
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

4-2016

A methodology for cooperation between electric
utilities and consumers for microgrid utilization
based on a systems engineering approach
Franklin E. Pacheco Chiguano
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Electrical and Computer Engineering Commons, and the Management Sciences and
Quantitative Methods Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Pacheco Chiguano, Franklin E., "A methodology for cooperation between electric utilities and consumers for microgrid utilization
based on a systems engineering approach" (2016). Open Access Theses. 805.
https://docs.lib.purdue.edu/open_access_theses/805

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/805?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form
30 Updated ����������

��	
�� ����	���
�	�
���� ������

�������
��������� ! �""�#��!"�

$%&' &' () *+,(&-. (%/( (%+ (%+'&'01&''+,(/(&)2 3,+3/,+1

4.

52(&(6+1

7), (%+ 1+8,++ )-

9' /33,):+1 ;. (%+ -&2/6 +</=&2&28 *)==&((++>

?@ ABC DCEA @F GH IJ@KLCMNC OJM OE PJMCQEA@@M DH ABC EAPMCJA RJ ABC ?BCERESTREECQAOAR@J
UNQCCGCJAV WPDLRXOAR@J TCLOHV OJM YCQARFRXOAR@J TREXLORGCQ Z[QOMPOAC \XB@@L ]@QG ^_`V
ABRE ABCERESMREECQAOAR@J OMBCQCE A@ ABC aQ@bRER@JE @F WPQMPC cJRbCQERAHdE eW@LRXH @F
fJACNQRAH RJ gCECOQXBh OJM ABC PEC @F X@aHQRNBA GOACQROLi

j33,):+1 ;. k/l), m,)-+''),n'o>

j33,):+1 ;.>

pqrs tu vwq xqyrzv{q|vr} ~zrs�rvq �zt�zr{ xrvq

�������� �� ������� ��������

� ���p�x���~� ��� ����������� ��� ��� �������� ¡�������¢ ��x ���¢¡���¢ ��� �����~��x
¡����£����� ��¢�x �� � ¢�¢���¢ ��~�������~ �������p

¤�¥¦�� �§ ¨������

©�ª�¥ �� ����ª��
«¬®¯

°�����ª ©� ±�¦²��

©�ª�¥ ³��¦²

©�ª�¥ �� ����ª��

³���� ³� ³����´ µ¶·¸¶¹º·»





i 
 

A METHODOLOGY FOR COOPERATION BETWEEN ELECTRIC UTILITIES AND 

CONSUMERS FOR MICROGRID UTILIZATION BASED ON A SYSTEMS 

ENGINEERING APPROACH 

A Thesis 

Submitted to the Faculty 

of 

Purdue University 

by 

Franklin E. Pacheco Chiguano  

In Partial Fulfillment of the 

Requirements for the Degree 

of 

Master of Science 

May 2016  

Purdue University 

West Lafayette, Indiana 

 



ii 
 

 

 

 

 

 

 

 

 

Para quienes siempre me apoyan y confían en mí, incluso más que yo mismo: mi familia 

actual y futura. 



iii 
 

ACKNOWLEDGEMENTS 

 

First, I would like to express my appreciations and gratitude to Professor Chris 

Foreman for his time, guidance, help, resources provided and patience during the 

development of this research. In the same way, my gratitude to Professors James Dietz, 

William Hutzel, and Henry Zhang for their advice and collaboration in different stages of 

this work. Without all their help this work would not have been possible. 

Finally, my gratitude to the Fulbright Program and Purdue University for the 

opportunity to study with a full scholarship. It was a great help in order to devote myself 

full time to my studies and the realization of this work. 

  

 

 



iv 

TABLE OF CONTENTS 

Page 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... viii 

LIST OF ABBREVIATIONS ............................................................................................. x 

GLOSSARY ...................................................................................................................... xi 

ABSTRACT ...................................................................................................................... xii 

CHAPTER 1. INTRODUCTION .................................................................................... 1 

1.1 Statement of the Problem ..................................................................................... 1 

1.2 Scope .................................................................................................................... 2 

1.3 Significance .......................................................................................................... 3 

1.4 Research Question ................................................................................................ 4 

1.5 Assumptions ......................................................................................................... 5 

1.6 Limitations ............................................................................................................ 6 

1.7 Delimitations ........................................................................................................ 6 

1.8 Chapter summary .................................................................................................. 7 

CHAPTER 2. REVIEW OF LITERATURE ................................................................... 8 

2.1 Introduction .......................................................................................................... 8 

2.2 What is a smart grid? ............................................................................................ 9 

2.3 What is a microgrid? .......................................................................................... 17 

2.4 Recent microgrid projects ................................................................................... 20 

2.5 Microgrid and Utility Interactions ...................................................................... 25 

2.6 Microgrids Decision Making and Optimization ................................................. 31 

2.7 Systems Thinking ............................................................................................... 33 

2.8 Systems Engineering .......................................................................................... 34 



v 

 

Page 

2.9 System of Systems .............................................................................................. 38 

2.10 ICT and Enterprise architecture ....................................................................... 43 

2.11 Modeling tools ................................................................................................. 47 

2.12 Chapter summary ............................................................................................. 51 

CHAPTER 3. RESEARCH METHODOLOGY ............................................................ 52 

3.1 Abstract ............................................................................................................... 52 

3.2 Qualitative framework or perspective ................................................................ 52 

3.3 Sample (type, number, and access) .................................................................... 52 

3.4 Data Sources ....................................................................................................... 53 

3.5 Data collection procedures ................................................................................. 53 

3.6 Data analysis strategy/procedure ........................................................................ 53 

3.7 Testing conditions and procedures ..................................................................... 54 

3.8 Threats to validity ............................................................................................... 54 

3.9 Chapter summary ................................................................................................ 55 

CHAPTER 4. MICROGRID REFERENCE METHODOLOGY .................................. 56 

4.1 Abstract ............................................................................................................... 56 

4.2 Introduction ........................................................................................................ 56 

4.3 Definition ............................................................................................................ 58 

4.4 Design ................................................................................................................. 67 

4.5 Chapter summary ................................................................................................ 71 

CHAPTER 5. CASE STUDY APPLICATION ............................................................. 73 

5.1 Abstract ............................................................................................................... 73 

5.2 Description of the case study .............................................................................. 73 

5.3 Definition ............................................................................................................ 77 

5.3.1 Problem demarcation and goal analysis ........................................................ 81 

5.3.2 Actor Analysis ............................................................................................... 85 

5.4 Design ................................................................................................................. 89 

5.5 Summary ............................................................................................................. 93 

 



vi 

 

Page 

CHAPTER 6. SUMMARY, CONCLUSIONS, AND RECOMENDATIONS ............. 94 

6.1 Abstract ............................................................................................................... 94 

6.2 Conclusions ........................................................................................................ 94 

6.3 Recommendations .............................................................................................. 97 

6.4 Chapter summary ................................................................................................ 99 

LIST OF REFERENCES ................................................................................................ 100 

APPENDICES 

Appendix A Questionnaire for customers ............................................................... 106 

Appendix B Questionnaire for Utilities ................................................................... 114 

Appendix C Microgrid simulation characteristics of the case study ....................... 122 

 
 



vii 

LIST OF TABLES 

Table .............................................................................................................................. Page 

Table 2.1 Energy efficiency projects founded by NYSERDA. ........................................ 23 
Table 2.2 SE vs. SoSE (Gorod et al., 2008, p. 488) .......................................................... 39 
Table 2.3 Systems Engineering Process in SE and SoSE (Dan DeLaurentis, 2016b) ...... 40 
Table 2.4 Lexicon for SoS. (Daniel DeLaurentis, 2005, p. 5) .......................................... 42 
Table 2.5 Commercial tools for power system simulation ............................................... 50 
Table 4.1 Lexicon used to represent Microgrid Systems .................................................. 60 
Table 4.2 ROPE table of generic microgrid systems ........................................................ 61 
Table 5.1 Actors and Interests .......................................................................................... 81 
Table 5.2 Actors and influence ......................................................................................... 86 
Table 5.3 Actor Characterization Chart ............................................................................ 87 
Table 5.4 Case Study Score Card ..................................................................................... 92 

Appendix Table 

Table A. 1 Customer 1 interests ...................................................................................... 107 
Table A. 2 Customer 2 interests ...................................................................................... 109 
Table A. 3 Customer 3 interests ...................................................................................... 110 
Table A. 4 Customer interests summary ......................................................................... 112 
Table B. 1 Electric Utility 1 Technical interests ............................................................. 115 
Table B. 2 Electric Utility 1 Business interests .............................................................. 116 
Table B. 3 Electric Utility 2 Technical interests ............................................................. 118 
Table B. 4 Electric Utility 2 Business interests .............................................................. 119 
Table B. 5 Electric Utilities Technical interests summary ............................................. 120 
Table B. 6 Electric Utilities Business interests summary ............................................... 121 
 
 

 



viii 

LIST OF FIGURES 

Figure ............................................................................................................................. Page 

Figure 2.1 Model of Smart Grid Network (Vijayapriya & Kothari, 2011, p. 307) ........... 10 
Figure 2.2 NIST Smart Grid Framework 1.0 (NIST, 2010, p. 33) ................................... 13 
Figure 2.3 EU Smart Grid Conceptual Model (CEN/CENELEC/ETSI, 2012, p. 21) ...... 14 
Figure 2.4 SGAM framework (CEN/CENELEC/ETSI, 2012, p. 30) ............................... 15 
Figure 2.5 NIST SGAM Interactions, layer and planes (NIST, 2014, p. 135) ................. 16 
Figure 2.6 Microgrid Commercial Ecosystem (Navigant Consulting, Inc., 2015, p. 3) ... 29 
Figure 2.7 Systems Engineering Vee Model (Buede, 2009, p. 10) .................................. 36 
Figure 2.8 Iterative Systems Engineering Life-Cycle (Doorsamy et al., 2015, p. 1252) . 37 
Figure 2.9 Context Diagram for a Microgrid System (Doorsamy et al., 2015, p. 1254) .. 38 
Figure 2.10 SoS Modeling Process. (Dan DeLaurentis, 2016b, p. 5) ............................... 42 
Figure 2.11 Enterprise Architecture cycle (Janssen, 2009, p. 111) .................................. 45 
Figure 2.12 Enterprise Architecture Meta-Framework (Janssen, 2009, p. 113) ............... 46 
Figure 2.13 Types of Agents (Dan DeLaurentis, 2016a) .................................................. 49 
Figure 4.1 Microgrid Reference Methodology Life Cycle Phases ................................... 58 
Figure 4.2 Definition phase flow chart ............................................................................. 59 
Figure 4.3 levels in the Microgrid Reference Methodology ............................................. 64 
Figure 4.4 Problem demarcation and goal analysis .......................................................... 65 
Figure 4.5 Actor Analysis based on ( Enserink, 2015) ..................................................... 67 
Figure 4.6 Design phase flow chart .................................................................................. 68 
Figure 4.7 Causal Analysis ............................................................................................... 69 
Figure 5.1 Microgrid for the generic case study ............................................................... 74 
Figure 5.2 Sensitivity results and Optimal system combination....................................... 75 
Figure 5.3 Optimization results and infrastructure combination ...................................... 75 
Figure 5.4 Electrical results of the second optimal alternative ......................................... 76 
Figure 5.5 Electrical results of the third optimal alternative ............................................ 77 
Figure 5.6 Hierarchical goal tree for the utility company ................................................. 82 
Figure 5.7 Hierarchical goal tree for the customer ........................................................... 83 
Figure 5.8 Electric Utility means � end tree. .................................................................... 84 
Figure 5.9 Customer means- end tree ............................................................................... 85 
Figure 5.10 Influence/Interest table of actors ................................................................... 86 
Figure 5.11 Map of relations between actors .................................................................... 88 
Figure 5.12 Causal and problem diagram of the microgrid .............................................. 90 
 
 



ix 

 

Appendix Figure              Page 

Figure C. 1 PV inputs...................................................................................................... 122 
Figure C. 2 AOC 15/50 Wind turbine inputs .................................................................. 123 
Figure C. 3 150 KW Diesel generator inputs .................................................................. 123 
Figure C. 4 Grid inputs ................................................................................................... 124 
Figure C. 5 Primary Load inputs (2.5 MWh/d 207 kW peak) ........................................ 124 
Figure C. 6 Converter inputs ........................................................................................... 125 
Figure C. 7 S4KS25P Battery inputs .............................................................................. 125 
Figure C. 8 Solar resource inputs .................................................................................... 126 
Figure C. 9 Wind resource inputs ................................................................................... 126 



x 

LIST OF ABBREVIATIONS 

AMI: Advanced Metering Infrastructure 

CEN: European Committee for Standardization 

CENELEC: European Committee for Electrotechnical Standardization 

DER: Distributed Energy Resources 

DG: Distributed Generation 

DoD: United States Department of Defense 

ETSI: European Telecommunications Standards Institute 

INCOSE: International Council on Systems Engineering 

MRM: Microgrid Reference Methodology 

NIST: National Institute of Standards and Technology (US) 

PV: Photovoltaic  

RES: Renewable energy sources 

SE: Systems Engineering 

SGAM: Smart Grid Architecture Model 

SG-CG: Smart Grid Coordination Group  

SoS: System of Systems 

SoSE: System of Systems Engineering 

 

 



xi 

GLOSSARY 

Actor: An actor �is a social entity that has an interest in a system and/or has some ability 
to influence that system. An actor mostly is a group or organization, but important 
individuals can be considered as actors� (Enserink, 2015). 

Business process: �a collection of interrelated tasks which solve a particular issue. There 
are at least three types of business processes: management and control processes, 
operational processes, and supporting processes� (Janssen, 2009, p. 117). 

Cybersecurity: �The activity or process, ability or capability, or state whereby 
information and communications systems and the information contained therein 
are protected from and/or defended against damage, unauthorized use or 
modification, or exploitation� (National Initiative for Cybersecurity Careers and 
Studies, n.d.). 

Microgrids: Localized grids that can operate autonomously when disconnected from the 
utility grid. They integrate distributed generation, load management, and storage 
in smart networks to provide ancillary, mitigation of disturbances, emergency 
back-up energy, and the improvement of energy efficiency, reliability, and 
resilience (Corum, 2015, p. 36)  

 Return on Investment (ROI): is �a performance measure used to evaluate the efficiency 
of an investment or to compare the efficiency of a number of different 
investments. ��� To calculate ROI, the benefit (or return) of an investment is 
divided by the cost of the investment, and the result is expressed as a percentage 
or a ratio� (Investopedia). 
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ABSTRACT 

Pacheco Chiguano, Franklin E. M.S., Purdue University, May 2016. A Methodology For 
Cooperation Between Electric Utilities And Consumers For Microgrid Utilization Based 
On A Systems Engineering Approach. Major Professor: Chris Foreman. 
 
 

In recent years, the energy market has experienced important challenges in its 

structure and requirements of its actors, such as the necessity for more reliable electric 

service, energy efficiency, environmental care practices, and the incorporation of 

decentralized power generation based on distributed energy resources (DER). Given this 

context, microgrids offer several advantages to the grid and its actors. However, few 

microgrid projects have been implemented, and the participation of electric utilities is 

lower than the expected. Hence, this research explores how electric utility - customer 

interactions can accommodate mutual benefits for both parties through the proposal of a 

Microgrid Reference Methodology (MRM) that guides the cooperation of these actors for 

future microgrid projects.  

For this research, an understanding of the microgrid system was imperative; 

hence, the interests and concerns of electric utilities and industrial customers were 

determined via questionnaires, interviews, and a literature review of specialized articles, 

books, and magazines. In addition, the MRM development was based on different 

frameworks and concepts from the fields of Systems Engineering, System of Systems, 

Management Science, and Infrastructure Architectures. 

The proposed MRM uses a four-level microgrid system in which the � (business) 

level is added to the other three levels that are traditionally analyzed in microgrid design 
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and modeling. The steps and processes necessary to determine the actors in the system 

and their interests, goals, criteria, and factors are exemplified with a generic case study, 

in which the proposed MRM evaluates the impact of different alternatives on the 

objectives of both parties. In addition, it was possible to identify external factors that can 

be influenced by other actors, such as regulators and government, to incentivize the 

implementation of microgrid projects. 
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CHAPTER 1. INTRODUCTION 

This chapter states the problem addressed in this research, its scope, and 

significance. The chapter concludes by stating the assumptions, limitations, and 

delimitations of the research conducted. 

