 
C5 l- C, l- e'l- e'l 1 
RI2 RII RIO 

B 
RI> RI< RI5 F 

C13l- ell l- ..&' CII CI4 ..J:' C1sl" C161 
Fig 4.21 CoR network 

With reference to Fig 4.21, a cluster made up of S grain boundaries which is modelled 

by a 3 section, lumped element component per grain boundary. The desired output is 

monitored at point E, hence the resistance of RG matrix is made up of:-

RG(l,l)=R(I) 

RG(1,2)=R(I)+R(2). 

RG(1,9)= R(I)+R(2)+ ...... ooR(9) 

RG(l,1 O)=R(1)+R(2)+R(3) 

RG(1,12)=R(I)+R(2)+R(3) 

RG(~,13)=R(1)+R(2)+R(3)+R(4)+R(S)+R(6) 

RG(1,lS)=R(I)+R(2)+R(3)+R(4)+R(S)+R(6) 

The progranI chart for creating RG matrix is shown in Fig 4.22 

• For tree networks the G matrix may be inverted exactly to RG matrix 
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The pwpose of elomore3.m is to create the RO matrix for calculating the Tune to failure by signal or Elmore delay approximation 
method. The RG matrix created is for calculating signal delay at the end point of the cluster of grain boundruy. 

no 

wes3.m 
m~me for calculating the values of resistors 

initialization 
n = s x GB total number of resistor in the cluster of grain boundarie 
s= number of sections, GB= total number of grain boundaries 
i"" 1 "=1 WB = total number of in boundaries in Ion est th 

yes 

o 

grain boundruy 1- 2 

yes summation of resistor 
grain boundary 3 

G(ij) = RG(i,s) l4--<::.t.:::':~:!~>--->j mew=rnew + r(j) 
I RG(Ij) = mew 

'---,----' 

no 

inbo 4 

RGQJJ= RG(i , s) 

gram boundaJy 5 

RG(I,D=RG (i, sx2) 

j =j+1 

j=j+l 

yes 

summation of resistor 
r new= r new + r(j) 

RG( L jF r new 

5 <GB <=11 

Fig 4.22 The program flow chart of a part of eImore3.m for creating the RG 
matrix. The flow chart shown is for 5 grain boundary cluster. The 
program can cater for a maximum of 11 grain boundaries. 
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4.8 The program codes developed for the simulation of realistic interconnect 

samples 

No Program title Associate m-files sub-rn-files Description 

1 vrnoittf2.m main program to simulate 

the TTF of realistic 

interconnect samples by the 

lumped element model and 

signal delay approximation. 

1. annealing.m 1. geometry .. m calculating and storing 

infonnation on geometrical 

properties of grain 

boundaries . . 

2. labgrain l.m labelling of nodes and grain 

boundaries 

3. geometry. m calculating and storing new 

information on geometrical 

properties after each time 

step of annealing process. 

4. labgrain2.m labelling of new nodes and 

grain boundaries after each 

time step of annealing 

process 

5. conmtrix.m connectivity matrix of the 

new nodes and new 

information after each time 

step of annealing process 

6.1amdal.m to detect the grain 

boundaries having length 

less than the critical value 

for annibiIation or 

recombination process. 

7.triswl.m simulation of the 

annibiIation or 

recombination process 

growth of grain 

8: output.m plotting new voronoi 

network after each time 

step of annealing process. 
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2.figvrnoi.m to produce a hard copy of 

the interconnect sample 

3.geometry.m calculating and storing 

information on geometrical 

properties of grain 

boundaries. 

4. lablenode.m labelling of nodes and grain 

boundaries 

5.slice2.m simulation of production of 

the interconnect samples 

6.newgeometry.m calculating and storing 

information on new 

geometrical properties of 

grain boundary after slicing 

process. 

7. newnode.m labelling of nodes and grain 

boundaries 

8.vrttf.m simulation of the calculation 

of the Time to Failure of the 

interconnect samples 

I. vrrnat4 creating the resistance 

2. vres3.m matrix G. The resistance are 

obtain from vres3.m 

3. vcrnat3 creating the capacitance 

4. vnoicap3.m matrix C. The capacitance 

are obtain from vnoicap3.m 

5. vcrgrnat3 .m creating the initial voltages 

6. vcrg3.m matrix VIN. The initial 

voltages are obtain from 

vcrg3.m 

7. vumat3.m creating the U matrix 

8. elrnore2.m creating the signal delay 

resistance matrix RG 

Table 4.5 The program codes for simulation of realistic interconnect. 
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CHAPTERS 

RESULTS AND DISCUSSION 

5.0 Introduction 

In this chapter, the results of all the simulation will be presented and discussed. The 

simulation results are divided into three main parts consisting of:-

1. Simulation results for a single grain boundary. 

2. Simulation results for a • self generated' complex grain boundary interconnect 

3. Simulation results for a 'computer generated' realistic sample of interconnect . 

The fIrst simulation is vital to the whole study since the simulation results of the lumped 

element model fIrst be proven valid before the study can. proceed to estimate the 

statistics of Time to Failure (TTF). The second part of the simulation will apply the 

model to a complex structure of grain boundaries. Finally the third part will apply the 

model to realistic interconnect samples to obtain the actual Time to Failure and its 

statistics. The lumped element model developed will be verifIed if the simulation results 

are comparable to the results obtained by i) exact theoretical solution from the literature 

and ii) by the signal or Elmore delay approximation of the TTF. 

5.1 Simulation results of a single grain boundary 

As far as the literature is concerned, analytical solutions only exist in the form of a single 

one-dimensional grain boundary of length l.[Shatzkes, and L1oyd,1986],[Lloyd,and 

Kitchin,1994],[Clement, 1992] and [Dwyer et.al,1994). It was based on two typical 

boundary conditions which correspond~ to a blocking boundary ,where vacancy flux 

J( l ,t)=O at the downwind end, and at the upwind end, either case (A); J(O,t)=O; or case 
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(B) where stress ,cr(O,t)=O or (equivalent to vacancy concentration (c(O,t)=co). The 

current work will investigate both of these boundary conditions 

5.1.1 Case (A) -upwind end of conductor are blocked (J(O,t)=O) 

In the present work, the reference of [Clement,1992] is used to compare the simulation 

results of the lumped element model. This boundary conditions corresponds to a situation 

that vacancies are conserved which could be maintained in a system where a thick 

passivation would preclude changes in the volume of the conductor. Eqn(2.19) may be 

solved exactly and the vacancy build-up equation (exact solution) is given below:-

l6klta2l 2 [1-(-1)k ex~ ¥) ] 
(<<2£2 +4kKlt2y 

c(x,t) _ a.£.exp(-a.x). + f 
Co - l-exp(-a.£) k= 

[( 
. klt.x 2klt klt.X) ~ a.x (k2 2 a

2£2) Dt)] sm-----cos-- xex --- It +-- --
l a.£ £ 2 4 £2 

where 

a z· epj I .. drift = ~ = e ectromlgration component 

D ffi'· diffus· ffi . DGB BQ 0 
= e ective vacancy Ion coe IClent= v kT' d 

c(x,t) = vacancy concentration at distance x and time t 

Co = equilibrium vacancy concentration in the absence of stress. 

£ = the length of conductor 

5.1 

In the simulation of both the exact solution by Clement and the lumped element model, 

the Time to Failure( TTF) for the single grain boundary is assume to be the time taken for 

the vacancy concentration to reach some critical (threshold) value of ( cor)' The 

approach of the simulation is i) first to obtain the vacancy concentration build-up at a 
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chosen location of the conductor and ii) to calculate the Time to Failure. For the lumped 

element model, the steps involve in obtaining the vacancy build-up are i) to obtain the 

transient response of the voltages (v(x,t» ii) to convert this into a vacancy concentration 

by the formula c(x,t)=v(x,t). exp( ax) as described in Chapter 3. A reasonable value of 

Ccr is .. 2 Co ,as this corresponds to 500 Mpa which is ~ of the yield stress of AI. The 

OCTO 

model can be seen to be accurate up to c er .. 100 . ( c er = coe kT ) 

a) Comparison between lumped element model and exact solution 

The vacancy concentration profile is shown in Fig 5.1 consisting of the exact solution and 

the lumped element model response for 1 section and 5 ~ections of the C-R-C n Circuits. 

In the simulation of the lumped element model, the values of the components and its 

initial voltages are calculated first as shown in Table 5.1a and 5.1.b. Once it is obtained, 

the vacancy concentration are computed by solving the relevant equations (eqn(4.17) 

and 4.18) described in Chapter 4. Note that the total value of the resistance and 

capacitance are equal for both the single and 5 sections i.e. to total resistance is 0.9502 

n and total capacitance is 19.08 farad. 

Resbton Values Capaclton Value. Initial Voltages 

RI=O.9S02 CI=2.IS71 I 

C2=16.9284 0.0498 

Table 5.1a - Component values for 1 sectIOn 

Resblon VaIueo Capadlon VaIueo initial VoJta: .. 

RI=O.4SI2 CI=O.3298 1 

R2=O.2476 C2=1.0933 0.5488 

R3=O.13S9 C3 .1.9921 0.3012 

R4=O.0748 C4=3.6298 0.1653 

RS=O.0409 C5=6.6139 0.0907 

C6=5.4269 0.0498 

Table 5.1b· Component values for 5 sections 
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Fig 5.1 The vacancy concentration build-up at x= £ =3 for a single grain boundary ( case 

(A) )with parameter (l = 1, £=3, D=1. Exact solution(solid line),1 section(dash 

line ),5 sections (dash dot line) for the lumped element model. 

With reference to Fig.5.1 ,the vacancy build-up is monitored at the blocking end of the 

conductor line (x=£=3) and represented by three curves i.e. i) the exact solution (solid 

black line) ,the lumped element model with I section (dotted blue line) and a 5 

sections(dashed red line) . As evident from the FigS. I, a single section does not give a 

good approximation. The 5 sections is a much better approximation which correspond to 

about 91% accuracy based on the TTF compared to the exact solution. The Time to 

Failure obtained are determined by the critical vacancy concentration ccr = 2c o, for the 

exact solution is 0.4452 seconds while the lumped element model is 0.4895 seconds for a 

5 sections C-R-C IT circuit and 1.1323 seconds for a 1 section C-R-C IT circuit. 
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Fig 5.2 The vacancy concentration profile for different values of cd monitored at the 

blocking ends of the conductor. Exact solutions(solid line),lumped element 

model are represented by i) cd =2 (dotted line), a£ =4 ( dashed line) and cd =8 

( dash dot line) 

b) Tbe effect of af on the build-up ofvacancy concentration 

The build-up in the vacancy concentration at the blocking boundary at x= f for different 

values of af. is shown in Fig.5.2. For a finite conductor length f the vacancy 

concentration build-up will saturate. The level at which this saturation occurs depends 

on cd i.e. the electromigration drift component and length f. The saturation level 

decreases with decreasing a and length £. This result agrees with that of the reference 

[Clement,1992J,where it observed here that the vacancy concentration profile of the 

lumped element model fits exactly the vacancy concentration profile of the 'exact 

solution'. The characteristic of these effect of af. on the vacancy concentration is 

known as the Blech length effect. 
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c) The effect of angle of orientation of grain boundary on Time to Failure 

It is well established in the literature that the electromigration Time to Faihire is a 

statistical variable: It depends on the macroscopic design parameters, such as the length 

and width of the interconnect, and the micostructural features, such as the grain size 

distribution which is generally taken to have a lognormal distribution, grain orientation 

angles which possess a roughly uniform distribution( between 0°_90°) [Attardo 

et.al,19711, and the atomic diffusion coefficient for a given grain boundary. A simulation 

to study the effect of the angle of orientation of the grain boundary to the direction of 

electric field on the Time to Failure is carried out. This is done by varying a and the 

angle of orientation 9 to give the effective drift component a effective = a x cos(9), ( in 

this case 9=0 is parallel to the interconnect length). The other parameters are kept 

unchanged where drift component a=I,length £=3,diffusion coefficient D=l .. critical 

vacancy concentration Cor = 2 Co and the number of section s=5. 

no 9 TTF(exact solution) TTF( lumped element model) 

1 0 0.4452 seconds 0.4895 seconds 

2 20° 0.5063 seconds 0.5525 seconds 

3 50° 1.2722 seconds 1.3486 seconds 

4 89° do not fail do not fail 

Table 5.2 The Time to failure at different angle of onentatlon e 

As shown in Table5.2 , the Time to Failure for grain boundary oriented at an angle more 

than e= 0° records a larger time. Also it is shown in FigS.3 that the grain boundary 

oriented at . ~ 90 ° to the electric field, the vacancy concentration does not reach the 

critical vacancy concentration c er and this means that the conductor does not fail. As the 

angle of orientation gets larger or nearer to 90 ° the time to failure will also increases 

until there will be no vacancy flows along the boundary. At this angle it is completely 
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ineffective in diffusing/transporting the vacancies along the grain boundaries. There will 

be vacancy flow through the grains which will eventually lead to failure Note here that 

changes in D only affect the time to reach the saturation value ofcoeai and not whether 

failure occurs. This results is in agreement with the literature[ Attardo, et.al, 1971] in 

which the TTF is dependent on the microstructure of the grain boundary i.e. in this case 

the angle of orientation of the grain boundary with respect to the electric field. 

3.5,-------r--_r_--~-~~-_,_--_r_--~-____, 

3 

O.50~----:-1·---:2:-----:-3 -. ----'4c:-· ---:-5 ----'S,----,L7 ---'-_os 
lime(seconds) 

Fig 5.3 The vacancy concentration profile for a single grain boundary with both ends 

blocked and with different angles of orientation with respect to the direction of 

electric field. The exact solutions (solid line), lumped element model 

are represented by i) 0=0 0 (dotted line), 0=20 0 (dashed line) and e=89 0 (dash 

dot line(can't be seen since it overlap the exact solution» 
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5.1.2 Case (B) At upwind end of stress relief( 11(0, t) = ° or c(O,t)=co) 

In this set of boundary conditions, vacancies are collecting at x= £ to form a void, thus 

making it a blocking boundary and at the other end of the conductor, vacancies are 

supplied, from for example a contact pad, in such a way as to maintain a stress free 

contact 11 = 0 or equivalent a constant vacancy concentration 'c 0 at x=O. In the present 

work, the reference of [Dwyer et.a1,1994] is used to compare with the simulation results 

of the lumped element model. The simpler version (approximate) of vacancy 

concentration build-up equation is shown below. 

for a£ s2 

c( ) 
2a..lexp[- a(l-x)].~sJ~~).exp_(~+~').~ 

x,1 exp{ ) 2 "\. 1 4 1 --", a.x ----=--;==:=:'~===;=====f,...---
Co a~' +~' .(~' _ ~I (2-a.I)) 

5.2 

and for the case a £ 2: 2 

c(X,I) "' exp{a.x)- 2a..l ~ - a(l;x)} Tlsin{ TlT).exp:.( ~-Tll¥.~ 5.3 

Co a~' -Tl'.( Tl' _ a~1 (2-a.l)) 

where 

a z· epj I .. drift = i{f = e ectromlgratlon component 

D ffi . diffu' . ffi . DOB BO /) = e ective vacancy . slon coe IClent = v kT' d 

c{x,t) = vacancy concentration at distance x and time t 

Co = equilibrium vacancy concentration in the absence of stress. 

£ = length of the conductor/strip 

1; = the imaginary roots 

11 = the real roots 
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a) Comparison between lumped element model and exact solution 

The vacancy concentration profile is shown in Fig 5.5 consisting of the exact solution and 

the lumped element model response. Two sets of conditions, as in the literature, are 

considered i.e. al > 2 and al < 2 are simulated. 

i) simulation results for al > 2 

In the simulation of the lumped element model, the values of the components and the 

initial voltages are calculated and are shown in Table 5.3a and 5.3.b. As in the previous 

section, the vacancy concentration is obtained by computing the appropriate equations 

(eqn(4.17 and 4.18». For this simulation, two sets of 0.£ values are chosen as an 

example, i.e. al=4 and al=5. To solve eqn(5.3), the real root 11 are needed and the 

approximate values can be found by graphical method as shown in Fig 5.4(a) for af=4 

and Fig.5.4(b) for al=5. A function file rroot.m is use to calculate the exact value of 

the roots and it is found to be 1.9150 for af=4 and 2.4641 for af=5. 

No of Sections Resistors Values Capacitors Values Initial Voltages 

1 RI-0.9817 CI-3.0746 1 

C2-50.5235 0.1832 

5 RI=O.5507 CI=O.4528 1 

RZ-0.2472 C2-1.7804 0.4493 

R3=O.1112 C3-3.9624 0.2019 

R4=O.0500 C4-8.8185 0.0907 

RS-0.0224 C5-19.6260 0.0408 

C6=18.9580 0.0183 

Table 5.3a - Component values for al=4 
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No of Sections Resistors Values Capacitors Values Initial Voltages 

I RI=O .. 9933 CI=4.0339 I 

C2= 143.3792 0.0067 

5 RI=O.6321 CI=O.5820 I 

R2=O.2325 C2=2.7183 0.3679 

R3=O.0855 C3-7.3891 0.1353 

R4=0.0315 C4=20.0855 0.0498 

R5=O.0116 C5=54.5982 0.0183 

C6=62.0402 0.0067 

Table 5.3(b) - Component values for cx£=5 
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Fig 5.5 The vacancy concentration profile monitored at the blocking ends of the 

conductor. The exact solutions (solid line), lumped element 

model are represented by i) ue =5 (dashed line), ue =4 ( dotted line) 

With reference to Fig 5.5 above, the vacancy concentration for both the exact solutions 

and the lumped element model does exhibit the same build-up profile. From the figure it 

looks like that a single C-R-C circuit is sufficient to produce the same response which 

fits exactly the exact solution response for both conditions of at. However, by analysing 

the Time to Failure for each conditions, it is found that 5 sections ofC-R-C circuit gives 

a better results than a single section as shown in Table 5.4 below. 

Simulation type TI'F( at =4) % error TI'F(at=5) 0/0 error 

Exact solution 61.9374 secs - 42.2738 secs -
Lumped element( 1 section) 64.5109 secs 4.1 43.7627 secs 3.5 

Lumped element( 5 sections) 62.0160 secs 0.9 42.3785 secs 0.25 

Signal delay ( 1 section) 64.5083 secs 4.1 43.7621 secs 3.5 

Signal delay (5 sections) 61.8502 secs 0.14 42.8698 secs lA 
.. 

Table 5.4 The TIme to FaIlure (TTF) for dIfferent type of SImulation WIth cntical 

vacancy c er = 40co 
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ii) simulation results for a1 < 2 

For this simulation, two sets of a£ are chosen as an example, i.e: a1=O.5 and a1=1. 

To solve the equation 5.4 of the exact solution, the imaginary root I; is needed and the 

approximate values can again be found by a graphical method as shown in Fig 5.6(a) for 

a£=O.5 and Fig.5.6(b) for a£=1. A function file imroot.m is used to calculate the 

exact value of the roots which are found to be 1.3933 for a1=O.5 and 1.1665 for a1=1. 

The values for the components are as shown in Table 5.5(a) and 5.5 (b) for a1=O.5 and 

a£=1 respectively. 

No of Sections Resistors Values Capacitors Values Initial Voltages 

1 RI=O.3935 . CI=O.2707 1 

C2=O.3780 0.6065 

5 RI=OO952 CI=O.0508 1 

R2=O.0861 C2=O.1105 0.9048 

R3=O.0779 C3=O.1221 0.8187 

R4=O.0705 C4=O.1350 0.7408 

RS=O.0638 C5-0.1492 0.6703 

C6=O.0811 0.6065 

Table 5.5(a) - Component values for a£=O.5 

No of Sections Resistors Valnes Capacitors Values Initial Voltages 

1 RI=O.6321 CI=O.5820 1 

C2-1.1363 0.3679 

5 RI=O.1813 CI=O.1033 . 1 
. 

R2=O.1484 C2=O.2443 0.8187 

R3=O.1215 C3=O.2984 0.6703 

R4=O.0995 C4=0.3644 0.5488 

RS=O.0814 C5=O.4451 0.4493 

C6=0.2628 0.3679 

Table 5.5(b) - Component values for a1=1 
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Fig 5.7 The vacancy concentration profile monitored at the blocking'ends ()fthe 

conductor. The exact solutions (solid line), lumped element model using 1 

section are represented by (i) at'=O.5 (dotted line), (ii)at'=l (dash dot line) 

For 5 sections ( dashed Iines),match exactly the exact solution. 

From Fig 5.7 above, it is evident that for the lumped element model, a single section 

does not give a good fit to the response of the vacancy concentration. 5 sections fit 

exactly the vacancy concentration response of the exact solution. The results on the 

analysis of the Time to Failure does show that 5 sections is better than one, but also that 

5 sections is acceptably good when compared with the 'exact solution' and signal delay 

as shown in Table 5.6 

Simulation type TTF( at' =0.5) % error TTF(at'=l) % error 

Exact solution 0.1637 secs 0.4676 secs 

Lumped element( 1 section) 0.2191 secs 33.8 0.6265 secs 33.9 

Lumped element( 5 sections) 0.1657 secs 1.2 0.4734 secs 1.2 

Signal delay ( 1 section) 0.2191 secs 33.8 0.6265 secs 33.9 

Signal delay (5 sections) 0.1604 secs 2.01 0.4893 secs 4.6 

Table 5.6 The Time to Failure (TTF) for different type of simulation with critical 

vacancy Ccr = l.5co(af = 0.5) and ccr = 2co(at' = 1) 

170 



5.1.3 Summary on the results of the simulation of a single grain boundary 

conductor 

It has been demonstrated that the stress evolution in a single grain boundary does mimics 

the time development of the voltage on an equivalent, lumped electrical circuit.. This is 

apparent from the simulation results obtained by comparing the vacancy concentration 

response of the lumped element model and the two exact solutions found in the 

literature. Two sets of different boundary conditions are investigated and both produce 

similar results for the lumped element model and the exact solution . 

.. It has also been demonstrated that five sections of CR network gives better results than 

a single section of CR network by observing the vacancy concentration profile and the 

results of the Time to Failure in particular for case (A) and for ell< 2 for case(B). A 

single section of CR network is adequate for the condition when ell> 2 for case(B) 

although from simulation results of Time to Failure does show that five sections is better 

than one section. 

The signal or Elmore delay approximation of the Time to Failure has also been 

calculated for case(B) and result shows a small and acceptable level of error compared 

with the exact solution. With these results, it can be deduced that the signal or Elmore 

delay approximation method can be applied to get fast and efficient results on the 

electromigration Time to Failure. 

Based onthe simulation results obtained, it has proved that the lumped element model is 

valid and workable in investigating the electromigration behaviour as in the stress 

evolution model and able to predict the electromigration lifetime of a single grain 

boundary. The model will be tested on more complex grain boundary structures and 

hopefully on a realistic sample of interconnect where the statistics of the Time to Failure 

will be analysed. The other important parameter to validate the developed model is to 

prove that the distribution of the Time to Failure follows a lognorrnal distribution. 

