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Abstract 

 

        An accurate estimation of the Blech length, the critical line length below which interconnect lines are immortal, is 

vital as it allows EDA tools to reduce their workload. In lines longer than the Blech length, either a void will inevitably 

nucleate and grow until the line fails, or the line will rupture. The majority of failure analyses reveal voiding as the 

failure mechanism however recent analysis suggest Blech length failures are characterised by simultaneous [6] voiding 

and rupture, and a non-zero steady-state drift velocity. This paper provides an alternative interpretation of results.   
 

  
 

 

1. Introduction 

 

With the ongoing scaling of IC dimensions, copper 

interconnects become ever more susceptible to 

Electromigration (EM) failure. The more mobile metal 

atoms (typically those in the grain boundary network or 

at interfaces) are driven downstream by the high current 

density. In Dual Damascene (DD) copper, the line ends 

are terminated by a Ta–based barrier layer which 

prevents further progress. As a result the drifting 

copper is forced into the interconnect lattice, increasing 

compressive stresses close to the anode and tensile 

stresses close to the cathode. If sufficiently high, these 

stresses can lead to ruptures at the anode and voiding at 

the cathode, and either may cause interconnect failure.  

A possible resource, in circuit design, is the critical 

length or Blech length effect. The stress gradient that 

builds up during copper migration leads to a back force 

which opposes the EM ‘wind’ force. In short lines a 

relatively small transfer of material is required to 

produce a gradient sufficient to offset the EM force, 

halt the metal migration, and so save the interconnect. 

Consequently all interconnect lines whose length L is 

shorter than some critical (Blech) length LB are 

immortal as far as Electromigration failure is 

concerned. Either such lines are unable to generate 

sufficient stress to nucleate a void or, if they are able to 

nucleate a void, then both the line is unable to generate 

sufficient stress to cause the line to rupture and the line 

is unable to grow the void to a size sufficient for failure 

to occur. Using standard EM theory, based on the 

Stress Evolution Model (SEM) of Korhonen el al., the 

two former cases (nucleation and rupture) lead to 

critical values of the current density–length product jL 

[1], while the latter leads to a critical  jL
2
 [1, 2].  

The word ‘unable’ in the present context means 

that, once the stress in the line reaches its steady-state, 

the tensile stress at the cathode (x = L) is too low for 

nucleation, (L, t) < cr; or the compressive stress 

at the anode (x = 0) is to too low to cause the line to 

rupture, |(0, t)| < |rup|, and the steady-state void 

volume is too small, V(t) < Vcr, to cause the 

(typically 10%) increase in line resistance that indicates 

failure. For a given current density j, it will be the 

smaller of these critical lengths, for growth and for 

rupture (rather than their sum as suggested in [3]) that 

is expected to be the measured value for LB.  

For a theoretical line of length equal to the critical 

value, i.e. one with L = LB, failure will occur only as the 

steady–state is reached, leading to an asymptotic failure 



time tf  . Similarly, all lines of length L > LB will fail 

in finite time and all lines of length L < LB will survive 

indefinitely. From this it is clear that the definition of LB 

is the longest interconnect that does not exceed either 

the void or rupture thresholds before the steady–state 

condition in the line is reached. In the case of most lines 

it is voiding, rather than rupture, which causes the final 

failure; which implies that in most cases the rupture 

threshold is relatively high.  

The situation differs slightly between passivated 

and unpassivated lines. For unpassivated lines, such as 

those of Blech’s original gold on molybdenum 

experiments [4], there is no confinement to cause the 

compressive stress at the anode and the tensile stress at 

the cathode to rise with each transported atom. In such 

lines, the stress at the line ends builds up to steady–

state levels, say C() and A(), at the cathode and 

the anode respectively. If those stresses can generate a 

large enough gradient to balance the electron wind 

force, then EM will cease. If they are not, gold will 

continue to be displaced from cathode to anode. For an 

unpassivated line, in the steady–state, the gold ends will 

move at a steady velocity along the molybdenum. As 

the steady–state stress gradient, (C()–A())/L, is 

larger in shorter lines, a sufficiently short line can 

prevent electromigration, while longer lines cannot.  

For the passivated lines used in ICs, the void front 

of a cathode void should not move in the steady–state, 

since that would imply atoms moving, stress 

redistribution, and a state not yet steady (the only 

exception to this is a steady rupture, considered later). 

Provided that this steady–state sets up before the 

various thresholds are reached, EM failure can be 

prevented. This is known as the short line effect, and 

can be vital in Electromigration–aware chip design as, 

by daisy chaining long interconnects, say in M1 and M2 

sections, all lines can conceivably be made sufficiently 

short that EM ceases, this defines a critical or Blech 

length. In recent years a number of studies of the short 

line effect in DD copper have been reported [3, 5–14] 

some of which have indeed daisy chained interconnects 

of different lengths to increase the efficiency of the 

experiment. The purpose of this paper is to analyse that 

work using what might be described as standard theory 

for Electromigration [1]. 