1.1 Statement of the Problem 

Microgrid technology is rapidly growing in the United States of America (USA), 

as well as in various other countries of the world. According to Saadeh (2015), it is 

�expected to grow the market opportunity by over 3.5 times between 2015 and 2020, to 

over $829 million annually� ������ �	� 
�� ��� ����� �� ��������� ��� ����������

customers, such as factories, supermarkets, universities, governmental agencies, and the 

military.  

In the recent years there have been considerable efforts to change the provision of 

electricity from a traditional model based in centralized big power plants to a 

decentralized model with more environmentally-friendly, distributed energy resources 

(DER). Furthermore, electricity consumers are generating their own electricity using 

solar panels and wind turbines, and feeding this power into the grid. Given this context, 

microgrid technology can help to increase power reliability, power quality, and power 

assurance of the grid, manage the intermittency of the DER, and control the peak demand 

cost. However, the utilization of microgrids introduces new issues, such as balancing 
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supply and demand, managing utility-customer interactions, the need for proper planning, 

the need for simulation and management, the introduction of new implementation and 

maintenance costs, and cyber security concerns. 

Most of the past and current research has focused on solving technical challenges. 

One important problem that has not yet been widely addressed is the interaction and 

cooperation between the actors in a microgrid project. Although it may seem trivial, this 

is very important for the successful adoption of microgrid initiatives. Currently, there is 

limited participation of electric utilities in microgrid projects. One reason is that utilities 

think their corporate profits would be threatened by microgrid participation. There are 

many actors with their own interests and different backgrounds: utilities, 

industrial/commercial customers, vendors, and regulators. Hence, the relationships and 

interactions between actors must be analyzed in order to understand the socio-technical 

complexity of microgrids and to propose solutions that benefit all the actors. 

Current microgrid simulation and design tools consider the technical variables and 

manage the technical complexity of microgrid projects, but these tools do not consider 

some important non-technical aspects, which are even more critical in deciding whether 

or not to implement a project. 

1.2 Scope 

This is an exploratory study that aims to develop a methodology for future 

microgrid projects, especially with an existing infrastructure, and to handle the 

cooperation between utilities and customers. The methodology was implemented using a 

systems-thinking approach, which is often used to solve complex problems with different 

good alternatives rather than one optimal answer. According to Senge (1990), a systems 
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thinking approach considers the whole rather than just the parts, and sees 

interrelationships rather than simply things. In addition, this study used the established 

framework and principles of engineering systems design and system of systems. It is 

necessary to analyze different system models and approaches in order to determine the 

best strategies to apply in the current scenario. Furthermore, the perspectives of electric 

utilities, vendors, and customers were important data for microgrid system modeling and 

strategizing.  

This research includes a phase of obtaining data from secondary and primary sources. 

The secondary sources were journals, magazines, and reports regarding previous and 

current microgrid implementations in different U.S. states that mainly feature the 

perspectives of the electric utilities and customers. In addition, other important sources of 

information were conferences and webinars related to the future of electric utilities and 

Regulators in new energy markets. The primary information sources utilized were 

interviews and questionnaires to representatives from one utility company and one 

industrial customer to determine the necessities of every actor. Following this literature 

review and systems tool analysis, different procedures were proposed to define the 

methodology�� architecture, the principle deliverable of this research. Finally, the 

methodology was tested in a case study to determine its validity and applicability for 

future scenarios. This case study was a generic microgrid project in its design phase.  

1.3 Significance 

The implementation of microgrid projects offers considerable benefits to the 

electrical grid in terms of system robustness, resilience, and security. Microgrid projects 

also deliver increased power security to critical loads, use renewable integration, and 
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include emerging technologies instead of traditional fuel sources that negatively impact 

the environment. 

Current U.S. microgrid projects are mainly developed by private initiatives 

founded by private companies in the electricity industry, or by states that are encouraging 

energy efficiency initiatives. Unfortunately, not all electric utilities are participating in 

microgrid projects because they see microgrids as potential threats to their incomes and 

the payoff as not as beneficial as possible. In addition, regulators have not created laws in 

favor of the new energy market. For example, in some states, companies that own a 

microgrid are not allowed to distribute or sell excess electricity to the grid, and there are 

no incentives to make utilities change their business models. 

This research will guide the model of cooperation, implementation, operation, and 

maintenance of a microgrid and accommodate different stakeholders maximizing their 

payoffs. This research will help to manage risk and liability, determine an ongoing plan 

for utility/customer interaction and operation of the microgrid, thereby supporting the 

decision-making process and cooperation. 

If this research project is not carried out, the proliferation of DERs and microgrid 

technologies may be compromised; utilities will continue using the traditional business 

model described by Corum (2015), in which new centralized power plants are used as 

loads increase and added to their rate bases.  

1.4 Research Question 

How to determine utility-customer interactions that accommodate mutual benefits 

from a microgrid project, while taking into account technical and non-technical 

variables? 
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This question includes the following sub questions: 

� What kind of technical and economic benefits are commonly expected by 

utilities and customers? 

� How can an existing local distribution grid be turned into a microgrid? 

� How can the benefits and risks of a microgrid project be quantified to 

justify its implementation? 

� How should the information and control be shared between the utility and 

its customers? 

� How can cyber-security be implemented effectively? 

This is a qualitative research and the hypothesis was developed as the research 

progressed. The goal of the research is to develop a new methodology for microgrid 

designs that incorporates the interests of utilities and customers and helps to handle their 

interactions for mutual benefits.  

To validate the results and decide if the research question and sub questions were 

answered, a simulated case study was performed using face validity, as explained in the 

subsequent research methodology subsection. 

1.5 Assumptions 

The assumption made in this research include: 

1. This research is limited to U.S. regulations and companies, specifically in the 

state of Indiana. 

2. At the present time, the technology necessary to implement a microgrid project 

exists; therefore, this is not a limiting factor in cooperation projects. 

3. There are no political restrictions for microgrid project implementation. 
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4. All stakeholders in a microgrid project are willing to participate; hence, there are 

no personal reasons that hinder collaboration. 

5. The current regulatory norms, tariff structures, and market conditions regarding 

microgrids did not change during the development of this research. 

1.6 Limitations 

The limitations of this research include: 

1. This project did not have funding from any organization; hence, the research was 

theoretical and utilized the Purdue University resources.  

2. The research was performed with the data obtained from an Indiana utility 

company, and two industrial customers. In addition, the study examined reports 

and literature from other states. 

3. The methodology provided strategies and recommendations for different 

��������� ���	
�� ��
����� �������� �� ��
 ����
����
��� �
����
�
nts. 

4. The methodology was evaluated in the planning stage of a generic microgrid 

project with different simulation scenarios because an actual microgrid 

installation was unavailable to validate this research. 

1.7 Delimitations 

The delimitations of this research include: 

1. The deliverable of this research was not a software tool or a device. Instead, the 

deliverable is a documented methodology. 

2. The methodology was not evaluated in a real microgrid project during this 

research. 
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1.8 Chapter summary 

Chapter One introduced and justified the research explained in this thesis, and 

outlined the problem statement, research question, and significance. Additionally, this 

chapter noted the assumptions, limitations and delimitations of the research scope. 
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CHAPTER 2. REVIEW OF LITERATURE 

This chapter provides a summary of research literature concerning microgrid 

systems, beginning with a theoretical basis and key concepts, then referencing the most 

relevant approaches and methods in order to analyze and model systems with some 

degree of complexity. This approach fosters a complete understanding of the current 

situation and establishes the research problem. Furthermore, the literature review 

supports the research methodology. 

2.1 Introduction 

Rapid world population growth and the modernization of society has led to a 

greater awareness of conservation, sustainability, and access to real-time information. 

These trends have increased the demand for electricity generated in a cleaner, efficient, 

more environmentally-friendly ways (Feisst, Schlesinger, & Frye, 2008). Currently, the 

electrical networks of most countries are unable to meet these new requirements because 

they were developed several years ago with the sole purpose of delivering electricity to 

consumers. For instance, U.S. power-grid transmission lines are, on average, 50-60 years 

old (Yang, Divan, Harley, & Habetler, 2006). These outdate electric grids need to be 

replaced and enhanced with new technologies. The microgrid is a popular option.  

In order to effectively implement microgrids, a proper planning methodology is 

necessary to ensure maximum mutual benefits while mitigating risk and conflict. This 
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scenario leads to the emergence of a smarter electric grid capable of automating the 

integration, control, and management of all systems and stages involved in the 

generation, transmission, and distribution of the electricity; secondly, this strong 

interaction with the consumer leads to better energy management. This approach requires 

the integration of Information and Communication Technologies (ICT) in two-way 

communication technology and computer processing.  

Moreover, understanding the complete system involved in a microgrid project is 

crucial. This understanding defines policies and strategies for the decision making 

process and other stages of the project, such as planning, designing, implementing, and 

operating. Because microgrid technologies cover different areas of knowledge in 

technical, economical and sociological facets, the literature in this topic is varied. In this 

research, the literature review focuses on microgrids, modeling, simulation techniques, 

and articles related to cooperation between industrial customers and utilities. 

 

2.2 What is a smart grid? 

No single answer defines a smart grid. A smart grid is not just a single 

technology; rather, it is a complex infrastructure, a platform for various socio-technical 

factors. According to CEN/CLC/ETSI/TR (2011), a smart grid ��� � ������ 	
����

(principally electricity network) that intelligently integrates the behavior and actions of 

all users connected to it-- generators, consumers and those that do both-- in order to 

efficiently ensure a more sustainable, economic and �
���
 
�
�������� ������� (p.11). In 

Figure 2.1, Vijayapriya & Kothari (2011) display a model Smart grid set-up with 

subsystems and elements such as distributed energy sources, a central power plant, smart 
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appliances, demand management, sensors, processors, a storage system, various 

customers (houses, industrial plants, office buildings), and the communication networks 

between these elements. This figure demonstrates that these connections are more 

complex than a traditional grid with sequential hierarchy and defined boundaries for 

generation, transmission, and distribution. 

 

Figure 2.1 Model of Smart Grid Network (Vijayapriya & Kothari, 2011, p. 307) 

 

Under the Energy Independence and Security Act of 2007 established by PUBLIC 

LAW 110�140 (2007) in its Title XIII Sec. 1301. Statement of Policy on Modernization 

of Electricity Grid, the main characteristics of Smart Grids are:  

1) Increased use of digital information and controls technology to improve 

reliability, security, and efficiency of the electric grid;  

2) Dynamic optimization of grid operations and resources, with full 

cybersecurity;  
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3) Deployment and integration of distributed resources and generation, 

including renewable resources;  

4) Development and incorporation of demand response, demand-side 

resources, and energy-efficiency resources;  

5) Deployment of "smart" technologies for metering, communications 

concerning grid operations and status, and distribution automation;  

6) Integration of "smart" appliances and consumer devices;  

7) Deployment and integration of advanced electricity storage and peak-

shaving technologies, including plug-in electric and hybrid electric 

vehicles, and thermal-storage air conditioning;  

8) Provision to consumers of timely information and control options; and  

9) Development of standards for communication and interoperability of 

appliances and equipment connected to the electric grid, including the 

infrastructure serving the grid (PUBLIC LAW 110�140, 2007, p. 121 

STAT. 1784). 

To achieve these characteristics, a smart grid uses a two-way communication 

network that allows all components of the power grid to communicate through the 

network (CodeAlias, n.d.). Although a smart grid is not a new concept, it has recently 

become an international hot topic among engineers, economists, managers, politicians, 

and scientists because issues such as environmental care and sustainability have never 

been as important as they are now. Indeed, as stated by Doorsamy, Cronje, & Lakay-

Doorsamy (2015), the World Energy Council has recognized three major energy 

challenges affecting all nations: 
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1) Energy equity - Task of providing accessible and affordable energy supply for 

the entire populace. 

2) Environmental sustainability - Issues relating to environmental impact, such 

as supply- and demand-side energy efficiencies, and utilization of renewable 

and low-carbon sources. 

3) Energy security - Challenges with the reliability of the energy infrastructure, 

the ability to meet current and future demands, and the effective management 

of energy resources (Doorsamy et al., 2015, p. 1251). 

In this research, we review issues concerning the architecture of Smart Grids. A 

reference architecture was developed to represent the various systems, subsystems, and 

information flows within a smart grid. In 2008, the GridWise Architecture Council 

developed an eight-layer architecture for determining interoperability and information 

requirements in three main categories of processes and objectives: Technical, 

Informational, and Organizational. In 2010, The National Institute of Standards and 

Technology (NIST) established a conceptual model of Smart Grid actors and interactions. 

NIST considered seven domains that interact(2010, p. 33) in Figure 2.2. In addition, they 

describe each domain�� actors, communications path, and information network with the 

objective of defining standards and protocols that allow interoperability between Smart 

Grid systems and equipment (Moura, López, Moreno, & De Almeida, 2013, p. 627). 
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Figure 2.2 NIST Smart Grid Framework 1.0 (NIST, 2010, p. 33) 

In 2012, the European Union Mandate M/490, the European Committee for 

Standardization (CEN), the European Committee for Electrotechnical Standardization 

(CENELEC) and the European Telecommunications Standards Institute (ETSI) proposed 

their Reference Architecture (RA) and Smart Grid Architecture Model (SGAM). The 

development of RA and SGAM took into account relevant aspects of previous 

approaches, such as the GWAC and NIST models; also included were specific 

requirements related to the EU context, such as DERs and flexibility in production, 

consumption, and storage to support future demand response (CEN/CENELEC/ETSI, 

2012, p. 22). Figure 2.3 shows the EU conceptual model, which includes the same 

domains as the NIST model. In addition, the model considers the decentralized nature of 

the DER, which makes room for the existence of the microgrid domain composed by the 

Distribution, Customer and DER domains. This representation was a first attempt to show 
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interactions between a microgrid and other domains in the power grid and power market, 

such as generation, transmission, operations, market, and service providers. 

 

Figure 2.3 EU Smart Grid Conceptual Model (CEN/CENELEC/ETSI, 2012, p. 21) 

 The SGAM is a three dimensional model with five interoperability layers, six 

zones or hierarchical levels of power system management, and five domains, or phases in 

the electrical energy conversion chain (CEN/CENELEC/ETSI, 2012, p. 22). Figure 2.4 

shows the SGAM, which aims to represent a use case with its actors, relationships, and 

functional requirements by mapping the component, business, function, information, and 

communication layers onto one another.  
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Figure 2.4 SGAM framework (CEN/CENELEC/ETSI, 2012, p. 30) 

The NIST conceptual model was updated in 2014 to decentralize the generation 

and include DERs. Hence, a new architectural framework was developed using the 

SGAM and The Open Group Architecture Framework � Architecture Development 

Methodology (TOGAF/ADM), a collaboration of the Smart Grid Architecture Committee 

(SGAC), the European SG-CG, the International Electrotechnical Commission (IEC) 

TC57 WG19 (IEC 62357), and IEC TC8 WG5. As shown in Figure 2.5, according to the 

NIST (2014), this architecture includes four layers (Technical, Automation, Information, 

and Business) and four levels (Conceptual, Logical, Physical, and Implementation), but 

each level is represented by a 3-dimensional plane where the four layers constitute one 
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axis; another axis is constituted by the domains of the NIST conceptual model, and the 

third axis is the zones or physical management aspect of the grid. (NIST, 2014, p. 131). 

 

Figure 2.5 NIST SGAM Interactions, layer and planes (NIST, 2014, p. 135) 

The definition of a Smart Grid reference architecture has been an iterative 

process. in which various organizations and parties have collaborated and new 

developments become more complex as they consider new aspects of the real complexity 

of smart grids. In fact, the NIST document states that a smart grid is a system of systems 

with several stakeholders and elements structured in a complex evolving network.  

Moreover, a microgrid architecture could be involved as part of the SGAM 

analysis. However, the particularities of microgrids, and the fact that it is possible to 

implement a microgrid without a smart grid, make it necessary to work in an exclusively 

microgrid reference architecture. 
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2.3 What is a microgrid? 

 The concept of smart grids implicates the use of distributed energy resources 

handled by microgrid technologies. Therefore, microgrids are localized electrical grids 

with the ability to disengage from the utility distribution grid and continue operating 

independently to ����� ����	
�� 	��� ������
��� �� ����	���� 	��� ��������� �

[because they] can function as a grid resource for faster system res���� 
�� ��������� 

(Office of Electricity Delivery & Energy Reliability, n.d.). When there is a power quality 

incident in the main grid, a microgrid islands and reconnects itself once the event has 

been removed. For an electric utility, a microgrid is seen as a single, combined load 

����� ����� �� ���� ������
� ���������: a static switch and micro source, which 

����� �� 	����
���� ���
	� 
�� 
� ��������� (Banerji et al., 2013, p.27). 

