144,704 research outputs found

    Electrical Power Industry

    Get PDF

    Electrical power generating system

    Get PDF
    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced

    Natural turbulence electrical power generator

    Get PDF
    An energy conversion apparatus is disclosed in which a stator, fixed to a watertight housing, is coupled to a rotor by a helical spring which suspends the rotor from the housing. Natural turbulence of a fluid, such as water or air, causes acceleration of the housing, and hence, acceleration of the stator. Inertia of the rotor, coupled to the stator through the helical spring and the housing, causes relative motion, both longitudinal and rotational, between the stator and the rotor. The rotational motion between the rotor, and the stator is used to generate electrical current

    Concept to convert electrical power

    Get PDF
    Moving fluid conductor transforms electrical power from one voltage to another. The electrically conductive fluid acts as a coupling medium between or among multiple electromagnetic fields producing the conversion

    Electrical power generating system

    Get PDF
    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation

    Survey of aircraft electrical power systems

    Get PDF
    Areas investigated include: (1) load analysis; (2) power distribution, conversion techniques and generation; (3) design criteria and performance capabilities of hydraulic and pneumatic systems; (4) system control and protection methods; (5) component and heat transfer systems cooling; and (6) electrical system reliability

    Efficient harmonic oscillator chain energy harvester driven by colored noise

    Full text link
    We study the performance of an electromechanical harmonic oscillator chain as an energy harvester to extract power from finite-bandwidth ambient random vibrations, which are modelled by colored noise. The proposed device is numerically simulated and its performance assessed by means of the net electrical power generated and its efficiency in converting the external noise-supplied power into electrical power. Our main result is a much enhanced performance, both in the net electrical power delivered and in efficiency, of the harmonic chain with respect to the popular single oscillator resonator. Our numerical findings are explained by means of an analytical approximation, in excellent agreement with numerics

    Electrical Power Working Group report

    Get PDF
    The status of and need for power technologies for Spacecraft 2000 were assessed and development programs required to establish an achievable and competitive technology base for spacecraft of the 21st century were identified. The results are summarized, including the recommendations and the underlying rationale

    Electrical power systems for Mars

    Get PDF
    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants

    Autonomously managed electrical power systems

    Get PDF
    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed
    corecore