Failure in copper interconnect begins with the 

nucleation of a void which is generally assumed to 

occur relatively quickly, although copper reservoirs and 

a variety of other techniques can slow this process 

down. For present purposes we shall assume that the 

voiding occurs at the cathode via [15]. Although there 

is much evidence that in a significant number of cases 

nucleation occurs several microns from the via, to 

which the void then drifts, such transient issues are 

unimportant here as it is asymptotic failure which is of 

interest.  

Once the void is nucleated, the tensile stress at its 

free surface collapses, creating stress gradients close by 

which temporarily reinforce rather than oppose the EM 

force, sweeping neighbouring vacancies in the void 

[16]. After a period of initial relatively fast growth 

driven by this release of strain energy, the stress 

gradient force gradually dies out leaving only the EM 

wind force, which is independent of line length L [16]. 

The void then undergoes a period of reasonably 

constant growth. 

For a line of length just below LB, the growth rate 

will gradually decrease, as the stress gradient is re-

established, until a new steady–state obtained. At L = 

LB, just as the steady–state is set up, either the void 

volume, or the compressive anode stress, will reach the 

the critical void volume Vcr, or the rupture threshold 

rup, asymptotically [1,2].  

The atomic drift velocity vdrift, from Blech [4], is  
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where Da is the atomic diffusivity, Z* the effective 

valence,  the copper resistivity, j the applied current 

density,  the atomic volume, kT the thermal energy 

and  the tensile stress, (it will also be useful later to 

define the parameter G = Z*qj/). Averaging over the 

line length L, and setting (t) = C(t )–A(t) to be the 

stress drop along the line, then gives  
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For an unpassivated line, the steady–state occurs when 

the cathode and anode reach their final values and, in 

general, 0)( tvdrift .  

 This case, which is valid for unpassivated lines [4], 

has also been used consistently in the case of passivated 

lines [3, 5–14]. In passivated lines, unless the anode is 

steadily leaking copper into the surrounding dielectric 

stack, the steady–state occurs only when 0driftv . 

From eqn (1), this corresponds to SS(x) = 0–Gx 

where the constant 0 depends upon the line boundary 

conditions, Fig (1).  

 In references [3,5–14] it is assumed that a rupture 

pins the anode stress at rup. Should that happen the 

void will continue to grow until the flux leaking into the 

dielectric stack can be brought to a halt; this can only 



 
Fig. 1.  The steady–state stress distribution for a line with a 

rupture, if the anode stress is pinned at rup. 

 

happen when the line length from the anode edge of the 

void to the anode is|rup|/G, as shown in Fig. (1). If the 

line is not to fail, the void must also be less that the 

critical length Lvoid = Vcr/A, where A is the line cross–

sectional area, and consequently the Blech length would 

becomes LB  = |rup|/G + Lvoid.  |rup|/G, i.e. the rupture 

threshold. If lines are rupturing, this indicates that this 

should be used to define the Blech length. 

In references [11, 13, 14] only void growth is 

considered, although a critical value of the jL product 

(implying nucleation or rupture) is sought rather than 

jL
2
, which is relevant to void growth [2]. References 

[5–8] define a probability of line failure, after the line 

ruptures and in the passivated case, as the ratio of two 

non–zero steady–state drift velocities, 
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where the braces indicate the dependence of driftv
 
on 

the current density j and line length L, LM is the longest 

line in the sample and C is a constant. Other authors [3, 

9–14] associate the median time to failure MTTF with 
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The implications of eqns (3) or (4) are that the failure 

time is dominated by the time after a rupture, as it is 

only then when 0driftv is possible at steady–state, and 

further that the rupture occurs in the manner of a 

controlled overflow of atoms into the dielectric stack, 

leading to driftv = constant, rather than as an 

unpredictable breach. A line that ruptures with a non–

zero steady–state velocity driftv must eventually fail, and 

for such lines the rupture condition must then determine 

the critical length. If the rupture pins the stress at the 

anode to a value lower than the rupture threshold |A|  

|rup|, then the void growth rate will simply decrease the 

failure time compared to a more robust line.  

The motivation behind eqns (3) and (4) is the 

assumption that the steady–state stress is created very 

quickly (which would also include the rupture at the 

anode), and following which the void grows according 

to eqn (2). This seems difficult to justify as it is also eqn 

(2) that is responsible for the atomic transport which 

sets up that steady–state. The original experimental 

results, on which this assumption is based, come from 

the work of Hu et al. [18–20 and references therein]. 