According to Marnay et al. (2015), the main advantages of a microgrid are: 

��������� ����	� ����������� �������
���� �� ����
�� ����	� ����������� �������

environmental impact, improvement of reliability of supply, network operational benefits, 

congestion relief, voltage control, security of supply, and more cost-efficient electricity 

����
�������� ����
������� (p. 1). 

Microgrid implementation does not just add renewable energy sources: ��
����

than add distributed generators to the power grid in an ad hoc manner, in a microgrid 

appro
�� ��� 	���
� ����� 	��� �� �� ������ 
���������� ���� �
���� ����� 	���� 

(Bush, 2014, p. 172). The goal of a microgrid is to control and reduce peak demand, and 

determine the best energy storage technologies, building energy management, advanced 

metering infrastructure (AMI), and communication required with the inherent cyber 

security issues. 
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����������	 �
������ ��	�������� ��
�����
� ��� �
����
� 
� 	����� �


smart networks providing ancillary, mitigation of disturbances and strengthening the grid, 

emergency back-�� 	������	� ������� �
���� �������
��� ���������� 
� ��	����
���

(Corum, 2015, p. 36). Microgrids can be understood as building blocks of a future, 

smarter electric grid. They integrate various subsystems and goals in a complex systems 

or system of systems (SoS) depending on the magnitude of the microgrid and its 

elements. In this context, some authors have analyzed recent developments in microgrid 

modeling and control methods for both grid-connected and autonomous mode as well as 

SoS control strategies such as networked control system and obtaining a better control of 

microgrids. (Mahmoud, Azher Hussain, & Abido, 2014). 

According to Banerji et al. (2013), microgrids can be classified into two types, 

AC and DC, based on the output voltage to the loads. In addition, a microgrid can work 

in two operational modes: grid-connected and islanded. In the grid-connected mode, the 

microgrid exchanges power with the electric utility grid. The utility sees the microgrid as 

a controlled load; therefore, the microgrid must regulate the harmonics and power quality 

introduced to the grid. In the islanded mode, the microgrid operates independently of the 

main grid. The microgrid islands automatically when there is a power issue in the main 

grid (p. 28). 

� ����������	 ��
���� 
� �������
 ��
����
	 are described in the Smart Grid 

Interoperability Panel (SGIP) and synthesized by Bower, Guttromson, Glover, 

Stamp, & Bhatnagar (2014) as follows:  

Function 1. Frequency control 

F1.1 Islanding mode 
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F1.2 ACE control and connected mode (similar to AGC) 

F1.3 Frequency smoothing 

F1.4 Frequency ride-through 

F1.5 Emergency load-shedding 

F1.6 Steady state control 

F1.7 Transient control 

Function 2. Volt/VAR control 

F2.1. Grid-connected Volt/VAR control 

F2.2. Islanding Volt/VAR control 

Function 3. Grid-connected-to-islanding transition 

F3.1 Intentional islanding transition 

F3.2 Unintentional islanding transition 

Function 4. Islanding-to-grid-connected transition 

Function 5. Energy management 

F5.1. Grid-connected energy management 

F5.2. Islanding energy management 

Function 6. Protection 

Function 7. Ancillary services (grid-connected) 

F6.1. Real-power-related ancillary services 

F6.2. Reactive-power-related ancillary services 

Function 8. Black start 

Function 9. User interface and data management (p. 25). 
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According to Schwaegerl & Tao (2013), these functions can be offered to 

consumers via ancillary services, by into the two operational modes analyzed previously. 

For a grid-connected mode via frequency control support, voltage control support, 

congestion management, reduction of grid losses, and improvement of power quality 

such as voltage dips, flicker, and compensation of harmonics. In islanded operation mode 

via black start and grid-forming operation and frequency/voltage control (p. 15). 

2.4 Recent microgrid projects 

Although the concept of microgrids has been around for several years, the 

implementation of this technology has taken time, mainly due to a lack of regulatory 

policies and standards to encourage the participation of industrial customers and utilities. 

Recently, the importance of using alternative, sustainable energy sources, and the 

necessity for energy efficiency have prompted attention to the microgrid as an effective 

solution� ���� �����	 
�����	� ���� ��	����	�� � ���� ������� ��	 �� ���	����	�� ������

resources, with roughly one-	���� �� 
�����	� ��
������ ��		��� �	������ (Klemun, 2014, 

p. 2). In addition, the costs per installed capacity of a fossil fuel-based microgrid are more 

expensive than renewable-based microgrids; the comparison is around $3,500 to $4,500 

per kilowatt versus $1,000 per kilowatt respectively (Klemun, 2014)� ������� ���	 ����	

states, including New York, New Jersey, and Connecticut are investing millions of 

dollars in Microgrids, installing the power systems Microgrids need, independent of or in 

���
���	��� ��	� �	���	���� (Corum, 2015, p. 37). Furthermore, in the regulatory arena 

	���� ��� ���� ���	��	���� ����� ���������� ����� 
��� � ���� �� 
�������� ������

response services and regulation support while stabilizing the utility customer rate base�

(Corum, 2015, p. 37). 
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Although the technology is not new, the market itself is new and there are some 

important legal barriers, especially in the case of multi-building and multi-owner 

microgrids. Consumer priorities, regulation, and prices vary by region and state. For 

instance, the Midwest has low electricity prices, which makes it difficult to demonstrate 

the necessity of microgrids. On the east coast, the government acknowledges microgrids 

as an alternative electricity to remedy main grid incidents caused by natural disasters 

(Klemun, 2014).  

Within smaller east coast communities and cities, a fast increase in microgrid 

initiatives for critical infrastructure, such as universities, schools and hospitals, due to 

state government incentives is expected (Grid Edge, 2014). The microgrid market is 

facing � �����������	�� 
���� � �	�� ����	���	�� 	����� ��� �	�	���� ���� ��� ����

communities to a grid modernization tool for utilities, cities, communities and public 

	���	���	���� (Saadeh, 2015, p. 1). From 2015 and 2020, microgrids are expected to 

increase market incomes by over 3.5 times and reach $829 million annually. (Saadeh, 

2015, p. 1). This expected market growth is based on rate structures, utility franchise 

rights, and the adoption of photovoltaics in states with high radiation. These changes are 

already occurring in New York, Maryland, California, and Hawaii (Saadeh, 2015, p. 2). 

Current microgrid-related project collaborations in the U.S. include: 

� The U.S. military is working on cyber secure microgrid reference 

architectures through its Smart Power Infrastructure Demonstration for 

Energy Reliability and Security (SPIDERS) program, which was developed 

and tested in 2015 at Hawaii's Camp Smith. 
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� State-led initiatives, su�� �� ����	�
���
� ��������� ����
 �������� �	�	 

implemented in close cooperation with local electric utilities United 

Illuminating and Connecticut Light and Power. 

� The collaboration of Power Analytics, OSIsoft, and Viridity Energy worked 

on a project at the University of California, San Diego and now cooperates to 

link three San Diego naval bases to one microgrid. 

Some organizations actively working on microgrid implementation projects are: 

� Vendors that have experience across several microgrid types, such as S&C 

and ZBB Energy Corporation 

� The Microgrid Resources Coalition (including NRG Energy, Inc. and the 

International District Energy Association) 

� The Microgrid Alliance (Alstom, Enbala, HOMER Energy, General 

Microgrids, and Landis+Gyr) 

� The Galvin Electricity Initiative (Klemun, 2014) 

Recently, some states have been encouraging energy efficiency and microgrid 

projects. For instance, the New York State Energy Research and Development Authority 

(NYSERDA) has financed projects aimed to improve the overall performance of its 

energy delivery system. Table 2.1 shows the main projects funded and the cost, according 

to the Governor of New York State (2014). 
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Table 2.1 Energy efficiency projects founded by NYSERDA.  

Beneficiary Location Cost 
investment 

Description 

Brookhaven 
National 
Laboratory 

Long Island $250,000 Using radars for real-time response to 
the restoration of electric utility 
systems 

Clarkson 
University 

Potsdam $381,000 Design of a resilient underground 
microgrid 

ClearGrid 
Innovations Inc.  

New York 
City 

$100,000 Using computer vision to analyze 
electric distribution problems 

Con Edison New York 
City 

$2 million Demonstrating grid link: a non-
synchronous microgrid solution 

Cornell 
University 

Ithaca $227,000 Advanced microgrid integration with 
distributed energy resources 

Lockheed Martin 
Mission Systems 
Training 

Owego $300,000 Integrated aerial weather damage 
assessment system 

Rochester 
Institute of 
Technology 

Rochester $78,000 Micro-grid cooperation for improving 
economic and environmental cost and 
grid resilience 

 

In addition, the US Department of Energy awarded $8 million in September 2014 

to seven companies and institutions in order to help communities become more adaptive 

with microgrids and build grid resiliency (Corum, 2015). This action suggests that the 

U.S. government is invested in microgrid initiatives. However, based on previous 

projects, it is evident that the customer, the final microgrid user, is trying to take 

advantage of these governmental incentives but there is a lack in the participation of 

electric utilities. 

Companies that have received awards regarding to the implementation of 

microgrids include: GE in Potsdam NT, ALSTOM Grid, Inc. in Philadelphia, and EPRI. 

Schneider Electric has the necessary experience in European inverters to meet the 

���������� 	�
��� ���������� ���� ���
��
� ������� ����� requirement that 
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inverters are ����� ����	
�� �� ��	�	�� ������	��	�� �� 	���	
��	�� ��	������ ������

Energy designs microgrid systems and modeling software for users across the globe, 

mainly for islands and small villages in developing countries with unreliable power 

systems that rely on diesel generators (Corum, 2015). 

Peter Lilienthal, CEO of HOMER Energy, says there is a lack of standardized 

regulation of microgrids in the U.S., and therefore disincentives for utilities to permit 

them. Some states have created performance-based ratemaking in order to eliminate 

disincentives toward distributed generation. In some states, companies with microgrids 

cannot sell or distribute power across right-of-ways because they will be considered as 

utilities. For electric utilities, they should change their business models; however, without 

directions from regulators, the utilities have little incentive to change (Corum, 2015). 

Despite regulatory restrictions, private companies are developing tools and 

products to encourage microgrid adoption. Power Analytics has created power network, 

�����-based software platform to operate microgrids, distributed generators, battery 

�������� �� ������	� ���	����� �����	�� ������ �� ���� ����� �� ������� ���	�� �� ��� ��	� 

(Corum, 2015, p. 38).Moreover� ��	��� ���	�	� ���� ��	��� �
�	�� ���� �	�� �������� ��

has developed WAVE platform for electric distribution operators which allow them to 

���	�
�� 	�������� �� ������� ������
�� ������� ������� �������� �� ������	� ���	������

Spirae uses Power Analytics software to manage power quality with real time controls. 

Microgrids must provide frequency regulation, voltage support, and reactive power when 

exporting power so that ��	� ����	� ���
��� ��� 	���	
��� ������ ���������� �currently, 

����� �� �������	��� �� � ����� 	�������� �� ������� ������ �� ��� 	�����	��� ���

controlling output are not there.� (Corum, 2015, p. 39). However, Pacific believes that 
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the de costs of DER will come down and that will encourage the development of 

combined heat and power (CHP).�� 

JLM Energy in Rocklin CA develops microgrid projects for islanding conditions. 

They offer solar, wind, storage, and controller systems. WIPOMO, in Hayward CA and 

Denver CO, offers mobile microgrid off-grid systems called a ������	 
�	��


������	�� ��� ������������ ���� �� ������� ������ ���	���� ��������� and outdoor events 

with sound stations and food trucks (Corum, 2015). 

2.5 Microgrid and Utility Interactions 

An important concern is whether the microgrids will complement electric utilities 

or compete with them. It is necessary to define interconnection standards, standby rates, 

and sub-metering rules. (Wood, 2014). The traditional business model of utilities is to 

react to the demand by building additional centralized power plants and applying the 

same rate bases; this is now changing because 12% of new power plant capacity comes 

from distributed solar resources. Electricity ������	�� ���	 ��	� ������� �	���	 ������

��	� ������	� �� �	�	��	� ��	 ���� ��� �� ��	� ���	�� ��	 �		� �� ��� �	���� 	�	������� 

(Corum, 2015, p. 40). 

The new role of utilities is to become a distributed system operator (DSO) 

��	��������	 ��� 	������ ��	�	 �� ��������	 �������� ��� ������������ �� 	�	��������

	�	���	� 	���	� �	���� ��	 ������	��� �	�	�� �� ����	��	� �n the utility side or flowing 

fro� ��	 ������������ ���� (Corum, 2015, p. 40). The DSO ��� ���	 �� ���	���	 ���

dispatch the two-way flow of electricity and manage the stability of the distribution 

����	���  �	 !"# �� in charge of distribution system maintenance and operation. 

Valentin de Miguel from Accenture Smart Grid Services asserts th�� ������������
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business models would include adopting new tariff structures; opening up markets; 

aligning subsides; investing in grid optimization such as automation, sensing devices, and 

real-time analytics; and developing new customer products and serv����� (Corum, 2015, 

p. 40). 

According to Wood (2014), there are several concerns that limit utility 

����	
���� participation in microgrid projects. These concerns are as follows: 

� How will microgrids influence their business model and the functioning of the 

central grid? Microgrids may harm the reliability of the larger grid through 

faulty interconnection, tripping or failing to island and re-connect correctly. 

� A microgrid provider may �
� �� ������� �� ��	� ���� ��� ��������� ���	��

system and navigate interconnection procedures. 

� The cost to provide back-up power for microgrids, especially if they 

proliferate, is considerable. 

� If customers flee the system for distributed generation and microgrids in great 

numbers, that leaves the utility with a rate base too limited to fund needed 

infrastructure without dramatic rate increases. 

� In many locations, a microgrid cannot string wires across a public street to 

����� ���������� ���
� �� �
��
��� �
 ��� ���	� ��������� �	
����� ������� 

� ��������� ���������� �����
� �
 ��� �������� � ��� �����	���� 	
� ���	�

�������� �� ��� ��������� �����
�
��� �� ��� 	 �
	
��	� �	��
������ �� 	������
�

with the ���������� 

� Utilities typically cannot own or develop power plants in restructured states 
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� Should utilities be allowed to charge a premium rate, given the high quality of 

the power? 

� Should utilities or grid operators create some form of locational pricing to 

attract microgrids to areas of the grid where they are needed, such as points of 

congestion? 

� How to calculate and recognize the environmental value of a microgrid? Must 

the benefit/cost analysis for any grid modernization consider the value of 

greenhouse gas emissions reductions? 

� The importance of a regulation that can help utilities and microgrids navigate 

many of these risks (Wood, 2014). 

The Future of Utilities seems to have undergone a considerable change in their 

business models; however, nowadays there are some companies already following these 

market trends. For example, Central Hudson Gas and Electric Company, a New York-

based utility, has designed a new service based in microgrids for customers who need 

improved reliability. The utility would build, operate, and maintain a microgrid with a 

single or group of customers whose demand is at least 500 kilowatts with a necessity for 

uninterrupted and high quality power supply. These customers are mainly hospitals, 

government and military facilities, police, universities, schools, and large commercial and 

industrial facilities (Jenkings, 2014). 

Another example is Duke Energy, which partnered with developers and vendors 

of equipment to implement a Microgrid Testbed Project denominated Coalition of the 

Willing. ����� ����	
�� ��
�� Director of mart grid Emerging Technology and 

Operations, said that financing the microgrid equipment is necessary for customers, as 
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well as the installation and operation. Handley added that ������ ��	
���� ��� ����� ��

install them for customers, but Duke believes there could be a business case to do this on 

our own. We have good access to capital and know how to operate a grid better than 

anyone else. ���� 
��������� � ��-win and fully takes advantage of distributed energy 

resources coming on line� (Lisa Cohn, 2016). 

