418 research outputs found

    Integration of Emission-wavelength-controlled InAs Quantum Dots for Ultrabroadband Near-infrared Light Source

    Get PDF
    Near-infrared (NIR) light sources are widely utilized in biological and medical imaging systems owing to their long penetration depth in living tissues. In a recently developed biomedical non-invasive cross-sectional imaging system, called optical coherence tomography (OCT), a broadband spectrum is also required, because OCT is based on low coherence interferometry. To meet these operational requirements, we have developed a NIR broadband light source by integrating self-assembled InAs quantum dots (QDs) grown on a GaAs substrate (InAs/GaAs QDs) with different emission wavelengths. In this review, we introduce the developed light sources and QD growth techniques that are used to control the emission wavelength for broadband emission spectra with center wavelengths of 1.05 and 1.3 μm. Although the strain-induced Stranski-Krastanov (S-K) mode-grown InAs/GaAs QDs normally emit light at a wavelength of around 1.2 μm, the central emission wavelength can be controlled to be between 0.9–1.4 μm by the use of an In-flush technique, the insertion of a strain-reducing layer (SRL) and bi-layer QD growth techniques. These techniques are useful for applying InAs/GaAs QDs as NIR broadband light sources and are especially suitable for our proposed spectral-shape-controllable broadband NIR light source. The potential of this light source for improving the performance of OCT systems is discussed

    Hybrid integration methods for on-chip quantum photonics

    Get PDF
    The goal of integrated quantum photonics is to combine components for the generation, manipulation, and detection of nonclassical light in a phase-stable and efficient platform. Solid-state quantum emitters have recently reached outstanding performance as single-photon sources. In parallel, photonic integrated circuits have been advanced to the point that thousands of components can be controlled on a chip with high efficiency and phase stability. Consequently, researchers are now beginning to combine these leading quantum emitters and photonic integrated circuit platforms to realize the best properties of each technology. In this paper, we review recent advances in integrated quantum photonics based on such hybrid systems. Although hybrid integration solves many limitations of individual platforms, it also introduces new challenges that arise from interfacing different materials. We review various issues in solid-state quantum emitters and photonic integrated circuits, the hybrid integration techniques that bridge these two systems, and methods for chip-based manipulation of photons and emitters. Finally, we discuss the remaining challenges and future prospects of on-chip quantum photonics with integrated quantum emitters. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Quantum dots for photonic quantum information technology

    Full text link
    The generation, manipulation, storage, and detection of single photons play a central role in emerging photonic quantum information technology. Individual photons serve as flying qubits and transmit the quantum information at high speed and with low losses, for example between individual nodes of quantum networks. Due to the laws of quantum mechanics, quantum communication is fundamentally tap-proof, which explains the enormous interest in this modern information technology. On the other hand, stationary qubits or photonic states in quantum computers can potentially lead to enormous increases in performance through parallel data processing, to outperform classical computers in specific tasks when quantum advantage is achieved. Here, we discuss in depth the great potential of quantum dots (QDs) in photonic quantum information technology. In this context, QDs form a key resource for the implementation of quantum communication networks and photonic quantum computers because they can generate single photons on-demand. Moreover, QDs are compatible with the mature semiconductor technology, so that they can be integrated comparatively easily into nanophotonic structures, which form the basis for quantum light sources and integrated photonic quantum circuits. After a thematic introduction, we present modern numerical methods and theoretical approaches to device design and the physical description of quantum dot devices. We then present modern methods and technical solutions for the epitaxial growth and for the deterministic nanoprocessing of quantum devices based on QDs. Furthermore, we present the most promising concepts for quantum light sources and photonic quantum circuits that include single QDs as active elements and discuss applications of these novel devices in photonic quantum information technology. We close with an overview of open issues and an outlook on future developments.Comment: Copyright 2023 Optica Publishing Group. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibite

    Development of high-performance quantum dot mode-locked optical frequency comb

    Get PDF
    This PhD thesis focus on the development of high-performance optical frequency combs (OFCs) generated by two-section passively mode-locked lasers (MLLs) based on novel optimised InAs quantum dot (QD) structures grown on GaAs substrates. Throughout the thesis, several important aspects are covered: the epitaxial structures, the device designs, the fabrication process, the characterisation of the fabricated laser devices and the evaluation of their performance. To gain a deep level comprehension of the mode-locking mechanisms in two-section QD MLLs, a detailed study is presented on a series of QD MLLs with different saturable absorber (SA) to gain section length ratios (from 1: 3 to 1: 7) in either ridged-waveguide structure or tapered waveguide structure. The effect of temperature on different device configurations is experimentally examined. And the data transmission capability of the QD MLLs is systematically investigated in different scenarios. In this thesis, an ultra-stable 25.5 GHz QD mode-locked OFC source emitted solely from the QD ground state from 20 °C to a world record 120 °C with only 0.07 GHz tone spacing variation has been demonstrated. Meanwhile, a passively QD MLL with 100 GHz fundamental repetition rate is developed for the first time, enabling 128 Gbit s−1 λ−1 PAM4 optical transmission and 64 Gbit s−1 λ−1 NRZ optical transmission through 5-km SSMF and 2-m free-space, respectively. All of the studies aim to prove that our two-section passively InAs QD MLLs can be used as simple, compact, easy-to-operate, and power-efficient multi-wavelength OFC sources for future high-speed and large-capacity optical communications

    CMOS Integration of High Performance Quantum Dot Lasers For Silicon Photonics

    Get PDF
    Integration of III-V components on Si substrates is required for realizing the promise of Silicon Photonic systems. Specifically, the direct bandgap of many III-V materials is required for light sources, efficient modulators and photodetectors. Several different approaches have been taken to integrate III-V lasers into the silicon photonic platform, such as wafer bonding, direct growth, butt coupling, etc. Here, we have devised a novel laser design that overcomes the above limitations. In our approach, we use InAs quantum dot (QD) lasers monolithically integrated with silicon waveguides and other Si photonic passive components. Due to their unique structures, the QD lasers have been proven by several groups to have the combination of high temperature stability, large modulation bandwidth and low power consumption compared with their quantum well counterparts, which makes it an ideal candidate for Si photonic applications. The first section of this dissertation introduces the theory and novelty of QD lasers, the DC and RF characterization methods of QD lasers are also discussed. The second section is focused on the growth of QD gain chip which a broadband gain chip based on QD inhomogeneous broadening properties was demonstrated. In third section, the lasers devices are built on Si substrate by Pd wafer bonding technology. Firstly, a ridge waveguide QD laser is demonstrated in this section which have better heat dissipation and lower threshold current compared to the unbonded lasers. In section four, a on Si comb laser is also developed. Due to inhomogeneous broadening and ultrafast carrier dynamics, InAs quantum dots have key advantages that make them well suited for Mode-locked lasers (MLLs). In section five, a passively mode-locked InAs quantum dots laser on Si is achieved at a repetition rate of ~7.3 GHz under appropriate bias conditions. In section six, a butt-joint integration configuration based on QD lasers and silicon photonics ring resonator is tested by using to translation stage. In order to achieve the on chip butt-joint integration, an on chip laser facet was created in section seven. A novel facet etching method is developed by using Br-ion beam assist etching (Br-IBAE). In section eight, a Pd-GaAs butt-joint integration platform was proposed, a hybrid tunable QD laser which consist of a QD SOA gain chip butt joint coupled with a passive Si3N4 photonic integrated circuit is proof of concept by using an external booster SOA coupled with a Si3N4 ring reflector feedback circuit. The final section summarized the work discussed in this thesis and also discussed some future approaches by using QD lasers integrated with silicon photonics integrated circuits based on the Pd-GaAs wafer bonding butt-joint coupled platform
    corecore