171 



5.2 Simulation results on an example of a typical complex grain boundary 

5.2.1 Introduction 

A real interconnect consists of many grain boundary clusters made up of vel)' complex 

grain boundary structures which run along the whole interconnect. For simulating 

realistic interconnect, computer programs are used to generate these grain boundaries 

structures in order to investigate the electromigration problem[Joo and 

Thompson,1994][KnowIton et al.,1997][Marcoux et al., 1989]. In the current work, 

realistic interconnect will be simulated using the Voronoi technique and this work will . 

discussed in the following section. It is worthwhile to work on the lumped element 

model for an ' artificial' complex network first before pursuing the work on a 'realistic' 

interconnect. 

The·. 'artificial or self generated' complex grain boundary interconnect is constructed . 

from five grain boundaries of equal length L. For the centrepiece (CD) it has the value 

acff( = a.L = I, while the limbs, all at an angle e of : to the direction of current flow, 

i.e. a;Cff£=a;.co~:)L= Jz. The model with this set-up is as· shown in Fig 5.8(a) with 

its equivalent lumped element model of eR network in Fig 5. 8(b). 

E 

c D 

--+ Electric field +-- electron 

Fig 5.8(a) The schematic diagram of complex grain boundaries 
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Fig 5.8(b) The equivalent CR network with 3 sections per grain boundary 

The equivalent model of the lumped CR network will have a total of 16 capacitors and 

15 resistors if modelled by a 3 sections per grain boundary or 26 capacitors and 25 

resistors for 5 sections per grain boundary. The points of A,B,C,D,E and F are the nodes 

where vacancy concentration build-up will be monitored. 

5.2.2 Simulation Objectives 

The objectives of this simulation exercise are :-

i) To investigate the microstructural effects on electromigration in complex grain 

boundaries 

ii) To calculate the Time to Failure of the interconnect 
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iii) To compare the results between the lumped element model and the signal delay 

approximation of Time to Failure. 

As described in the literature review in Chapter 2, the grain boundary triple point 

junctions are the most likely sites for void formation. Failure at these sites is believe" to 

depend on grain boundary parameters such as the effective grain boundary diffusion 

coefficients DefT , the length of the grain boundary and the angle of orientation in the 

intersecting boundaries. These parameters will determine the Time to Failure and also 

the location or the sites where the vacancy concentration is accumulated ( voids 

formation). 

The structure of the complex grain boundary network (FigS.8(a» are simulated to obtain 

the vacancy build-up at certain nodes of interest such as nodes CoD and E. In this setup 

,it is assumed that x=O is taken at node A and the boundary conditions are (c(x=O,t)= 

Co or (j = o and all the other nodes J(x=L,t)=O. With this boundary conditions, the node A 

is the source/sink where vacancy concentration is being supplied and all the other nodes 

are being blocked. The critical vacancy concentration c er = 2co is the failure criterion. 

All the grain boundaries are of equal length L= I, the effective diffusion coefficient D 

=1, the electromigration drift component a=1. 

5.2.3 The Vacancy concentration profile at nodes 

The complex grain network is modelled by an equivalent CR network consisting of five 

sections for each grain boundaries. As in the case of single grain boundary, the network 

circuit is simulated by solving the relevant matrix equation and the program code 

developed for this purpose is netlbaIl.m. The vacancy build-up profiles at nodes C,D and 

E are as shown in Fig.S.9. 
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Fig5.9 The vacancy concentration build-up at node C (dotted line), node D (dashed 

line) and node E(soIid line) 

As shown in Fig 5.9 ,failure will occur first at node E where the vacancy concentration 

reaches the critical vacancy Ccr at Time to Failure of 1.064. At the triple junctions node 

D the Time to Failure is 5.4679 and node C, the vacancy concentration does not reach the 

critical value and therefore failure will not takes place. 

5.2.4 The effect of angle 9 ( and tbe microstructure) on vacancy concentration at 

nodes 

The same model is now used but with a different angle of orientation for grain 

boundaries DE and DF.(here an angle of 89 0 to the direction of electric field). The 

vacancy concentration profile for nodes C,D and E are as shown in Fig 5.10. This time 

failure will occur first at node D , the triple junction point. The Time to Failure recorded 

is 4.1281 compared to 4.4632 for node E. Also it is noted that the vacancy build-up of 

node E is almost the same as at node D. If the angle 9 is 90 0 
, the final concentration at 
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all points along grain boundary DE will be the same as at node D. The reason is that there 

is no component of the drift along the grain boundary DE as UeffX=U.CO~~).x=o. 

Also diffusion values on the different limbs will alter the Time to Failure. 
6 

5 

.•.......... 

.... ........... 
.............. 

----------------------

....................... ........................... -........................... -

00 10 20 30 40 50 60 70 80 90 100 
.' Time(l) 

Flg5.! 0 The vacancy concentration build-up at noae C t aottea Ime), node D ( dashed 

line) and node E ( solid line) 

5.2.5 The Time to Failure and changeover angle e 

The analysis of the structure shown in Fig5.8(a) are repeated to find the exact angle of 

orientation which will cause the changeover of the failure nodes from ElF to nodes D. 

The parameters used in the simulation are the same as before, where all the grain 

boundary lengths L=!, diffusion coefficient D=I, the electromigration drift u=1 and the 

failure criterion c er =2 Co , s= 5 (five sections per grain boundary) , but with varying 

angle of orientation e ranges from 70 0 _900 
• The results of the Time to Failure for node 

E and D are shown in Table 5.7 and in Fig 5.11. The results shows that the changeover 

from node ElF to node D occurs at about e= 86.8 0
• 
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Angle (radians) Angle (degrees) TTF(node E) TTF(nodeD) 
1.2282 70.27 2.0292 4.082 
1.2419 71.05 2.0781 4.0383 
1.2833 73.42 2.2305 3.9128 
1.3449 76.94 2.4741 3.7304 
1.3633 78.00 2.5508 3.6763 
1.3649 78.09 2.5575 3.6716 
1.377 78.78 2.6086 3.6365 
1.3811 79.02 2.6262 3.6245 
1.3914 79.60 2.6708 3.5945 
1.4336 82.02 2.8597 3.4724 
1.4366 82.19 2.8735 3.4638 
1.4794 84.64 3.0841 3.3415 
1.4878 85.12 3.129 3.3179 
1.4982 85.72 3.1857 3.2885 
1.5085 86.30 3.2424 3.2596 
1.5329 87.70 3.3797 3.1914 
1.5337 87.75 3.3843 .3.1891 
1.5418 88.21 3.4309 3.1666 
1.5435 88.31 3.4408 3.1618 
1.5483 88.58 3.4684 3.1486 

Table 5.7 The Time to Failure at node E and D as angle e of DE 

and DF are varied (simultaneously with same value) 
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Angle of grain boundary DE and angle DF 

Fig 5.11 The Time to Failure at node D ( red circle) and node E ( blue triangle) 

for a range of values of angle DE and DF ( angle DE=DF) calculated 

by the lumped element model with equal length L=l, D=l,a=l and c er = 2co. 
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5.2.6 Signal delay versus lumped element model for changeover angle e 

The analysis of the structure shown in Fig5.8(a) are repeated to compare the results 

above ( lumped element model) with the signal delay method. The parameters used in 

the simulation are the same where all the grain boundary lengths L=I. diffusion 

coefficients D=1. the electromigration drift 0.=1 and the failure criterion Cor =2co• s=5 • 

(5 sections/grain boundary) but with varying angle of orientation e ranges from 

800 -900
. The results of the Time to Failure for node E and D for the lumped element 

model and the signal delay are shown in Table 5.8 and in Fig 5.12. The results shows that 

the changeover from node ElF to node D using the signal delay occurs at e= 88.8 0 rather 

than the lumped element model of 86.8 0 (errorof2.3%). 

for at nodes E and D 

element model (TTFm) and the signal delay (TTFs) 
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Fig 5.12. The Time to failure at different angle of orientation a for node E and D. 

TTF for lumped element model at node D( blue triangle with solid black 

line) and node E (red circle with solid black line). TTF for signal delay is 

represented by the dashed line. 

5.2.7 Signal delay versus lumped element model on Time to Failure 

The next simulation exercise is to compare the signal delay with the lumped element 

model) of a more complex interconnect cluster section consisting of eleven grain 

boundaries as shown in Fig5.13. At this stage the network and its microstructure are 

chosen to demonstrate the accuracy and reliability of the approximation rather to obtain 

the detailed information on the Mean Time to Failure statistics. The distribution of 

cluster lengths and sizes, of individual grain boundary lengths and orientations, and of 

diffusivities are not yet known well enough for this to be meaningful. Thus the grain 

boundaries are chosen from a uniform distribution centred on 45 0 
, the lengths of the 

grain boundaries are chosen from a uniform distribution between 0.25 ~m and 0.5 ~m 

while the effective vacancy diffusion coefficient is constant D= 1. A program code 

vDoigb.m is developed to simulate the Time to Failure for both method of the lumped 
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element model and signal delay of approximation where the network is modelled by 

s=3( three sections per grain boundary). 

Fig 5.13 An example of near bamboo interconnect 

The vacancy concentration profile at nodes B,C,D,E,F and G are shown in Fig 5.14. 
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Fig 5.14 The vacancy concentration protile at node B(+), node q.), nooe vt<lotted line), 

node E(dash dot line), node K(dashed line), node F(x) and node G( solid line) 
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The data on the Time to Failure of node G for both the lumped element modeJ(TIFm) 

and the signal delay(TTFs) is shown in Table 5.8 and are also represented in graphical 

form in Fig. 5.15 

L(AB) L(BC) L(CD) L(OE) L(EF) L(FG) TTFm TTFs %Enor 

0.4533 0.2847 0.2997 0.318 0.2538 0.3613 2.6133 2.4473 -6.35212 

0.4579 0.4274 0.3262 0.2984 0.3257 0.2877 2.4475 2.3205 -5.18897 

0.3355 0.3353 0.4318 0.4596 0.3426 0.3866 2.2893 2.2112 -3.41152 

0.4689 0.2841 0.4735 0.3247 0.3211 0.2662 2.2701 2.2171 -2.3347 

0.3023 0.4458 0.3653 0.4486 0.4007 0.3538 2.3974 2.298 -4.14616 

0.33 0.4317 0.4361 0.36 0.4208 0.4598 2.5719 2.4728 -3.85318 

0.2532 0.4208 0.2588 0.4021 0.2541 0.3967 2.3366 2.2203 -4.97732 

0.4248 0.3696 0.2803 0.429 0.3183 0.4664 3.1714 2.9545 -6.83925 

0.2927 0.3599 0.3286 0.3483 0.2799 0.3646 3.5544 3.2977 -7.22203 

0.2843 0.3575 0.4337 0.3365 0.2889 0.3556 2.8927 2.753 -4.8294 

0.4233 0.4957 0.35 0.4083 0.344 0.355 2.3177 2.2971 -0.88881 

0.3086 0.4829 0.4139 0.4088 0.3493 0.4138 2.5905 2.4247 -6.40031 

0.4957 0.4259 0.2787 0.3413 0.3917 0.4185 2.6924 2.6608 -1.17367 

0.4376 0.358 0.4508 0.4864 0.4005 0.4684 3.2286 2.9349 -9.09682 

0.3392 0.3586 0.4042 0.4746 0.4478 0.4175 2.812 2.5708 -8.57752 

0.3322 0.3993 0.4574 0.3989 0.453 0.4254 3.1315 2.7883 -10.9596 

0.361 0.4879 0.3118 0.297 0.3523 0.4027 2.573 2.4464 -4.92033 

0.3354 0.3269 0.3215 0.3758 0.3266 0.3608 2.3386 2.2178 -5.16548 

0.3528 0.4572 0.3485 0.4295 0.3652 0.2719 2.3675 2.303 -2.72439 

0.3055 0.3805 0.4283 0.3624 0.4922 0.2623 2.1993 2.1599 -1.79148 

0.2703 0.3905 0.3437 0.343 0.3 0.3917 2.8748 2.7481 -4.40726 

0.2754 0.3086 0.2658 0.4999 0.3746 0.4182 2.2769 2.1907 -3.78585 

0.4053 0.311 0.3158 0.4149 0.4005 0.4149 2.8402 2.66 -6.34462 

0.3268 0.4197 0.2677 0.3068 0.3646 0.3956 2.7804 2.6543 -4.53532 

0.457 0.2783 0.4771 0.2805 0.4305 0.4385 3.1289 2.9554 -5.54508 

0.3071 0.4142 0.372 0.3433 0.2953 0.3555 2.5071 2.5182 0.442743 

0.2981 0.3127 0.2843 0.4738 0.3338 0.3678 2.9028 2.7642 -4.7747 

0.4101 0.4203 0.2837 0.3155 0.2673 0.2951 2.5919 2.4268 -8.36984 

0.3986 0.4147 0.3919 0.448 0.4583 0.4097 2.3792 2.3318 -1.99227 

0.2759 0.3519 0.2632 0.2875 0.3278 0.4742 3.2455 3.0263 -6.75397 

0.4244 0.2707 0.2983 0.2532 0.4688 0.3333 2.468 2.3664 -4.11669 

0.4917 0.3294 0.2826 0.4508 0.2534 0.3636 2.505 2.4708 -1.38527 

0.3854 0.3628 0.4468 0.2539 0.4404 0.4396 2.7782 2.5599 -7.85761 

0.4166 0.4856 0.4344 0.4977 0.4073 0.3622 2.5503 2.4364 -4.46614 

0.2518 0.3855 0.3284 0.354 0.4181 0.3358 2.504 2.374 -5.19169 

0.2983 0.4805 . 0.4419 0.4533 0.2997 0.4818 3.5295 3.2811 -7.03782 

0.464 0.3229 0.3494 0.4661 0.3146 0.2515 2.3536 2.1884 -7.01903 

0.3172 0.2908 0.3042 0.2632 0.4169 0.3267 2.164 2.1112 -2.43993 

0.4282 0.4853 0.4261 0.3954 0.4374 0.4314 3.0216 2.824 -8.53958 

0.4896 0.2637 0.3483 0.2956 0.2519 0.2544 1.8535 1.8928 2.120313 
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0.4998 0.4057 0.3275 0.3058 0.2838 0.4819 2.3812 2.3053 -3.18747 

0 .3699 0.3219 0.3156 0 .4793 0.2534 0.4247 2.6419 2 .4548 -7.08202 

0 .4287 0.3094 0.3158 0 .4944 0.3865 0.4505 2.7835 2 .6626 -4.34345 

0 .3719 0.4185 0.3054 0 .2671 0.3019 0.4096 2.9305 2 .7226 -7 .09435 

0 .4322 0.4141 0.3362 0 .3368 0.4296 0.2892 3.0795 2.9183 -5.23462 

0 .3675 0.2645 0.3639 0 .4638 0.4467 0 .25 2.559 2.3993 -6.24072 

0.377 0.3314 0.4716 0 .4709 0.4498 0.2663 2.1188 2.0086 -5.20106 

0 .4608 0.4644 0.3914 0 .2757 0.3534 0.3172 2.5189 2.4369 -3.25539 

0.4015 0.274 0 .3607 0 .3436 0.4812 0.4696 2.4413 2.3349 -4.35833 

0.4591 0.2929 0 .456 0 .4712 0.4909 0.2621 2.1729 1.9914 -8 .35289 

Table 5.8 The data of 50 simulations of Time to Failure at node G for lumped element 

model (TTFm) and signal delay approximation (TTFs) for c cr= 2co, L=length 

of grain boundary. 
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Fig5.15 The Time to Fai lure at node G for lumped element rnodel(blue triangle) and 

signal delay( red dot). The failure criterion used is ccr= 2co 

The failure criterion was chosen as c cr = 2co, corresponding to a critical yielding stress of 

cr cr = 478 MPa. The simulation are repeated for different failure criterion ofc cr = 4co, 

which corresponds to 956 MPa and the results are shown in Table 5.9 and Fig 5.16. 
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L(AB) L(BC) L(CD) L(DE) L(EF) L(FG) TTFm TTFs Error 
0.2735 0.4881 0.3842 0.3735 0.3231 0.4385 4.6024 4.7924 4.128281 
0.4534 0.4306 0.3406 0.4124 0.2519 0.4863 5.003 5.2129 4.560664 
0.354 0.266 0.3275 0.4952 0.4971 0.3104 6.6125 6.6035 -0.19555 

0.3692 0.4265 0.4293 0.3527 0.4886 0.4246 4.6322 4.8319 4.339041 
0.2989 0.3415 0.2537 0.4344 0.2755 0.441 5.2883 5.3521 1.386233 
0.4164 0.2621 0.45 0.4238 0.4283 0.4333 4.3636 4.5702 4.488962 
0.3767 0.4039 0.488 0.4567 0.4618 0.4123 4.0777 4.3767 6.49661 
0.3462 0.3938 0.2989 0.4283 0.4355 0.4667 5.4538 5.5875 2.905006 
0.372 0.4406 0.4929 0.284 0.3283 0.3349 5.802 5.9744 3.745872 

0.3932 0.4345 0.3459 0.4643 0.3114 0.401 4.5852 4.7187 2.900661 
0.3744 0.4416 0.2913 0.3021 0.3491 0.3773 4.9685 5.0742 2.296628 
0.361 1 0.499 0.466 0.4537 0.3272 0.4092 5.601 5.7161 2.500869 
0.3325 0.341 1 0.4292 0.4456 0.3081 0.4472 4.8137 4.9745 3.493829 
0.4055 0.4909 0.2777 0.2743 0.4197 0.3499 5.5563 5.6463 1.955501 
0.3579 0.4958 0.4871 0.3329 0.2915 0.4109 4.7616 4.9541 4.1826 
0.3255 0.3273 0.3594 0.4557 0.2907 0.3813 6.6054 6.6136 0.178168 
0.363 0.4042 0.3411 0.4571 0.399 0.2584 6.3434 6.3686 0.54754 

0.3749 0.4573 0.3997 0.3497 0.4084 0.2515 5.2451 5.341 2.083695 
0.4688 0.4352 0.3609 0.4091 0.3022 0.3105 5.035 5.1585 2.683383 
0.4384 0.452 0.3713 0.4066 0.386 0.3175 4.5992 4.8789 6.077264 
0.3355 0.287 0.4098 0.4822 0.2908 0.2827 5.2597 5.3428 1.80558 
0.2992 0.376 0.3444 0.4539 0.3472 0.3262 5.5634 5.613 1.077699 
0.2667 0.2817 0.2911 0.383 0.3544 0.4512 4.8725 4.9248 1.136364 
0.3372 0.3849 0.3593 0.4246 0.4592 0.2549 5.2063 5.2926 1.875109 
0.4006 0.4333 0.289 0.3005 0.4223 0.3449 5.2363 5.3142 1.692595 
0.4307 0.4239 0.4063 0.3939 0.4732 0.3231 5.1179 5.2609 3.107075 
0.3332 0.3506 0.3219 0.3915 0.3137 0.3807 5.5478 5.5884 0.882148 
0.4302 0.4657 0.3415 0.3337 0.4539 0.3561 4.1022 4.3587 5.573179 
0.4265 0.3027 0.4593 0.4714 0.4424 0.267 5.3329 5.4692 2.961498 
0.4821 0.3467 0.4527 0.4488 0.4892 0.4966 3.4986 3.8351 7.311403 
0.3151 0.3813 0.4565 0.3132 0.3879 0.4164 4.1524 4.3321 3.904485 
0.2954 0.4222 0.4808 0.3503 0.3501 0.2661 4.9462 5.0441 2.127151 
0.3025 0.4948 0.4505 0.3103 0.3418 0.3255 6.1163 6.2195 2.242308 
0.2821 0.4474 0.4346 0.3897 0.2852 0.3014 6.7978 6.8466 1.060316 
0.4504 0.4432 0.4518 0.4762 0.4146 0.4955 4.1234 4.4678 7.483052 
0.4337 0.3742 0.329 0.4476 0.35 0.273 5.8004 5.8543 1.1711 28 
0.4252 0.3792 0.4387 0.4858 0.3858 0.4653 5.3434 5.5827 5.199461 
0.3512 0.3464 0.3817 0.3484 0.2575 0.4286 7.9589 7.9474 -0.24987 
0.2509 0.4946 0.2536 0.3541 0.372 0.4455 5.1266 5.2199 2.027203 
0.4881 0.4448 0.4123 0.287 0.4747 0.4547 4.3719 4.7443 8.091431 
0.468 0.4174 0.4554 0.41 0.4458 0.3912 5.7461 5.9473 4.371632 

0.4978 0.3705 0.3402 0.4871 0.4039 0.2531 6.8851 7.0285 3.115766 
0.4401 0.3285 0.3736 0.4862 0.3744 0.3886 4.6775 4.8949 4.723622 
0.386 0.4182 0.4951 0.2549 0.4957 0.3447 5.4935 5.5687 1.63393 

0.4456 0.4762 0.3029 0.4357 0.3263 0.2862 5.7929 5.9261 2.894142 

0.268 0.4691 0.4271 0.2548 0.4674 0.4498 4.3942 4.5926 4.310794 
0.3269 0.4574 0.4274 0.4376 0.4862 0.2635 4.9188 5.0572 3.007127 
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0.459 0.4439 0.359 0.2533 0.4596 0.321 4.9305 5.172 5.247262 
0.2585 0.3896 0.396 0.4415 0.4917 0.2946 8.5266 8.509 -0.38241 
0.4054 0.3201 0.3281 0.4448 0.4308 0.4033 5.1641 5.3288 3.578568 

Table 5.9 The data of 50 simulations of Time to Failure at node G for lumped element 

model (TTFm) and signal delay approximation (TTFs) for ccr= 4co• L=length 

of grain boundary. 
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FigS.16 The Time to Failure at node G for lumped element model(blue triangle) and 

signal delay( red dot). The failure criterion used is ccr= 4co 

50 

From these results it shows that the Time to Failure obtained from the signal delay gives 

a very good approximation to Time to Failure obtained by the lumped element model for 

both fai lure criterion where the maximum percentage error is about 10% and 8% for 

184 



S.2.8 Summary of simulation results of complex grain boundary 

The current two- dimensional lumped element model of the complex grain boundary 

cluster includes some of the details of the microstructure( the various grain boundary 

lengths, orientation and diffusivities) in obtaining the estimation of interconnect life 

times. Previous one-dimensional studies[Korhonen et.aI,1993] have treated the cluster 

sections as having no internal structure, having been washed out in the simplification. 

For early failures, occurring as a result of stress build-up in the cluster sections, it is the 

micro-structural detail thar determines the Time to Failure distribution as been described 

in the literature review in Chapter 2 . This has been successfully demonstrated in the 

simulation examples where the length of grain boundaries, angle of orientation and 

ditfusivities produce an effect on the Time to Failure. 

In the single grain boundary simulation examples, it was demonstrated that the build-up 

of vacancies at particular points or nodes is equivalent to the development of a pseudo­

voltage on a related lumped element, electrical network made up from cascading a 

relatively small number of CR-IT elements. The simulation results shows that it is also 

applicable to complex grain boundaries where vacancy concentration profiles has been 

obtained and the Time to Failure can be estimated by asSuming failure occurs when the 

vacancy concentration reaches a fixed level ( critical vacancy concentration ) as also 

been used in the stress evolution model of Korhonen et.al and drift diffusion models of 

Lloyds at al. 