According to Navigant Consulting, Inc. (2015), the lack of established microgrid 

business models, uncertainty about technologies used, and legal issues are the biggest 

challenges for market growth. These lead to uncertainty, complexity, and considerable 

risks; collaboration and partnership will play a key role in the success of microgrid 

projects. ������� ��������� ��� 	
������� �� �careful segmentation and targeting of 

	������ ��� �����	���� (Burger, 2015). In this context, Navigant developed a tool shown 

in Figure 2.6 to represent the microgrid commercial ecosystems and analysis 

components. This diagram clearly depicts the main microgrid participants and their 

interactions. Accordingly, the distribution service provider interacts with the community , 

the microgrid user, the microgrid assets owner, the DER owner, etc., However, this 

diagram shows that the distribution service provider does not interact with the regulator 

or suppliers directly; in reality, there are microgrid projects carried out by direct 

partnership between electric utility companies and suppliers , regulatory changes, and 

new business models initiatives proposed by joint work between electric utilities and 

regulators.  
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Figure 2.6 Microgrid Commercial Ecosystem (Navigant Consulting, Inc., 2015, p. 3) 

 

Furthermore, microgrids function within the energy markets; the relevant actors, 

according to Schwaegerl & Tao (2013), are: 

� Consumers: Users of the distribution network; they pay a retail company 

for their energy supply (p. 12). 

� DG owner/operator: those who inject DG production to the network and 

enjoy feed-in tariffs; sometimes they pay distribution network charges (p. 

12). 

� Prosumer: consumers who are also DG owners and can inject the surplus 

of energy produced back to the grid (p. 12). 

� Customer: a broad category that include consumers, DG owner/operator, 

and prosumers (p. 12). 
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� Market regulator: independent organization that defines the rules of 

operate in the market, guaranteeing open access to the grid and efficient 

allocation of grid costs (p. 12). 

� Retail supplier, energy service company (ESCO): provide electricity and 

supplementary services to its customers. They acquire energy from 

different sources, including DER, and define products and energy prices 

when those are not regulated (p. 13).  

� Distribution system operator (DSO): Responsible for the operation, 

maintenance, and development of the distribution network in a certain 

area. The DSO manages the HV, MV, and LV distribution systems, 

delivers electricity to consumers, and absorbs energy from DG/RES. 

However, the DSO is not involved in retail activities like the ESCO. In a 

������ ����	
��� ������ ���� ����� �	������ �	�� ���� ���������

managing microgrid customers and with individual distributed generators 

�	 ������� ����� ����������� �	� �	��� ����	� ��������
� (p. 13). In the 

������� �� ��� ��� 	� �
�������� ������� ���pliers and DSOs will ensure 

that customers benefit from proper functioning of the market, smooth 

processes and a secure and reliable electricity supply; suppliers will 

market new products and optimize their supply and balancing portfolio, 

while DSOs can guarantee local grid stability and security of supply 

���	�
� ������ ��������� (p. 13). 

� Microgrid operator: In charge of the operation, maintenance, and 

development of the local distribution grid of the microgrid elements. This 



31 

 

function can be performed by the local DSO or by an independent DSO 

acting on behalf of microgrid customers (p. 14). 

2.6 Microgrids Decision Making and Optimization 

There are several articles that focus on microgrid optimization and decision-

making; most are focused on the technical aspect of the microgrid. For example, Amin 

(2013) addresses the microgrid self-healing issue by which a �grid isolates problems 

immediately as they occur, before they cascade into major blackouts, and reorganizes the 

grid and reroutes energy transmissions so services continue for all customers while the 

problem is physically repaired by line crews� (Amin, 2013, para. 6). He suggests that �a 

self-healing smarter grid can provide a number of benefits that lead to a more stable and 

efficient system� (Amin, 2013, para. 7).  

A simple scenario to understand and simulate the self-healing characteristic 

assumes that there are no distinct energy demands for which alternative supply sources 

must be allocated in the short term to respond to disruptions. For each of these n 

demands, there is a finite set of available supply sources that can be allocated to meet the 

demand (Nygard et al., 2011). 

The solution can be found with different optimization methods. One approach is 

the Karush�Kuhn�Tucker condition that allows inequality constraints and generalizes the 

method of Lagrange multipliers used only with equality constraints. Another approach is 

the simplex method that uses matrices to calculate reduced cost coefficients and update 

the canonical augmented matrix �����	 
 ��� �����. The problem with the previous 

methods is that they require a great deal of mathematical calculations and they are more 

useful for smaller numerical value; otherwise, a smart grid simulator is preferred, which 
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runs as a Multi-Agent System (MAS) using the Java Agent Development Framework 

(JADE). 

Another important issue in microgrid decision-making is to determine the 

economic and environmental value microgrids can provide. Some research has studied 

the impact of solar thermal and heat storage of CO2 emissions and annual energy costs 

by ��������	
� � �	�����	�� ����� ����	�
 ������� �� � �	��-integer linear program. 

In this case, the optimization problem is minimizing the annual energy costs. A case 

study was applied to the California service territory of San Diego Gas and Electric 

�������� ��� ������� ����  ! "#$ ��	�	
� ������ ���� �� 
��� �� 	
��
�

installation of combined solar thermal absorption chiller systems, and no heat storage 

systems are adopted [as well as] photovoltaic (PV) arrays are favored by CO2 pricing 

���� ���
 ����� ������� ����	�
% (Marnay et al., 2009, p. 1). 

Islanding issues are another significant microgrid concern. Although distributed 

generations (DG) such as photovoltaic and wind energy sources present great benefits to 

society, their interconnection with electric power systems (EPS) introduces some 

important issues like islanding, which is dangerous to utility workers who may not realize 

a circuit is still powered by DG; for this reason, the detection of islanding is necessary to 

stop the generation of energy from the DG to the EPS. Current islanding detection 

methods require expensive communications infrastructure, cause degradation of power 

quality, or have large non-detection zones (NDZ). Studies have proposed a new islanding 

detection technique for microgrids based on critical system features, a pattern of different 

types of system events, and decision tree based classifiers to determine islanding 

conditions(Azim et al., 2015). The contribution to the field is an alternative to detect 
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islanding without incurring the costs of expensive communication and control equipment 

that accompany the existing methods. 

2.7 Systems Thinking 

While the decision-making and optimization approach is important to address 

different issues in microgrids, a better approach is to analyze the interaction between 

different actors holistically using systems theory. First it is important to understand the 

definition of a system. According to Blanchard & Fabrycky (1990), �� ������ �� 	


assemblage or combination of functionally related elements or parts forming a unitary 

����� ���� 	� 	 ����� ������ � 	 ��	
����	��
 �������� Gibson, Scherer, & Gibson 

(2007) state, �� ������ �� 	 ��� � �����
�� � �
����

����� � 	� � 	�� �
 �����
�

��	�� 	 ����
�� �	��� A third definition of a system is �	 set of different elements 

connected or related so as to perform a unique function not performable by the elements 

	�
�� (Rechtin & Maier, 1997). 

These definitions concur on the system�� three important aspects: a collection of 

smaller elements or subsystems, an interconnection and interdependence between those 

elements, and all are working to fulfill a goal. Accordingly, systems are everywhere and 

exist in different magnitudes. For instance, a biological system like the human body 

consists of the nervous system, which is a subsystem of the human body but constitutes a 

system by itself; other examples include technological systems, like a smartphone, or 

social systems, like an ant colony. 

�������� ���
��
� �� 	 ��������
� �� ����
� ����� ��� for seeing interrelationships 

rather than things, for seeing patterns rather than static snapshots. It is a set of general 

principles spanning fields as diverse as physical and social sciences, engineering and 
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����������� (Senge, 1990). In other words, systems thinking considers the whole rather 

than the parts in an interdisciplinary approach to solve complex real world problems 

which do not have one simple answer. According to Blockley & Godfrey (2000), the 

three main ideas in systems thinking are: the group of parts, wholes, and layers; the 

connections, and the processes.  

In order to obtain successful solutions to these complex problems, it is necessary 

to use the Twin-focused approach to Systems integration, which envisions the 

opportunities, innovation, and risks of the future by considering the experiences, 

literature review, and case studies of the past. We cannot obtain good solutions based on 

just one of these dimensions or, even worse, based simply on our own thoughts and 

knowledge. 

According to s guide published by The Royal Academy of Engineering and edited 

by Elliott & Deasley (2007), there are six principles for creating systems that work: 

�	�
���� 	����� ����� ��	 ������ ��� �������� ���� ������� ������ � ���������

procedure; be creative; take account of the people; and manage the project and the 

������������ (p. 11). 

The literature on systems thinking is widely applied in different fields of 

knowledge to analyze complex problems for which a mathematical equation will not 

necessarily obtain the best solution. Furthermore, methodology of this research is the 

framework of engineering design of systems. 

2.8 Systems Engineering  

Similar to the various concepts of a system, there are multiple concepts of 

Systems Engineering. We can review two concepts from different authors. According to 
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Blanchard & Fabrycky (1990), �������s engineering is a process employed in the 

evolution of systems from the point of when a need is identified through production 

and/or construction and ultimate deployment of that system for consumer use� (p. 21). 

The International Council on Systems Engineering (INCOSE  n.d.) defines systems 

engineering as �	
 �
����������
	�� 	����	�� 	
 ��	
� �� �
	��� ��� ��	���	���
 ��

successful systems. It focuses on defining customer needs and required functionality 

early in the development cycle, documenting requirements, then proceeding with design 

synthesis and system validation while considering the complete problem� (para. 1). 

Two additional important definitions to understand the idea of engineering a 

system is presented by Buede (2009): Engineering is the �discipline for transforming 

scientific concepts into cost-effective products through ��� ��� �� 	
	����� 	
 �����
��

(p. 10). Consequently, E
��
����
� �� 	 ������ �� ��� �engineering discipline that 

develops, matches, and trades off requirements, functions, and alternate system resources 

to achieve a cost-effective, life-cycle-balanced product based upon the needs of the 

��	��������� (p. 10). 

From those concepts, one important difference between design engineering and 

systems engineering is that systems engineering does not create the design of the 

operational system; rather. it defines what is to be done by creating requirements, 

concepts, and architectures that will be used by functional engineering. Systems 

engineering focuses on the architecture and the starting point is determining the user 

requirements (Forsberg, Mooz, & Cotterman, 2005, p. 103) . 

The systematic approach to system design follows a life-cycle. There are different 

approaches, but most of them are based on the project life-cycle from the project 
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management area of study. The most relevant systems life cycles are: linear, 

evolutionary, Waterfall, Spiral, and Vee models. One very well extended and commonly 

used model is the Vee model presented by Buede (2009, p. 10) in Figure 2.7. This model 

includes the stages of user requirements, specifications of the system, implementation, 

integration & testing, operation & deployment. However, this process is not completely 

sequential because there is a dependency and feedback relationship between the phases of 

specification and integration & testing, and the requirements and operation & deployment 

phases. These relationships are best represented in a V-shape. 

 

 

Figure 2.7 Systems Engineering Vee Model (Buede, 2009, p. 10) 
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The use of the appropriate model depends on the �������� complexity. When the 

system presents a great complexity and uncertainty, it is better to start small with a very 

basic model and then improve the model using an incremental model approach. 

An example of systems engineering applied to microgrids was developed by 

Doorsamy et al. (2015) by using a traditional iterative model like the one shown in Figure 

2.8. The authors described the stakeholder analysis and requirement analysis for the 

development of rural microgrids. Although they identified different stakeholders, 

subsystems, boundaries and external interfaces, as shown in Figure 2.9, the interactions 

between these different actors are not completely clear because this approach includes 

just one level of analysis where the interactions seems to have the microgrid as a central 

node.  

 

Figure 2.8 Iterative Systems Engineering Life-Cycle (Doorsamy et al., 2015, p. 1252) 

 

However, in a microgrid system there are interactions between utilities, 

regulators, and customers that do not depend exclusively on the technical infrastructure. 
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Hence, some of the element interactions would be better represented in a multilevel 

architecture using a System of Systems perspective. 

 

Figure 2.9 Context Diagram for a Microgrid System (Doorsamy et al., 2015, p. 1254) 

 

2.9 System of Systems 

Systems of Systems (SoS) is a relatively new special class of systems. The term 

first appeared in 1989, but the concept has not been completely clear until recently 

(Gorod, Sauser, & Boardman, 2008, p. 486). After an iterative process and the 

collaboration of different researchers, some agreement exists on an SoS: 

� It is constituted by components which individually may be considered as 

systems 

� The behavior of the SoS is not obtained from any individual component  

� The components are operationally and managerially independent. There is 

no directed or governing structure. Instead, it is a collaborative 

environment (Maier, 1998, p. 271). 
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� There is a significant complexity and heterogeneity. 

� There is an emergent behavior that cannot be analyzed by dividing the 

analysis in parts. 

� The interactions and relations between systems are crucial for analysis.  

In Table 2.2, Gorod et al. (2008) synthesize a comparison between the approaches 

of Systems Engineering (SE) and System of Systems Engineering (SoSE). Even more, 

DeLaurentis (2016b) states that the six common major phases used in the Systems 

Engineering processes cannot be applied in System of Systems because of their unique 

characteristics, In addition, DeLaurentis presents a comparison of these phases in both SE 

and SoSE, shown in Table 2.3. 

Table 2.2 SE vs. SoSE (Gorod et al., 2008, p. 488) 

 SE SoSE 
Focus Single Complex 

System 
Multiple Integrated 
Complex Systems 

Objective Optimization Satisficing, 
Sustainment 

Boundaries Static Dynamic 
Problem Defined Emergent 
Structure Hierarchical Network 

Goals Unitary Pluralistic 
Approach Process Methodology 
Timeframe System Life Cycle Continuous 
Centricity Platform Network 

Tools Many Few 
Management 
framework 

Established ? 

 

From both Table 2.2 and Table 2.3, we can see that the focus of SoSE relies on 

multiple integrated complex systems, while SE is focused on a single, complex system. 

This implies that in SE, the problem, goals, and measure of performance can be defined 
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clearly, and it is possible to obtain an optimized solution through a process approach. On 

the contrary, in SoSE the problem is not easily identifiable because there exist multiple 

objectives and an emergent behavior as a result of the interactions of the different 

systems. Because this emergent behavior cannot be obtained by analyzing each system 

component separately, optimization is usually not possible in SoSE. Furthermore, the 

management framework and tools for SoS analysis are limited due to the fact that a 

Microgrid can be considered as a SoS. This reinforces the justification of this research in 

which we identify the lack of tools to determine the interaction between electric utilities 

and customers, and the necessity for a methodology that can address this situation.  

Table 2.3 Systems Engineering Process in SE and SoSE (Dan DeLaurentis, 2016b) 

Phase SE SoSE 

Define goal Fixed objectives SoS evolves with time, so 
goals may change 

Set measure of 
performance 

Easier to define  Multiple objectives, sitting at 
different levels (& dependent) 

Generate solution 
alternatives 

Brainstorming , etc. are 
approaches to develop 
alternatives 

Problem mainly of selection 
rather than solution generation 

Iterate and Optimize Optimization is possible Optimization usually not 
possible, satisficing 

Evaluate and rank 
alternatives 

Have to select one main 
system 

Evolutionary nature means 
ranking is difficult 

Select and implement 
solution 

Design and manufacture 
the system 

Emergent behavior has to be 
accounted 

 

In order to delineate principles and concepts to analyze SoS, DeLaurentis, 

Crossley, & Mane (2011) defined a taxonomy to guide SoS decision making in air 

transportation problems. Even though this taxonomy is applied in air transportation, it can 

be applied to other SoS. The taxonomy considers three dimensions: types of systems, 
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control of systems, and connectivity of systems. There are three types of systems, too: 

technological, humans, and human-enterprise systems (p. 762). Control of systems refers 

to the degree of control by the authorities and the autonomy of the entities. Hence, there 

are four main types of systems regarding control: directed, acknowledged, collaborative, 

and virtual (p. 763). Finally, connectivity of Systems refers to the interrelationships and 

communication links between SoS systems. The main implications of connectivity are 

���� ������	 �
 ������ �������� ������
�� ��� �
������� �������� 
� �
������ ��������

������
�� ��� ��� ��
���
� 
� �
���������	� (D. A. DeLaurentis et al., 2011, p. 763). 

In addition to the previously mentioned taxonomy, DeLaurentis (2005) defined a 

three-phase SoS Modeling Process to guide and order the steps of modeling and analysis. 

����������� �
� �
������� ��
���� �� shown in Figure 2.10. The three phases of this 

process are: Definition, Abstraction, and Implementation. Definition is an understanding 

of the system, its operational context, status quo, barriers, scope categories, and levels. 

Abstraction frames key descriptors and their evolution, stakeholders, drivers, resources, 

disruptors, and networks. Modeling is a consideration at this point. Finally, 

implementation is related to analyzing, exploring, and interpreting the model. It is 

important to define objects, classes, methods, data, and measures (Daniel DeLaurentis, 

2005, pp. 9�11). 

