10 research outputs found

    Pulse Active Transform (PAT): A non-invertible transformation with application to ECG biometric authentication

    Get PDF
    This paper presents a new transformation technique called the Pulse Active transform (PAT). The PAT uses a series of harmonically related periodic triangular waveforms to decompose a signal into a finite set of pulse active features. These features incorporate the signal's information in the pulse active domain, and which are subsequently processed for some desired application. PAT is non-invertible thus ensuring complete security of the original signal source. In this paper PAT is demonstrated on an ECG signal and used for biometric authentication. The new transformation technique is tested on 112 PTB subjects. It is shown in this paper that the new transformation has a superior performance compared to the conventional characteristic based feature extraction methods with additional security to avoid recovery of the original ECG

    Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography

    Get PDF
    This paper performs a thorough security analysis of a chaotic image encryption algorithm based on autoblocking and electrocardiography from the view point of modern cryptography. The algorithm uses electrocardiography (ECG) signals to generate the initial key for a chaotic system and applies an autoblocking method to divide a plain image into blocks of certain sizes suitable for subsequent encryption. The designers claimed that the proposed algorithm is “strong and flexible enough for practical applications”. We find it is vulnerable to the known plaintext attack: based on one pair of a known plain-image and its corresponding cipher-image, an adversary is able to derive a mask image, which can be used as an equivalent secret key to successfully decrypt other cipher images encrypted under the same key with a non-negligible probability of 1/256. Using this as a typical counterexample, we summarize some security defects existing in many image encryption algorithms

    Review of state-of-the-art wireless technologies and applications in smart cities

    Get PDF
    There are increasing preferences to employ wireless communication technologies for high mobility, high scalability and low-cost applications in smart city development. This paper gives a brief synopsis of typical wireless technologies in smart city applications and the comparison analysis between them. The trend for smart city wireless technology is also presented. Examples, for several key applications within smart city development (healthcare, smart grid, localization) are studied and current advanced solutions supporting these applications are summarized with futuristic trends and demands are presented

    System-on-Chip Solution for Patients Biometric: A Compressive Sensing-Based Approach

    Get PDF
    IEEE The ever-increasing demand for biometric solutions for the internet of thing (IoT)-based connected health applications is mainly driven by the need to tackle fraud issues, along with the imperative to improve patient privacy, safety and personalized medical assistance. However, the advantages offered by the IoT platforms come with the burden of big data and its associated challenges in terms of computing complexity, bandwidth availability and power consumption. This paper proposes a solution to tackle both privacy issues and big data transmission by incorporating the theory of compressive sensing (CS) and a simple, yet, efficient identification mechanism using the electrocardiogram (ECG) signal as a biometric trait. Moreover, the paper presents the hardware implementation of the proposed solution on a system on chip (SoC) platform with an optimized architecture to further reduce hardware resource usage. First, we investigate the feasibility of compressing the ECG data while maintaining a high identification quality. The obtained results show a 98.88% identification rate using only a compression ratio of 30%. Furthermore, the proposed system has been implemented on a Zynq SoC using heterogeneous software/hardware solution, which is able to accelerate the software implementation by a factor of 7.73 with a power consumption of 2.318 W

    ECG Biometric Authentication: A Comparative Analysis

    Get PDF
    Robust authentication and identification methods become an indispensable urgent task to protect the integrity of the devices and the sensitive data. Passwords have provided access control and authentication, but have shown their inherent vulnerabilities. The speed and convenience factor are what makes biometrics the ideal authentication solution as they could have a low probability of circumvention. To overcome the limitations of the traditional biometric systems, electrocardiogram (ECG) has received the most attention from the biometrics community due to the highly individualized nature of the ECG signals and the fact that they are ubiquitous and difficult to counterfeit. However, one of the main challenges in ECG-based biometric development is the lack of large ECG databases. In this paper, we contribute to creating a new large gallery off-the-person ECG datasets that can provide new opportunities for the ECG biometric research community. We explore the impact of filtering type, segmentation, feature extraction, and health status on ECG biometric by using the evaluation metrics. Our results have shown that our ECG biometric authentication outperforms existing methods lacking the ability to efficiently extract features, filtering, segmentation, and matching. This is evident by obtaining 100% accuracy for PTB, MIT-BHI, CEBSDB, CYBHI, ECG-ID, and in-house ECG-BG database in spite of noisy, unhealthy ECG signals while performing five-fold cross-validation. In addition, an average of 2.11% EER among 1,694 subjects is obtained