Another important result from the simulation exercises is the demonstration of the signal 

delay estimation of Time to Failure which gives aveI)' good accuracy, within an 

expected range, to the failure time obtained by the detailed lumped element model 

calculations. With this, rapid estimates of the Time to Failure TTF can be performed to 

allow for its statistics to be assessed more readily. 
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At this stage, the data obtained on the Time to Failure is not of particular significance 

since the structure of the grain boundaries in the examples do not represent realistic 

intercounects. The next stage of work is to apply this method ( the lumped element 

model and signal delay) to more realistic interconnects, with structures determined from 

the Voronoi method of reference[ Joo Y.C and Thompson C.V,1994], as It means to 

determine the Time-to. Failure (TTF) distribution. In this way it is hoped to be able to 

estimate the deviation of TTF (DTTF) and perhaps, the distribution of time-to first· 

failures(TTTF). 

5.3 Simulation of realistic interconnects 

5.3.1 Introduction 

In order to evaluate the reliability of the IC interconnects, it is important to determine the 

Median Time to Failure (MTTF) and the Deviation in the time to failure (DTTF) or C1 sd . 

Only with the reliable values. for both the MTTF and DTTF, plus with the knowledge of 

the distribution of the Time to Failure (TTF), may the time for early failures be predicted. 

The lumped element model developed is not completely tested for its validity unless the 

data on the TTF, MTTF and DTTF is obtained and does exhibit the characteristics found 

by others. The previous sectious have already dealt with rather a simple structure starting 

with single grain boundary and it is shown to be in agreement with other authors. This is 

followed by an analysis of a 5 grain boundaries cluster and one of 11 grain boundaries . 

. In the present work, an attempt is made to obtain a realistic structure of the grain 

boundary networks and to obtain the associated Time to Failure values and finally to 

analyse its MTTF and its DTTF so as to prove the validity of the model developed. As 

commonly used by others, the Voronoi method is also used in the present work to obtain 

a realistic presentation of AI or Cu films to produce the interconnect samples for the 

experiment. The construction of the Voronoi network is done through the built-in 
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function of the MATLAB software package and attempts are also made to simulate the 

annealing processes. 

5.3.2 The objectives of the experiment are basicaIlY:-

1. To produce the Time to Failure (TTF) for :-

i) Each grain boundary cluster in the interconnect 

ii) Interconnect samples (by taking the shortest time among the grain 

boundary clusters) 

2. To convert the arbitrary data into meaningful statistical data such as the Time 

to Failure, cluster length etc. based on actual experimental parameters. 

3. To analyse the data gathered so as to show that the cumulative distribution of 

the Time to Failure follows the Lognormal distribution. 

4. To analyse the effect of scaling of the interconnect. 

5. To analyse the effect of the microstructure properties such as the length, the 

angle of orientation of the grain boundaries on the Time to Failure. 

6. To analyse the effect of the cluster length and the number of grain boundaries 

on the Time to Failure of the interconnects 

7. To analyse the effect of annealing on the Time to Failure. 

8. To analyse the effect of the variation of the interconnect linewidth on the 

mean Time to Failure and its standard deviation. 
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9. To compare the results between the lumped element model and the signal 

. delay approximation of Time to Failure 

5.3.3 An example of the detailed simulation processes based on the Matlab® 

program codes developed. 

Basically the complete simulation processes in producing the Time to Failure (TTF) of 

interconnects is as follows: 

(a) The production of AI films samples 

(b) The annealing of the AI films samples 

(c) The production of the le interconnects samples 

(d) The calculation of Time to Failure 

(a) The production of a sample of AI film 

(i) Creating Voronoi vertices 

The production of the AI film samples was done by making use of the built-in voronoi 
function in Maltab®. The vertices of the Voronoi are created by using a random number 
generator to generate the random points ofx and y. 

(clipping from the Matlab® program codes) 

fprintf('\n Draw a realistic interconnect using Voronoi technique \n' ) 

no=input('Enter the no of points needed = '); 

for p=l:no; 
xpt(p)=rand; 
ypt(p)=rand; 

end 
% to produce the reference voronoi diagram or network 
[vx_original, vy_original) =voronoi (xpt,ypt) 

(clipping from Matlab workspace ) 

Draw a realistic interconnect using Voronoi technique 
Enter the no of points needed = 30 
note: the bold and italic numberlletter are the required input to the program code) 
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vx_original = 
Columns I through 7 

0.7850 0.9487 0.7301 0.4397 0.3730 0.4284 0.7657 
0.8871 0.7657 0.8992 0.3187 0.3835 0.4146 0.7608 

Columns 8 through 14 

0.7223 0.6025 0.5088 0.6240 0.4397 0.6703 0.3187 
0.7657 0.6222 0.6240 0.4397 0.4624 0.6240 0.5088 

vy-original = 
Columns 1 through 7 

0.6443 0.6325, 0.4614 0,7973 0.6154 0.4539 0.5924 
0,6686 0.5924 0.3886 . 0,8747 0.6136 0.4220 0,6185 

Columns 8 through 14 

0.4751 0.5482 1.6438 1.0417 0,7973 0,8772 0.8747 
0.47520.5317 1.0417 0.7973 0,7778 1.0417 1.6438 

The above data ( vxoriginal and vyoriginal) are part of the vertices produce by Matlab® 
from a 30 random points to create the Voronoi network 

ii) The production of the Voronoi diagram 

The Voronoi diagram is plotted by the following Matlab code 
(clipping from Matlab® program codes) 

plot(vx original,vy original,'-'); 
axis([O-l 0 1]); -

This will produce the graphical presentation of the Voronoi diagram in (1 x 1) scale 
(clipping from MatIab® Figure file) 
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Fig 5.18 An example of a Voronoi network from 30 random points. The nodes have 
been labelled by a program code lablenode.m 
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:-------------------------.......... ..... 
(clipping from Matlab® work space) 

The node number and its coordinate 

NODE(o) vx(o) vy(o) 
I 0.8078 0.2909 
2 1.03 0.4246 
3 0.4784 0.6427 
4 0.688 0.6368 
5 0.7457 0.7061 
6 0.7647 0.8819 
7 1.249 0.5022 
8 3.524 0.6292 
9 0.965 0.8248 
10 0.8533 0.6821 
11 0.6945 1.062 
12 0.4864 0.7895 

GB# vxstrt(o) vxend(o) vystrt(o) vyend(o) gblength( 0) gbangIe(o) 
1 0.8078 1.03 0.2909 0.4246 0.2589 31.08 
2 0.4784 0.688 0.6427 0.6368 0.2096 -1.608 
3 0.7457 . 0.7647 0.7061 0.8819 0.1768 83.83 
4 1.249 3.524 0.5022 0.6292 2.279 3.196 
5 0.965 0.8533 0.8248 0.6821 0.1812 51.94 
6 0.7647 0.965 0.8819 0.8248 0.2083 -15.92 
7 0.6945 0.7647 1.062 0.8819 0.1931 -68.67 
8 0.965 3.524 0.8248 0.6292 2.567 -4.37 
9 0.4864 0.5102 0.7895 0.8374 0.05351 63.63 
10 0.15 0.05434 0.3056 0.5198 0.2346 -65.95 

(A part of the output off unction file lablenode.m listing down the nodes number, grain 
boundary number and its geometrical properties) 

NODMAT= 
Columns I through 12 

0 I 0 ·0 0 0 0 0 0 0 0 0 
I 0 0 0 0 0 I 0 0 0 0 0 
0 ·0 0 I 0 0 0 0 0 0 0 0 
0 0 1 0 I 0 0 0 0 0 0 0 
0 0 0 I 0 I 0 0 0 I 0 0 
0 0 0 0 I 0 0 0 I 0 I 0 
o· I 0 0 0 0 0 I 0 0 0 0 
0 0 0 0 0 0 I 0 I 0 0 0 

(A part of the output from function file conmtrix.m which forms a connectivity matrix 
NODMA T which contains the connectivity information of all the nodes in the Voronoi 
diagram (forthis example, reference to fig S.18, node 1 is connected to node 2, therefore 
NODMAT (1,2)s = 1, also node 3 is connected to node 4,i.e. NODMAT(3,4)=1 )etc.) 

GBMAT= 
Columns I through 12 
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) 

" 

0 l' 0 0 0 0 0 0 0 0 0 0 
I 0 0 0 0 0 25 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 0 
0 0 2 0 66 0 0 0 0 0 0 0 
0 0 0 66 0 3 0 0 0 65,' 0 0 
0 0 0 0 3 0 0 0 6 0 7 0 
0 25 0 0 0 0 0 4 0 0 0 0 
0 0 0 0 0 0 4 0 8 0 0 0 
0 0 0 0 0 6 0 8 0 5 0 0 

( A part of the output from function file conmtrix.m which forms a grain boundaIy 
matrix GBMAT which contains the information of all the grain boundary number in the 
Voronoi diagram (forthis example, reference to fig 5.18, node 1 is connected to node 2, 
therefore GBMAT(I,2) = 1( grain boundaIy number I), also node 3 is connected to node 
4 i.e GBMAT(3,4)=2( grain boundaIy number 2), etc.) 

, LGTHMAT 
, Columns 29 through 35 

0 0 0 0 0 0 0.1059 
0 0 0.1042 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0.0596 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0.3754 0 0 0 

( A part of the output from function file conmtrix.m which forms a length of grain 
boundary matrix LGTHMAT which contains the information of all the length of the 
grain boundaIy in the Voronoi diagram (forthis example, reference to fig 5.18, node 1 is 
connected to node 35, therefore LGTHMAT(I,35) = O.l059( the length of grain 
boundaIy connecting node 1 and node 35), also node 2 is connected to node 31 i.e 
LGTHMAT(2,3I)=O.I042( length of grain boundaIy connecting node 2 and node 31), " 
etc.) 

ANGLEMAT 

Columns 29 through 35 

0 0 0 0 0 0 61.1117 
0 o -17.1422 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 o -19.5346 0 0 0 
0 0 0 0 0 0 0 

191 

' I 



o 
o 

o 
o 

o 0 0 
o -25.2303 0 

o 
o 

o 
o 

(A part of the outpilt from function file conmtrix.m which fonns the angle of orientation 
of grain boundary matrix ANGLEMAT which contains the infonnation of all the 
orientation of the grain boundary in the Voronoi diagram ( for this example, reference to 
fig 5.18, node 1 is connected to node 35, therefore ANGLEMAT(I,35) = 61.1117( the 
orientation angle of grain boundary connecting node 1 and node 35), also node 2 is 
connected to node 31 i.e ANGLEMAT(2,31)=-17.l422( the orientation angle of grain 
boundary connecting node 2 and node 31), etc.) 

These matrices are important to provide infonnation or use as test condition for 
executing statement in the program when perfonning the annealing processes. The data 
of these matrices will be updated for every time step in the annealing process. 

b) The annealing process ofthe fIlm 

In this simulation example, the AI film will undergo the annealing process during which 
the:: grain will grow in sizes. The time duration for the process is set to be unlimited i.e. it 
depends how many time steps needed A program code annealing.m is used to do the 
simulation. . 
(clipping from Matlab® work space) 

the number of annealing timestep needed: 5 

· .. · .. · ., · .. · .. · .. · .. · .. · .. . .. ... . . , . .. . .. 
Fig 5.19 An example of the final picture ofan annealed sample of AI film after going the 
annealing processes for a duration of 5 time steps. 

c) The production of the interconnect samples 

In this simulation, 10 equal sized of samples from the non-annealed/annealed AI films 
are produced. The process involved in slicing the AI films into various samples depend 
on the width of the samples required. 
(clipping from Matlab® program codes) 
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Run the clipping process to obtain a realistic interconnect 
Number of samples of interconnect lines required: 10 

(clipping from Matlab® Figure file) 

o 11 ~ E · .. "- : :---.-. ~ : 
·· .. t '''::;::: 

, 
"«::::::::::: /' • • ; 

'o': t:=2 7 ~ 7: 

~ : " 3 
: 
" 

z -+ 3 
Z ;p- 3 

D , tHi t / :::~ ;~ "" : ? : --=::::::::J • •• •. ,,? · , :7 : :Z s: ;c;: q:;: I 
o ,,~t · .. s: : S Z : : s : ~ : \ :- -=l 
''' t 0 .3 :"- : ~ : : z : : c::: ::::;=-- 3 
0.2$ 'f :1 Z : -----=:::' : 

" : " '7 3 I o 2 
o 15 'F o • : 1 z: ::;:::;--- : :'" , : : 3 
0 . 0 g 'F : I Z ::?" : : : : : : 3 

0 0 . ' o 2 o 3 0 .' o , 0 .' o . , 0 .' o • • 

Fig 5.20 An example of 10 samples of interconnect (clipping from Matlab Figure file) 

d) Tbe calculation of the Time to Failure of interconnect sample 

i) The slicing process to form a patterned interconnect sample 

In this simulation, the interconnect samples are patterned according to the required size 
by a slicing process. A program code slice2.m is used for this purpose. 

(clipping from Matlab® workspace) 

sampleno = 

the y clip start point axis= 0. 3 
the y clip end point axis= 0.4 

(Cliping from Matlab® Figure File) 
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FIG 5.21 An example of interconnect sample after the slicing process 
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In the slicing process, the grain boundaries inside the box are detected and the nodes and 

the grain boundaries are re-labelled with new points and the information on the geometry 

is calculated as indicated below. The (0) indicates old value and (n) indicates new value. 

(clipping from Matlab® work space) 
gbinbox = 

Columns I through 12 

I 10 II 15 2 1 23 24 30 32 34 40 41 
Columns 13 through ]6 

44 45 50 52 

( these number represents the grain boundaries identification number that are found 
inside the sliced area or box) 

nogbinbox = ( total of grain boundaries inside the box) 

16 

( The number represents the total number of grain boundaries found in the sliced area or 
box) 

ii) The re-labelling of the new nodes and the calculation of new geometrical 
properties 

GB vxs(o) vxs(n) vxe(o) vxe(n) vys(o) vys(n) vye(o) vye(n) 

0.8078 0.8229 1.03 0.9888 0.2909 0.3 0.4246 0.4 
10 0.15 0.15 0.05434 0.1078 0.3056 0.3056 0.5198 0.4 
11 0.2083 0.1806 0.15 0.15 0.2949 0.3 0.3056 0.3056 
15 0.324 0.324 0.2083 0.2194 0.3485 0.3485 0.2949 0.3 
21 0.5704 0.5704 0.4693 0.5614 0.38 12 0.3812 0.5928 0.4 
23 0.32 18 0.32 18 0.324 0.324 0.3971 0.3971 0.3485 0.3485 
24 0.324 0.324 0.3304 0.3304 0.3485 0.3485 0.3429 0.3429 
30 0.6446 0.5972 0.5704 0.5704 0.4331 0.4 0.3812 0.3812 
32 0.8078 0.8035 0.7766 0.7766 0.2909 0.3 0.3578 0.3578 
34 0.5704 0.5704 0.5405 0.5556 0.3812 0.3812 0.2167 0.3 
40 0.7766 0.7766 0.7585 0.7706 0.3578 0.3578 0.4859 0.4 
41 0.6446 0.7027 0.7766 0.7766 0.4331 0.4 0.3578 0.3578 

(The above data represents the grain boundary geometry information 
where) 

GB grain boundary number 
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vxs(o) 
vxe(o) 
vys(o) 
vye(o) 
vxs(n) 
vxe(n) 
vys(n) 
vye(n) 

the old value of vx start coordinates for the grain boundary 
the old value of vx end coordinates for the grain boundary 
the old value of vy start coordinates for the grain boundary 
the old value of vy end coordinates for the grain boundary 
the vx end coordinates for the grain boundary 
the old value of vx end coordinates for the grain boundary 
the vy start coordinates for the grain boundary 
the vy end coordinates for the grain boundary 

NODE(n) vx(n) vy(n) 
I 0.8229 0.3 
2 0.9888 0.4 
3 0.15 0 .3056 
4 0.1078 0.4 
5 0.1806 0.3 
6 0.324 0.3485 
7 0.2194 0.3 
8 0.5704 0.38 12 
9 0.5614 0.4 
10 0.3218 0.397 1 
11 0.3304 0.3429 
12 0.5972 0.4 
13 0.8035 0.3 
14 0.7766 0.3578 
15 0.5556 0.3 
16 0.7706 0.4 
17 0.7027 0.4 
18 0.3183 0.3 
19 0.3912 0.3 
20 0.3187 0.4 
21 0.324 0.4 

( The new nodes identification number and its new x and y coordinates) 

GB# vxstrt(n) vxend(n) vystrt(n) vyend(n) gblength(n) gbangle(n) 
I 0.8229 0.9888 0.3 0.4 0. 1937 31.08 

10 0.15 0.1078 0.3056 0.4 0.1033 -65.95 
11 0. 1806 0.15 0.3 0.3056 0.03114 -10.44 
15 0.324 0.2194 0.3485 0.3 0.1153 24.87 
2 1 0.5704 0.5614 0.38 12 0.4 0.02079 -64.45 
23 0.3218 0.324 0.3971 0.3485 0.04868 -87.44 
24 0.324 0.3304 0.3485 0.3429 0.008545 -41.4 
30 0.5972 0.5704 0.4 0.3812 0.03274 34.95 
32 0.8035 0.7766 0.3 0.3578 0.0638 -65 .04 
34 0.5704 0.5556 0.3812 0.3 0.08258 79.69 
40 0.7766 0.7706 0.3578 0.4 0.04257 81.96 

(The above data represents the grain boundary geometry information 
where) 
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grain boundary number GB# 
vxstrt(n) 
vxend(n) 
vystrt(n) 
vyend(n) 

the vx start coordinates for the grain boundary 
the vx end coordinates for the grain boundary 
the vy start coordinates for the grain boundary 
the vy end coordinates for the grain boundary 

These new data are calculated by program codes i) newnode.m( to label the new nodes 

and its grain boundaries after the slicing process), ii) newgeometry.m ( to calculate the 

new geometrical properties of the grain boundaries) 

iii) The calculation of the Time to Failure 

In this particular example, the Time to Failure is calculated for grain boundary cluster 

with the start node at Node 7 and the end node at Node 19 (Fig 5.21). The program code 

will automatically calculate the cluster lengths. After this point, data which are required 

to calculate the Time to Failure have to be keyed-in into the program code. 

(clipping from Matlab® work space) 

Enter the total number of clusters of grain boundaries found in sample no: I 3 

To calculate the length of the cluster of grain boundaries 
Enter the start point oflbe cluster no:1 :Keyin "N(X)" X=node number- N (7) 

Enter the end point ofthe cluster no: I :keyin "N(X)" X=node number- N(J9) 

c1ustlgh = 0. 1718 

The common input parameters defining the grain structure 
The total number of grain boundaries in the cluster: 5 
The number of grain boundaries forming the longest path: 3 

ptsel = 3 

( this number represent Node 19 is use to calculate TTF by signal delay approximation 
method) 

The length of Grain Boundary(LG) NO 1 =LG(1,} 
x= 0. 1153 
Angle of Grain Boundary(Ag) NO I =AG(IS) 

theta = 0.434 1(in radians) 
The length of Grain Boundary(LG) NO 2 =LG(24) 
x= 0.1153 0.0085 
Angle of Grain Boundary(AG) NO 2 =AG(24) 
theta = 0.434 1 -0.7226 
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The length of Grain Boundary(LG) NO 3 =LG(45) 
x = 0.1153 0.0085 0.0744 

Angle of Grain Boundary(AG) NO 3 =AG(45) 
theta = 0.4341 -0.7226 -0.6139 

The length of Grain Boundary(LG) NO 4 =LG(13) 
x = 0.1153 0.0085 0.0744 0.0487 

Angle of Grain Boundary(AG) NO 4 =AG(23) 
theta = 0.4341 -0.7226 -0.6139 -1.5262 

The length of Grain Boundary(LG) NO 5 =LG(44) 
x = 0.1153 0.0085 0.0744 0.0487 0.0445 

Angle of Grain Boundary(AG) NO 5 =AG(44) 
theta ~0.7226 -0.6139 -1.5262 1.2955 

The letters LG and AG stands for length of grain boundary and angle of orientation 

respectively. All the information is stored in their respective matrices LGlHMA T and 

ANGLEMAT. The data are obtained by simply keying the correct grain boundary 

numbers. In this example, the cluster is characterised by i) the longest path consisting of 

grain boundaries number 15,24and 45 and ii) the wings consisting of grain boundaries 

number 23 and 24. Once the data are keyed-in, the program codes will calculate 

automatically the Time to Failure by the lumped element model ( solving the matrix 

equation) and the signal delay approximation method. 

(Clipping from Matlab® work space) 
TTFS = 0.0229 

TTFELMORE = 0.0219 

TTFS is the result of simulation of Time to Failure for the lumped element model and 
TTFELMORE is the for the Elmore delay approximation. 

5.3.4 The production AI film samples for the current experiment 
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The samples of the AI films consisting of the grain boundaries are constructed by the 

Voronoi method which are also developed by others[Kirchheim& Kaeber,1991],[Joo,and 

Thompson,1994][Marcoux et.al,1989],[Knowlton,et.al. 1997]. In the current work, each 

samples of Al films is constructed from SO random points to create the Voronoi network. 

The Voronoi network is scaled up to make a 1 by I area so as to make a presentable 

sample of Al films. la samples of non-annealed AI films are produce randomly for the 

experiment as shown in Figures S.22(a)-S.22U) 

0 .9 

0 .8 

0 .7 

0.6 

0.5 

0 .4 

0 .3 

0 .2 

0 .1 F-----l.... 

O_L--~-~~~L--~-~~~~-~-~~~L--~ 
o 0.1 0 .2 0 .3 0.4 0 .5 0 .6 0 .7 0 .8 0 .9 

Fig S.22(a) Voronoi network representing AI film sample no: I 
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Fig 5.22(b) Voronoi network representing AI film sample no: 2 
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Fig 5.22(c) Voronoi network representing Al film sample no: 3 
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Fig 5.22(d) Voronoi network representing AI film sample no: 4 
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Fig 5.22(e) Voronoi network representing AI film sample no: 5 
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Fig 5.22(f) Voronoi network representing AI film sample no: 6 
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Fig 5.22(g) Voronoi network representing AI film sample no: 7 
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Fig 5.22(h) Voronoi network representing Al film sample no: 8 
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Fig 5.22(i) Voronoi network representing AI film sample 00: 9 
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Fig 5.22(j ) Voronoi network representing AI film sample no: 10 

5.3.5 The simulation of the annealing process for the Al film samples 

The annealing treatment of the AI films is simulated by increasing the size of the grains. 