That work, however, refers to Al(Cu) interconnect 

which is generally characterised rather differently: by a 

long nucleation period and a shorter growth period, (n 

~ 2 in the Black equation). In addition the steady–state 

so described relates to the migration of the Cu solute 

[18], prior to aluminium migration, and on the impact 

of the resulting stress profile on the aluminium drift. 

The activation energy for Cu diffusion in the Al(Cu) 

grain boundary network is considerably smaller that for 

the Cu–nitride interface [21, 22], consequently the time 

for the steady–state Cu profile to develop in Al(Cu) 

cannot be assumed to be representative of events in DD 

Cu. The analysis given in refs [18–20] is also only 

relevant to long interconnects [20], and consequently is 

unsuitable for analysis of the short length effect.    

Within the current picture, any variation between 

samples in the void growth rate just after their 

nucleation is determined not by the length, but rather by 

variations in the EM part of the drift velocity 

),( txvdrift , i.e., essentially by variations between 

samples of the product Z*Da. Thus potentially this 

variation is caused by the same mechanism that causes 

variations in interconnect failure times. For lines close 

to the Blech length, the anode stress affects the growth 

rate, which will eventually drop to zero if the line does 

not fail first. For very long lines, however, the anode 

will have little impact and the void will grow large 

enough to cause failure. For large L, the growth rate is 

roughly constant, due to the roughly constant EM wind 

force, thus 
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The distribution of tf is then dependent on the 

distributions of both the volume of copper moved Vcr 

and on the effective line diffusivity. In references [3, 5–

14], and in most analysis Vcr is assumed fixed which for 



now we do also. Bu contrast in lines close to LB, it is 

clearly vital to also include the effects of the anode 

stress, which we do now.    

 

2. Interpreting Blech length data  

 

2.1. Nucleation/rupture experiments
5-8

 (jL)cr 

 

 Using a simple, one–dimensional linearised version 

of the stress evolution model (SEM) of Korhonen et al. 

[1], failure occurs when [e.g. 17]  
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which also defines the function g() in an obvious 

manner.  is an effective diffusivity given by  = 

BDaI/hkT for bulk modulus B, interface thickness I 

and line height h. The critical value (jL)cr is given by 

cr/Z*q and independent of . When jL  (jL)cr it 

is clear that tf, as expected. In terms of the 

dimensionless parameter r = (jL)cr/jL, the failure time is  
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where  = g
-1

(r) is the inverse function of r = g(). 

Note as, for fixed L, g
-1

(r)/r
2
 depends on j this is more 

complex than Black’s equation. Since some of the 

rupture times are expected to be very long, some will 

be scheduled after the experiment has finished (at t = 

tex), whatever the value of tex. Such line lengths L will 

appear to be in a grey area; some mortal, some 

appearing immortal. The probability of immortality, 

within the lifetime of the experiment, which is sought 

by eqn (3), is then simply P(j, L) = Pr{tf > tex} or 

equivalently Pr{ < (jL)cr
2
g

-1
(r)/j

2
r

2
tex}, from eqn (7). If 

the effective diffusivity values  are distributed with a 

Cumulative Distribution Function (cdf) F() we obtain 
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P(j,L) now gives an important measure of the 

diffusivity cdf, as in Fig. 2. For lognormal Da, and 

hence  values (consistent with lognormal failure times 

in eqns (5) and (7)), with a median value of 50 and 

lognormal standard deviation SD, eqn (8) becomes 
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2.2. Growth time experiments 
9–14 

(jL
2
)

  

 

 The growth of a void, again using the SEM 

 

Fig. 2.  Lognormal fit to data from ref [7,8]. 

equation of Korhonen et al. [1], follows the expression 

of He et al. [2], and failure occurs under the condition 
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where (jL
2
)g = 2BVcr /Z*qA is also independent of 

. This leads to failure time (again more complex than 

Black’s) of  
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where s is the dimensionless parameter  (jL
2
)g/jL

2
, and  

= h
-1

(s) is the inverse function of s = h(). If rupture is 

unlikely then, eqn (11) rather than eqn (7) should be 

used to fit the data in Fig. (2). In this case P(j,L) is  
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References [3,9–14] also consider the dependence 

of L/MTTF on jL. If Da is lognormally distributed, eqns 

(7) and (11) imply that both tf and L/tf will also be so. 

Then from eqn (11) the median time to failure MTTF is 
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since s is independent of . These authors also find an 

increasing value of the lognormal standard deviation for 

shorter lines. However, from say eqn (11),  
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Clearly, from eqn (14), the effect of changing either j or 

L does not change SD. A growing number of recent 

results, relating to in–line nucleation, void drift and 

extrusion occurrence, appear to show that accounting  

 
Fig. 3.  Estimating Lcr using data from ref [11]. 

 
Fig. 4.  Fitting L2/Dtf to a linear function of  j/jcr 

 

for variations in Da with individual grain orientations, is 

necessary to interpret EM effects [17]. Consequently, 

short lines with fewer grains will have a wider variation. 