One important step in the initial approach is to establish an effective language to 

facilitate the communication between the different parties. A lexicon of categories and 

levels developed by DeLaurentis (2005, p. 5) is shown in Table 2.4. This lexicon 

categorizes a SoS in different levels where the �-level is the base level, and no further 

decomposition is analyzed in the context of an SoS; however, each element in this level is 
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a system itself and has subsystems that can be analyzed with a SE approach. A higher 

level is a collection of the slower level and represents a system composed of other 

systems interacting between themselves. The four categories describe each level and help 

to organize and structure a SoS to identify the problem to address. 

 

Figure 2.10 SoS Modeling Process. (Dan DeLaurentis, 2016b, p. 5) 

Table 2.4 Lexicon for SoS. (Daniel DeLaurentis, 2005, p. 5) 

Categories Descriptions 
Resources The entities (systems) that give physical manifestation to the system-of-

systems 
Economics The non-physical entities (stakeholders) that give intent to the SoS 

operation 
Operations The application of intent to direct the activity of physical & non-physical 

entities. 
Policies The external forcing functions that impact the operation of physical & 

non-physical entities. 
Levels Descriptions 
Alpha (�) The base level of entities, for which further decomposition will not take 

place, �-level components can be thought of as building blocks. 
Beta (�) Collection of �-level systems, organized in an network. 
Gamma (�) Collection of � -level systems, organized in an network. 
Delta (�) Collection of � -level systems, organized in an network. 
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In this research, the SoS analysis helps to understand the nature of a microgrid as 

not just a specific technology, but a collection of different elements from non-centralized 

electric power sources such as photovoltaic modules, biogas digesters, small wind 

turbines; storage devices, flexible loads, power conditioners, and the management, 

operation and control equipment, interconnected and operated by electric and 

communication interfaces to satisfy the power necessities of a specific local community 

(Phillips, 2008, p. 252) (Banerji et al., 2013, p. 27). It is clear that the microgrid is a 

system. In fact, it is a system of systems because each element constitutes a complete 

system. For example, a wind generator can operate independently of the microgrid, and it 

is made of several different elements, such as blades, a rotor, a generator, gear 

transmission systems, and a tower. However, the wind generator is part of the power 

generation system, which in turn is part of the microgrid infrastructure, and this is part of 

the microgrid market. The interactions become more complex and dependent of the other 

elements and systems. Hence, the complete behavior in this case is difficult to model 

without specialized tools. 

2.10 ICT and Enterprise architecture 

The approach of architecting, rather than engineering, a system comes from the 

Information and Communication Technologies (ICT) domain and has been expanded to 

the enterprise level. IT-architecture is the art and science of structuring and organizing 

information and systems. It is impossible to engineer the situation because it is too 

complex; therefore, it is necessary to architect. ������ ��� ���	 
��	��� ����� �������

authority, different requirements, � �����	 �� �	����� ��� �� �� ��� ������������ focuses 
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on ill-structured problems and on the need to create a shared view on what the future 

��������� �	
��� �

� ���� (Janssen, 2009). 

When dealing with open systems with high complexity--too many interconnected 

and interwoven parts--traditional project planning and control tools are not useful; hence, 

new instruments and tools are required for managing the evolving IT landscape. It is not 

possible to obtain an optimum, but it is possible to use heuristics to improve the 

landscape. In other words, the use of past experiences to arrive at suitable solutions 

(Janssen, 2009). 

Enterprise architecture (EA) extends the ICT architecture to the business process 

to guide design decisions by defining the system from its composition, dependencies 

among its elements, and the complexity involved. This EA is considered a master plan 

and a SoS. According to Janssen (2009), a good architecture contains both descriptive 

and prescriptive elements, as is shown in Figure 2.11. A descriptive architecture is an 

abstract representation of the existing infrastructure. A prescriptive architecture 

represents a desired situation obtained through a design process. The implementation of 

the prescriptive architecture is made through design projects; which results influence the 

prescriptive architecture for redefining standards or architectural principles. In addition, 

these design projects can change the current infrastructure; therefore, the descriptive 

architecture must be updated. Finally, after an iterative process, a new infrastructure is 

obtained. This is referred as New Generation Infrastructure (NGI) (Janssen, 2015). 
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Figure 2.11 Enterprise Architecture cycle (Janssen, 2009, p. 111) 

The architecture and its components can be characterized in a 3-D architecture 

model similar to the one used in the SGAM reviewed in Section 2.2. In this case, the 

domains and zones will vary for each enterprise, but the interoperability layers can be 

generalized and classified as follows: business, business process, information, 

application, and technical architectures.  

Business architecture describes the relationships between value-creating activities. 

It is focused on the organizational level, interfaces, and service-level agreements between 

the business domains. The Business Process Architecture is focused in the processes and 

relationships. The Information Architecture describes the assets and resources involved in 

processing, storing, and distributing information among actors. The Application 

Architecture focuses on software applications, components, objects, and the IT portfolio. 

Finally, the technical architecture describes the generic infrastructures, operating systems 

and facilities used for other systems (Janssen, 2009, pp. 116�119). This Enterprise 
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architecture meta-framework, as defined by Janssen (2009, p. 113), is shown in Figure 

2.12. 

In addition, Architectural Governance deals with directing, controlling and 

decision making of the enterprise. This governance is present in all the stages of the 

enterprise architecture cycle: programing requirement, descriptive architecture, 

prescriptive architecture, and implementation of the architecture. 

 

Figure 2.12 Enterprise Architecture Meta-Framework (Janssen, 2009, p. 113) 

The analysis of ICT and enterprise architecture can be useful in the context of 

microgrids because they are also complex systems that have multiple, interconnected 

elements and different interoperability layers; thus, engineering all dimensions of the 

complete system would not be suitable. The application of these insights is reflected in 

Chapter 4 with the specific design of the methodology proposed in this research. 
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2.11 Modeling tools 

�� ����� �	 
 	��������� representation of a system at some particular point in 

��� �� 	�
�� ������� � ������ �����	
����� �� �� ��
� 	�	��� (Bellinger, 2004). 

Hence, modeling allows the exploration of different ways a system works and develops 

without the necessity of working with the real system in real time. A good model can 

help the design or redesign of a system, and help stakeholder during their decision-

making processes. A good model reproduces the key behaviors of a system within a 

minimal set of parameters, therefore reducing the complexity. In addition, a necessary 

first step in modeling is defining the problem correctly; otherwise someone may model 

something that is not useful to themselves or �� ��������	 	������. A good model has 

been verified and validated. Verification is about checking the computer model 

implemented versus the paper model. Validation is checking that it meets the objective 

and correctly solves the problem stated (Dan DeLaurentis, 2016a). 

According to Daellenbach, McNickle, & Dye (2012), there are four different 

modeling methodologies that can be used depending on the type of system: 

� Discrete system: changes its states at discrete points in time, but it remains 

unchanged between these points in time. 

� Continuous system: changes its states continuously, but sometimes if the 

changes are not representative it is possible to approximate a continuous 

state variable to a discrete state variable. 

� Deterministic system: its behavior is predictable and it always exhibits the 

same behavior as a response to the same starting conditions. 
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� Stochastic system: its behavior is affected by uncertain or random inputs 

(Daellenbach et al., 2012, pp. 44�45). 

For microgrids, there are basically three main approaches that can be used to 

model and simulate different systems and processes: System Dynamics (SD), Process-

centric or Discrete Event (DE) modeling, or Agent Based modeling (ABM). The first two 

use a top-down approach, while ABM is a bottom-up approach, which means that the 

focus is on the behavior of the individual elements (AnyLogic, n.d.).  

Discrete event modeling is a medium-low abstraction level modeling approach 

that is useful when there is a sequence of operations that describes the system. It 

simulates process workflows and the behavior of entities and resources in the system. On 

the other hand, System Dynamic Simulation is used to model complex systems and 

strategic models to design new policies. This is a high level modeling in which individual 

properties of discrete items are not important. What is important is the stock and flow 

diagrams and decision rules.  

Agent Based Modeling (ABM) can model systems with participants that are not 

passive entities and can be represented with an average value or behavior. Rather, these 

������ �	�
� ������� ������������� ���������� ����������� ��� ������� ������������ ���

���������	���� (AnyLogic, n.d.). Furthermore, there are different types of agents. 

According to DeLaurentis (2016a), there are mobile, adaptive, reactive, utility, goal-

based, info-gathering, interface and autonomous agents. A way to classify them is shown 

in Figure 2.13. It is important to mention that ABM is not a technology; it is a way of 

thinking which does not seek an optimized answer, but an adaptive and intelligent 

behavior. 
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Figure 2.13 Types of Agents (Dan DeLaurentis, 2016a) 

 

Recently, a different modelling approach has been used to model some microgrid 

systems. This approach is called Dynamic Data-Driven application system (DDDAS). 

The advantage of this paradigm is that it incorporates new real-time data to update the 

inputs of a simulation model. This dynamic approach adjusts its fidelity while the system 

is running and automates the simulation adaptation, thereby reducing the participation of 

the human being in the learning and improvement process of the modeling (Thanos, 

Moore, Shi, & Celik, 2015, p. 341). 

In addition to the previous approaches for modeling and simulating generic 

systems, there exist different modeling and simulation tools to analyze the behavior of 

different variables in power systems. However, none of those tools simulate and model 

the complete microgrid system with consideration of the higher levels and layers in its 
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architecture. For example, the business level in the SGAM model is not considered by 

power systems simulators. Table 2.5 shows some commercial tools and their main 

characteristics and suitability for power systems simulation. 

Table 2.5 Commercial tools for power system simulation 

Software Characteristics 
ETAP (ETAP automation) Suitable for load flow studies, harmonic analysis, short 

circuit, and grounding, etc. 
Can work with big number of busses (state utility 
network).  
Easy to create buses and execute huge amount of data. 

DIgSILENT PowerFactory Suitable for load flow analysis, short circuit, etc. 
Can work big number of busses (state utility network). 
Easy to create buses and execute huge amount of data. 

PSCAD  Suitable for a small number of busses and depth analysis. 
Useful for transient/over voltage/charging 
studies/mathematical analysis/other domain analysis 

MATLAB Suitable for less number of busses and depth analysis.  
Useful for transient/over voltage/charging 
studies/mathematical analysis/other domain analysis 

MIPOWER(PRDC For load flow analysis, short circuit. Big number of busses 
(state utility network). Easy to create buses and execute 
huge amount of data.  

PSS/E(Siemens) For load flow analysis, short circuit. Big number of busses 
(state utility network). Easy to create buses and execute 
huge amount of data. 

NEPLAN(ABB) For load flow analysis, short circuit. Big number of busses 
(state utility network). Easy to create buses and execute 
huge amount of data. 

HOMER TM Specialized for simulation, cost investment optimization 
and sensitivity analysis of microgrids. 
Calculates Net Present Values of capital requirement and 
operational costs. 
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2.12 Chapter summary 

Chapter Two summarizes important basic concepts in microgrid technology, and 

the current scenario for energy markets regarding utilities cooperation. In addition, the 

approach of systems thinking, system of systems and ICT architectures were referenced 

as important concepts and tools to analyze microgrids. Finally, modeling and simulation 

tools currently available to analyze systems in general and power systems were 

explained, showing the lack of an integral simulator to model the complete microgrid 

system. 
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CHAPTER 3. RESEARCH METHODOLOGY 

3.1 Abstract  

This chapter explains the process carried out to perform this research. It covers 

the research framework, sample set, data collection, analysis procedures, testing 

procedures, and threats to validity used in this thesis. 

3.2 Qualitative framework or perspective 

This research is an exploratory study to propose a methodology to ensure mutual 

benefit to the main actors in a microgrid project while mitigating risk and conflict. This 

methodology will be useful in order to effectively implement microgrids with proper 

planning.  

3.3 Sample (type, number, and access) 

This research was carried out using a nonprobability sample design, specifically a 

convenience and judgment sampling. The population of analysis in this research includes 

utility companies and industrial customers in the state of Indiana, specifically those with 

expertise on the topic investigated, which is microgrid implementation. In addition, costs 

and time constraints led to interviews with representatives from companies available 

through the Center of Technology Development of Purdue University. The objective was 

to interview at least one electric utility and one industrial customer in the state of Indiana; 

however, the expectations were achieved by interviewing and applying questionnaires to 

two electric utilities and three industrial customers. 
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3.4 Data Sources 

The research includes a phase of obtaining data from secondary and primary 

sources. The secondary sources were journals, magazines and reports on past and current 

microgrid implementations in different U.S. states, focusing mainly on the perspectives 

of the utilities and customers. The primary information sources were surveys and 

interviews with representatives of the aforementioned sampling population with the aim 

to determine their interests. 

3.5 Data collection procedures 

Semi-structured questionnaires were applied to representatives of the sampling 

population to determine specific information obtained by secondary data sources. These 

questionnaires were sent electronically because the interviewee might need to ask other 

areas of the company to answer specific information, regarding technical, financial, 

regulatory and business information. 

In addition, interviews were applied to the same representatives to expand the 

understanding of the questionnaire responses. These interviews were performed via 

teleconference and recorded. Some important answers were written down to complement 

the answers provided by the previous questionnaires. 

3.6 Data analysis strategy/procedure 

The data collected by interviews and questionnaires was processed to determine 

patterns, causes, and objectives of the participants. This information was contrasted with 

the information obtained by secondary sources to obtain a base line of the perspectives of 

the actors in a microgrid project.  
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In addition, different system models and approaches were analyzed to determine 

the best strategies according to the data collection process. 

3.7 Testing conditions and procedures 

The methodology was validated with a generic case study in a simulation 

environment using the insights obtained by utilities and industrial customers via the 

questionnaires, interviews and literature review. It was performed face validity 

comparing the outcomes of a microgrid project with the application of the microgrid 

reference methodology proposed, therefore determining its usefulness to address factors 

that traditional approaches do not. Furthermore, different infrastructure alternatives were 

simulated using commercial tools to compare the evaluation of the alternatives obtained 

through the developed methodology.  

In addition, the microgrid methodology was validated in terms of the own validity 

of the concepts, framework, models, and body of knowledge used as a basis to develop in 

this methodology.  

3.8 Threats to validity 

The use of insights that do not reflect the current reality utilities face and the real 

situation of customers who want to incorporate electric microgrids to their current 

infrastructure can generate errors in the determination of the mutual benefits for both 

technical and non-technical variables. 

Because there were a reduced number of interviews with representatives of 

electric utilities and customers, the opinions may be biased. This situation could create a 

misperception of the real objectives that utilities and customers seek and therefore lead to 

the development of misguided policies. 
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Because the researcher is an important participant in the research process, there is 

the possibility of bias created by the influence of previous knowledge, experience, or 

ideas. 

In order to increase the validity and overcome intrinsic biases, triangulation was 

applied during different stages of the research by using different reliable secondary data 

sources, principles and framework to establish a valid methodology. In addition, the 

experiences of professionals and researchers with knowledge and expertise in microgrids 

and related topics were considered and incorporated. 

3.9 Chapter summary 

Chapter Three covered important aspects about how the scientific investigation 

was be conducted. The sources of information required, measurement variables and 

testing conditions to evaluate the hypothesis were explained. Finally, some threats of 

validity were pointed. 
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CHAPTER 4. MICROGRID REFERENCE METHODOLOGY 

4.1 Abstract 

The purpose of this chapter is to consider important concepts of Systems 

Engineering, System of Systems, Management Science and Infrastructure Architecting 

approaches in the context of microgrid systems, especially in the interactions between 

electric utilities and customers. This chapter shows an initial integration of these areas of 

knowledge, and seeks to develop a Microgrid Reference Methodology (MRM) that can 

be used as a tool to solve problems and assist the decision-making process consideration 

of socio-economic concerns about microgrid technologies by different actors in the 

energy market. 

4.2 Introduction 

Microgrid systems clearly have a complex nature and their analysis has been 

performed from different perspectives, mostly addressing the technical complexity of 

their operation and control functions. Due to the fact that the implementation of a 

microgrid involves not only technical factors but socio-economic concerns as well, a 

Microgrid Reference Methodology (MRM) is proposed in this chapter to obtain a 

complete representation of the microgrid system and the applicability of decision-making 

concepts to address specific problems concerning the cooperation between utilities and 
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customers. This reference methodology combines different approaches and insights from 

the literature reviewed in Chapter 2.  

We initially defined the main phases in the microgrid system life cycle. As 

referenced in Chapter Two, a microgrid can be considered as a System of Systems (SoS); 

therefore, a microgrid can be analyzed using the methods and approaches defined for 

modeling a SoS. However, the focus of this research relies on the factors that allow to 

successful microgrid implementation for the mutual benefits of its actors. The purpose is 

not just modeling the system as it is, but also considering all its phases, from planning to 

operation. A microgrid system will change its behavior according to different social, 

technological, economical and regulatory factors constantly in flux with the market. For 

this reason, the life cycle shown in Figure 4.1 includes aspects of the SE and SoS adapted 

to the microgrid context.  