A Matlab® program code (annealing.m) is developed to simulate this by using the rules 

developed in the Vertex model for 2D grain growtb[Kawasaki et. ai , 1989).Other 

references which produces the simulation of grain growth/annealing includes [ Weaire 

and Kerrnode,1983) who work on the 2-dimensional soap froth, [Mulheran, 1992] who 

work on the statistical properties of 2-dimensional random Voronoi network, [Anderson 

et.al ,1984) who simulate the grain growth using Monte Carlo method, [Frost, et aI. , 1990) 

who work on the effect of grain boundary grooving at the free surface of a film by 

introducing the stagnation condition on grain boundary. The Kawasaki reference is 

important here because it is the only reference available which provides an algorithm in 

simulating the annealing processes which is thought to he suitable in the current work as 

it involves the manipulation of the coordinates of the vertices in the Voronoi network. 

In the current work, simulation of the annealing process does not include the groove­

induced stagnation condition , where after the film is annealed for a time ' ''liS' total 

stagnation occurs. Also the simulation does not include the post-patteming of the 
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interconnect where the interconnect IS subjected to another annealing 

process[Know lton,et. al ]. In the current work, the simulation of the annea ling process is 

based on the work of [Joo and Thompson,1994] and [Kircheim and Kaeber,1991] and 

does not include those extra annea ling processes. 

The annea ling s imulation will improve the Voronoi network which a re initia lly 

produced by the built-in function of MATLAB. The simulation of the annealing process 

will produce a different layout of the grain boundaries through stretching or compress ing 

effect/force on the grain boundaries. The simulation will exhibit the growth and the 

coll ision of grain boundaries, and processes where grai n boundaries can recombine or 

be annihil ated when a grain boundary length shrink below cri tical va lue. Essentially 

during the annea ling process large grai ns grow at the expense of small grai ns, and grai ns 

become more spherical. An example of the annealed AI film, produced by Kirche im & 

Kaeber is shown in Fig 5.23 below. 

Fig 5.23 AI film sample from [Kirchheim.R and Kaeber. U,.199 J] 

An example of the simulation results using the program code annealing.m is shown in 

Fig. 5.24 to show the growth, annihilation and recombination processes. The Vorono i 

network is created from 20 random points 
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Fig 5.24(a) Voronoi network before annealing 
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Fig 5.24(b) After annealing I time step (growing and recombination of grain) 

" 
" " l------"-~ 
" .. 
o • 

" , , 
, , 

o ,'L-------., ~,------~,~.------~,~.~----~,~.~------~ 

Fig 5.24(b) After annealing 5 time step (growing and recombination of grain) 

, . 
" • , t:::.----""---. .. 
• • .. · , · , · , 
'.~------•. ~,~----~.~.~----~,~. ------~.~.------~ 

Fig 5.24( c) After annealing 10 time step ( growing of grain) 
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Fig 5.24(c) After annealing 15 time step (growing of grain) 
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Fig 5.24(d) After annealing 20 time steps (growing and annihilation of grain) 

Another example of the simulation results using the program code annealing.m IS 

shown in Fig. 5.25 from larger Voronoi network created from 100 random points 
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Fig 5.25(b) After annealing 2 time steps 
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Fig 5.25( c) After annealing 4 time steps 
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Fig 5.25(d) After annealing 6 time steps 
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5.25( f) After annealing 20 time steps 
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For tbe current experiment, 10 samples of AI films of the original non-annealed film of 

Fig5 .22(a)-5.22(j) have been annealed for a duration of five time steps are shown In 

Fig.5 .26( a )-5. 26(j). 
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Fig 5.26(a) Voronoi network representing the annealed AI film sample no I 
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Fig 5.26(b) Voronoi network representing the annealed AI film sample no.2 
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Fig 5.26(c) Voronoi network representing the annealed AJ film sample nO.3 
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Fig 5.26(d) Voronoi network representing the annealed AI film sample no.4 
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Fig 5.26(e) Voronoi network representing the annealed AI film sample nO.5 
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Fig 5.26(f) Voronoi network representing the annealed AI film sample nO.6 

212 



1 

0 .9 

0 .8 

0.7 

0 .6 

0 .5 

0.4 

0 .3 

0.2 

0 .1 

0 
0 0.2 0.4 0.6 0.8 

Fig 5.26(g) Voronoi network representing the annealed AI film sample no.7 
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Fig 5.26(h) Voronoi network representing the annealed AI film sample no.8 
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Fig 5.26(h) Voronoi network representing the annealed Al film sample nO.9 
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Fig 5.26(i) Voronoi network representing the annealed AI film sample no. 10 
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5.3.6 The simulation to produce interconnects samples for experiment 

The samples of le interconnects for the experiments are produced from the 10 samples 

of AI films of Fig 5.22(a)-5 .22(j) ( non-annealed film) and of Fig 5.26(a)-Fig 5.26(j) 

(annealed film). Each sample of the AI films is sliced into equal samples to represent the 

le interconnects depending on the size of the width of the interconnect . This simulation 

is performed by the program code slice2.m where the Voronoi diagram are being cut or 

slice into equal samples of interconnects. As the result of the slice, new nodes have to be 

recalculated as does the geometric information such as the length and angle of 

orientation of the grain boundaries. From this simulation, 100 samples of le 
interconnects can be produced ( for O.lxl scale). The interconnects samples wiIJ consist 

of a randomly distributed clusters of grain boundaries in which for each cluster wiIJ have 

its own characteristics consisting of: 

i) The number of grain boundaries making up the cluster 

ii) The length of each grain boundary in the cluster 

iii) The length of the cluster (the spanning of the grain boundaries ID the x 

direction i.e. the direction of the moving vacancies ) 

iv) The angle of orientation of the grain boundaries. 

These characteristics of the grain boundaries represent the complete microstructure of the 

interconnects which w:iIJ be analysed to produce their Time to Failure. The interconnect 

samples under investigation are shown in Figures 5.27(a)-5.27(j) for non-annealed 

samples and Figures 5.28(a)-5.8(j) for annealed samples 
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Fig.5.27(a) Interconnects samples (1 -10) from non-annealed Al film sample no. 1 

Fig 5.27(b) Interconnects samples (11-20) from non-annealed Al fi lm sample no 2 
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Fig 5.27( c) Interconnects samples ( 2 1-30) from non-annealed AI fi lm sample no. 3 

Fig 5.27(d) Interconnects samples (3 1-40) from non-annealed AI film sample no. 4 
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Fig 5.27(e) Interconnects samples (41-50) from non-annealed AI film sample no. 5 

Fig 5.27(t) Interconnects samples ( 51-60) from non-annealed AI film sample no 6 

218 



Fig 5.27(g) Interconnects samples (61-70) from non-annealed Al film sample no. 7 
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Fig 5.27(h) Interconnects samples ( 71-80) from noo- annealed AI film no 8 
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Fig 5.27(i) Interconnects samples ( 81-90) from non-annealed AI film sample no. 9 

Fig 5.27(j) lnterconnects samples (9 1-100) from non-annealed AI film sample no. 10 
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Fig.5.28(a) Interconnect samples (1 -10) from annealed Al film sample no. I 

Fig 5.28(b) lnterconnect samples ( 11-20) from annealed Al film no. 2 
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Fig.5.29( c) Interconnect samples (21-30) from annealed AI film no.3 

Fig.5.28(d) Interconnect samples (31-40) from annealed Al film no.4 
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Fig.5.28(e) Interconnect samples (41-50) from annealed AI film no 5 

Fig.5.28(f) Interconnect samples (51-60) from annealed AI film no 6 
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Fig.S.28(g) Interconnect samples (6 1-70) from annealed AI film no 7 

Fig.S.28(h) Interconnect samples (71-80) from annealed AI film no 8 
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Fig.S.28(i) Interconnect samples (81 -90) from annealed AI film no 9 

Fig.S.28(j) Interconnect samples (9 1-100) from annealed AI film no 10 
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-- - -- ------------------------------

5.3.7 .. The simulation oC Time to Failure 

In the present work, the simulation of Time to Failure is done by inputting the 

information ( as shown in the detailed example in section 5.3.3) on the following 

parameters :-

i) Number of samples needed for the experiment 

ii) Number of clusters present in the sample (by inspection) . 

iii) The length of the cluster( by inputting the start and end node of the cluster 

will automatically calculate the length of the cluster) 

iv) The number of grain boundaries found in the cluster( by inspection) 

v) The number of grain boundaries forming the longest path (by inspection) 

vi) The length of the grain boundary (by inputting the grain boundary number 

will generate the length of each grain boundaries in the cluster) 

vii) The angle of orientation of the grain boundary (by inputting the grain 

boundary number will generate the angle of orientation) 

Once this information is fed into the system, the computer will calculate the TTF based 

on the lumped element model solution and the signal delay approximation. A grain 

boundary cluster will fail if it reaches a specified critical vacancy concentration value. 

ili The experiments conducted 

In the current work, there are three main experiments being conducted. The experiments 

are :-

1. An experiment on 100 samples of non-annealed interconnect 

2. An experiment on 100 samples, of annealed interconnect 

3. An experiment on 5 samples of non-annealed AI films to determine the effect of 

varying the width of the interconnect on the Time to Failure, its Median Time to 

Failure (MTTF) and the Standard deviation. The width/length ratio selected for the 

experiment are a) w/l:O.04, b)w/l:O.075,c)w/l:O.1 and d) w/l:O.15 and e)w/l:O.2 
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with an average grain size'" 0.14. For (a) there will be 95 samples of interconnect, 

for (b) 65 samples, ( c ) 50 samples (d) 30 samples and (e) 25 samples 

4. Finally we wish again to compare the data on Time to Failure between the lumped 

element model with the signal delay approximation 

In all the experiments, the assumptions made and the boundary conditions are the same 

and are discussed in the following section. Basically the experiments objective is to 

obtain the distribution of the Time to Failure, its Mean Time to Failure and its standard 

deviation and to compare the results with existing references in the literature. This will 

provide a validity test on the lumped element model developed. 

In all the experiments, the Time to Failure are calculated for every grain boundary cluster 

found in the samples of the interconnects. The shortest time of the TTF of the grain 

boundary will determine the Time to Failure of the interconnect samples. The data are 

then analysed to present in the form of graphs such as i) The Cumulative Distribution of 

the Time to Failure and ii) The Lognormal graph on the Time to Failure. 
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5.3.9 The assumptions and boundary conditions applied 

In the current experiment, all the interconnect lines were initially assumed to be in a state 

of zero stress (cr = 0) at the beginning of the interconnect ,prior to the application of a 

current. This corresponds to a boundary condition at the anode end of the interconnect 

o{L = 0, t} = o. The boundary conditions at the cathode end of the interconnect is 

. J(L,t)=O. These boundary conditions represent the real experimental situation where the 

interconnect is attached to a large contact pad at the beginning of the line and a stud 

attached at the end ofthe line. The chosen values used in the relevant parameters for the 

lumped element model is as follows:-

i) The number of section per grain boundary s= 3 

ii) The critical vacancy concentration c er =2c 0 

iii) The electromigration drlficomponent (l = 5 ( varies between grain 

boundaries where (leff = (l. oos(9), where 9 is the angle of orientation) 

iv) The effective Diffusion coefficient D = 5 (varies between grain boundaries by 

eqn(3.1)in Chapter 3) 

v) The total interconnect length L = 1 

The values used in the simulation of the lumped element model will result in arbitrary 

values. In order to obtain the real physical data, some conversions have to be made to 

give a physical meaning ofthe results obtained. This will be discussed below. 
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5.3.10 The variables/parameters and data conversion 

i) The parameters 

The variables or parameters used in obtaining the actual experimental data for the results 

of the simulation are adopted from the references of [ Korhonen , 

et,al,1993],[Knowlton,et.al.,1997],[Kircheim and Kaeber, 1991][Duan, and Shen, 

,2000][Cho and Thompson,1997],[ Joo et.al,1998]. All these references are based on the 

stress evolution model. The relevant variables or parameters and their values used in the 

current experiment are as follows:-

B= effective modulus = 50 GPa= 50 x 10 9 Nm-2 

0= atomic volume = Ix 10 -29 m3 

T = temperature = 227 0 C= 500K 

. Z* = effective charge of atoms = 10 

j= current density = 1 x 10 6A/cm2=lxIO IO A/m 2 

p = aluminium resistivity = 5 ).lOcm = 5x1O -8 Om 

e= electron charge= 1.602x 10 -19 C 

k=Boltzman contant = 1.38 x 10 -23 IK-1 

D. = effective diffusion coefficient of the entire cross section of interconnect 

d = grain size = 1 x 10 -6 m 

I) = grain boundary thickness = 1 x 10 -9 m 

and from reference [Korhonen, et.al,1993] 
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3DGB 

D. = T' therefore 

ii) 

a) 

Conversion of the arbitrary values to the physical. values 
. ~ 

The physical length of interconnect 

From the arbitrary values of a=5 and L= 1, 

therefore 

aL=5 5.4 

The electromigration drift component is given by the equation below:-

Z * . e.p.J 
a= kT 

substituting the values of the parameters in 5.3.8.2(i) 

IOx.1.602xlO-19 5xl0-8 .1xl010 

a = 
1.38xl0-23 500 

a = 1.1594 x 10 5 

solving the length of interconnect 

5 5 
L= a = 11594xl05 43xl0-

6
m = 43J.lm 
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The calculation of the length of the interconnect will depend on the value ofZ· in et. Z* 

values is not very well define, where the values used in the literature varies from 4-8 

[Korhonen et al,1993] , Z*=15[Kirchheim and Kaeber,1991]. The various length of 

interconnect based on the different values ofZ· are shown in Table5.10 

z· et L=length of 
interconnect 

4 4.6377x 10 4 10711m 
5 5.7971 x 10 4 86.25 !lID 

10 1.1594 x 10 5 4311m 
15 1.7391 x 10 5 28.7 !lID 

Table 5.10 The realistic length of interconnect 
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b) The physical effective Diffusion coefficient D 

As derived earlier in Chapter 3 ( eqn3. 17& eqn3.18), the effective diffusion coefficient 
along the grain boundary is given by the equation below:-

5.6 

substitute the relevant variables values in equation 5.6 gives 

On another reference[Joo ,1999], the value use for D eff = 4.32xl0 -3 (1Jl1l)2 S-1 

c) The physical time scale of the Time to Failure (TTF) 

In terms of the vacancy build-up equation 

OC~B _ (a2C~B OC~B) 
at - Deff Ox +ct Ox 5.7 

By introducing the scaling factor 

let LX = x and t="T 

substituting the scaling factors in equation 5.7 
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""GB 
<A.-V -

O(I1T) 

llDeff now 2 _ 5 (as use in the experiment) 
L 

Therefore the time scale is given by 

L2 x5 
11 = D in seconds 

elf 

11 = D
elf

x3600 in hours. 

5.8 

5.9 

5.10 

The range of the time-scale based on the realistic interconnect length is given in Table 
5.11 below 

L( Ilm) llatDelf = 2.16xlO-14 m2s-1 llatDelf = 4.32xlO-ls m2s-1 

-

107 736 Hours 3680 Hours 
86.25 - 478 Hours 2390 Hours -

43 118 Hours 595 Hours 
28.7 53 Hours 265 Hours 
Table 5.11 The actual tIme-scale for varIous mterconnect length and 

effective diffusion constant 
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With the selection of a=5 and D=5 produces a physical time-scale which is within the 

range of actual Time to Failure reported in [KnowIton et.al,1997],[Joo et.al,1999] . 

d) The critical vacancy! critical stress 

The critical vacancy use in the experiment for determining the Time to Failure is set at 

c er = 2co and this corresponds to the critical stress a er given by the equation below of 

[Korhonen,et. ai, 1993] 

cr acrQ 
log-=-­

Co kT 

kT I cr· 1.38xl0-
23 

.500 I (2) 478MP 
a r =0 ogco = 10-29 og = a 

5.11 

The value of critical vacancy ccr = 2co chosen reasonable because in the literature, the 
critical stress a r lies in the range of 100MPa-l GPa [Knowlton et.al,1997] 
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5.3.11 Other relevant parameters used in the simulation and their justification 

i. The use of a 50 random point to construct the Voronoi network 

The simulation to investigate the eiectromigration behaviour on the realistic interconnect 

was done on a Personal Computer with the Central Processing speed (cpu) of 166 Mhz 

and 32 Mbyte RAM. It is not the intention of the study to simulate actual Al films which 

may contains thousands of grain boundaries, the most important objectives is to 

investigate whether the model can exhibit the characteristics of the lognormal 

distribution of its Time to Failure. It is also must be realised that it is the first time that an 

attempt has been made to model the grain boundaries as a transmission line consisting of 

resistor and capacitor component to transport the vacancies along a the grain boundaries. 

Most of program codes developed involves searching algorithm which takes quite a lot of 

computer time too. The above reasons and the limitation of the programme codes are 

basis for choosing a 50 random point for a start. 

ii. The time step dt and vertex size ~ use for annealing process 

With respect to the simulation of the annealing process, the work of Kawasaki and co­

workers are referred to since they outline in detail the rules and the equations relating to 

the movement of the vertices and it is suitable to be adapted to the programmes codes of 

MATLAB. However the only modifications that have been made are the values of the 

time step size dt oft and vertex size ~. The original values used are 0.01 for step size dt 

and 0.1 for for vertex size ~ respectively[Kawasaki, et.al,1989]. These values are very 

critical since it will determine the success of the grain boundary recombination and the 

annihilation process and the annealing process as a whole. If this values are not correctly 

selected, the neighbouring line joining the vertices may overlap or overshoot due to the 

unbalance between the growth rate (determine by the time step size dt) and the 

recombination or annihilation process ( determine by the vertex size). 
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-----------------------------------------------------------------------

For the actual simulation, the value chosen for the time step size dt is 0.001 and for the 

vertex size ~ is also 0.001. This value is chosen by trial and error since by using the 

original value the result is not good, a lot of overlap and overshoot occurs. The problem 

is minimised by making the time step size longer and the vertex size ~ shorter than the 

original values. The selection of this value seems reasonable because the original is used 

. when simulating 48000 vertices[ Kawasaki et.al,1989] , but for.the current simulation is 

only 94 vertices with 125 lines joining the vertices (the average value for 50 random 

point Voronoi diagram in a lxl scale).Also for the purpose of investigating the effect of 

annealed and non-annealed sample, the total amount of annealing time for all the 

samples is set to 5 time steps only to minimise the problem of overlapping of grain 

boundaries. 

iii). Number of grain boundaries 

In the present work, the maximum number of grain boundaries in a cluster is limited to 

11 grain boundaries. This is reasonable since other computer simulation of the Time to 

Failure only consider 10 grain boundaries connected in series [Kirchheim and 

Kaeber,1991). These however show no structure where all the grain boundary 

orientation angle a =0. The size of the matrices describing the cluster structure is also a 

limiting factor. For 3 sections per grain boundary, an eleven grain boundary clustres will 

require 34x34 matrix. In the case of more than 11 grain boundaries found in the cluster, 

. the Time to Failure will be calculated only for the first 11 grain boundaries( the first 6 

grain boundaries which form the longest path/length and 5 neighbouring / wing grain 

boundaries). 
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iv). Number of sections of components per grain boundary 

The number of sections of the IT network is set to 3. This value is chosen instead of 5 to 

cut down the computer processing time during the calculation of Time to Failure. The 

difference in results between a 3 and a 5 section is very small ( it has been shown earlier 

for single grain boundary for Case(b), one section is in fact adequate). 

5.4 The simulation results of realistic interconnect 

5.4.1 The experiment data 

The detailed . results of all the experiment are shown in Tables Al ( experiment no I), 

. Table A2(experiment no.2) , TableA3(experiment no 3) and TableAA(experiment noA) 

in Appendix A The tables contain all the important and relevant data gathered during 

the simulation of the Time to Failure. The data of particular interest are:-

i) The number of cluster found in the interconnect samples 

ii) The grain boundary cluster length 

iii) The number of grain boundaries found in each cluster 

iv) The Time to Failure for each cluster 

v) The Time to Failure for the interconnect sample( the minimum value among 

the cluster) 

5.4.2 Results'of experiment no.1(a)- non-annealed grain boundary clusters 
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i) . The length of grain boundary cluster and their Time to Failure 

In experiment no. I (a), lOO samples of interconnect are produced from 10 samples of 

non-annealed Al films as shown previously in Fig5.27(a)-Fig5.27(j). The data of the 

length of grain boundary cluster and the Time-to-failure in arbitrary units obtained are 

summarised in Table 5.12 and 5.13 below ( data taken from Table A.I). 

0.0202 0.0734 0.1061 0.1332 0.1691 0.2116 0.2516 0.3694 
0.0204 0.0751 0.1083 0.1392 0.171 0.2141 0.2535 0.378 
0.0235 0.0774 0.1103 0.1409 0.1712 0.2143 0.2587 0.3841 
0.0274 0.0786 0.1104 0.1419 0.1721 0.2143 0.269 0.3985 
0.0275 0.0797 0.1114 0.142 0.1745 0.2152 0.2754 0.4019 
0.0316 0.0797 0.1115 0.1424 0.1777 0.2193 0.2776 0.4028 
0.0366 0.0803 0.1118 0.1424 0.1783 0.22 0.2804 0.4054 
0.038 0.0808 0.1127 0.1428 0.1795 0.2201 0.2831 0.4132 
0.0381 0.0816 0.1135 0.1432 0.1808 0.2233 0.2838 0.4211 
0.0393 0.0822 0.1139 0.1438 0.1817 0.224 0.2841 0.4213 
0.0393 0.083 0.1146 0.1497 0.1818 0.2244 0.2844 0.4252 
0.0403 0.0886 0.1146 0.1502 0.1833 0.2245 0.2868 0.4288 
0.0443 0.0887 0.116 0.1506 0.1838 0.2253 0.2871 0.452 
0.0447 0.0897 0.1165 0.1509 0.1852 0.2254 0.2908 0.4573 
0.0448 0.0899 0.1167 0.1524 0.189 0.2268 0.2937 
0.0474 0.0901 0.1172 0.1529 0.1901 0.2289 0.2939 
0.0518 0.0908 0.118 0.1565 0.1919 0.2309 0.2962 
0.0531 0.0928 0.1185 0.1573 0.1946 0.2337 0.2982 
0.056 0.0943 0.1185 0.1586 0.1951 0.2343 0.3019 
0.058 0.0946 0.1203 0.1599 0.1954 0.2402 0.3053 

0.0617 0.0949 0.1214 0.1607 0.1967 0.2425 0.3076 
0.0621 0.0968 0.1215 0.1618 0.1972 0.244 0.3078 
0.0642 0.0995 0.1231 0.1631 0.1995 0.2442 0.3184 
0.0649 0.1019 0.1254 0.1636 0.2 0.2466 0.3204 
0.0659 0.1037 0.1255 0.1641 0.2 0.2478 0.322 
0.0668 0.1043 0.1259 0.165 0.2027 0.2483 0.3337 
0.0682 0.1049 0.1292 0.1663 0.2038 0.2487 0.3344 
0.0698 0.105 0.1297 0.1666 0.2045 0.2488 0.3359 
0.0707 0.1054 0.1304 0.1675 0.2057 0.2488 0.3459 
0.0733 0.1058 0.1311 0.1691 0.2105 0.2507 0.3497 

. 
Table 5.12 The length of gram boundary cluster (arbItrary uruts) m the lOO samples of 

non-annealed interconnects arranged in ascending order. 
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0.0191 0.0388 0.0483 0.0559 0.0676 0.0809 0.096 
0.0208 0.0392 0.0486 0.056 0.0684 0.0812 0.0964 
0.0209 0.0401 0.0491 0.0578 0.0686 0.0817 0.0967 
0.0255 0.0412 0.0494 0.0584 0.0689 0.0824 0.097 
0.0318 0.0414 0.0505 0.0585 0.0691 0.0833 0.0971 
0.0339 0.0416 0.0506 0.0587 0.0695 0.0835 0.0977 
0.0343 0.0417 0.0513 0.0595 0.0699 0.0837 0.0985 
0.0347 0.0425 0.0517 0.0606 0.07 0.084 0.1048 
0.0349 0.0433 0.0518 0.0616 0.0708 0.0854 0.115 
0.0349 0.0437 0.0523 0.0617 0.0709 0.0859 0.1251 
0.035 0.0438 0.0526 0.0622 0.0723 0.0875 0.1266 
0.0351 0.0436 0.0527 0.0626 0.0729 0.0676 0.1361 
0.0352 0.044 0.0531 0.0626 0.0735 0.0878 0.1451 
0.0363 0.0441 0.0536 0.0627 0.0746 0.0879 0.157 
0.0366 0.0444 0.0538 0.0637 0.0756 0.0892 0.1686 
0.0366 0.0456 0.054 0.0647 0.0758 0.0895 0.1738 
0.0376 0.046 0.0541 0.065 0.0773 0.0905 
0.0376 0.0461 0.0547 0.0667 0.0778 0.0917 
0.0381 0.0471 0.0549 0.0667 0.0794 0.0946 
0.0386 0.0479 0.0555 0.0666 0.0802 0.0951 

Table 5.13 The TIme to Frulure(m arbItrary umts) for the 

grain boundary clusters in the lOO srunples of non-rumealed 

interconnects arranged in ascending order. 