In other words, the analysis above should probably 

include intra–grain variations in Da. This may then 

explain the increase in the variation SD as L decreases. 

   

3. Results 

 

 Using eqns (8) and (12), it is now a simple matter 

to reinterpret the results of references [3, 5–14]. 

  

3.1. Nucleation/Rupture time experiments 
5–8 

 (jL) 

 

 Fig. (2) shows a comparison of results taken from 

references [7, 8] with theoretical results from eqn (9). 

The distribution of Da values is assumed to be 

lognormal with a median value Da50 and a lognormal 

deviation SD. The fit corresponds to SD = 0.7 and 

50tex/Lcr
2
 = 0.2. As tex was 45 days in the experiment, 

and Lcr ~ 110 m [7,8], i.e. 50 ~ 9.3  10
-16

 m
2
/s. If 

B/kT ~ 40 [17] this gives a median effective atomic 

diffusivity of Deff,50 = IDa50/h = 2.33  10
-17 

m
3
s

-1
. 

 The log-deviation SD of Deff values is rather large 

compared to that quoted (0.45) for the failure time of 

the multi–interconnect structures in [7,8]; however the 

median Diffusivity value Deff,50 itself is quite reasonable 

[e.g. 23]. In addition a second failure mode is quoted in 

[7,8] with a SD value of 0.2 which acts to broaden the 

distribution, while here a single mode is assumed.  

 

3.1. Growth time experiments 
10–14

 (jL
2
) 

 

 The relationship between L/MTTF and jL indicated 

by eqn (13) is now compared with the fixed length 

experimental observations of [11], Fig. (3). Close to jcr 

only one term in the sum in eqn (11) is required so,

 

 

                  















cr

f

jj

j
logL

D
~

t

L

3

2

32
4               (15)

 

With L = 50 m and T = 300 K, as in [11], eqn (15) 

estimates a critical current density of 1.5810
6
 Acm

-2
, 

while fitting eqn (4) produces a value of jcrL = 6319 

Acm
-1

 (or jcr = 1.26  10
6
 Acm

-2
) thus underestimating 

jcr by 25%. The result in [11] should probably, in any 

case, be presented as a critical jL
2
 rather than critical jL.  

 Fig. (4) compares L
2
/Dtf from eqn (15) (solid curve 

and squares to provide ‘data’ points) as a function of 

j/jcr together with 0.85*(j/jcr–0.3) (dashed curve) and 

1.05(j/jcr–2/3) (dot–dashed curve). Fitting to large 

currents, underestimates the critical current by 70% 

while fitting to currents close to jcr still underestimates 

jcr by around 33%. This gives a useful comparison of 

the analysis in ref [12] which uses eqn (4) 

with driftv from eqn (2) to obtain a plot of 1/tf against j. 

Fig. 4 suggests such fits of 1/failure-time to the current 

may lead to a critical current in error by 25% or over.  

 The lognormal standard SD deviation should not 

depend on (j–jcr), eqn (14) as L decreases towards LB. 

An increase in SD as j approaches jcr can be argued, 

but requires the development of the model with intra-

line diffusivities – a shorter line averages over a smaller 

number of grains. 

 

4. Conclusions 

 

 The purpose of this paper has been two fold. The 



first is to investigate some potential misuses (eqns (3) 

and (4)) that are common in the analysis of critical 

length data. Such analysis requires the stress to rapidly 

reach a steady–state, and for the line to rupture, before 

the void starts to grow. The experimental support on 

which it is based relates to a rather different situation in 

Al(Cu) in which copper diffusion reaches a steady–state 

before the aluminium migration begins [18, 19].  

The second purpose is to provide some analysis of 

short length data in DD Cu interconnect. The definition 

of LB pivots on the approach to the steady–state stress 

within the interconnect. If the critical void size/rupture 

stress is reached before the steady–state is able to stop 

the atomic migration, the line will fail. Any line that 

ruptures will eventually fail as the stress gradient which 

would prevent void growth is relieved during the 

rupture. In copper it is generally believed that voids 

nucleate relatively quickly (n = 1 in the Black equation 

and this is borne out by most simulations e.g. [17 and 

references therein]. Close to LB, the steady–state is 

reached exponentially slowly. It is the approach to the 

critical rupture stress/void size that is important in 

defining an immortal line, and hence LB, and not the 

steady–state velocity of the void front afterwards (as in 

[5–8]. In addition an alternative analysis of the existing 

short length data can bring important information about 

failures and this may be used to corroborate EM 

models. For example, in this case, the probability of 

mortality within the time limit of the experiment is used 

to extract information on the cdf of the atomic 

diffusivity values. Finally, this work supports recent 

analysis which suggests that the variation of Da values 

between grains is important to all EM analysis [e.g. 17]. 
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