This life cycle is sequential but not unidirectional. The iterative nature of the 

system makes updating necessary, and this can be done through feedback loops after 

obtaining preliminary results and consulting with the stakeholders. In addition, it is 

important to have in mind that verification and validation processes are important in each 

stage of the cycle to improve the correctness and usefulness of the model. 

Next we will explain the phases and design for our current research question. The 

implementation, integration and testing, operation and maintenance phases are beyond 

the scope of this work because they are executed in real implementations once the design 

phase has been completely verified and validated by the stakeholders and the problem 

owner. In addition, no further observations are necessary to be made about these stages 
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Figure 4.2 is a flow chart of the definition phase process. The first step is to use a 

system lexicon to maintain a common language within the microgrid project actors. We 

will use a modification of the lexicon proposed by DeLaurentis (2004, p. 832) indicated 

in Table 2.4. It is important to consider some additional factors at each level. The lexicon 

used to represent microgrid systems in this research is shown in Table 4.1. 

Start

To collect and organize 
information about 

domains, factors and 
levels of the microgrid 

system

Problem 
demarcation and 

goal analysis
(Figure 4.4)

Actor analysis
(Figure 4.5)

ROPE  table
(Table 4.2)

� objective trees
� Mean-end trees
� Problem statements

� Influence/Interest grid
� Actor characterization 

chart
� Actor relations map

End
 

Figure 4.2 Definition phase flow chart 

The second step is to collect information related to the dimensions and levels of 

the microgrid system and organize it in a table similar to the ROPE table proposed by 

DeLaurentis et al. (2004, p. 835), with dimensions that are modified to include some 

PEST analysis factors, a tool used in strategic planning to identify the microenvironment 

and external forces of an organization. PEST analysis focuses on Political, Economic, 

Social, and Technological environments. The ROPE table modified and applied for a 

generic microgrid system is shown in Table 4.2. 
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Table 4.1 Lexicon used to represent Microgrid Systems 

 Category Description 

D
om

ai
ns

 
Resources  
 

Physical entities in the microgrid system that are used and 
affected by operations. 

Stakeholders 
 

Social entities that can affect or be affected by the microgrid 
system. They have interests and goals and can influence the 
system. 

Operations/ 
Processes 

Processes that direct the activity of the resources 

Policies The external forcing functions that impact the operations.  
Norms and laws that must be observed because they stablish 
constraints in the system behavior 

Fa
ct

or
s 

Financial Financial concerns and objectives of the different 
stakeholders in a microgrid project 

Technical  Technological interests and concerns of the different 
stakeholders in a microgrid project 

Market and 
Business 

Business interests and concerns of the different stakeholders 
in a microgrid project 

Social Social interests and concerns of the different stakeholders in 
a microgrid project  

L
ev

el
s 

����� ��� - 
Technical 

The base level of the system. It is made of subsystems but no 
further decomposition is analyzed. It represents the technical 
layer in a 3-D infrastructure architecture.  

	
�� ��� - 
Application 

������� �� �����
� �-level systems. It represents the 
application layer in a 3-D infrastructure architecture. 

����� ��� � 
Information 

Collections or manages �� �-level systems. It represents the 
information layer in a 3-D infrastructure architecture 

�
��� ��� - Business Collections or manages �� �-level systems. It represents the 
business layer in a 3-D infrastructure architecture 

  

Once we have represented different levels and dimensions of the system, it is 

possible to identify specific problems and the interdependencies between different 

elements. For example, an improvement in the efficiency of PV panels would fit into the 

� level, while a reduction in peak demand consumption would fit into the � and � levels 

�
����
 �� ������
�  ���
�
�� �
�����
� �� ��
 �������� ��
�!� ��������
�"  
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Currently, most research has been conducted on the first three levels, resulting in 

mostly technical improvements of the system. However, the � level has not been formally 

analyzed as an additional level in the design of most microgrid projects. Recently, most 

of the research on the � level focuses on business models and regulatory aspects carried 

out by policy makers, market analysts, and regulatory entities.  

Table 4.2 ROPE table for microgrid systems 

 Resources 
 

Stakeholders 
 

Operations Policies Factors  

�  
Technical  

Microgrid 
elements and 
devices (e.g. 
batteries, solar 
panels, AC/DC 
converters, loads, 
etc.) 

Technical 
personnel (e.g. 
installers, 
engineers, etc.) 

Operating a 
single technical 
resource (e.g. 
PV energy 
conversion, 
relay tripping, 
etc.) 

Policies 
relating to 
technical 
resources (e.g. 
standards, 
certifications, 
electric 
specifications, 
etc.)  

Financial/ 
Technical/ 
Market / Social 
Concerns 
relating to single 
resources (e.g. 
efficiency in PV 
energy 
conversion, costs 
of fuel for a 
micro generator, 
etc.) 

�  
Application 

Collection of �-
level resources 
with a common 
application 
(e.g. generation 
systems, storage 
system, 
distribution, 
management, 
operation and 
control, 
communication, 
cybersecurity 
subsystems, etc.) 

Responsible for 
areas 
associated to a 
collection of �-
level resources 
(e.g. generation 
manager, 
operations 
manager, etc.) 

Operating a 
collection of �-
level resources 
for a common 
application 
(e.g. Volt/Var 
control, 
frequency 
control, power 
quality 
monitoring, 
security 
monitoring, 
economic 
dispatch, state 
estimation, 
LOAD/DER 
forecast, etc.) 

Policies 
relating to a 
collection of �-
level resources 
for a common 
application 
(e.g. service 
level 
agreements, 
design 
specifications, 
etc.) 

Financial/ 
Technical/ 
Market / Social 
Concerns 
relating to a 
collection of �-
level resources 
for a common 
application (e.g. 
Power Quality, 
Cost of systems 
of equipment, 
Interoperability, 
etc.)  
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Table 4.2 ROPE table of generic microgrid systems (continued) 

� 
Information 

Resources in the 
microgrid user 
facilities (e.g. 
ICT 
infrastructure, 
Production 
machinery, 
microgrid 
infrastructure, 
etc.) 

Administration, 
senior 
management, 
leadership of 
microgrid 
users.  

Operating in the 
microgrid user 
local domain (e.g.  
Grid-connected-to-
islanding 
transition, Energy 
management, 
communication 
and information 
management, 
distribution 
management, 
microgrid central 
control, etc.) 

Policies in 
the 
microgrid 
user domain 
(e.g. 
Electric 
Utility 
regulations 
for 
customers, 
internal user 
policies,  
etc.)  

Financial/ 
Technical/ 
Market / Social 
Concerns 
relating to the 
microgrid 
owner domain 
(e.g.  
Power 
reliability, 
energy 
consumption, 
productivity 
efficiency, 
interoperability 
of 
infrastructure  
 etc. ) 

� 
Business 

Resources in the 
Microgrid/Energy 
Market 

Organizations 
in the 
Microgrid 
market (e.g. 
utility 
companies, 
industrial 
customers, 
microgrid 
developers, 
regulators, etc.) 

Operations of 
Energy sector (e.g. 
implementing of 
incentives, 
defining of 
rate/tariff 
structures, billing 
& management,  
commercialization, 
etc.) 

Policies 
relating to 
the Energy 
Market (e.g. 
electric 
service 
tariffs, rules 
and 
regulations, 
Federal 
Energy 
Regulatory 
Commission 
acts, etc. ) 

Financial/ 
Technical/ 
Market / Social 
Concerns 
relating to the 
energy sector 
(e.g. Profits, 
ROI, 
environmental 
impact, social 
welfare, etc.)  

 

Figure 4.3 shows the four levels of this Microgrid Reference Model. The size of 

each level represents the number of elements involved in each system. The � level has the 

largest number of elements, including equipment, devices, feeders, data, software, 

personnel, etc. These elements represent the initial considerations of the actors interested 

in developing microgrid projects. Traditionally, these elements have taken most of the 

time and attention when planning a new microgrid project. In addition, several efforts 
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have been made in R&D by different developers and universities to obtain better, 

cheaper, and more efficient technology. For these reasons, the � level is depicted as the 

base of the pyramid in Figure 4.3. 

The next two levels have fewer elements, but the resources, operations, and 

factors involved are in a higher level. The focus of these layers is the efficiency of 

different systems inside the microgrid and in its operations. These levels are mostly 

considered when planning projects because they govern the interests of the microgrid 

user senior management.  

Traditionally, the first three levels have been analyzed to improve the technical 

aspects of the system. On the other hand, the � level has the smallest number of elements, 

and it has not been formally analyzed as an additional level in microgrid project design. 

However, the actors involved in this layer have very powerful interests, influence, and 

decision-making capabilities. Hence, the lack of a complete understanding of the problem 

results in decisions that are not fully informed, and sometimes the execution of the 

microgrid project is not carried out once the technical concerns have been addressed.  

For this research, we focus on the � level because we are specifically interested in 

the cooperation between utilities and customers; however, the Definition phase specified 

in this chapter would be very useful for any problem involving any layer of the microgrid 

system. 

 







66 

 

Some important considerations and advice to perform problem demarcation and 

goal analysis are:  

� The hierarchical goal tree shows main goals, sub goals, and operational 

goals. 

� Remove the overlap. 

� Remove words like high, lower, less, faster, etc. to transform the goals 

into criteria that accurately represent the problem. 

� Assign units of measure to the lower class goals. Quantitative goals are 

better than qualitative because they can be measured in interval and ratio 

scales 

� Avoid main goals that are too broad or too specific, and goal trees with 

causal relations that contain alternatives. 

The next step is to perform a detailed actor analysis. Actors can be individuals or 

organizations, so an actor analysis helps to understand who is involved in the problem, 

who can influence the achievement of objectives, and their respective concerns and 

issues. A systematic process to identify the actors involved in the system is shown in 

Figure 4.5, which was developed using the approach of Enserink (2015) and de Haan et 

al. (2015). The actor analysis results in a clear specification of the actors, their 

importance, and relationships in the system. An actor analysis helps to identify who has 

interests and who can influence the microgrid project. ���� ������ �	 
������� ��

influence. In addition, the identification of the actors involved is useful to distinguish and 

understand the allies and the opponents. It is also useful in understanding the levels of 

power, resources, and interdependencies of different actors. Similar to the problem 
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customers in this research, we will use a systems dynamics approach based on the 

problem solving and decision making processes developed by de Haan et al. (2015). It is 

worth noting that the methods used in the design stage will vary depending on the 

problem and levels of interest. For example, if the problem lies at the � level, it might be 

better to characterize every element and device as an agent and use Agent Based 

Modelling (ABM). However, if the focus is the operations and processes of the 

microgrid, such as energy production and consumption over time, a discrete event 

approach might be more suitable. A flow chart of the general Design phase process is 

shown in Figure 4.6. 

Start

Scenario 
analysis

Evaluation 
analysis

� Factors and criteria
� Causal and problem 

diagram

� Key scenarios
� Scenarios 

description

� Score cards
� SMART card 

(optional)

End

Causal 
analysis

 

Figure 4.6 Design phase flow chart 
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After these steps we will have a problem diagram that represents the dynamics of 

the system and includes the objectives, criteria, factors, causal relations, and alternatives. 

The next step is to evaluate these alternatives and consider the uncertainties caused by 

external factors that cannot be controlled by microgrid actors. 

The next step is to perform the scenario analysis and evaluate the alternatives. 

These steps are based on de Haan et al. (2015) and summarized as follows: 

1. Identify the external factors in the causal diagram. The external factors are the 

scenario variables. 

2. Design scenarios that categorize the external factors using two axes: certain-

uncertain and high impact- low impact. Theoretically, the minimum number 

of scenarios is 2^ (number of scenario variables). 

3. Select the key scenarios with high impact and high uncertainty. 

4. Make scenarios; describe them in words. 

5. Create a score card for each scenario. Score cards are tables that show the 

effects of all alternatives on all criteria. The criteria are placed in the first 

column and the alternatives in the first raw. 

6. Evaluate the impact of each alternative on each criterion and fill each cell with 

scores.  

� Filling the values in each cell can be done by using the literature review, 

consulting experts, conducting experiments, or by estimation. 

7. Compare the scenarios. 

8. An additional step is to use Simple Multi Attribute Rating Technique 

(SMART). 
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a. One SMART must be used for each scenario and for each actor because 

SMART considers the different weights for each criterion and each actor. 

b. Normalize the scores between 0 and 1.  

Some common mistakes during the scenario analysis are: 

a. A misunderstanding of why clients cannot influence external factors 

b. Making predictions of the future and using them as scenarios 

c. Failure to identify the direction of the criterion as positive or negative, 

depending on the actor. 

d. To use unrealistic weight factors 

e. The highest ranked alternative is not always the best solution 

After the scenario analysis, we have a quantitative comparison of the alternative 

options for the utility company and customer. The cooperation between these two actors 

can be analyzed and alternatives for the decision making process proposed for their 

mutual benefit. 

In the next chapter, we apply this methodology to a generic microgrid project case 

study in order to demonstrate the usefulness of the approach. 

 

4.5 Chapter summary 

In Chapter Four we selected a Microgrid Reference Methodology (MRM) to 

analyze microgrid systems using a systematic approach. First, we defined the life-cycle 

process and microgrid system analysis phases. Then, we described the Definition and 

Design phases in the context of cooperation between electric utility companies and 

customers. The methodology proposed in this chapter is a sequence of steps to analyze 
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and organize the problem into charts and diagrams that will facilitate decision-making 

and cooperation between the two key players in microgrid projects. In addition, the 

process established in this chapter was based on different fields of study that have been 

validated by previous research. 

 

 



73 

CHAPTER 5. CASE STUDY APPLICATION 

5.1 Abstract 

This chapter shows the application of the microgrid reference methodology 

proposed in Chapter 4 to a generic case study in which the customer desires to implement 

a microgrid to improve the energy reliability, energy savings, and higher power quality. 

The utility company is willing to cooperate in this project; however, they have some 

infrastructure installed on the ��������	� premises and they would like to obtain mutual 

benefits from this project. The technical and economic feasibility depends on the 

cooperation of these two actors, and the alternatives vary drastically depending on the 

decisions taken. 

5.2 Description of the case study 

In this case study we are going to skip the three first levels of analysis architecture 

showed in Figure 4.3 and focus specifically on the 
 level, which is the purpose of this 

research. We have used HOMER� software to model a generic microgrid system and 

obtain some results from its behavior in different scenarios useful in the decision making 

process. The microgrid system used in this case study and shown in Figure 5.1. is a 

modification of the design of Lambert (n.d.), including PV generation and the Solar 

profile of the state of Indiana. This system has Distributed Energy Resources (DER) such 

as PV, wind and diesel generators, a primary load of 2.5 MWh/d and 207 kW peak, 
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batteries, and a converter. The characteristics and costs of the elements and electricity 

grid tariffs are based on average values in the Midwestern U.S. The details of these 

values are in Appendix C. 

 

Figure 5.1 Microgrid for the generic case study 

 HOMER supplies us with different optimal implementation solutions for the 

customer, who is going to invest in the infrastructure required to implement the 

microgrid. For example, in Figure 5.2, we have the sensitivity results and optimal system 

combination considering two axes: wind speed and diesel price. Basically, after a wind 

speed of 6.5 m/s, wind generation might be considered in the system. In addition, in 

Figure 5.3, we have the four optimal infrastructure alternatives. We can see the resources 

used in each alternative and its respective cost. 
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Figure 5.2 Sensitivity results and Optimal system combination 

 

Figure 5.3 Optimization results and infrastructure combination 

 

We can compare the second and third optimal alternatives shown in Figure 5.3 to 

understand some differences in the interests of the customer and the utility company. For 

example, the second option, shown in Figure 5.4, seems attractive to the customer 

because it represents the lowest initial investment, $45,000; however, the operational 

costs are very high because this solution mainly uses the external grid and the net present 

cost of the grid electricity is more than $800,000. In addition, this solution might not 

meet the energy independent requirements of the customer. However, this scenario seems 

to be the most beneficial for the utility company because its incomes are the highest. 
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Figure 5.4 Electrical results of the second optimal alternative 

The third optimal alternative, shown in Figure 5.5, has the highest initial capital 

required, $811,000; however, this solution uses more DER and some customer 

requirements--such as energy independence, power reliability, power quality, become 

greener, etc.-might be met. On the other hand, this scenario might not be very attractive 

for the electric utility because the purchases of electricity decrease to around $100,000.  