From the summarised data shown in Table 5.12 aIld 5.13, the raIlge of the length of the 

cluster obtained from the simulation is between 0.0202 ( shortest length) - 0.4573 

( longest length) aIld the Time to Failure obtained is between 0.0191( the fastest time) -

0.1738( the slowest time). TfaI1Slating into the actual values, the length of the grain 

boundary cluster lies in the faI1ge of 0.87 J.UIl-19.6J.UIl ( scale = 43 J.UIl) aIld the actual 

time lies in the faI1ge of 2.25 hrs-20.5 hrs (the time scale used is 11=118hrs). 

ii) The distribution of clusters and grain boundaries in the interconnect 

Figure 5.29 shows the distribution of the simulated number of cluster found in the 

interconnect while Fig5.30, shows the simulated number of grain boundaries found in the 

cluster obtained from the non-rumealed interconnect srunples. 
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Fig 5.30 The di stribution of the simulated number of grain 

boundaries found per cluster obtained from 100 samples of interconnect 

iii). The distribution of length of grain boundary cluster and Time to Failure 

Fig 5.31 below shows the hi stogram and the cumulative distribution of the length of the 

grain boundary cluster, whi le Fig5.32 shows the cumulative distribution of the Time to 

Failure of the grain boundary clusters. 
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Fig 5.32 The cumulative distribution of the simulated Time to Fai lure in terms of 

the grain boundary cluster obtained from I 00 samples of non-annealed 

interconnects. 

From both of the figure above, the cumulative distribution plotted follows the expected 

pattern i.e. in the form of nearly S-sbape. The hi stogram of the length of grain boundary 

clusters are of similar in pattern to that ofreference[Joo and Thompson ,1994] 
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iv) The method used to obtain a log-normal distribution graph 

One of the main tasks of this experiment is to test for the lognormality of the Time to 

Failure. To do this , normally , the data are plotted onto a special probability graph paper 

with logarithmic scale (the lognormal probability paper). However, the cumulative 

distribution graphs or function (CDF) can also be used instead ,by means of converting to 

the complementary error function( erfc) . This method have been used by others 

[Kircheim and Kaeber, 1991). The conversion from cumulative distribution function to 

the complementary error function for a normal distribution is derived below:-

where 

P(x < x 0 ) = 1 - P(x > x 0 ) 

CDF x 

CDF x 

CDF x 

CDF x 

P(x < x o) 

CDF x 

erfc 

~ 

er 

= 

= I-~erfc( $:) 

= 1- ~+~erf($:) 

= ~+~er{$:) 

The probabilty theat x is less than Xo = CDF x 

cumulative distribution function of x 

= complementary error function 

Median ofx 

standard deviation of x 

By letting the CDF= y , the equation becomes 

y = ~+~e~$:) 
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therefore 

(
X -Il) 

2y = 1 + erf J2rs 

(
X -Il) 2y-l = erf --
J2rs 

x-Il 
r;:; = erf- I (2y- l ) 

,, 2rs 

Plotting of the graph is done by making:-

5.12 

Y axis = erC I (2y-l ) where y is in terms of cum ulative % before the Time 

to Fai lure 

X axis = the Time to Failure 

Since the arbitrary values of the Time to Failure are less than 1 , all the TTF values are 

'standardized' by a multiplying factor (in the current work it is x 10 3 )so that wben taking 

its logarithm will produce positive values in the lognormal distribution graph. 

iv) The lognormal distribution of Time to Failure 

Table 5.14 shows the ' treated' data on the Time to Failure for the grain boundary clusters 

found in the lOO samples of non-annealed interconnects. These data are use to obtain the 

lognormal distribution of Time to Failure as shown in Fig 5.33. 

TTF TTF(s) Log(TTF(s)) efrinv(2y-1 ) y Cumulative % 
0.0191 19.1 1.2810334 -1.7269 0.0073 0.73% 

0.0208 20.8 1.3180633 -1 .542 0.0146 1.46% 
0.0209 20.9 1.3201463 -1.3383 0.0292 2.92% 
0.0255 25.5 1.4065402 -1.2677 0.0365 3.65% 
0.0318 31.8 1.5024271 -1 .2079 0.0438 4.38% 
0.0332 33.2 1.5211381 -1 .1563 0.0511 5.11% 
0.0339 33.9 1.5301997 -1 .109 0.0584 5.84% 

0.0343 34.3 1.5352941 -1.0667 0.0657 6.57% 
0.0347 34.7 1.5403295 -1 .0285 0.073 7.30% 
0.0349 34.9 1.5428254 -0.9586 0.0876 8.76% 
0.035 35 1.544068 -0.9276 0.0949 9.49% 

0.0351 35.1 1.5453071 -0.8978 0.1022 10.22% 
0.0363 36.3 1.5599066 -0.8426 0.1168 11 .68% 
0.0366 36.6 1.5634811 -0.7918 0.1314 13.14% 
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0.0376 37.6 1.5751878 -0.7454 0.146 14.60% 
0.0388 38.8 1.5888317 -0.6809 0.1679 16.79% 
0.0392 39.2 1.5932861 -0.6603 0.1752 17.52% 
0.0412 41.2 1.6148972 -0.6215 0.1898 18.98% 
0.0414 41.4 1.6170003 -0.6027 0.1971 19.71% 
0.0417 41.7 1.6201361 -0.5663 0.2117 21 .17% 
0.0425 42.5 1.6283889 -0.5487 0.219 21 .90% 
0.0433 43.3 1.6364879 -0.5302 0.2263 22.63% 

0.044 44 1.6434527 -0.465 0.255 25.55% 
0.0441 44.1 1.6444386 -0.449 0.2628 26.28% 
0.0444 44.4 1.647383 -0.4333 0.2701 27.01 % 

0.046 46 1.6627578 -0.4025 0.2847 28.47% 
0.0461 46.1 1.6637009 -0.3874 0.2920 29.20% 
0.0483 48.3 1.6839471 -0.343 0.3139 31 .39% 
0.0486 48.6 1.6866363 -0.3285 0.3212 32.12% 
0.0491 49.1 1.6910815 -0.3142 0.3285 32.85% 
0.0505 50.5 1.7032914 -0.2857 0.3431 34.31% 
0.0506 50.6 1.7041505 -0.2719 0.3504 35.04% 
0.0517 51.7 1.7134905 -0.2442 0.365 36.50% 
0.0518 51.8 1.7143298 -0.2305 0.3723 37.23% 
0.0527 52.7 1.7218106 -0.19 0.3942 39.42% 
0.0531 53.1 1.7250945 -0.1766 0.4015 40.15% 
0.0536 53.6 1.7291648 -0.1633 0.4088 40.88% 
0.054 54 1.7323938 -0.1368 0.4234 42.34% 

0.0541 54.1 1.7331973 -0.1236 0.4307 43.07% 
0.0547 54.7 1.7379873 -0.1105 0.438 43.80% 
0.0559 55.9 1.7474118 -0.0714 0.4599 45.99% 
0.056 56 1.748188 -0.0582 0.4672 46.72% 

0.0578 57.8 1.7619278 -0.0454 0.4745 47.45% 
0.0585 58.5 1.7671559 -0.0195 0.4891 48.91% 
0.0587 58.7 1.7686381 -0.0066 0.4964 49.64% 
0.0595 59.5 1.774517 0.0064 0.5036 50.36% 
0.0606 60.6 1.7824726 0.0193 0.5109 51 .09% 
0.0622 62.2 1.7937904 0.0582 0.5328 53.28% 
0.0626 62.6 1.7965743 0.0842 0.5474 54.74% 
0.0627 62.7 1.7972675 0.0973 0.5547 55.47% 
0.0637 63.7 1.8041394 0.1103 0.5620 56.20% 
0.0647 64.7 1.8109043 0.1235 0.5693 56.93% 
0.065 65 1.8129134 0.1366 0.5766 57.66% 

0.0667 66.7 1.8241258 0.1631 0.5912 59.12% 
0.0668 66.8 1.8247765 0.1764 0.5985 59.85% 
0.0676 67.6 1.8299467 0.1898 0.6058 60.58% 
0.0686 68.6 1.8363241 0.2168 0.6204 62.04% 
0.0691 69.1 1.839478 0.244 0.6350 63.50% 
0.0695 69.5 1.8419848 0.2578 0.6423 64.23% 
0.0699 69.9 1.8444772 0.2717 0.6496 64.96% 

0.07 70 1.845098 0.2857 0.6569 65.69% 
0.0708 70.8 1.8500333 0.2998 0.6642 66.42% 
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0.0709 70.9 1.8506462 0.314 0.6715 67.15% 
0.0723 72.3 1.8591383 0.3283 0.6788 67.88% 
0.0729 72.9 1.8627275 0.3428 0.6861 68.61% 
0.0735 73.5 1.8662873 0.3575 0.69347 69.34% 
0.0746 74.6 1.8727388 0.3708 0.7007 70.07% 
0.0758 75.8 1.8796692 0.4023 0.7153 71 .53% 
0.0773 77.3 1.8881795 0.4176 0.7226 72.26% 
0.0794 79.4 1.8998205 0.4488 0.7372 73.72% 
0.0802 80.2 1.9041744 0.4648 0.7445 74.45% 
0.0817 81.7 1.9122221 0.5141 0.7664 76.64% 
0.0824 82.4 1.9159272 0.5311 0.7737 77.37% 
0.0833 83.3 1.920645 0.5484 0.7810 78.10% 
0.0837 83.7 1.9227255 0.5841 0.7956 79.56% 
0.0859 85.9 1.9339932 0.6406 0.8175 81 .75% 
0.0875 87.5 1.9420081 0.6603 0.8248 82.48% 
0.0876 87.6 1.9425041 0.6806 0.8321 83.21% 
0.0895 89.5 1.951823 0.768 0.8613 86.13% 
0.0917 91.7 1.9623693 0.8165 0.8759 87.59% 
0.0946 94.6 1.9758911 0.8423 0.8832 88.32% 
0.0964 96.4 1.984077 0.9271 0.9051 90.51% 
0.0971 97.1 1.9872192 1.028 0.9270 92.70% 
0.0977 97.7 1.9898946 1.0651 0.9343 93.43% 
0.0985 98.5 1.9934362 1.109 0.9416 94.16% 
0.115 115 2.0606978 1.2079 0.9562 95.62% 

0.1251 125.1 2.0972573 1.2677 0.9635 96.35% 
0.1381 138.1 2.1401937 1.4242 0.9781 97.81% 
0.1451 145.1 2.1616674 1.542 0.9854 98.54% 
0.157 157 2.1958997 1.7269 0.9927 99.27% 

Table 5.14 The' treated' data of Time to Failure of gram boundary clusters 
in 100 samples of non-annealed interconnect. TTF(s) is the standardize Time to Failure 

The distribution of the Time to Failure is determined by many factors associated with the 

characteristics of the grain boundary clusters. The analysis of the distribution of the 

length of the grain boundary clusters is also important because it determines the 

distribution of the Time to Failure. To obtain the distribution of the length of grain 

boundary clusters, the similar approach of the Time to Failure is used. The lognormal 

distribution of the length of grain boundary clusters are shown in Fig5.34 
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Fig 5.33 The plot of lognorrnal distrib ution of Time to Failure of 
grain boundary clusters in 100 samples of non-annealed interconnects 
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Fig. 5.34 Lognormal distributions of length of grain boundary cl usters 

246 



Fonn the above figures, the distribution of the simulated Time to Failure and the grain 

boundary clusters obtained from the experiment involving 100 samples of non-annealed 

interconnects fit a lognormal distribution function well. The plots of the graphs are of 

typical of those observed in other computer simulations reported in the literature[Joo and 

Thompson,1994),[Kircheim and Kaeber,1991) [Knowlton, et.al,1997) 

v) The Median Time to Failure (MTTF) and The Standard Deviation (DTTF) 

From the lognonnal distribution graph, the median and the standard deviation of the 

Time to Failure and the grain boundary cluster length can be obtained. Table 5.15 shows 

the arbitrary and the physical values for the MTTF, and the Median length of grain 

boundaries clusters and their respective standard deviations. The Standard deviation 

(er sd) is calculated from the slope of the graph and by using eqn(5.20) i.e gradient = 

1 

.,fier 

Parameters 

Time To Failure 
Length of gram 
boundary cluster 

Scaling 
Factor 

118Hours 
43f1m 

Median(arbitrary) Median(actuaJ) Std deviation 

0.059 6.962 Hours 0.188 
0.2 18 9.374 f1m 0.154 

Table 5.15 The medIan and the standard devlatJon of the TIme to FaIlure and length of 
grain boundary cluster. 

5.4.3 Results of experiment no.l(h)- non-annealed interconnect lines 

i) 'Weakest link model' in determining the Time to Failure of interconnect 

In the earlier experiment, the analysis done on the grain boundary clusters produced 

results which are very encouraging . It has been demonstrated that the distributions of the 
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simulated length of the grain boundaries clusters and the Time to Failure gave a very 

good fit on the lognormal distribution function. In this experiment, the Time to Failure of 

the interconnect is simulated. Basically the method used in determining the Time to 

Failure of the interconnect is by adopting the 'weakest link ' model where the 

shortest/minimum failure time or (TTF) attain by a grain boundary cluster be the Time to 

Failure of the interconnect. The raw data of the Time to Failure obtained from 100 

samples of interconnect are shown in Table 5.16. An example to demonstrate the weakest 

link model is shown below:-

The non-annealed interconnect sample no 5 ( Fig 5.27(a» has a total of 3 grain boundary 

clusters. The detail of the characteristics of the clusters is shown in the table below 

(taken from Table A.I) where Cluster no. I has a total of 3 grain boundaries, Cluster no. 

2 has 5 grain boundaries and Cluster no 3 also has 5 grain boundaries. Cluster no. I did 

not fail because the vacancy concentration did not reach the critical vacancy 

concentration level. The reason may be because of the ' Blech length' effect where its 

total length is shorter than the critical length for failure to occur. Cluster no 2 and no.3 

did fail, but since Cluster no 3, recorded a lower value of Time to Failure than Cluster 

No 2, therefore Cluster no 3 will fail first , it is the ' weakest link' in the line. Fig 5.35(a) 

and Fig 5.35(b) shows the vacancy profile of the grain boundary clusters. 
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Fig.5.35(a) The vacancy concentration response for Cluster no I of interconnect sample no 5. 
The vacancy concentration does not reach the critical vacancy concentration of 2co 
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Fig. 5.35(a) The vacancy concentration response for Cluster no 2 of interconnect sample no 5 . 
The vacancy concentration reach the critical vacancy concentration of2co at t= 0.0967 
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Fig. 5.35(a) Tbe vacancy concentration response for Cluster no 3 of interconnect sample no 5 
The vacancy concentration reach the critical vacancy concentration of2co at t= 0.0191 
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Fig.5.35(b) The vacancy concentration response at all the nodes of Cluster No I of interconnect 
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sample no 5. The upper most line is the vacancy profile at the end of the grain boundary cluster 
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Fig.5.3 5(b) The vacancy concentration response at all the nodes of Cluster No 2 ofinterconneet 
sample no 5. The upper most line is Ihe vacancy profile allhe end of the grain boundary clusler. 
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Fig.5.35(b) The vacancy concentration response al alllhe nodes of Cluster No 3 ofinlerconnect 
sample no 5. The upper most line is Ihe vacancy profile al the end of the grain boundary cluster 

CLIP No of Cluster No Cluster No. of GB TTF TTF OF SAMPLE 
clusters lenQth 

0.4-0.49 3 1 0.0901 3 - -
2 0.1428 5 0.0967 
3 0.244 5 0.0191 0.0191 

cllpptng from Table A. I 

0.0191 0.0392 0.0517 0.0684 0.0892 
0.0208 0.0412 0.0518 0.0686 0.0985 
0.0209 0.0414 0.0523 0.0691 0.1048 
0.0255 0.0416 0.0527 0.0695 
0.0318 0.0433 0.0531 0.0699 
0.0332 0.0437 0.0538 0.07 
0.0339 0.0438 0.0541 0.0709 
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0.0349 0.0438 0.0547 0.0723 
0.0349 0.044 0.0549 0.0729 
0.035 0.0441 0.0559 0.0735 

0.0351 0.0444 0.0584 0.0746 
0.0352 0.0456 0.0585 0.0773 
0.0363 0.046 0.0626 0.0778 
0.0366 0.0461 0.0626 0.0802 
0.0366 0.0479 0.0627 0.0817 
0.0376 0.0483 0.0637 0.0835 
0.0376 0.0486 0.065 0.0854 
0.0381 0.0491 0.0667 0.0875 
0.0386 0.0494 0.0667 0.0876 
0.0388 0.0506 0.0676 0.0879 

Table 5.16 The raw data of the TIme to FaIlure ofmterconnects 

obtained from 100 samples of non-annealed interconnects 

ii) The distribution of the Time to Failure, Median Time to Failure and Deviation 

Time to Failure 

The same procedure( as in the previous experiment) is applied to obtain the distribution 

of the Time to Failure . The ' treated' data of the Time to Failure of the interconnects is 

shown in Table AI.2 in Appendix AI. Fig 5.36 shows the distribution of the simulated 

Time to Failure of the interconnects which again fits a lognormal distribution function 

quite well . The Median Time to Failure (MTTF) calculated is 0.05175 which corresponds 

to 6.1 hours and the Deviation Time to Failure (DTTF) calculated is 0.148. The MTTF 

and DTTF from experimental results of [Cho and Thompson, 1989] for as-deposited 

interconnect line ( without annealing) is 9.8 hours and 0.197 respectively. 
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Fig 5.36 Lognonnal di stribution of the Time to Failure of the interconnects 

obtained from 100 samples of non-annealed interconnects 

5.4.4 Results of experiment no.2(a)- annealed grain boundary clusters 

In the literature, normally the AI film which have been annealed will have a better 

lifetime than non-annealed AI film . The effect of annealing of the AI film is to produce a 

larger grain size and longer grain boundaries which has a direct effect on the 

electromigration lifetime of interconnect. .In the current work, the annealing simulation 

is not run as long as it would be as in a real experiments, however it is sufficient to make 

an analysis of its effect on the grain boundary structure and the Time to Failure. 
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i) Data of the length of grain boundary cluster and its Time to Failure 

In experiment no.2(a) , lOO samples of annealed interconnect are produced from 10 

samples of annealed Al films as shown previously in Fig5.28(a)-Fig5.28(j). The results 

of the length of grain boundary cluster and the Time-to-failure in arbitrary units 

obtained are summarised in Table 5.1 6 and 5.17 below ( data taken from Table A2.1). 

0.0256 0.0743 0.118 0.1458 0.1668 0.2183 0.2771 
0.0256 0.0815 0.1184 0.1477 0.1669 0.2187 0.2787 
0.027 0.082 0.1189 0.1477 0.1696 0.2188 0.279 

0.0317 0.0828 0.1213 0.1499 0.1699 0.2204 0.2791 
0.0334 0.0844 0.1213 0.1505 0.172 0.2245 0.2805 
0.034 0.0855 0.1217 0.1514 0.1751 0.227 0.2822 

0.0372 0.086 0.1218 0.1515 0.1769 0.2286 0.2823 
0.0378 0.0869 0.1232 0.1518 0.1772 0.2305 0.2913 
0.0388 0.0889 0.1237 0.1525 0.1782 0.2308 0.2956 
0.0405 0.0893 0.1256 0.1528 0.1832 0.2309 0.3084 
0.0415 0.0894 0.1261 0.1536 0.1858 0.2349 0.31 
0.0425 0.0926 0.1273 0.1536 0.1875 0.2364 0.3113 
0.043 0.0931 0.1278 0.1542 0.1885 0.2373 0.3276 

0.0451 0.0963 0.1294 0.1543 0.1902 0.2422 0.3282 
0.0469 0.0981 0.1299 0.1551 0.1913 0.2425 0.3364 
0.0469 0.0989 0.1306 0.1559 0.1939 0.2458 0.3418 
0.0478 0.1 0.1307 0.1564 0.1967 0.2466 0.3536 
0.0492 0.1022 0.1308 0.1564 0.1969 0.249 0.3609 
0.0586 0.1026 0.1308 0.1569 0.198 0.2515 0.3631 
0.062 0.103 0.131 0.1588 0.2003 0.2516 0.3645 
0.0627 0.1085 0.1319 0.1591 0.2015 0.253 0.3662 
0.0644 0.1089 0.1346 0.1608 0.2036 0.2568 0.3689 
0.0645 0.1098 0.1351 0.1609 0.2076 0.2579 0.3746 
0.067 0.1121 0.1357 0.1614 0.2082 0.2581 0.3958 
0.0687 0.1124 0.1362 0.1619 0.2085 0.26 0.3959 
0.069 0.1149 0.1387 0.1625 0.2094 0.2604 0.3964 
0.071 0.1156 0.1393 0.1638 0.212 0.2656 0.4122 

0.0722 0.1159 0.1395 0.165 0.2137 0.2669 0.4164 
0.0725 0.1168 0.1403 0.1656 0.2164 0.2684 0.4417 
0.073 0.1177 0.1452 0.1664 0.2182 0.2732 0.455 

Table 5.16 The length of grain boundary cluster (arbitrary units) in the 100 

samples of annealed interconnects arranged in ascending order. 
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0.0328 0.0443 0.0552 0.0658 0.0811 0.0925 
0.0331 0.0448 0.056 0.0661 0.0812 0.093 
0.0333 0.0453 0.056 0.0665 0.0823 0.0934 
0.0342 0.0458 0.056 0.0674 0.083 0.0947 
0.0342 0.0473 0.0563 0.0675 0.0837 0.0961 
0.0344 0.0494 0.0565 0.069 0.0848 0.0987 
0.0359 0.05 0.0568 0.0707 0.0849 0.0993 
0.0367 0.0501 0.0576 0.0716 0.085 0.1069 
0.0367 0.0501 0.0576 0.0737 0.0855 0.1126 
0.0385 0.0504 0.0603 0.0743 0.0855 0.1173 
0.0392 0.0511 0.0614 0.0743 0.086 0.1287 
0.0394 0.0515 0.0617 0.0749 0.0861 0.1299 
0.0416 0.0518 0.0619 0.0751 0.0866 0.1407 
0.0424 0.0524 0.0623 0.0768 0.0867 0.148 
0.0425 0.0526 0.0637 0.078 0.0868 0.1497 
0.0427 0.0527 0.0641 0.0799 0.0868 0.1524 
0.0435 0.0536 0.0647 0.0806 0.0896 0.1762 
0.0437 0.0539 0.0647 0.0808 0.0902 0.184 

TableS. 17 The TIme to FaIlure of gram boundary clusters m the 100 samples of 

annealed interconnects arranged in ascending order. 

