5,257 research outputs found

    Thermal coupling in ICs: aplications to the test and characterization of analogue and RF circuits

    Get PDF
    In this presentation we cover how to use low frequency or DC temperature measurements to observe figures of merit of high frequency analogue circuits.Postprint (published version

    Electro-thermal coupling analysis methodology for RF circuits

    Get PDF
    In this paper we present an electro-thermal coupling simulation technique for RF circuits. The proposed methodology takes advantage of well established tools for frequency translating circuits in order to significantly reduce the computational resources needed when frequencies of interest are separated by orders of magnitude.Postprint (published version

    On the design and characterization of femtoampere current-mode circuits

    Get PDF
    In this paper, we show and validate a reliable circuit design technique based on source voltage shifting for current-mode signal processing down to femtoamperes. The technique involves specific-current extractors and logarithmic current splitters for obtaining on-chip subpicoampere currents. It also uses a special on-chip sawtooth oscillator to monitor and measure currents down to a few femtoamperes. This way, subpicoampere currents are characterized without driving them off chip and requiring expensive instrumentation with complicated low leakage setups. A special current mirror is also introduced for reliably replicating such low currents. As an example, a simple log-domain first-order low-pass filter is Implemented that uses a 100-fF capacitor and a 3.5-fA bias current to achieve a cutoff frequency of 0.5 Hz. A technique for characterizing noise at these currents is also described and verified. Finally, transistor mismatch measurements are provided and discussed. Experimental measurements are shown throughout the paper, obtained from prototypes fabricated in the AMS 0.35-μm three-metal two-poly standard CMOS process.Ministerio de Ciencia y Tecnología TIC-1999-0446-C02-02, FIT-070000-2001-0859, TIC-2000-0406-P4-05, TIC-2002-10878-EEuropean Union IST-2001-3412

    Wideband Fully-Programmable Dual-Mode CMOS Analogue Front-End for Electrical Impedance Spectroscopy

    Get PDF
    This paper presents a multi-channel dual-mode CMOS analogue front-end (AFE) for electrochemical and bioimpedance analysis. Current-mode and voltage-mode readouts, integrated on the same chip, can provide an adaptable platform to correlate single-cell biosensor studies with large-scale tissue or organ analysis for real-time cancer detection, imaging and characterization. The chip, implemented in a 180-nm CMOS technology, combines two current-readout (CR) channels and four voltage-readout (VR) channels suitable for both bipolar and tetrapolar electrical impedance spectroscopy (EIS) analysis. Each VR channel occupies an area of 0.48 mm 2 , is capable of an operational bandwidth of 8 MHz and a linear gain in the range between -6 dB and 42 dB. The gain of the CR channel can be set to 10 kΩ, 50 kΩ or 100 kΩ and is capable of 80-dB dynamic range, with a very linear response for input currents between 10 nA and 100 μ A. Each CR channel occupies an area of 0.21 mm 2 . The chip consumes between 530 μ A and 690 μ A per channel and operates from a 1.8-V supply. The chip was used to measure the impedance of capacitive interdigitated electrodes in saline solution. Measurements show close matching with results obtained using a commercial impedance analyser. The chip will be part of a fully flexible and configurable fully-integrated dual-mode EIS system for impedance sensors and bioimpedance analysis

    MOSFET dynamic thermal sensor for IC testing applications

    Get PDF
    This paper analyses how a single metal-oxide-semiconductor field-effect transistor (MOSFET) can be employed as a thermal sensor to measure on-chip dynamic thermal signals caused by a power-dissipating circuit under test (CUT). The measurement is subjected to two low-pass filters (LPF). The first LPF depends on the thermal properties of the heat-conduction medium (i.e. silicon) and the CUT-sensor distance, whereas the second depends on the electrical properties of the sensing circuit such as the bias current and the dimensions of the MOSFET sensor. This is evaluated along the paper through theoretical models, simulations, and experimental data resulting from a chip fabricated in 0.35 mu m CMOS technology. Finally, the proposed thermal sensor and the knowledge extracted from this paper are applied to estimate the linearity of a radio-frequency (RF) amplifier. (C) 2016 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author's final draft

    Circuit design in complementary organic technologies

    Get PDF

    Using temperature as observable of the frequency response of RF CMOS amplifiers

    Get PDF
    The power dissipated by the devices of an integrated circuit can be considered a signature of the circuit's performance. Without disturbing the circuit operation, this power consumption can be monitored by temperature measurements on the silicon surface. In this paper, the frequency response of a RF LNA is observed by measuring spectral components of the sensed temperature. Results prove that temperature can be used to debug and observe figures of merit of analog blocks in a RFIC. Experimental measurements have been done in a 0.25 mum CMOS process. Laser probing techniques have been used as temperature sensors; specifically, a thermoreflectometer and a Michaelson interferometer.Peer ReviewedPostprint (author's final draft

    Frequency characterization of a 2.4 GHz CMOS LNA by Thermal Measurements

    Get PDF
    © 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a technique to obtain electrical characteristics of analog and RF circuits, based on measuring temperature at the silicon surface close to the circuit under test. Experimental results validate the feasibility of the technique. Simulated results show how this technique can be used to measure the bandwidth and central frequency of a 2.4 GHz low noise amplifier (LNA) designed in a 0.35 microns standard CMOS technology.Peer ReviewedPostprint (published version
    corecore