HOMER can provide valuable information for the microgrid project, but it does 

not provide the mutual benefits for the customer and the electric utility company. 

������� goal is to provide the customer with the optimal combination of generation 

sources based on costs calculated on their net present value. In contrast, the microgrid 

reference methodology proposed in this chapter does not focus on the best technical 

alternative or the cheapest one; instead, the focus is the impact of alternatives on a group 

of criteria for the achievement of the higher level objectives of both actors. 
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Figure 5.5 Electrical results of the third optimal alternative 

 The generic utility and customer profiles were based on information collected 

from magazine reports on the current microgrid market issues presented in sections 2.4 

and 2.5 of this research, and from questionnaires and interviews with Indiana utility 

companies and industrial customers. The complete answers from these questionnaires are 

presented in Appendix A and B. 

 

5.3 Definition 

We start the analysis of the current system by describing the � level. The 

information was synthesized using the different resources reviewed in Chapter 2, and the 

questionnaires and interviews with electric utilities and industrial customers detailed in 

Appendix B and Appendix C respectively.  
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Resources: 

� Microgrid Management, Operation and control systems (MOCS) 

� Infrastructure in Customer premises, microgrid user and other customers 

� Information systems of service provider and microgrid user 

Stakeholders: 

� Generic Utility company: e.g. Duke Energy 

� Generic customer: e.g. industrial or commercial 

� Other neighboring customers and electricity users 

� Market regulator: e.g. Indiana Utility Regulatory Commission (IURC) 

� Suppliers: manufactures, vendors, providers 

Operations 

� Information integration 

� Business processes 

� Billing & management 

Policies: 

� Regulator policies 

� Utility policies 

� Customer business policies 

Technical factors/concerns 

� When exporting power, microgrids must provide frequency regulation, 

voltage support, and reactive power so that grids remain stable. 
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� There is a general interest in reducing environmental damage and 

improving energy efficiency. 

� Microgrids could alter the reliability of the main power grid when there 

are faults in the tripping, islanding, and interconnection processes. 

� There is a necessity to deal with the electric utility legacy infrastructure.  

� Required investing in additional equipment for automation, control, and 

monitoring. 

Regulatory factors/concerns 

� Required regulatory and legislative awareness of new challenges and 

possible changes 

� A regulator is necessary to promote innovation in electricity services and 

encourage modern grid development. 

� There are existing Legal barriers to multi-building and multi-owner 

microgrids. 

� There are different prices and regulations in each state. 

� Changes in utility franchise rights and rate structures are necessary. 

� There are state government incentives to increase microgrid initiatives on 

the east coast, but not in the Midwest. 

� Lack of U.S. standardized regulation of microgrids and disincentives for 

utilities to permit them. 
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Financial Factors/Concerns 

� The utility company is concerned about the costs to provide support power 

to the microgrid during peak hours. 

� The necessity for changes in rate tariffs as consequence of reductions in 

power sales caused by customers using DER and microgrids. 

� Currently, the utility does not know how to evaluate the environmental 

value of implementing microgrids. 

� Concern about what to do in low electricity price environments, such as 

the Midwest. 

Market and Business Factors/Concerns 

� Positive expectation of market growth in the next five years. 

� Considerable government incentives in some states to improve economic 

and environmental costs and grid resilience. 

� It is necessary to define interconnection standards, standby rates, and sub 

metering rules. 

� In current business models, electricity suppliers spread fees to all retail 

generators independently of the demand because they cannot reduce 

output when supplies or reserves are low. 

� Different visions of electric utility microgrids. Some electric utilities 

perceive microgrids as new competitors to their traditional business. 

Others consider them as new business opportunities. 

� The traditional business model has been to install new power plants as 

loads increase and place them in as part of the rate bases. 
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� Some primary objectives of electric utilities in microgrid projects are 

economical revenues, grid quality improvement, environmental care, and 

social welfare. 

� Commercial concerns about new rate/tariff structures, opening up markets, 

developing new products, ancillary services, and aligning subsidies 

� Concerns about new role for utilities, such as the Distributed System 

Operator (DSO) or Microgrid Integral Operator, who builds, owns, 

operates, and maintains the microgrid in exchange of premium tariffs. 

5.3.1 Problem demarcation and goal analysis 

The direct actors in this case study are the utility company and the customer. 

Other actors, such as the regulator, other neighborhood customers, and suppliers are 

important as well, and they simply respond to the requirements of one or both direct 

actors. Currently, the regulator does not play an active role in each project; its role is 

limited to law enforcement. Table 5.1 shows the actors and their corresponding interests. 

Table 5.1 Actors and Interests  

Actor Interests 
Utility company Interoperability of technology 

Stranded cost recovery 
Peak shaving 
Commercialize new products and services 

Customer Lower energy consumption 
Islanding 
Higher power quality 

Regulator Compliance with laws 
Suppliers Sales increase 
Other neighboring customers Maintain their quality of service 
Community Environmental care 
Municipality Compliance with regulations and laws 
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For this case study, we applied the methodology for two actors: the utility 

company and the customer. The problem demarcation and goal analysis for each actor is 

as follows: 

We started with the goal of peak shaving and then asking: why? what is this? and 

how? to create a tree with related goals. This tree could be larger and consider more 

goals, but because this case study is an introductory example of applying the developed 

methodology, we will work with the tree shown in Figure 5.6. We repeated the same 

exercise for the customer, starting with the goal of islanding. The hierarchical goal tree is 

shown in Figure 5.7.  

 

Efficiency in 
generation 

usage

Peak shaving 
Better 

electricity 
service

High Power 
Quality

High revenues 
per KW 

produced

Low 
electricity 

production 
price

High Power 
Reliabil ity

 Low demand 
at peak hours

Environmentally 
friendly

Low CO2 
emissions

Low fuel 
consumption

High load 
factor

High off- 
peak demand 

of energy 

High 
generation 

capacity  
efficiency 

 

Figure 5.6 Hierarchical goal tree for the utility company 
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As we see, there are higher-class goals and lower class goals; however, a problem 

statement requires a dilemma caused by undesirable effects. The means- end trees shown 

in Figure 5.8 and Figure 5.9 show the goals, means, and undesirable effects for the 

electric utility company and for the customer. The problem statements are defined as 

follows: 

� Utility company: how to obtain efficiency in generation usage without a 

reduction in profits or an increase in related infrastructure investments.  

� Customer: how to reduce the impact of energy issues without incurring 

high investments or low ROI. 

Efficiency in 
operations

Islanding �
higher 

autonomously

high reliability 
of energy 

system

Energy efficieny

Low CO2 
emissions

Low impact of 
energy issues 

High resilience
Low energy 

consumption
High Power 

Quality
High 

cybersecurity
 

Figure 5.7 Hierarchical goal tree for the customer 

 

We can obtain a list of criteria for our analysis from the hierarchical goal trees. 

The criteria are the lower class objectives without words such as high, low, etc. 

� CO2 emissions 

� Fuel consumption 

� Off-peak demand of electricity 
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� Electricity production price 

� Load factor 

� Electricity demand at peak hours 

� Power quality 

� Power reliability 

� Power Resilience  

� Cybersecurity level 

� Energy independence (islanding) 

� Customer energy production 

� Efficiency of business operations  

 

Reduction in 
profits 

Increase in 
infrastructure 
investments

Efficiency in 
generation 

usage

Peak shaving - 
low demand at 

peak hours

Better 
electricity 

service

Demand side 
management �
optimizing use 
of energy by 
customers

Implementing 
better controls, 
monitoring and 
management 

equipment

Using DER and 
CHP goals

 means
Undesired effect

 

Figure 5.8 Electric Utility means � end tree. 
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Islanding �
higher energy 
independence

Low impact of 
energy issues 

high reliability 
of energy 

system

High 
investments

High resilience
High Power 

Quality
High 

cybersecurity

Install ing  DER 
Install ing  better 
communication 

and security 
equipment 

Implementing 
better controls, 
monitoring and 
management 

equipment

Acquiring 
ancillary 

services from 
Utility

Install ing  
storage systems 

Low ROI

goals
 means

Undesired effect  

Figure 5.9 Customer means- end tree  

5.3.2 Actor Analysis 

Until now, the problem demarcation is an initial approximation of the scenario. 

The next step is to better understand the actors. By following the process detailed in 

Figure 4.5, we performed the actor analysis. The interests of the actors were defined in 

Table 5.1, and their influence is shown in Table 5.2. 

To visualize the interests and power of influence of each customer in the current 

system, we created the influence/interest grid in Figure 5.10. It shows that the players--

those who have high power and high interest--are the utility company and the customer; 

�������� 	
 	� 	���
��
 
� ����	��� 
�� �
��� ��
���� ��	
	���� ������� 
��� �	��
 ��
��


�� ���	�	�� �� 
�� �	�����	� �����
 �
 ���� �	�
 ���	�� 
�� �����
�� life cycle. 
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Table 5.3 Actor Characterization Chart 

 Values Perceptions Resources Networks 
Utility 
company 

Provision of 
electricity 
services 

The microgrid 
will reduce the 
demand in 
peak hours 
The incomes 
might be 
reduced 

Infrastructure 
Personnel 
Know how 
Capital 

Power grid 
companies 

Customer Use of the 
energy and 
infrastructure 
Production of 
energy through 
DER 

The microgrid 
will improve 
energy security 
The costs 
required might 
be high 

Capital 
Personnel 
Facilities 

Industrial and 
commercial 
customers 

Regulator Regulation and 
control in 
tariffs and 
participation of 
each actor 

The microgrid 
project is must 
meet the 
regulation 

Permits 
Laws 

Government, 
Parliament 
authorities 

Suppliers Provision of 
technology, 
equipment, 
labor, etc. 

The microgrid 
project will 
allow them to 
provide their 
solutions 

Technology 
Know how 

Developers  
R&D 

Other 
neighboring 
customers 

Users of 
energy services 

The microgrid 
will improve 
the quality of 
energy in the 
larger grid 

Opinion Customers  
Consumer 
organizations 

Community Look for the 
socio �
economic 
development of 
its members 

The microgrid 
will help for a 
less polluted 
environment 

Population 
influence 

Social 
organizations 
Media  
 

Municipality Regulation and 
control in its 
jurisdiction 

The microgrid 
project is must 
meet the 
regulation 

Permits 
Laws 

Municipalities 
Government 

 

The next step is to plot the relationship between the �������� ���	
�. For example, 

the regulators relate unidirectionally to the utility company and the customer in a law 
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5.4 Design 

In the design phase, we identified the objectives of different stakeholders, 

problem statements, dilemmas, and criteria. Now we are going to create a problem 

diagram and identify the factors and alternatives. Figure 5.12 is the problem diagram for 

this case study. We can see different factors and the relations between them. For 

example, an incremental increase in CO2 emissions increases the amount of money the 

company pays in penalties, which might lead to increase investments in DER. This will 

increase their generation capacity and investment in Management, Operations, and 

Control systems (MOCS). The increase in generation capacity may reduce the energy 

consumption of the grid, the peak hour demand, and the utility revenues. Finally, 

investment in MOCS may increase the power reliability. Although three criteria are 

affected positively, the reduction in utility revenues is an effect undesirable to the utility 

company. 

Now we can think of alternatives and analyze how they affect the factors and 

criteria. A comparison between the effects of each alternative allows for the selection of 

the most suitable option. Some alternatives for this case study are: 

� Built a new infrastructure financed by the customer 

� Built a new infrastructure financed by the utility 

� Share investments and co-own infrastructure 

� Develop new products and services for customers 

In addition, we can see there are a considerable number of factors that cannot be 

influenced or changed by the customer or the utility company. For example, factors 

concerning regulation and technology development would constitute external factors and 
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� To subsidize energy microgrid project implementation  

� To allow third parties to participate and franchise  

In this case study, we consider the current state of regulatory factors and 

technology development to identify the alternatives that can lead to mutual benefits for 

the customer and utility company. The next step is to create a score card with criteria and 

alternatives to compare the impact of each alternative on each criterion. In this research 

the generic case study is not proposed to obtain exact numbers, but to exemplify the 

methodology proposed in Chapter 4; accordingly, we have used an ordinal and scale 

(very low, low, medium, high, very high) to score each criteria. In addition, we include 

the dilemma as an additional criterion to be scored for each alternative.  

From the score card shown in Table 5.4, we can see that the alternative of 

building the new infrastructure financed by the customer and used for its own purposes is 

the least favorable to the electric utility and the customer because it does not solve the 

dilemma. If we use the results from the simulation performed by HOMER in section 5.1, 

the utility company would reduce its revenues by more than $700,000 during the life time 

of the project, defined here as 25 years. In addition, this option requires the customer to 

incur in an initial capital investment of more than $800,000, which is higher than the 

savings in energy purchased from the grid.  

Analyzing the impact of the alternatives for each criterion and the causal effects 

between the factors shown in Figure 5.12, we can see that a mix of alternatives might be 

more beneficial. For example, we can influence more factors if we combine the 

�����������	 ������
 �� ��� ������ ��������	 ��������� �� ��� �����	������� ���	 ���� ���
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moderately. However, the customer does not need to worry about investments and initial 

capitals. In addition, the quality of energy and resilience of the network will be improved 

��������	
�� �����
� 	�������� ��� ���������� ��	�� ��� ������� company in turn can 

benefit from the provision of ancillary services for this customer and neighboring 

customers to increase its utility revenues. Finally, a reduction in the peak hour demand 

���� ���� ��� ������� ����	���� ��	� �� efficiency in generation usage. 

Table 5.4 Case Study Score Card  

Criteria\Alternatives Built the 
new 
infrastructure 
financed by 
the customer 

Built the 
new 
infrastructure 
financed by 
the utility 

Share 
investments 
and co-own 
infrastructure 

Develop 
new 
products 
and 
services 
for 
customers 

Grid energy 
consumption 
($/month) 

Very low high medium low 

Peak hour demand 
(KW) 

low low low medium 

Utility revenues 
($/month) 

very low low medium high 

Power Reliability 
(% availability) 

High High High medium 

Customer ROI Very low Very high Medium high 
  

While the alternatives of interest in this case study can be performed by the 

electric utility and the customer themselves, the tools developed with this methodology 

allow us to identify other factors and alternatives that might be controlled by other actors 

that are not active players in the current market and regulatory scenarios. When we 

evaluate the impact of these alternatives on the criteria, the effect may be even more 

favorable to the mutual benefit of not just electric utility companies and customers, but 
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also suppliers, communities, neighboring customers, and new actors, each with 

specialized roles such as microgrid operators and distribution supplier operations. The 

evaluation and validation of these alternatives requires more specific information to score 

the impact of each criterion. These steps are beyond the scope of this research. 

5.5 Summary 

Chapter Five shows the application of the methodology proposed in Chapter 4 to 

a generic case study of microgrid planning. The cooperation between the electric utility 

company and the customer was analyzed using information from the literature review, 

questionnaires, and interviews. With this information, a variety of tools, charts, and 

diagrams were created to characterize the actors in the system, their goals, their undesired 

effects, and the factors and criteria to evaluate these goals. Finally, the impact of different 

alternatives on the criteria was evaluated.  
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CHAPTER 6. SUMMARY, CONCLUSIONS, AND RECOMENDATIONS 

6.1 Abstract  

This chapter states the main conclusions of this research, drawn from the 

microgrid reference methodology proposed in Chapter 4 and the results of its application 

in the case study presented in Chapter 5. These conclusions are in turn used to answer the 

research question. In addition, this chapter states recommendations about aspects that 

could be done differently in this research, and suggests future work that could be 

expanded from this research. 

6.2 Conclusions 

The microgrid reference methodology proposed in this research provides the 

framework for a determination and systematic analysis of the interactions between 

electrical utility companies and customers for their mutual benefit. This methodology 

guides information collection and processing to understand and describe the microgrid 

system, its context, and its actors. Unlike an unstructured and empirical negotiation 

process between these two key actors, as is typically used; this methodology considers 

the microgrid market as an additional level of the system, as shown in Figure 4.3. Hence, 

a systematic approach is used to identify key actors, and their interests, goals, and 

relationships at this level. Important here as well is the evaluation of different alternatives 

in achieving the objectives. 
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What kind of technical and economic benefits are commonly expected by utilities 

and customers? 

The generic case study analyzed in Chapter 5 showed that the methodology 

addressed the technical and non-technical factors of both actors. Indeed, different 

technical, regulatory, and business factors were identified using different tools such as the 

goal trees, actor analysis, causal analysis, etc. The problem demarcation specifically 

identified the technical and non-technical goals of the actors, and the evaluation of the 

alternatives performed on the criteria, which led to achieving the expectations. 