From the summarised data shown in Table 5.16 and 5.17, the range of the length of the 

cluster obtained from the simulation is between 0.0256 ( shortest length) - 0.455 

( longest length) and the Time to Failme obtained is between 0.0326( the fastest time) -

0.1 9( the slowest time). Translating into the actual values, the length of the grain 

boundary cluster lies in the range of 1.1 ~m - 19.s6~m( scale = 43 J.U1l ) giving a physical 

time in the range of 3.85 hrs-22.42 hrs (the time scale used is T]=118hrs). From the raw 

data observation, the initial results of the simulated annealed interconnects is in 

agreement with the literatme[Cbo and Thompson,I989] where the values of the length of 

grain boundary clusters and the Time to Failure indicates a higher value than the 

simulated non-annealed interconnects as expected. 

ii) The distribution of the number of cluster and number of grain boundaries 

Fig 5.36 shows the distribution of the simulated number of cluster found per interconnect 

while Fig 5.37 shows the distribution of the simulated number of grain boundaries found 

in per cluster obtained from 100 samples of annealed interconnects. 
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Fig 5.36 Distribution of the simulated number of cluster found per 

interconnect obtained from lOO samples of annealed interconnects 
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Fig 5.37 Distributions of the simulated number of grain boundaries 

found per cluster obtained from 100 samples of annealed interconnects 

iii) T he distribution of length of gra in bounda ry cluster and Time to Failure 

Fig 5.38 below shows the histogram and the cumulative di stribution of the length of the 

grain boundary cluster, while Fig5.39 shows the cumulative distribution of the Time to 

Failure of the grain boundary clusters. 
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Fig 5.38 The hi stogram and the cumulative di stributions of the simulated length 

of grain boundary cluster in 100 sample of annealed interconnect 
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Fig5.39 The cumulative distribution of Time to Failure of grain boundary 
clusters fo und in 100 samples of annealed interconnect 

iv) The distribution of the Time to Fai lure, Mean Time to Failure and standard 

deviation 

The same procedure( as in the previous experiment) is applied to obtain the distribution 

of the length of grain boundary clusters and Time to Failure . The ' treated' data of the 

Time to Failure of grain boundary cluster are shown in Table A2.1 of Appendix A . Fig 

5.40 shows tbe distribution of the simulated length of grain boundary clusters and Fig 
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5.4 1 the di stribution of the simulated Time to Fai lure of the grain boundary c lusters 

interconnects which both fit well of a 10gnormaJ distribution 
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Fig5.40 Lognormal distribution of the length of grain boundaries obtained 

from 100 samples of anneaJed interconnects 
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Fig 5.41 The lognormal distribution oftbe Time to Failure of grain boundary 

clusters obtained from 100 samples of annealed interconnects 

Parameters Scaling Median(arbitrary) Median(actual) Std deviation 
Factor 

Time To Failure 118Hours 0.067 7.9 Hours 0.198 
Lengtb of gram 43 flO1 0.218 9.374 Ilm 0.157 
boundary cl uster 
Table 5.18 The medIan and the standard devIation of the TIme to Failure and length of 
grain boundary cl uster. 

From the simulation results obtained, the median Time to Failure is higher ( I hour) for 

the annealed interconnects than the non-annealed interconnects. The median length of 

grain boundaries is about the same for both the non-annealed and annealed interconnects. 
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5.4.5 Results of experiment no.2(b)- annealed interconnects 

(i) Data of Time to Failure 

The same approach is applied in determining the simulated Time to Failure of the 

interconnect by the 'weakest link model'. The raw data on the Time to failure of the 

interconnects are shown in Table5.19 below. 

0.0326 0.0443 0.0565 0.078 
0.0326 0.0448 0.0568 0.0799 
0.0328 0.0453 0.0576 0.0811 
0.0331 0.0458 0.0576 0.0849 
0.0333 0.0494 0.0603 0.086 
0.0342 0.05 0.0614 0.0866 
0.0342 0.0501 0.0617 0.0867 
0.0344 0.0501 0.0623 0.0868 
0.0359 0.0504 0.0637 0.0868 
0.0367 0.0515 0.0641 0.0896 
0.0367 0.0518 0.0647 0.0919 
0.0385 0.0524 0.0654 0.0934 
0.0392 0.0526 0.0658 0.0947 
0.0416 0.0527 0.0674 0.1069 
0.0424 0.0539 0.0675 0.1126 
0.0425 0.0549 0.069 0.1173 
0.0427 0.0552 0.0716 0.1299 
0.0435 0.056 0.0743 0.148 
0.0437 0.056 0.0749 0.1497 
0.044 0.0563 0.0768 

Table 5.19 The arbitrary Time to Failure of interconnects 

obtained from 100 samples of annealed 

interconnects. 

From Table 5.19 , the raw data on Time to Failure suggest the range of the Time to 

Failure is between 0.0326 and 0.1497 which corresponds to the physical time of between 

3.846 hours and 17.66 hours with the same time scale used(118hrs). 
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ii) Tbe distribution of tbe Time to Failure, Mean Time to Failure and standard 

dev iation 

The same procedure( as in the previous experiment) is applied to obtain the distribution 

of the Time to Fai lure. The ' treated ' data of the Time to Fai lure of the interconnects are 

shown in Table A.2.2 in Appendix A2 . Fig 5.42 shows the di stribution of the simulated 

Time to Fai lure of the interconnects which fits well of a lognormal di stribution 

function. The Median Time to Fai lure (MTTF) calculated is 0.0561 which corresponds to 

6.63 Hours and the standard deviation calculated is 0. 179 
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Fig 5.42 Lognorrnal distribution of the simulated Time to Fai lure 

of interconnects obtained from 100 samples of annealed interconnects 
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Compari ng the Medium Time to Failure between the non-annealed and annealed 

interconnects, the results shows that the annealed interconnect produce higher MTTF of 

about 0.6 hours than the non-annealed interconnects but both appear to display a log 

normal distribution. Although the values of the MTTF and DTTF is not as high 

compared to [Cho and Thomson,1989] which the MTTF is 26.3 hours and DTTF is 0.465 

, the results may be reasonable because of the small ti me used in the annealing process. 

However the results shows that annealing process does improve the MTTF as expected .. 

5.4.6 Results of experiment no.3 - T he effect of Time to Failure with varying 

interconnect width. 

i) T he samples under investigation 

In this simulation, the effect of varying the width of the interconnect by keeping the 

length of interconnect constant is analysed. The first five samples of non-annealed Al 

films [Fig 5.27(a)-5.27(e)] are again used in the study to investigate these effects. The 

width/length ratio of the interconnect under investigation are made up of a) 0.04, b)0.075 

c) O.Id) 0.15 e) 0.2 samples. The detailed results of the Time to Failure are shown in 

Table A.3 in Appendix A3 . The distribution of the simulated number of clusters of all 

the samples are shown in Fig5.44(a)-5.44(e) 

~ --o u - ~ ~ c 
.a c 
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r..Qmber of clustre er interconnect 

Fig5.44(a) The distribution of simulated nwnber of cluster for sample a)0.04 
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Fig 5.44(b) Distribution of si mulated number of clusters in sample b)O.075 
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Fig 5.44(c) Distribution of simulated number of clusters in sample c)O.1 
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Fig 5.44(d) Distribution of simulated number of clusters in sample d)O. 15 
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Fig 5.44(e) Distribution of simulated nwnber of clusters in sample e)0.2 
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Fig 5.45 The distribution of cluster length of sample a)0.04 

ii) Analysis of simulation results of Time to Failure 

The raw data of the simulated Time to Fai lure for each set of the samples above are 

shown in Table5.20. The data of the Time to Failure are in terms of the percentages of 

interconnects which fails . The results obtained shows that only 30% of the interconnects 

of sample (a) fails , 70 % of sample (b), 90% of sample (c) and the other samples (d) and 
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(e) record 100 % failure. As the interconnect width/length ratio are decreased, less and 

less failure is observed because the interconnect are geared towards bamboo structure as 

can be seen from the distribution of the number of cluster in Fig S.44(a). Another reason 

is the ' Blech length' effect, as can be seen from FigS.45 where about 60% of the cluster 

lengths, is below the critical length for failure ( cluster length :<:; 0.1325 more or less did 

not failed) 

% TTF(a) % TTF(b) % TTF(c) % TTF(d) % TTF(e) 
1 0.0128 1.538462 0.011 2 0.0108 0.344828 0.0129 4.347826 0.0133 
2 0.0129 3.076923 0.0127 4 0.0133 6.896552 0.0147 8.695652 0.0146 
3 0 .0132 4.615385 0.0136 6 0.015 10.34483 0.0157 13.04348 0.0154 
4 0 .0134 6.153846 0.0137 8 0.0172 13.7931 0.0163 17.3913 0.0173 
5 0 .0151 7.692308 0.014 10 0.0173 17.24138 0.017 21 .73913 0.0195 
6 0 .0159 9.230769 0.0142 12 0.018 20.68966 0.0171 26.08696 0.0197 
7 0 .0169 10.76923 0.0142 14 0.0184 24.13793 0.0185 30.43478 0.02 
8 0 .0173 12.30769 0.0149 16 0.0186 27.58621 0.0193 34.78261 0.0203 
9 0.0173 13.84615 0.0155 18 0.0187 31 .03448 0.0212 39.13043 0.0221 

10 0.0198 15.38462 0.016 20 0.0187 34.48276 0.0229 43.47826 0.0231 
11 0.0199 16.92308 0.0169 22 0.01 91 37.93103 0.0237 47.82609 0.0242 
12 0.0207 18.46154 0.0172 24 0.0193 41 .37931 0.0249 52.17391 0.0247 
13 0.0218 20 0.0178 26 0.0194 44.82759 0.026 56.52174 0.0259 
14 0.0218 21 .53846 0.0182 28 0.0198 48.27586 0.026 60.86957 0.0262 
15 0.0234 23.07692 0.0189 30 0.0201 51 .72414 0.0267 65.21739 0.0311 
16 0.0256 24.61538 0.02 32 0.0209 55.17241 0.0268 69.56522 0.0324 
17 0.0257 26.15385 0.0209 34 0.0215 58.62069 0.0272 73.91304 0.0347 
18 0.026 27.69231 0.0215 36 0.0217 62.06897 0.0296 78.26087 0.0518 
19 0.0262 29.23077 0.022 38 0.0221 65.51724 0.0297 82.6087 0.0524 
20 0.0263 30.76923 0.0221 40 0.0224 68.96552 0.0323 86.95652 0.0542 
21 0.0279 32.30769 0.0229 42 0.0249 72.41379 0.0361 91 .30435 0.06 
22 0.029 33.84615 0.0231 44 0.0263 75.86207 0.0366 95.65217 0.0792 
23 0.0295 35.38462 0.0233 46 0.0263 79.31034 0.0382 100 0.0833 
24 0.0298 36.92308 0.0256 48 0.0273 82.75862 0.043 
25 0 .0307 38.46154 0.0261 50 0.0275 86.2069 0.0435 
26 0 .0442 40 0.0264 52 0.0277 89.65517 0.0456 
27 0 .0741 41 .53846 0.0265 54 0.0279 93.10345 0.0496 
28 0.0744 43.07692 0.0273 56 0.028 96.55172 0.0628 
29 0.0756 44.61538 0.0275 58 0.0286 100 0.0842 

46.15385 0.0276 60 0.0307 
47.69231 0.0288 62 0.0339 
47.69231 0.029 64 0.0346 
50.76923 0.0299 66 0.0346 
52.30769 0.0309 68 0.0352 
53.84615 0.0337 70 0.0361 
55.38462 0.0365 72 0.0368 
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--------......... 
56.92308 0.0399 74 0.0407 
58.46154 0.0403 76 0.0494 

60 0.0413 78 0.05 
61 .53846 0.0414 80 0.0635 
63.07692 0.045 82 0.0686 
64.61538 0.0485 84 0.0716 
66.15385 0.0505 86 0.078 
67.69231 0.0511 88 0.0802 
69.23077 0.0582 
70.76923 0.0588 

Table 5.20 The Time to Failure for the 5 samples of AI films with different width/length 
ratio 

The physical Time to Failure are shown in Table 5.21 below 

Sample Arbitrary range Time scale ActualTime range(hrs) 

(a) 0.04 0.0128-0.0756 118 1.5\-8.92 

(b) 0.075 0.011- 0.0588 118 1.29 -6.94 

( c) 0.1 0.0108-0 0802 118 1.27- 9.46 

(d) 0.15 0.0129-0.0842 118 1.52- 9.94 

(e) 0.2 0.0133-0.0833 118 1.56 - 9.83 

Table 5.21 The physical Time to failure of samples 

Fig 5.46 shows the simulated Time to Failure graphs of all the samples in terms of the 

percentage of the interconnects which have failed with its Time to Failure profile. From 

the graphs, sample (c),(d) and (e) have the highest percentage of interconnects that have 

failed and sample (a) has the lowest percentage failures. The reasons for this has been 

discussed earlier where sample(a) and (b) has few interconnects having bamboo structure 

which is resistant to electromigration along its grain boundaries. The only way that 

failure occurs through electromigration is by bulk diffusion which is not considered in 

the current work. The other reason is because of cluster length is not long enough for the 

stress/vacancy to reach the critical value for failure to occur. For sample c,d and e , their 

cluster length and their internal grain boundary structure supports the stressl vacancy 

flow along its grain boundaries required to reach the critical value for failure to occur. 
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Fig 5.46 The % of samples with their simulated Time to Failure ( arbitrary units) profile 

where sample a=O.04, b=O.075, c=O. I, d=O. 15 and e=0.2 

iii) The distribution of Time to Failure 

The lognormal distributions of the simulated Time to Fail ure for the samples are shown 

in Fig5.47( sample(a» , Fig5.48(sample(b» , Fig5.49(sample (c», Fig 5.50(sample(d» and 

FigS.5 1 (sample( e» . 
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Fig 5.47 The lognormal distribution of simulated Time to failure of sample (a) 
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Fig 5.48 The lognormal distribution of simulated Time to fai lure of sample (b) 
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Fig 5.51 The lognormal distribution of simulated Time to fai lure of sample (e) 
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iv. The Median Time to Failure and the Standard deviation 

From the 10gnormaJ distribution graphs of the simulated Time to Failure, the Median 

Time to Failure and their standard deviation (calculating its slope gradient) can be 

obtained and are shown in Table 5.22 

Sample MTTF(arbitrary MTTF(actual time) DTTF 

units) 

a (0.04) 0.052 6.1360 0.323 

b(0.075) 0.0295 3.48 10 0.26 1 

c(O.I) 0.0275 3.2450 0.207 

d(0.15) 0.0263 3.[034 0.177 

d(02) 0.0245 2.891 0.165 

Table5.22 The Median TLme to Failure and standard devlatJon of Time to Failure 
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Fig5.52(a) The MTTF as function of interconnect width-to length ratio 
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Fig5.52(b) The DTTF as a function of interconnect width-to-length ratio 

Fig 5.52(a) and 5.52(b) show the Median Ti me to Fai lure and the standard deviation as 

the interconnect widthllength ratio is varied. As the width/length ratio is decreased, the 

Median Time to Failure is observed to increase almost exponentially but the deviations of 

the Time to Failure are also increasing exponentially . This characteristic has been 

observed in the experiment by [Cho,and Thompson,1989] as shown in Fig 1.I in 

Chapter 1. In the experiment [Cho and Thompson, 1989] have demonstrated that as the 

linewidth/gra.in size is decreased, at first the MTTF start to decreased, but as the 

linewidth/grain size ratio is decreased further to about w/d ::; 3, a simultaneous increase 

of both MTTF and DTTF is observed. The sharp rise in the Time to Failure is observed as 

it approaches the width/length ratio of 0.04 as in sample (a) due to the bamboo effects 

as mentioned earlier. A sharp increase of the Deviation of the Time to Failure is also 

observed in the simulation results. The Deviation of Time to Failure is based on the 

calculation of the gradient of the slope. The slope of sample (a) in Fig 5.47 is seen to 

have sharper gradient than the other samples and this gives a higher values for the 

standard deviation. As can be seen in Fig 5.47, there are fever data points because there 

are fewer grain boundary clusters which fail. This constitute to the large deviation of 

Time To Fai lure between the large time and small time. 

27 1 



------------ ---_. 

5.4.7 The effect of scaling of interconnect on the distribution of Time to Failure 

One of the objectives of the current study is to analyse the effect of the scaling of the 

interconnect on the distribution of the Time to Failure. In this experiment, the same data 

of Time to Failure obtained from the interconnect sample (experiment no. I) are used, 

except the analysis are done for the first grain boundary cluster instead of analysing all 

the other cluster found in the interconnect. By using this method, the interconnect have 

been scaled by a (lIlength of cluster no I). The results are shown in Table 5.23 and the 

distribution of the Time to Failure in Fig 5.53 

TTF TTF(s) Log(TTF(s) erfinv(2y- y Cumulative % 
1 11' 

0.0209 20.9 1.3201463 -1.3172 0.03125 3.13% 
0.0318 31 .8 1.5024271 -1.1851 0.046875 4.69% 
0.0332 33.2 1.5211381 -1 .0848 0.0625 6.25% 
0.0339 33.9 1.5301997 -1 .0025 0.078125 7.81% 
0.035 35 1.544068 -0.932 0.09375 9.38% 

0.0352 35.2 1.5465427 -0.8696 0.109375 10.94% 
0.0363 36.3 1.5599066 -0.8134 0.125 12.50% 
0.0366 36.6 1.5634811 -0.7142 0.15625 15.63% 
0.0366 36.6 1.5634811 -0.7142 0.15625 15.63% 
0.0376 37.6 1.5751878 -0.6273 0.1875 18.75% 
0.0376 37.6 1.5751878 -0.6273 0.1875 18.75% 
0.0386 38.6 1.5865873 -0.5873 0.203125 20.31% 
0.0412 41 .2 1.6148972 -0.549 0.21875 21 .88% 
0.0416 41 .6 1.6190933 -0.5123 0.234375 23.44% 
0.0425 42.5 1.6283889 -0.4769 0.25 25.00% 
0.0433 43.3 1.6364879 -0.4427 0.265625 26.56% 
0.0437 43.7 1.6404814 -0.4095 0.28125 28.13% 
0.0438 43.8 1.6414741 -0.3772 0.296875 29.69% 
0.044 44 1.6434527 -0.3456 0.3125 31 .25% 

0.0456 45.6 1.6589648 -0.3147 0.328125 32.81% 
0.0483 48.3 1.6839471 -0.2844 0.34375 34.38% 
0.0491 49.1 1.6910815 -0.2547 0.359375 35.94% 
0.0494 49.4 1.6937269 -0.2253 0.375 37.50% 
0.0506 50.6 1.7041505 -0.1964 0.390625 39.06% 
0.0513 51 .3 1.7101174 -0.1677 0.40625 40.63% 
0.0523 52.3 1.7185017 -0.1394 0.421875 42.19% 
0.0527 52.7 1.7218106 -0.1112 0.4375 43.75% 
0.0531 53.1 1.7250945 -0.0833 0.453125 45.31% 
0.0538 53.8 1.7307823 -0.0554 0.46875 46.88% 
0.054 54 1.7323938 -0.0277 0.484375 48.44% 
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0.0541 54.1 1.7331973 0 0.5 50.00% 
0.0547 54.7 1.7379873 0.0277 0.515625 51 .56% 
0.0549 54.9 1.7395723 0.0554 0.53125 53.13% 
0.0555 55.5 1.744293 0.0833 0.546875 54.69% 
0.0584 58.4 1.7664128 0.1112 0.5625 56.25% 
0.0585 58.5 1.7671559 0.1394 0.578125 57.81% 
0.0616 61 .6 1.7895807 0.1677 0.59375 59.38% 
0.0617 61 .7 1.7902852 0.1964 0.609375 60.94% 
0.0626 62.6 1.7965743 0.2253 0.625 62.50% 
0.0647 64.7 1.8109043 0.2547 0.640625 64.06% 
0.0667 66.7 1.8241258 0.3147 0.671875 67.19% 
0.0667 66.7 1.8241258 0.3147 0.671875 67.19% 
0.0684 68.4 1.8350561 0.3456 0.6875 68.75% 
0.0686 68.6 1.8363241 0.3772 0.703125 70.31% 
0.0695 69.5 1.8419848 0.4095 0.71875 71 .88% 
0.0729 72.9 1.8627275 0.4427 0.734375 73.44% 
0.0778 77.8 1.8909796 0.4769 0.75 75.00% 
0.0794 79.4 1.8998205 0.5123 0.765625 76.56% 
0.0802 80.2 1.9041744 0.549 0.78125 78.13% 
0.0817 81 .7 1.9122221 0.5873 0.796875 79.69% 
0.0837 83.7 1.9227255 0.6273 0.8125 81 .25% 
0.0854 85.4 1.9314579 0.6695 0.828125 82.81% 
0.0859 85.9 1.9339932 0.7142 0.84375 84.38% 
0.0875 87.5 1.9420081 0.7619 0.859375 85.94% 
0.0878 87.8 1.9434945 0.8134 0.875 87.50% 
0.0895 89.5 1.951823 0.6696 0.890625 89.06% 
0.0905 90.5 1.9566466 0.932 0.90625 90.63% 
0.0946 94.6 1.9758911 1.0025 0.921875 92.19% 
0.0951 95.1 1.9781805 1.0848 0.9375 93.75% 
0.0964 96.4 1.984077 1.1851 0.953125 95.31% 
0.097 97 1.9867717 1.3172 0.96875 96.88% 