    Individual identification via electrocardiogram analysis

    Get PDF
    Background: During last decade the use of ECG recordings in biometric recognition studies has increased. ECG characteristics made it suitable for subject identification: it is unique, present in all living individuals, and hard to forge. However, in spite of the great number of approaches found in literature, no agreement exists on the most appropriate methodology. This study aimed at providing a survey of the techniques used so far in ECG-based human identification. Specifically, a pattern recognition perspective is here proposed providing a unifying framework to appreciate previous studies and, hopefully, guide future research. Methods: We searched for papers on the subject from the earliest available date using relevant electronic databases (Medline, IEEEXplore, Scopus, and Web of Knowledge). The following terms were used in different combinations: electrocardiogram, ECG, human identification, biometric, authentication and individual variability. The electronic sources were last searched on 1st March 2015. In our selection we included published research on peer-reviewed journals, books chapters and conferences proceedings. The search was performed for English language documents. Results: 100 pertinent papers were found. Number of subjects involved in the journal studies ranges from 10 to 502, age from 16 to 86, male and female subjects are generally present. Number of analysed leads varies as well as the recording conditions. Identification performance differs widely as well as verification rate. Many studies refer to publicly available databases (Physionet ECG databases repository) while others rely on proprietary recordings making difficult them to compare. As a measure of overall accuracy we computed a weighted average of the identification rate and equal error rate in authentication scenarios. Identification rate resulted equal to 94.95 % while the equal error rate equal to 0.92 %. Conclusions: Biometric recognition is a mature field of research. Nevertheless, the use of physiological signals features, such as the ECG traits, needs further improvements. ECG features have the potential to be used in daily activities such as access control and patient handling as well as in wearable electronics applications. However, some barriers still limit its growth. Further analysis should be addressed on the use of single lead recordings and the study of features which are not dependent on the recording sites (e.g. fingers, hand palms). Moreover, it is expected that new techniques will be developed using fiducials and non-fiducial based features in order to catch the best of both approaches. ECG recognition in pathological subjects is also worth of additional investigations

    Video-analysis inference automated ECG (VID-ECG): improving video-based heart rate detection and exposing security risks of ECG-based biometric authentication

    Get PDF
    Many recent biometric authentication methods using heart signals in the form of ECG and its components have been proposed to be used as a unique security key for body area networks (BANs) to authenticate individuals and protect privacy and network security. In this thesis we show how compo- nents of information on cardiac activity, heart rate and beat-to-beat heart pulse information can be extracted easily using our video-based non-contact method and expose the vulnerability of such biometric security protocols. We propose a novel method called Video-analysis Inference Automated ECG (VID-ECG) for pulse extraction by facial video processing. Our al- gorithm combines facial region tracking, motion stabilization, filtering and heart beat information extraction methods to allow automated extraction of each pulse from subject facial videos. VID-ECG results show a high level of accuracy and, unlike related methods in this area, VID-ECG does automatic extraction without knowledge of any frequency range. It is also able to han- dle natural motion in subjects. We applied VID-ECG on a wide range of subjects with varied skin tones, and found accuracy to be high, with more than 0.9 cross-correlation with ground truth and error less than 0.085% of average heart rate for each sample. Results have also been compared with a previously proposed video based method for heart rate extraction, and ac- curacy and beat-to-beat correspondence have been shown to be significantly improved, mainly due to the more realistic filtering used and improved mo- tion handling features of VID-ECG. As we are able to obtain many components of cardiac activity such as average heart rate information and close to real-time beat-to-beat informa- tion, we discuss the implication of our results and how VID-ECG exposes the vulnerability of ECG/cardiac data based biometric authentication meth- ods to remote attack using easily obtainable video data from omnipresent commodity cameras around us today in public and private spaces

    Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Full text link

    Electrocardiogram (ECG) biometric authentication using pulse active ratio (PAR)

    No full text
    This paper presents a new feature extraction method known as Pulse Active Ratio (PAR) implemented on electrocardiograph (ECG) signals for biometric authentication. This method is developed based on a simple amplitude comparison between two signals to extract a feature. A total of 486 ECGs from 113 subjects taken from the Physikalisch-Technische Bundesanstalt (PTB) database are used in this study. Biometric performance profile such as the area under ROC (AUR) and equal error rate (EER) are then used to evaluate the results. It is shown in this study that PAR outperformed conventional temporal feature extraction techniques

    Identifying Humans by the Shape of Their Heartbeats and Materials by Their X-Ray Scattering Profiles

    Get PDF
    Security needs at access control points presents itself in the form of human identification and/or material identification. The field of Biometrics deals with the problem of identifying individuals based on the signal measured from them. One approach to material identification involves matching their x-ray scattering profiles with a database of known materials. Classical biometric traits such as fingerprints, facial images, speech, iris and retinal scans are plagued by potential circumvention they could be copied and later used by an impostor. To address this problem, other bodily traits such as the electrical signal acquired from the brain (electroencephalogram) or the heart (electrocardiogram) and the mechanical signals acquired from the heart (heart sound, laser Doppler vibrometry measures of the carotid pulse) have been investigated. These signals depend on the physiology of the body, and require the individual to be alive and present during acquisition, potentially overcoming circumvention. We investigate the use of the electrocardiogram (ECG) and carotid laser Doppler vibrometry (LDV) signal, both individually and in unison, for biometric identity recognition. A parametric modeling approach to system design is employed, where the system parameters are estimated from training data. The estimated model is then validated using testing data. A typical identity recognition system can operate in either the authentication (verification) or identification mode. The performance of the biometric identity recognition systems is evaluated using receiver operating characteristic (ROC) or detection error tradeoff (DET) curves, in the authentication mode, and cumulative match characteristic (CMC) curves, in the identification mode. The performance of the ECG- and LDV-based identity recognition systems is comparable, but is worse than those of classical biometric systems. Authentication performance below 1% equal error rate (EER) can be attained when the training and testing data are obtained from a single measurement session. When the training and testing data are obtained from different measurement sessions, allowing for a potential short-term or long-term change in the physiology, the authentication EER performance degrades to about 6 to 7%. Leveraging both the electrical (ECG) and mechanical (LDV) aspects of the heart, we obtain a performance gain of over 50%, relative to each individual ECG-based or LDV-based identity recognition system, bringing us closer to the performance of classical biometrics, with the added advantage of anti-circumvention. We consider the problem of designing combined x-ray attenuation and scatter systems and the algorithms to reconstruct images from the systems. As is the case within a computational imaging framework, we tackle the problem by taking a joint system and algorithm design approach. Accurate modeling of the attenuation of incident and scattered photons within a scatter imaging setup will ultimately lead to more accurate estimates of the scatter densities of an illuminated object. Such scattering densities can then be used in material classification. In x-ray scatter imaging, tomographic measurements of the forward scatter distribution are used to infer scatter densities within a volume. A mask placed between the object and the detector array provides information about scatter angles. An efficient computational implementation of the forward and backward model facilitates iterative algorithms based upon a Poisson log-likelihood. The design of the scatter imaging system influences the algorithmic choices we make. In turn, the need for efficient algorithms guides the system design. We begin by analyzing an x-ray scatter system fitted with a fanbeam source distribution and flat-panel energy-integrating detectors. Efficient algorithms for reconstructing object scatter densities from scatter measurements made on this system are developed. Building on the fanbeam source, energy-integrating at-panel detection model, we develop a pencil beam model and an energy-sensitive detection model. The scatter forward models and reconstruction algorithms are validated on simulated, Monte Carlo, and real data. We describe a prototype x-ray attenuation scanner, co-registered with the scatter system, which was built to provide complementary attenuation information to the scatter reconstruction and present results of applying alternating minimization reconstruction algorithms on measurements from the scanner
    corecore