10,565 research outputs found

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    Information standards to support application and enterprise interoperability for the smart grid

    Get PDF
    Copyright @ 2012 IEEE.Current changes in the European electricity industry are driven by regulatory directives to reduce greenhouse gas emissions, at the same time as replacing aged infrastructure and maintaining energy security. There is a wide acceptance of the requirement for smarter grids to support such changes and accommodate variable injections from renewable energy sources. However the design templates are still emerging to manage the level of information required to meet challenges such as balancing, planning and market dynamics under this new paradigm. While secure and scalable cloud computing architectures may contribute to supporting the informatics challenges of the smart grid, this paper focuses on the essential need for business alignment with standardised information models such as the IEC Common Information Model (CIM), to leverage data value and control system interoperability. In this paper we present details of use cases being considered by National Grid, the GB transmission system operator for information interoperability in pan-network system management and planning.This study is financially supported by the National Grid, UK

    Service Orientation and the Smart Grid state and trends

    Get PDF
    The energy market is undergoing major changes, the most notable of which is the transition from a hierarchical closed system toward a more open one highly based on a “smart” information-rich infrastructure. This transition calls for new information and communication technologies infrastructures and standards to support it. In this paper, we review the current state of affairs and the actual technologies with respect to such transition. Additionally, we highlight the contact points between the needs of the future grid and the advantages brought by service-oriented architectures.

    Smart grid interoperability use cases for extending electricity storage modeling within the IEC Common Information Model

    Get PDF
    Copyright @ 2012 IEEEThe IEC Common Information Model (CIM) is recognized as a core standard, supporting electricity transmission system interoperability. Packages of UML classes make up its domain ontology to enable a standardised abstraction of network topology and proprietary power system models. Since the early days of its design, the CIM has grown to reflect the widening scope and detail of utility information use cases as the desire to interoperate between a greater number of systems has increased. The cyber-physical nature of the smart grid places even greater demand upon the CIM to model future scenarios for power system operation and management that are starting to arise. Recent developments of modern electricity networks have begun to implement electricity storage (ES) technologies to provide ancillary balancing services, useful to grid integration of large-scale renewable energy systems. In response to this we investigate modeling of grid-scale electricity storage, by drawing on information use cases for future smart grid operational scenarios at National Grid, the GB Transmission System Operator. We find current structures within the CIM do not accommodate the informational requirements associated with novel ES systems and propose extensions to address this requirement.This study is supported by the UK National Grid and Brunel Universit

    A methodology for cooperation between electric utilities and consumers for microgrid utilization based on a systems engineering approach

    Get PDF
    In recent years, the energy market has experienced important challenges in its structure and requirements of its actors, such as the necessity for more reliable electric service, energy efficiency, environmental care practices, and the incorporation of decentralized power generation based on distributed energy resources (DER). Given this context, microgrids offer several advantages to the grid and its actors. However, few microgrid projects have been implemented, and the participation of electric utilities is lower than the expected. Hence, this research explores how electric utility - customer interactions can accommodate mutual benefits for both parties through the proposal of a Microgrid Reference Methodology (MRM) that guides the cooperation of these actors for future microgrid projects. For this research, an understanding of the microgrid system was imperative; hence, the interests and concerns of electric utilities and industrial customers were determined via questionnaires, interviews, and a literature review of specialized articles, books, and magazines. In addition, the MRM development was based on different frameworks and concepts from the fields of Systems Engineering, System of Systems, Management Science, and Infrastructure Architectures. The proposed MRM uses a four-level microgrid system in which the delta (business) level is added to the other three levels that are traditionally analyzed in microgrid design and modeling. The steps and processes necessary to determine the actors in the system and their interests, goals, criteria, and factors are exemplified with a generic case study, in which the proposed MRM evaluates the impact of different alternatives on the objectives of both parties. In addition, it was possible to identify external factors that can be influenced by other actors, such as regulators and government, to incentivize the implementation of microgrid projects
    corecore