0.0971 97.1 1.9872192 1.523 0.984375 98.44% 

Table 5.23 The slll1u1ated Time to Fatlure of the first gram boundary cluster 
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Based on Fig 5.53, the distribution of the Time to Failure also follows the lognorrnal 

distribution. The effect of scaling does not change the distribution of the Time to Failure 

because one of the factor that detennines the distribution is the distribution of the cluster 

length which in this experiment also produces a lognormal distribution function as shown 

in Fig 5.54 below. 
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5.4.8 Tbe effect of the number of grain boundaries in a cluster(of different lengtb) 

on tbe Time to Failure 

The Time to Failure of interconnects depends on the microstructure of the grain 

boundaries in the interconnect. in this simulation of the Time to Failure, tbe effect of the 

number of grain boundaries which of various length in a cluster is analysed. The 

objective is to investigate whether the number of grain boundaries in a cluster produces 

shorter or longer electromigration lifetime. T.he results of the simu lated Time to Failure 

is shown in Table 5.25 and in Fig 5.55 below. 
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% TTF % TTF '10 TTF '10 Cluster TTF 'f, TTF 
Cluster (GB=3) Cluster (GB=S) Cluster (GB=7) (GB=9) Cluster I (GB=11) 

1.25 0.0209 1.754386 0.0191 3.225806 0.0208 4.347826 0.0318 4.545455 0.0332 
2.5 0.0255 3.508772 0.0209 6.451613 0.0339 8.695652 0.0349 9.090909 0.0349 

3 .75 0.0437 5.263158 0.0343 9.677419 0.0347 13.04348 0 .0351 13.63636 0.035 
5 0.0444 7.017544 0.0376 12.90323 0.0352 17.3913 0 .0366 18.18182 0.0363 

6 .25 0.0479 8.77193 0.0414 16.12903 0.0381 21 .73913 0.0376 22.72727 0 .0366 
7 .5 0 .0517 10.52632 0.0441 19.35484 0.0392 26.08696 0 .0388 27.27273 0 .0386 

8 .75 0.054 12.2807 0.0444 22.58065 0.0433 30.43478 0 .0416 31 .81818 0.0401 
10 0.0616 14.03509 0.0461 25.80645 0.0438 34.78261 0.0417 36.36364 0.0412 

11 .25 0.0622 15.78947 0.0486 29.03226 0.0471 39.13043 0.0425 40.90909 0 .0438 
12.5 0.0627 17.54366 0.0491 32.25806 0.0494 43.47826 0.0456 45.45455 0.044 

13.75 0.0667 19.29825 0.0523 35.48387 0.0506 47.82609 0.0505 50 0.046 

15 0.0676 21 .05263 0.0536 38.70968 0.0513 52.17391 0.0541 54.54545 0.0483 
16.25 0.0684 22.80702 0.0559 41 .93548 0.0518 56.52174 0.0547 59.09091 0.0526 

17.5 0.0689 24.5614 0.0578 45.16129 0 .0527 60.86957 0.0555 63.63636 0.0538 

18.75 0.0756 26.31579 0.0584 48.3871 0.0531 65.21739 0.056 68.18182 0.0587 

20 0.0809 28.07018 0.0595 51 .6129 0.0617 69.56522 0.0585 72.72727 0.0606 

21 .2 0.0817 29.82456 0.0626 54.83871 0.0695 73.91304 0.0637 77.27273 0.0668 

22.5 0.0837 31 .57895 0.0626 58.06452 0.0735 78.26087 0.0691 81 .81818 0.0729 

23.75 0.084 33.33333 0.0647 61 .29032 0.0778 82.6087 0.0699 86.36364 0.0758 

25 0.0859 35.08772 0.065 64.51613 0.0794 86.95652 0.0746 90.90909 0.0824 

26.25 0.0951 36.84211 0.0667 67.74194 0.0812 91 .30435 0.0876 95.45455 0.0971 

27.5 0.0964 38.59649 0.0686 70.96774 0.0835 95.65217 0.1048 100 0.1381 

28.75 0.1286 40.35088 0.07 74.19355 0.0854 100 0.1251 

30 0.1451 42.10526 0.0708 77.41935 0.0875 

31 .25 0.157 43.85965 0.0709 80.64516 0.0895 

45.61404 0.0723 83.87097 0.0905 

47.36842 0.0773 87.09677 0.0977 

49.12281 0.0802 90.32258 0.115 

50.87719 0.0833 

52.63158 0.0854 

54.38596 0.0878 

56.14035 0.0879 

57.89474 0.0892 

59.64912 0.0917 

61.40351 0.0946 

63.15789 0.096 

64.91228 0.0967 

86.86867 0.097 

68.42105 0.0985 

70.17544 0.1686 

Table 5.25 The TIme to FaIlure of vanous number of gram boundanes 
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Fig 5.55 The Time to Failure profile of various number of grain boundaries 

From the results shown above, for the grain boundary cluster with a total of 3 grain 

boundaries , the range of arbitrary Time to Failure is between 0.0209-0.157 which in 

physical time is between 2.46 hours-18.53 hours. For 5 grain boundary cluster, the range 

is between 0.019J(2.25hours)-0.J686(J9.89hours), 7 grain boundary cluster it ranges 

from 0.0208(2.4Shours)-0.115(13.57hours), 9 grain boundaries it ranges from 

0.0318(3.75hrs)-0.1251 ( 14.76hours) and for 11 grain boundaries the earliest failure time 

is 0.0302(3.S6hours) and tbe latest failure time is 0.1381 (16.29 hours). This result shows 

that the number of grain boundaries in a cluster does not have a great impact on deciding 

how fast or slow the Time to Failure. However from the data and the graph, it shows that 

the number of grain boundaries will affect the % failure of the interconnect where a 

smaller number of grain boundaries in a cluster will have a smaller percentage of failure 

because with a small number of grain boundaries in a cluster, the probabihty that it has a 
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longer cluster length than the critical length(Blech length) is small. It can be confirmed 

that the Time to Failure depends on a variety of factors which include i)the cluster length, 

ii) individual grain boundaries length, the diffusivities and the angle of orientation of the 

grain boundaries. The overall length of the grain boundary cluster has a direct effect on 

the number of failures ( %) but does not have a direct effect on the Time to Failure. It is 

quite difficult at this stage to draw any conclusion which of these factors mentioned 

above are dominant it determining the Time to Failure. 

5.4.9 Results of tbe simulation of Time to Failure between the lumped element 

model and the signal delay. 

All the simulation results of the Time to Failure discussed earlier have been obtained by 

the lumped element model which has been very successful in demonstrating the 

behaviour of electromigration in the interconnects. Another method of obtaining the 

Time to Failure is by using the signal delay . This method has been used in the single 

grain boundary and the 'self generated' complex grain boundary and the analysis of the 

results shows that it is comparable with the lumped element model. 

In this experiment, the same five samples of Al film as in the last experiment have also 

been used to make the comparison study and the detailed results of the Time to Failure 

recorded by both i.e. the lumped element model and the signal delay are shown in Table 

A.4 in Appendix A4. The summary of the results are shown in Table 5.26 below. 

TIF cluster (model) TIF cluster (elmore) TIF TIF 
sample{modell sample{elmoret 

0.0686 0.0601 0.0686 0.0601 
0.0111 0.0143 0.0111 0.0143 
0.0207 0.0222 0.0212 0.0285 
0.0212 0.0285 0.0182 0.0243 
0.0302 0.0348 0.0276 0.0335 
0.0182 0.0243 0.0169 0.021 
0.0624 0.0534 0.0195 0.0231 
0.0276 0.0335 0.0196 0.0209 
0.0169 0.021 0.0324 0.0289 
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0.0516 0.0533 0.05 0.0501 
0.0195 0.0231 0.0197 0.0334 
0.0551 0.0522 0.0215 0.0258 
0.0342 0.0401 0.0226 0.0339 
0.0196 0.0209 0.0209 0.0186 
0.0465 0.0438 0.0238 0.0263 
0.0324 0.0289 0.0227 0.0227 

0.05 0.0501 0.0184 0.0182 
0.0197 0.0334 0.0167 0.0133 
0.0215 0.0258 0.0163 0.0186 
0.0295 0.0321 0.0274 0.0327 
0.0226 0.0339 0.0181 0.0227 
0.0209 0.0186 0.0241 0.0243 
0.0282 0.0306 0.0316 0.0324 
0.0238 0.0263 0.0189 0.0196 
0.0407 0.0348 0.0864 0.0961 
0.0227 0.0227 0.0405 0.0406 
0.0184 0.0182 0.0171 0.0167 
0.0167 0.0133 0.0444 0.0415 
0.0336 0.0338 0.0344 0.0376 
0.0163 0.0186 0.019 0.0267 
0.0274 0.0327 0.0204 0.0172 
0.0181 0.0227 0.0494 0.0412 
0.0198 0.0273 0.0184 0.0236 
0.0241 0.0243 0.088 0.0888 
0.0316 0.0324 0.0136 0.0164 
0.0189 0.0196 0.0288 0.0271 
0.0341 0.0426 0.0133 0.0138 
0.022 0.0243 0.0277 0.0282 

0.0864 0.0961 0.0189 0.0206 
0.0405 0.0406 0.0143 0.0182 
0.0171 0.0167 0.0274 0.0296 
0.0444 0.0415 0.0203 0.0204 
0.0344 0.0376 0.0212 0.0222 
0.019 0.0267 0.018 0.0184 

0.0214 0.0215 
0.0204 0.0172 
0.0494 0.0412 
0.0184 0.0236 
0.0233 0.0277 
0.022 0.0275 
0.088 0.0888 

0.0136 0.0164 
0.0288 0.0271 
0.0133 0.0138 
0.0227 0.0282 
0.0189 0.0206 
0.0739 0.0667 
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0.0298 0.028 
0.0647 0.0572 
0.0143 0.0182 
0.0258 0.0245 
0.0274 0.0296 
0.0502 0.0494 
0.0203 0.0204 
0.0457 0.0514 
0.0212 0.0222 
0.0248 0.0265 
0.0367 0.035 
0.018 0.0184 

Table 5 .26 The TIme to FaIlure of gram boundary cluster and interconnect sample 

between lumped element model and signal delay/elmore obtained from 50 samples of 

interconnect 

Fig 5.56 and Fig 5.57 shows the graph of the simulated Time to Failure obtained by the 

lwnped element model and the signal delay method 
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Fig. 5.56 The Ti me to Failure of the grain boundary cluster obtained by lumped element 

model ( red) and signal delay/elmore(blue) 
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Fig. 5.57 The Time to Failure of the interconnect samples obtained by lumped element 

model ( red) and signal delay/elmore(blue) 

From the results shown in Table 5.26, Fig.5.56 and Fig 5.57 it is clear that the signal 

delay method is reliable and consistant in producing the Time to Failure. However , the 

signal delay method has not been analysed to see whether the Time to Failure exhibits the 

lognormal distribution .. The analysis will be carried out in the next section. 

5.4.10 The T ime to Failure distribution using signal delay method. 

The Time to Fai lure distribution for the grain boundary clusters, for both the signal delay 

method and the Lumped element model are shown in Fig5.58(a) and Fig5.58(b) 

respectively. Also, the TTF distribution for the interconnect are shown in Fig 5.59(a) and 

5.59(b). 
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From these figures, it is observed that the Time to Failure using the lumped element 

model and the signal delay method both fit lognormal distribution. It is also observed that 

the distribution for the signal delay is in fact much better than the lumped element model 

particularly for the small times. From this results, it can be deduced that the lumped 

element model has been successfully proven valid in describing the behaviour of tbe 

electromigration where the Time to Fail ure is shown to closely approximates the 

lognormal di stribution. 

5.4.11 Other reliability distribution on the Time to Failure 

We have assumed that the TTF is di stributed lognormally however thi s may not be the 

case despite experimental evidence.[Lloyd and Kitcbin, 1991] have proposed a different 

distribution for TTF that is well approximated by a multilognormal distribution. The 

simulation is based on the drift-diffusion model and the conductor stripe is modelled as a 

chain of links, each having its own derived failure distribution. Another distribution 

which is often used to described the lifetimes is the Weibull distributions. This 

distribution has been applied and tested for the Electromigration Time to Failure [Attardo 

et.a!. , 1971] and was found to fit equally well at relatively large percentage 

failures (greater tban 5 %). However at percentage less than I % it is not . The Weibull 

distribution is given by the equation below:-

F(t) = 1- exp( - (~) b J 
Where F(t) = the cumulative % 

= failure time 

a = scale parameter 

b = shape factor or standard deviation cr 

Eqn(5.23) can be turned into a regression equation as follows 
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F(t) = 1- ex{ - (~) b J 

In[( I-F(t)]= -(~r 
In(-ln(1-F(t)])=bln(t)-bln(a) OR Y= mX + c 

where Y= In(-in(I-F(t)), m= b, X= In(t) c = bln(a) 

5.24 

A straight line plot of In(-ln(I-F(t)) vs In(t) will indicate that the data fits a Weibull 

distribution. Data from section 5.49 i.e. Table 5.26 are used in testing the fit to the 

Weibull distribution for the Time to Fai lure using both the Lumped element model and 

the signal delay method on the Time to Failure of the grain boundary clusters and the 

interconnect. The results are shown in Fig5.60(a) and Fig5 .60(b)(for grain boundary 

clusters) and Fig5.61(a) and Fig5.6J(b)(for interconnect)using the signal delay and 

Lumped element model respectively. 
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Fig5.60(a) The Weibull plot of the Time to Failure of the grain 

boundary clusters using the Signal delay method 
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Based on the figures above, it is observed that the Time to Failure does not fit very welJ 

for the Weibull distribution for both methods i.e. the Signal delay and the Lumped 

element model. Therefore the lognormal distribution can be considered the best 

approximation for the distribution of Time to Failure ofElectromigration. 

5.4.12 The analysis of small Time To Failure 

The small Time to Failures or early failures are of great importance in the study of 

interconnect reliability. From the results obtained in section 5.4.6, as linewidth decreases 

(smaller than the grain size) the Time to Failure increases, but so does the deviation of 

Time to Failure. From reliability point of view, the shape factor or the standard deviation 

at least as important as the Mean Time to Failure, for early failures . In thi s analysis, the 

configuration of the grain boundaries in a cluster are analysed. 
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Early failures data are analysed in detail from the non-annealed interconnect. Table 5.27 

describes the features of the grain boundary clusters which have recorded the earliest 

failure time 

Sample Cluster No of grain TTF Configuration 

length boundaries 

no.4 0.244 5 0.0191 

~ ~ " 

nO.3 0.2478 7 0.0208 

\7~ 
no. 13 0.1586 3 0.0209 

">-
Table 5.27 Data of the gram boundary cluster which have the smallest faIlure times. 

From Table 5.27, all the examples of grain boundary clusters which have the smallest 

failure time, have one common feature that is, the configuration allows fast diffusion of 

vacancies along the grain boundaries until it reaches the furthest/end point of the 

cluster( where in the current model ,all the Times to Failure are computed). From the 

table, the number of grain boundaries and the cluster length are seen to have little or no 

correlation to the Time to Failure. From the example shown here, it can be said that the 

Time to Failure is very complex, it depends on the combination of various 

microstructural parameters and geometrical properties of the grain boundaries that make 

up the cluster and not just the overall length. 

5.5 Summary of simulation results of realistic interconnects 

In the simulation of realistic interconnects, the arbitrary parameters used in the 

simulation of the lumped element model such as the values of a =5 ,D=5 and 

ccr =2 Co have been shown to be suitable. This is based on the results of the simulation 
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where the time-scale of the Time to Failure, the length of interconnect and the grain 

boundary clusters are within the 'realistic values' reported in the literature where 

analytical or computer simulation is used. [ Joo, et.al,1999]. 

The results obtained have shown that the Lumped element model is able to demonstrate 

the electromigration behaviour and characteristics obtained by other computer 

simulations in regarding with the distribution of the Time to Failure [Joo and 

Thompson,1994][Kirchheim and Kaeber,1991][Knowlton ,etal,1997] but on much more 

complex interconnects i.e. a 2D-model is used and also on actual experimental such as 

the effect of annealing and the linewidth variation on the Time to Failure, Mean Time to 

Failure and the deviation of Time to Failure[ Cho and Thompson,1989] 

The validity of the Lumped element model has been successfully verified by the results 

of the Time to Failure distribution which fit quite well with the lognormal distribution, as 

found experimentally in the literature. The signal delay method of predicting the Time to 

Failure has been compared with the lumped element model , and a lognormal 

distribution is also obtained, and have a better fit. 

The microstructure and the geometrical effects of the grain boundaries on the Time to 

Failure have also been analysed. The results show that the Time to Failure is a complex 

phenomenon, it depends on a collective of various parameters such as the length of grain 

boundaries, angle of orientation, diffusivities, number of grain boundaries and the 

configuration or geometrical properties. 
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CHAPTER 6 

CONCLUSIONS 

6.0 Introduction 

This final chapter summarises the analysis and results recorded earlier in this thesis, 

and discusses their scientific significance in terms of their contribution towards the 

understanding of electromigration in general. 

6.1· Summary 

The 'state-of the art' physical model of electromigration is based on stress evolution 

which are introduced by Blech and co-workers and later 'finalised' by [Korhonen, 

etal,1993]. Most of the previous stress evolution models are one-dimensional which 

effectively averages the microstructural effects and the electromigration current over 

the linewidth In the current work, attempts are made to develop a three-dimensional 

model based on the stress evolution model which includes some of the 

microstructural/geometrical effects ( the vacancy diffusion coefficients, the lengths 

and orientations of the various grain boundaries) on the lifetime of le interconnects 

in a realistic manner without averaging these effects over the interconnect cross­

sections as in the standard one-dimensional model. By assuming both columnar grains 

and that vacancy flux is roughly uniform across the grain boundruy width /) ,the. 

three-dimensional transport problem reduces to one along a stick-network of one­

dimensional boundaries( this is sometimes referred to as a two-dimensional model). 

For a typical near-bamboo interconnect, consisting of both cluster and bamboo 

sections, there are two important time scales. The first, a short time scale, defines the 

time taken for the fast diffusion cluster regions to reach a quasi-steady state and the 

second, a longer time scale, defmes the time for diffusion to occur through the grain 

bulk or along the metal/oxide sidewall. Therefore, for early failures transport occurs 

along the grain boundary networks, and ignoring transport through the grain bulk, 
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the problem reduces to that of solving the equations for stress evolution equation on 

the individual complex grain boundary networks which make up the cluster sections 

of the interconnect. This forms the basis of the current research. 

The thesis describes the detailed stages involved in developing the current model i.e. 

the Lumped Element Model. In the first stage of the analysis, the equation describing 

the evolution of stress within an interconnect is shown to be equivalent to a slow non- ' 

linear drift-diffusion equation description of the vacancy build-up. Provided that the 

vacancy flow along the grain boundary network can be reasonably mapped on to an 

underlying network of one-dimensional grain boundaries, we are able to draw two 

very important conclusions. Firstly, the analysis of the steady state solution for an 

arbitrary grain boundary network, with arbitrary boundary conditions, can be treated 

as a similar network of random resistors. Secondly, in the analysis of the approach to 

the steady -state, the drift-diffusion equation may be represented by a distributed CR 

transmission line equivalent with inhomogeneous capacitance per unit length and 

resistance per unit length. 

These two observations combine to demonstrate the possibility of treating vacancy 

build-up in a grain boundary network (approximately) by an equivalent electrical . 

network oflumped elements. In the analysis that follows, it is shown that the vacancy 

build-up in a single grain may be approximated by a CR transmission line made up of 

. five cascaded single C-R-C IT sections. Accuracy may always be improved by . 

including more sections. At this early stage also, analysis to validate the model is 

performed by comparing with the existing references for "single grain" boundary 

sections and the results show good agreement. We also demonstrate the usefulness 

and the flexibility of the Transfer matrices in deriving the components values, and 

solving equivalent node voltages of the C-R-C IT network and hence the build-up of 

vacancies in a grain boundary network. Finally the lumped element model is used in 

the calculation of the Time to Failure when the vacancy concentration at a particular 

node along any grain boundary in the cluster reaches some threshold value. 

291 



The thesis introduces the idea of approximating the failure time on complex grain 

boundary networks using the concept of the signal or Elmore delay developed for eR 

networkS by CMOS design engineers. With the introduction of this approximate 

technique we allow for rapid estimates of TTF for a given structure thus enabling 

statistics to be obtained quickly and efficientJy. The technique has also been tested for 

its validity by comparing it with the 'exact solution' and the Lumped element model 

for a 'single grain' and the results show good agreement 

The thesis also outlines in detailed the steps taken in implementing the software 

codes to produce the results based on the model developed. Since the solution to the 

model is in the form of matrix equations as described earlier, the best software 

package to handle such a problem is MatJab®. The main reason why MatJab® is 

used is that· it is user friendly and it supports many built-in function. Some of the 

important built-in functions that are used in solving the mathematical equations are 

i)diag- use to diagonalise the matrix when solving the node voltage equation, ii) 

rot90 - use to rotate the matrix by 90 0 applied in the switching the grain boundaries 

during the annealing process and iii) Voronoi - use in producing the Voronoi network 

representing the realistic representation of the grain boundaries in an AI sample, etc. 

With these built-in tools, a great deal of time may be saved because the work put into 

the development of the software codes can be very time consuming. Another 

important factor which contributes to the choice of using MatJab® is that it is a 

Microsoft Window based language where transfer of data between software packages 

is easy ( e.g data transfer between MatJab® and Microsoft Excel and Word) and also 

it is quite easy to troubleshoot for errors found in the code. 

The software code developed is basically divided into 3 main categories to perform 

the necessary simulation such as the vacancy concentration profile, realistic grain 

boundaries , the calculation of the exact Time to Failure and signal delay 

approximation ofTTF. These are based on i) smgle grain boundary ii) an example of 

a more complex grain boundaries and iii) the realistic grain boundaries in AI 

interconnects. To allow for easy understanding of the flow of the program codes, the 

thesis includes all the major Program Flow charts. As far as the program code is 
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concerned, it is designed to be 'structured' so that the code can be easily executed 

and debugged. 

The only 'disadvantage' that may be considered in the software codes developed is 

the use of many subroutines that involve searching algorithms particularly in the 

program codes for the realistic grain boundaries. At the moment this cannot be 

avoided since the only available information produced by the Voronoi. built-in 

function is the co-ordinates values of the vertices (grain boundaries nodes) which are 

randomly arranged. It is a major and time cousuming task to produce a routine to 

rearrange and to label the nodes and the grain boundaries. Searching algorithms 

are also employed in much of the program code for the simulation of the annealing 

process and for the simulation of the production of realistic interconnects. Therefore 

as a result , the computing times are still quite long especially if one considers more 

than 100 random points to generate the Voronoi network. The other important point 

which· at the moment is quite difficult to solve is in the simulation of the time to 

failure. Since the interconnect may have a few grain boundary clusters, it is a 

demanding task at the moment to calculate each cluster's TIP in an automatic mode. 

The best solution is to solve by inspection ( determining the number of clusters and 

the grain boundaries contained) and then to do the calculation. These latter are 

calculated in automatic mode. The method employed have proven to be successful in 

producing the desired data although it will still take quite some time to produce all 

the grain boundary cluster TIPs in the interconnect samples. 

Further simulations are done to validate the model by comparing with the other 

references available particularly for the single grain boundary. A comparison of 

results for the single grain boundary from three different method i.e. the exact 

solution, lumped element model and signal delay method confirms the validity of the 

developed lumped element model and suggest the sUitability of the model for more 

complex grain boundary networks. Complex grain boundary networks enable more 

detailed analysis of electromigration to be carried out. The lengths of grain 

boundaries, angle of orientation and the diffusion coefficients have all been shown to 

have an effect on the Electromigration Time to Failure. In many references, it is been 
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assumed that the triple point is where failure nonnally occurs. In the current model, 

we show this is not necessarily the case. More important are the factors mentioned 

above ( particularly the angles of orientation): These will detennine where and when 

the first failure will occur. It is also been shown that these microstructural factors are 

the main contribution towards the variations of the Time to Failure. Signal delay 

approximations are compared to the lumped element model and results obtained are 

within acceptable level of error. 

The validitY of the stress evolution or the drift-diffusion model will not be complete if 

the distribution of the Time to Failure is not produced and analysed. Many 

experiments in the literature indicates that the Electromigration Time to Failure. 

follows a log-nonnal distribution. To enable the distribution to be analysed, an 

adequate amount of data on Time to Failure is needed and it must come from a 

realistic representation of AI samples and the interconnect. The thesis has 

demonstrated a method ( Voronoi technique, as has been used by others) of obtaining 

a realistic representation of the AI samples and also a means of simulating the 

annealing process. We demonstrate the various processes involved such as the growth 

of grains, the annihilation and the recombination/switching of grain boundaries. 

The results of the analysis of the Time to Failure of the grain boundary clusters and 

that of interconnect draws two important conclusions with respect to the validity of 

the model. First it is shown that the distribution of the Time to Failure for both the 

grain boundary clusters and the interconnect samples for all the simulations 

undertaken exhibit an approximately log-normal distribution by using the lumped 

element model. Secondly the length of the grain boundary clusters also exhibit the 

lognonnal distribution. 

Using realistic experimental parameters, the analysis of the actual time scale of TTF 

and MTTF , realistic length of interconnect, the failure criterion ( critical vacancy 

concentration/ critical stress) produced results which are comparable to other 

experimental and computer simulation results obtained by other researchers. 
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Analysis is also done on the effect of annealing of the AI samples on the Median 

Time to Failure and results confirms that annealing treatment increases the 

Electromigration lifetime of the interconnects. In analysing the detail of the 

microstructural parameters effects on the Time to Failure, it is observed that Time to 

Failure does not depend on a single parameter alone ( for example the length of grain 

boundary clusters is shoWn to produce a random TI'F results). We conclude that the 

factors affecting the Time to Failure of a grain boundary Cluster are complex, that it 

involves more than one variable/parameters. Therefore it is quite impossible to . 

segregate the parameters to analyse these parameters indiVidually and independently 

because these factors work as a team 

The advantages of the model can be seen from its ability to include the various 

distributions of the parameters which directly affect the distribution of the Time to 

Failure, such as the length of each grain boundary clusters, the distribution of the 

number of clusters in an interconnect and the distribution of the angle of orientation. 

These effects can be clearly observed by for example varying the width of the 

interconnect. The results obtained are similar to the other references i.e. as the width 

are reduced, the Median Time to Failure tends to increase, but the Deviation of Time 

to Failure also increases. 

The thesis also includes a comparison between the results obtained by lumped 

element model and the signal delay. Analysis of the Time to Failure shows that the 

signal delay also exhibit the log-normal distribution ( a better fit) and its Mean Time 

to Failure and Deviation of Time to Failure is within acceptable limits of error. 

6.2 Scientific significance and Contribution to the understanding of 

Electromigration 

The scientific significance of the research results obtained and their contribution to 

the understanding of Electromigration can be summarise as follows:-
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i) A three dimensional model which includes the detailed microstructural! 

geometrical properties of the grain boundaries is developed These are lacking in 

one-dimensional model· available in the literature. Therefore analysis on 

Electromigration is more complete and detailed compared to the 

simplified/average micostructural effects considered in one-dimensional models. 

ii) With the introduction of the equivalent C-R-C TInetwork representing the build­

up of the vacancy concentration along the grain boundaries, fast and efficient 

Times to Failure can be estimated at every node along the complex grain 

boundary networks by both the lumped element model and by the signal delay 

method 

iii) Detailed analysis on the effect of the microstructural properties on the Time to 

Failure can be performed. 

iv) From the analysis observed, it is not necessarily the triple points that constitute 

the failure but more importantly the node which reach the stress/vacancy 

supersaturation first. That determines the Time To Failure. 

v) The Electromigration Time to Failure is not determine by a single parameter alone 

but instead is a multi-variable function involving parameters such as the diffusion 

coefficient, the length of grain boundaries and the angle of orientation 

vi) The analysis can be done cheaply by using a common available software package 

such as Matlab® or PSpice since it involves an electrical circuit equations only 

and the results obtained are of acceptable quality. 

6.3 Recommendation for Further work 

. The current research work can be improved or extended in the following areas:-
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i) The program codes developed at present involves many search subroutines which 

have the effect on the run-time of the program and therefore limits the research to 

a small but reasonable number of realistic grain boundaries structures. The 

improvements to the program codes and a higher capability computer system will 

enable a larger number of realistic grain boundaries to be simulated. 

ii) As discussed in Chapter 4, the program codes to produce the Time to Failure are 

based on the inspection of the number of grain boundary cluster and the grain 

boundary individual label number in a given interconnect sample. The program 

codes may be improved by automating this procedure, so that the results can be 

obtained faster and more reliably. 

iii) The calculation of the Time-to Failure is based on the implicit assumption that the 

void formation time is dominated by the time for the vacancy build-up to reach 

some threshold. However there is some evidence that this might not be the case 

{Riege et al., 1996]. Further research needs to be done in modelling the periods (if 

they exist) between reaching the critical stress and voiding and between voiding 

and failure. 
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Appendix Al 

Table Al(l-lO) Detailed results of experiment no.I: non-annealed interconnects 

Table AI.I - 'Treated data' of Time to Failure for grain boundary clusters 
(experiment .nol(a» 

Table A1.2 - 'Treated data' of Time to Failure for interconnects 
(experiment no. I (b» 

AppendixA2 

Table A2(l-lO) Detailed results of experiment no.2: annealed interconnects 

Table A2.1 - 'Treated data' of Time to Failure for grain boundary clusters 
(experiment n02(a» 

Table A2.2 - 'Treated data' of Time to Failure for interconnects 
(experiment no.2(b» 

AppendixA3 

Table A3(al-a5)-A3(el-e5) Detailed results of experiment no.3: The effect of the 
variation of interconnect width/length ratio on 
TTF,MTTF and DTTF 

Table A3.1 - 'Treated data' of Time to Failure for interconnect sample(a) 

Table A3.2 - 'Treated data' of Time to Failure for interconnect sample (b) 

Table A3.3- 'Treated data' of Time to Failure for interconnect sample ( c ) 

Table A3.4- 'Treated data' of Time to Failure for interconnect sample (d) 

Table A.3.5- 'Treated data' of Time to Failure for interconnect sample (e) 



AppendixA4 

Table A4(1-S) Detailed results of experiment no.4: Signal delay 
vs Lumped element model 

Table A4.1.1 - 'Treated data' of Time to Failure of grain boundary clusters 
using Signal delay 

Table A4.1.2- 'Treated data' of Time to Failure of grain boundary clusters 
using Lumped element model 

Table A4.2.1·- 'Treated data' of Time to Failure of interconnects 
using Signal delay 

Table A4.2.2 - 'Treated data' of Time to Failure of interconnects 
using Lumped element model 

Appendix AS 

Time to Failure using WeibuIl distributions 

Table AS.! - 'Treated data' of Time to Failure of grain boundary clusters 
using Signal delay. 

Table AS.2- 'Treated data' of Time to Failure of grain boundary clusters 
using Lumped element model 

Table AS.3- 'Treated data' of Time to Failure of interconnects using Signal delay 

Table AS.4- 'Treated data' of Time to Failure of interconnects using Lumped element 
model 

AppendixBl 

The program code listings for single grain boundary with one end has vacancy 
supply and the other end blocked 

(I) The script file: 
(2) The function file: 
(3) The function file: 

simall1g.m 
rroot 
imroot.m 



AppendixB2 

The Program code listings for single grain boundary with both ends blocked 

(1 )The script file: sg2ball.m 

AppendixBJ 

The program code listings for an example of complex grain boundary with one end 
has a vacancy supply coand the rest blocked 

(1). The script file: netlball.m 

AppendixB4 

The program code listings for an example of complex grain boundary with all ends 
blocked 

(I)The script file: net2ball.m 

AppendixBS 

The program code for realistic interconnects 

(I).The script file: 
(2)The function file: 
(3)The function file: 
(4)The function file: 
(S)The function file: 
(6)The function file: 
(7)The function file: 
(8)The function file: 
(9)The function file: 
(IO)The function file: 
(11 )The function file: 
(I2The function file 
(13The function file: 
(14 )The function file: 
(lS)The function file: 
(16)The function file: 
(17)The function file: 

vrnoittf.m 
annealing.m 

. geometry.m 
labgrainl.m 
labgrain2.m 
conmtrix.m 
lamdal.m 
grwth.m 
triswl.m 

. output.m 
figvrnoi.m 
lablenode.m 
slices2.m 
newgeometry.m 
newnode.m 
vrttf.m 
vrmat4.m 



(18)The function file 
(19)The function file: 
(20)The function file: 
(21 )The function file: 
(22)The function file 
(23)The function file: 
(24 )The function file: 

vres3.m 
vcmat3.m 
vDoicap3.m 
vcrgmat3.m 
vcrg3.m 
vumat3.m 
elmore3.m 
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We consider the interpretation of some theoretical and experimental work regarding 
electromigration voiding in nanoindented. single crystal aluminum lines. A recently suggested 
voiding criterion of a critical accumulated flux divergence is found. in fact, to be identical to the 
widely accepted critical stress criterion. The inclusion of the stress dependence of the atomic 
diffusion coefficient is shown to be vital when the steady state is characterized by 1*0, such as in 
the case of a void growing at a constant rate. It is found, for example. that the stress required for 
steady void growth, within single crystal AI lines. is probably significantly smaller than previously 
suggested. © 2001 American Institute of Physics. [001: 10.106311.1342436] 

In electromigration (EM). the total atomic flux density is 
generally taken to be 

DACA 
lA ="kT(OV 0"+ Z*qpji), (I) 

where 0" is the local tensile stress. CA is the atomic concen­
tration, DAis the local atomic diffusion coefficient, Z* is the 
effective electromigration charge and all other variables have 
their usual meanings.' Atomic diffusion occurs largely along 
a grain boundary network, as DAis significantly larger on 
grain boundaries than it is through the bulk. fluxes from Eq. 
(1) produce relatively small changes in local vacancy con­
centration so that continuity may be approximated by . 

(2) 

where "y is the net rate of atomic recombination at sites other 
than vacancies. The process is typically considered to be one 
of dislocation climb within grain boundaries and gives rise to 
an increase in local tensile stress according to 

dC. B 
·dO"=-B-=--rdt, 

CA CA 
(3) 

where B is an elastic (possibly bulk) modulus for aluininum.' 
In Eq. (3) averages have been taken over the cross section of 
the stripe. 

Assuming a Maxwell-Boltzmann population for the 
vacancy concentration C y and a hopping process for 
the diffusion mechanism, the atomic diffusion coefficient 
DA(=DyCyICA) has an exponential stress dependence, thus 

DA(O")-D'oexp( ~~). (4) 

Averaging Eq. (1) over the cross section of the stripe and 
combining the result with Eqs. (2)-(4) yields the final one­
dimensional expression' 

aO" =~[BD~ffO(aO" + z*epj)]=BO aJA (5) 
at oX kT oX 0 ox ' 

-'Electronic mail: v.m.dwyer@lboro.ac.uk 

0021·897912001/89(5)13064131$18.00 

where DAft is the "effective" atomic diffusion coefficient 
caused by the averaging. For example, in polycrystalline re­
gions D~ff=IJDAld for grain boundary thickness 8, and aver­
age grain size d. Void nucleation in polycrystallioe and near 
bamboo aluminum lines occurs largely due to the depen­
dence of D~rr on the position along the stripe and in typical 
structures this dependence is very complex. An artificial 
method of creating a "known" structure in single crystal 
aluminum lines is by nanoindentation2.3 in which fast diffus- . 
ing clusters are created by mechanically damaging the crystal 
at certain points. We consider here some recent results on 
such structures. . 

For voiding to occur, in the standard model of electromi­
gration described above. the tensile stress evolves until it 
reaches some critical value U' er at some point; void nucle­
ation then occurs. We first consider the countersuggestion of 
Duan and Shen' that nucleation occurs rather as the result of 
a critical accumulation (over time) of flux divergence as this 
is "a more' feasible parameter for void formation," they 
claim that this gives a different nucleation point. To justify 
their view the authors analyze the experimental setup of Joo 
et a.I.2,3 in which nanoindented single crystals are produced 
with a fast-slow-fast or similar pattern. Solving Eq. (5) they 
find that the two criteria give different voiding points. How­
ever, it is clear by integrating Eq. (5) that these two criteria 
are in fact rigorously identical, as 

f' alA 
O"(x.t)=BO Jo iJx dt. (6) 

In following the work of Duan an!! Shen,' we are able .to 
reproduce their figures for stress evolution and for the atomic 
flux but we have not been able to reproduce their figure for 
the accumulated flux divergence, which we find is propor­
tional to the tensile stress and thus is in line with Eq. (6). We 
can only conclude that there are numerical errors in their 
integration of Eq. (6). 

The position of maxirnuin stress. and thus the theoretical 
voiding position, depends upon the extent of the SEM­
invisible plastic regions created during the indentation 
process.' The nanoindented lines2•3 are created in such a 
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manner that each indented segment may be considered to be 
continuous. This assumes that the plastic regions of each 
indentation overlap. As a consequence there will also exist a 
transition region of plastic damage between the fast and slow 
diffusing regions. Mechanical damage, due to indentation, 
appears in Eq. (5) as a position dependent diffusion coeffi­
cient D~ff(X). Solving Eq. (I) in the steady state (with 1*0), 
for an unpassivated line, the position of maximum stress oc­
curs at the point given by the solution to· 

I I (L dx 

D~"(x) = L Jo D~'(x)' (7) 

and aD~fflax>O. That is, the maximum steady state stress 
occurs where D~ff(x) -I is equal to its value averaged over the 
length L of the structure. Equation (7) predicts that the site of 
maximum steady state stress will usually lie within this tran­
sition region and thus somewhat outside the fast diffusing 
region. Time-dependent stress evolution for this structure 
also shows that, for reasonable values of the critical stress, 
the voiding position will occur close to the site of maximum 
steady state stress. Note that, as it is D~ff(x)-I rather than 
D~ff(x) that is involved in the averaging process [Eq. (7)], the 
position of the voiding site within the transition region will 
tend to lie nearer to the slow (undamaged) region than to the 
fast (SEM-visibly damaged) region. 

For systems with a steady state corresponding to 1 = 0, it 
is only the time to reach the steady state that is affected by 
D~ff. The final stress is independent of D~ff and hence it is 
unimportant whether or not stress dependence is included. 
This is not the case for a system whose steady state (as here) 
is characterized by 1 * O. In the initial stage, where the stress 
is still small, inclusion of the stress d~endence makes little 
difference as D~ff(u)~D~ff(U=O)"D~(x). However as time 
progresses and u builds up the variation in D~ff has more 
obvious effects. 

Consider the situation of Ref. 4, but without any transi­
tional plastic damage zone and with a spatially uniform Z* 
= -15. Equation (I) is solved for an unpassivated line with 
a slow-fast-slow structure of the same material constants as 
considered in Refs. 2-4 and the final stress is shown in Fig. 
1 (a). Note that the tensile stress gradient at the cathode end is 
very small. It is also true that the EM flux is much lower than 
the equivalent case in which the stress dependence is ig­
nored. This is a result of the fact that compressive stress in 
the anode half of the interconnect reduces the effective D~rr 
values there, thus reducing the overall steady state flux. Now 
only a small tensile stress in the cathode half of the intercon­
nect is required to match the EM current in the anode half. 
Figure l(b) shows the situation with Z*= -4, the asymme­
try is reduced but still clear. In terms of stress profile Z· is 
obviously an important, if a relatively unknown, parameter. 

For this same structure (with Z· = -15) we find that the 
maximum tensile stress in the line is u=O.314GPa which 
occurs after -1.75 h, after which time the maximum stress 
drops again until it reaches the steady state value of Fig. I(a). 
If void nucleation has not occurred prior to 1.75 h it will 
never occur. The maximum compressive stress in the stripe 
however continues to increase in magnitude to a final steady 
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FIG. 1. Steady state tensile stress including the 8ux dependence of diffusion 
coefficient. (a) Z· ... -IS. (b) Z· =- - 4. Electron flow is from left· to right· 
hand side. 

state value of u= - 0.688 GPa which may be sufficient to 
produce a hillock-related failure. This result is in contrast to 
the stress-independent case in which the value of both the 
maximum tensile stress and the maximum compressive stress 
increase as t-+oo. 

It is clear from the discussions above that, when the 
steady state is characterized by 1 * 0, it is not valid to use 
steady state stress profiles (as in Ref. 2 and references 
therein) which do not explicitly include the exponential term 
in DA, Eq. (4). The departure from the DA~DA(U=O) pro­
file, indicated above, occurs quicldy (well before 1.75 h in 
the example above) so that it is not generally valid to use 
simple linear stress profiles, obtained through ignoring stress 
dependence, when modeling void growth. This latter situa­
tion is considered in Ref. 2 as a model for the possible in­
teraction between two cluster sections, each below the criti­
cal Blech length. This example is .similar to the one of Ref.·4 
above but considers, instead, a slow region of length S sepa­
rated by two fast (nanoindented) regions of lengths LI and 
L2 • Using linear steady state profiles, the authors2 find that 
their results to be consistent with an assumed effective 
charge of Z; = -15 for the fast regions and a derived Z: 
= - 2 for the slow region. Furthermore, because of the as­
sumed linearity, their model only depends upon the differ­
ence in stress between the ends of the stripe dU,,=u(x 
=L)-u(x=O) and not on the individual values. A value of 
du,,=0.51 GPa is obtained by fitting the EM flux to the 
observed void growth rates. Naturally if the stress depen­
dence of D~ff is included we obtain a rather different story as 
the EM current now also depends explicitly upon u(x=L) 
(through D~ff) but, in addition, the steady state stress profile 
itself is likely to be different We set u(x=L)=O.OGPa here 
to represent stress relaxation at the void surface as in Ref. 7. 
In the case of the 7-S-7 structure (L 1 =7 ,.,m.:L2=7 p,m, 
and S=2 p,m), the stress profiles ignoring and i~~ll,ltli~g. the 
u dependence of D~ff are in fact very similar. Despite this 
there is a nearly 50% reduction in the steady state flux den­
sity I. This occurs as the presence of the void causes the 
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stress profile to be almost completely compressiv .. ' thus re­
ducing the diffusion coefficient (and mobility) through the 
exponential dependence on stress. 

The quantitative analysis provided in Ref. 2 in order to 
obtain Z: and fl u" may also be reinterpreted including the 
u dependence. Their analysis is based on a linear fit between 
the segment separation S and a defined variable Y(S) given 
as' 

(8) 

The authors find a remarkable straight-line fit between Y(S) 
and S, after which the right-hand side of Eq. (8) is used to 
obtain Z: and flu". However the straight line obtained is 
erroneous. It occurs because Y(S) so defined has an ex­
tremely weak dependence on the data J(S), consequently the 
experimental results (i.e., the observed void gmwth rates) 
play an almost insignificant role in goodness of fit. Y(S) is 
dominated by a linear term of slope (-Zlqpjlfl)(=9.4 
X 10" rim', equivalent to Cl in the notation of Ref. 2). It is 
this that accounts for the quality of the fit rather than any 
particular trend in experimental results, To see this we need 
only note that, after including the experimental data in Y(S), 
the correction to the slope is O.l24X 10" rIm' ("'aC. in the 
notation of Ref. 2) or substantially less than 2%. It is better 
to fit the variables Z: and fl u" to the obtained experimental 
values of void growth rate against, e.g., S-I, as shown in 
Fig. 2 for the 5-S-5 data. Figure 2(c) shows the best fit for 
stress-dependent D~ff (this corresponds to values of Z: 
= -4,flu,,=0.275 GPa, UL = 0.0 GPa). Note that the effec­
tive EM charge in the slow region, Z: = - 4, is larger than 
the value of -2 suggested in Ref. 2 and perhaps in the more 
generally accepted range. Note also that the steady state 
stress across the crystal required for constant void growth 
rate, fl u,,= 0.275 GPa, is around half of the value of 0.51 
GPa suggested in Ref. 2 and now substantially smaIler than 
the value of flu""I~0.75 GPa obtained in Ref. 2 for void 
nucleation. The latter value (fl u ."',) is obtained from con­
sideration of a J = 0 steady state and is therefore independent 
of DA", 

In summary, the recently proposed voiding criterion of 
Duan and Shen,' in which voiding occurs at the first point to 
have reached a critical accumulation (over time) of flux di­
vergence, is in fact rigorously identical to the widely ac­
cepted critical stress critcrion of the standard model, Eq. (6). 
For nanoindented single crystal aluroinum lines the theoreti­
cal position of maximum stress lies outside the indented re-
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FIG. 2. Fitting of Z: and aCT" to the experimental results (Ref. 2) for the 
void growth rate (V-JAG) on the S·S-S structure. Curves correspond to (a) 
Z:= -2, d(T'u~O.sl GPa ignoring stress dependence and as in Ref. 2; (b) 
Z:"'-2, Aall=0.51 GPa, including stress dependence; (c) Z:.,.-4, 
Aau=0.27S GPa. Data points are taken from Ref. 2. 

gion if standard EM models are to be assumed. The distance 
is of the order of the range that the plastic damage extends 
beyond the fast region. In the analysis of systems character­
ized by a J"" 0 steady state it is vital to include the stress 
dependence of the diffusion coefficient. For example, on its 
inclusion in the analysis of the L 1 - S - L, structure' one 
finds that the stress required for steady state void growth is 
significantly smaller than previously suggested.' In addition, 
the effective EM charge in the slow region (Z:--4 in this 
example) is, perhaps, closer to a more generally accepted 
range. Finally, we note that Y(S) given in Eq. (8) is an 
unsuitable parameter for fitting to the experimental data as it 
contains little information. The straight-line fit obtained in 
Ref. 2 should be disregarded. 
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