How can an existing local distribution grid be turned into a microgrid? 

The causal problem diagram is a helpful tool to understand the microgrid system 

dynamics, and to quantify the impact of changes in different factors. Specific microgrid 

projects will lead to different interrelations between factors and impacts on the 

alternatives. Hence, in cases where there exists a desire to turn a local distribution grid 

into a microgrid, it will be necessary to follow the methodology. The main goals and 

interests of the actors may be similar to those determined by the case study. However, the 

alternatives and their impact on the criteria will, of course, be different.  

How can the benefits and risks of a microgrid project be quantified to justify its 

implementation? 

The case study showed the interests and undesired effects for electric utility 

companies and customers, as well as a group of factors and criteria that can be measured 

and evaluated. The evaluation of alternatives through these factors led to quantify not just 

cost variables, but the importance of other criteria, such as power reliability or peak 

demand energy. However, these criteria will change for each specific project and actors, 
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for instance, a customer may be more interested in cybersecurity than the costs or ROI of 

the equipment necessary to build the microgrid. In this case, the problem demarcation, 

goal analysis, casual diagrams, and evaluation of alternatives will reflect this interest. 

How should the information and control be shared between the utility and 

customers? 

The microgrid reference methodology proposed in this research considers four 

levels of analysis within the System of Systems Engineering approach. This consideration 

led to the analysis of different problems in a microgrid system, from the more particular 

and technical levels to the market and business levels. The information and control the 

utility company and customer have can be analyzed from the technical level, and also 

from the higher level (as we saw in the case study). The investments in the Management, 

Operation, and Control systems are related to the changes in this factors and how they 

affect different criteria for both parties. The evaluation of these changes might lead to the 

formulation of new alternatives to sharing and managing information and control 

between the actors. 

How can cyber-security be implemented effectively? 

After performing the goal analysis and problem demarcation, different goals were 

identified concerning the electric utility and customer. One broad category was reducing 

the impact of energy issues, and a lower level goal concerning cybersecurity was derived. 

Even though this cybersecurity goal was not the focus of the case study analyzed, this 

reference methodology is still applicable by changing the specific problem, goals, 

dilemma, and other factors. The process to address cybersecurity issues as another 
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problem from the business-level perspective and the cooperation arena can be performed 

using the proposed MRM.  

The focus of this research is to address the cooperation and interactions between 

the electric utility and the customer; even so, the results of the application of the proposed 

Microgrid Reference Methodology also identified factors that cannot be influenced by 

these two actors. However, these factors can be influenced by alternatives that might not 

be feasible at the moment or in the current market conditions. These alternatives might 

involve important changes in the market and regulatory arena that would incentivize the 

implementation of microgrid projects and DER. These changes in regulation should not 

necessarily be solely based on the criteria and impact on the private objectives of electric 

utilities and customers, but also on social welfare. Energy efficiency, energy security, and 

environmentally friendly energy sources produce better quality electric service, and 

reduced environmental damage is beneficial to society in general. 

6.3 Recommendations 

The case study analyzed in this research exemplified the use of the microgrid 

reference methodology. Due to cost and time constraints, the application of the MRM in a 

real case study was beyond the scope of the current research. However, in future 

evaluation of the methodology, and to obtain more quantitative results, it is recommended 

to work with a real microgrid project. The participation of different decision makers, and 

the possibility of collecting specific values of technical and non-technical variables, 

would facilitate and enrich the process and results.  

The application of the methodology in real projects requires the active 

participation of both electric utility and customer decision-makers. In addition, the 
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process must be performed iteratively to achieve incremental improvement in the model. 

The first steps and stages of the methodology will produce preliminary results, but the 

������� feedback will add depth and breadth to the analysis. Likewise, when the work 

proceeds to the next stage, it may be necessary to return to the previous steps to improve 

the description and understanding of the system. 

Various branches for future work emerge from this research. This has been just 

one case study that clearly defines the steps to analyze microgrid systems based on the 

cooperation of the two main actors. However, this process is perfectible with the time. 

New research, case study applications, validations, and testbeds will determine better 

approaches and tools to improve this methodology. 

Another research opportunity would be to define an architecture model for 

microgrid analysis, description, standardization, and information flows through the 

various dimensions, zones, and levels of the Microgrid System of System. This would be 

similar to the work performed by NIST, EN/CENENLECT/ETSI for Smart Grids 

referenced in Chapter 2, with the objective of ICT architecture and enterprise 

interactions. 

Another area of future study is in microgrid modeling and simulation. Nowadays 

there are different tools for general system simulation and specialized tools for power 

systems that focus more on the three lower levels featured in Figure 4.3. Existing 

commercial tools for power systems analysis were referenced in Chapter 2; however, 

none considers the microgrid market as an additional level, as we manually incorporated 

into this research. A better model based on more complete information about actors, 

goals, factors and the interrelationships of a microgrid system will produce more optimal 
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solutions. In addition, a better model will identify hidden benefits and costs that are not 

determined with current tools and sometimes led to incorrect decisions about justifying or 

rejecting a microgrid project. Therefore, there is a necessity for integral computer tools 

that simulate the Microgrid as a complete system, and represent its complexity, behavior, 

and state variables for each level under different conditions. This will reduce the time 

necessary to design and analyze new microgrid projects, and facilitate the decision 

making process in order to reach better agreements between the different actors. 

6.4 Chapter summary 

Chapter Six states the conclusions of this research and answers the research 

question and sub questions. In addition, this Chapter proposes recommendations for 

improvement, and suggestions of future work that can be expanded from this research. 
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Appendix A Questionnaire for customers 

 (industrial, big commercial or government facilities) 

Introduction: 

This is a research project conducted by Purdue University to contribute with a 
methodology or framework to help in the cooperation between electric utilities and 
consumers for microgrid utilization. 

Currently, there is not a great participation of utilities in microgrid projects because of 
different reasons. In addition, in a microgrid implementation there are many actors with 
their own interests, for example, utilities, industrial customers, vendors and regulators. 
Hence, the relationships between actors and interactions between them must be analyzed 
to truly understand the socio-technical complexity in microgrids and to propose solutions 
that benefits all the actors. 

The purpose of this questionnaire is to collect primary information to understand the 
interests and concerns of those different actors. 

Each question could be reviewed and answered by an expert in the area inside your 
company, and as a second stage we would like to have a teleconference at your 
convenience to discuss about these same questions so you can explain with more detail 
your answers and we can collect more valuable information. 

 

  



107 
 

 

Camp Atterbury 

 

Atterbury/Muscatatuck Center for Complex Operations 

Edinburgh, Indiana 46124-5000 

Questions: 

1. What are your main interests in the electricity service used in your facilities? Please 
rank each criterion in a scale of importance, and specify whether you expect to 
achieve it by building a microgrid or not. Please feel free to add more criteria you 
consider important for your company. 
 

Table A. 1 Customer 1 interests 

 Importance Achievable by 
building a microgrid 

Criterion Low Medium High Yes No 

Higher power quality  X  X  

lower energy 
consumption 

  X X  

higher reliability   X X  

Reduction in 
environmental damage 

 X  X  

reach efficiency 
incentives 

X    X 

To commercialize 
overcapacity 

X    X 

 
 

Additional insights from the interview: 
� Requirements from government to reduce energy consumption 
� As military base, Atterbury needs to have energy independence and to operate 

in face of a natural or emergency situation 
� Environmental issues, going green is mandatory but not critical from 

Atterbury perspective 
� Tax incentives are not an issue 
� A lot of laws and issues with the federal government if a customer sells 

energy excess back to the grid. 
� Atterbury prefers to have a microgrid that cover 70 � 75% of their power 

needs to not overproduce energy. 
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2. Do you use performance indexes or have a way to measure the impact of problems 
caused by your current electricity system in the operations of your company? (For 
example, the cost of poor power quality, costs of blackouts, return of investment 
expected to invest in new technology, etc.)  

 

Atterbury-Muscatatuck does not currently track problems caused by our current 
electrical system. We do have issues with brownouts, power outages and poor quality 
power causing spikes and other issues. Tracking these issues is something we need to 
consider putting into place. 

Additional insights from the interview: 
Atterbury would be interested if the microgrid can provide those performance 
indexes. Atterbury is open to receive some measurements from the utility or with own 
equipment 

 

3. What are your main concerns, or barriers, to collaborate with other actors (utilities, 
regulator, vendors, other companies, etc.) to implement a microgrid? (for example, 
share of consumption information, cyber security issues, regulatory and commercial 
aspects, etc.)  

 

The first and largest issue is cost and how to fund such a project. Unless the project 
can show a reasonable ROI, it is difficult to get funds in the current austere 
environment. Additional issues we have include the fact that Duke Energy owns most 
of our electrical grid on post. That limits what we can do based on their company 
policy and IURC regulations. Cyber security is always a concern, and depends greatly 
on how the energy is controlled in the grid.  

 

Additional insights from the interview: 
Atterbury expects an improvement in cybersecurity with microgrids 

Options for implementing a microgrid: 

1. Built a parallel grid �� ��� �����	 
��� �������� ���	 	������� was discarded 
because of the high costs. 

2. Purchase the lines, equipment, etc. from Duke. However, Camp Atterbury does 
not want to incur in the utility business 

3. Use another facility which is 40 miles away from Camp Atterbury 
Three main goals of a microgrid 

1. Energy security in the event of a power outage 
2. Energy savings, using solar and batteries 
3. Higher power quality to reduce spikes 
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Faurecia Emissions Control Technologies 
950 West 450 South, Columbus, IN, 47201 

 
Questions: 

1. What are your main interests in the electricity service used in your facilities, please 
rank each criterion in a scale of importance, and specify whether you expect to 
achieve it by building a microgrid or not? 

Please feel free to add more criteria you consider important for your company. 

Table A. 2 Customer 2 interests 

  Importance Achievable by 
building a microgrid 

Criterion Low Medium High Yes No 
Higher power 
quality 

 FECT-Power 
quality 
acceptable 

        

lower energy 
consumption 

    FECT � Cost 
Reduction  

    

higher 
reliability 

 FECT-Current 
system is highly 
reliable 

        

Reduction in 
environmental 
damage 

    FECT � If 
this relates to 
Carbon 
Footprint, 
this is high.  

    

reach 
efficiency 
incentives 

  FECT-
unsure of 
potential  

      

Commercialize 
overcapacity 

 FECT-not a 
concern 

        

  
2. Do you use performance indexes or have a way to measure the impact of problems 

caused by your current electricity system in the operations of your company? (Ex. 
The cost of poor power quality, costs of blackouts, return of investment expected to 
invest in new technology, etc.)  
Poor quality has minimal impact on operations. 

3. What are your main concerns, or barriers, to collaborate with other actors (utilities, 
regulator, vendors, other companies, etc.) to implement a microgrid? (Ex. Share of 
consumption information, cyber security issues, regulatory and commercial aspects, 
etc.)  
No concern with data sharing. If it is business to utility interface, barrier is cost. Other 
than that, I would need to understand what collaboration opportunities we are 
referencing.  
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Deere & Company 
Moline, IL 61265-8098 

 
 
1. What are your main interests in the electricity service used in your facilities? please 

rank each criterion in a scale of importance, and specify whether you expect to 
achieve it by building a microgrid or not Please feel free to add more criteria you 
consider important for your company. 
 

Table A. 3 Customer 3 interests 

  Importance Achievable by 
building a 
microgrid 

Criterion Low Medium High Yes No 
Higher power 
quality 

   XXXX      XX 

lower energy 
consumption 

     XXXX  XX   

higher 
reliability 

     XXXX    XX 

Reduction in 
environmental 
damage 

     XXXX  XX   

reach 
efficiency 
incentives 

     XXXX    XX 

Commercialize 
overcapacity 

 XXXX        XX 

  
Additional insights from the interview: 
John Deere does not see how a microgrid can help to improve power quality or 
harmonics because of the variable nature of PV sources and wind turbines. In 
addition, John Deere believes the utility offers a higher reliability than the one a 
microgrid can offer. 

2. Do you use performance indexes or have a way to measure the impact of problems 
caused by your current electricity system in the operations of your company? (Ex. 
The cost of poor power quality, costs of blackouts, return of investment expected to 
invest in new technology, etc.)  

Varies unit by unit but overall yes we have some means to calculate this. 

Additional insights from the interview: 
John Deere uses tons/kwh. 
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3. What are your main concerns, or barriers, to collaborate with other actors (utilities, 
regulator, vendors, other companies, etc.) to implement a microgrid? (Ex. Share of 
consumption information, cyber security issues, regulatory and commercial aspects, 
etc.)  

We are working with utilities, regulators and third parties on PV installations-we have 
the cart before the horse though, we need standards first which I have the task of 
creating but have not been created to date. Deere will be leasing systems designed at 
approximately 20% of total load demand of the facility at which it is installed. Some 
cyber security concerns on these PV installs. More concerns on the payback of the 
units and not inducing problems onto the electrical systems, roofing/structural 
systems and fire protection systems. We need these units to be safe but cost 
justifiable. 

Additional insights from the interview: 
Overall, John Deere would like to know how to answer questions related to the best 
combination of resources, whether to use batteries or not, ways to calculate pay back 
and break-even point, etc.  
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Summary of customer responses 
 
1. What are your main interests in the electricity service used in your facilities? Please 

rank each criterion in a scale of importance, and specify whether you expect to 
achieve it by building a microgrid or not 
Please feel free to add more criteria you consider important for your company. 

 

Table A. 4 Customer interests summary 

 Importance Achievable by building a 
microgrid 

Criterion Low Medium High Yes No 

Higher power 
quality 

Faurecia Camp 
Atterbury 

John Deere 

 Camp 
Atterbury 

John Deere 

lower energy 
consumption 

  Camp 
Atterbury 
Faurecia 

John Deere 

Camp 
Atterbury 

John Deere 

 

higher 
reliability 

Faurecia  Camp 
Atterbury 

John Deere 

Camp 
Atterbury 

John Deere 

Reduction in 
environmental 
damage 

 Camp 
Atterbury 

Faurecia 
John Deere 

Camp 
Atterbury 

John Deere 

 

reach efficiency 
incentives 

Camp 
Atterbury 

Faurecia John Deere  Camp 
Atterbury 

John Deere 
To 
commercialize 
overcapacity 

Camp 
Atterbury 
Faurecia 

John Deere 

   Camp 
Atterbury 

John Deere 

 
2. Do you use performance indexes or have a way to measure the impact of problems 

caused by your current electricity system in the operations of your company? (For 
example, the cost of poor power quality, costs of blackouts, return of investment 
expected to invest in new technology, etc.)  
� Camp Atterbury: Atterbury-Muscatatuck does not currently track problems 

caused by our current electrical system. We do have issues with brownouts, power 
outages and poor quality power causing spikes and other issues. Tracking these 
issues is something we need to consider putting into place. 

� Faurecia: poor quality has minimal impact on operations. 
� John Deere: Varies unit by unit but overall yes we have some means to calculate 

this. 
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3. What are your main concerns, or barriers, to collaborate with other actors (utilities, 
regulator, vendors, other companies, etc.) to implement a microgrid? (for example, 
share of consumption information, cyber security issues, regulatory and commercial 
aspects, etc.)  
� Camp Atterbury: The first and largest issue is cost and how to fund such a project. 

Unless the project can show a reasonable ROI, it is difficult to get funds in the 
current austere environment. Additional issues we have include the fact that Duke 
Energy owns most of our electrical grid on post. That limits what we can do based 
on their company policy and IURC regulations. Cyber security is always a 
concern, and depends greatly on how the energy is controlled in the grid.  

� Faurecia: No concern with data sharing. If it is business to utility interface, barrier 
is cost. Other than that, I would need to understand what collaboration 
opportunities we are referencing. 

� John Deere: We are working with utilities, regulators and third parties on PV 
installations-we have the cart before the horse though, we need standards first 
which I have the task of creating but have not been created to date. Deere will be 
leasing systems designed at approximately 20% of total load demand of the 
facility at which it is installed. Some cyber security concerns on these PV installs. 
More concerns on the payback of the units and not inducing problems onto the 
electrical systems, roofing/structural systems and fire protection systems. We 
need these units to be safe but cost justifiable. 

 
  



114 
 

 

Appendix B Questionnaire for Utilities 

 

Introduction: 

This is a research project conducted by Purdue University to contribute with a 
methodology or framework to help in the cooperation between electric utilities and 
consumers for microgrid utilization. 

Currently, there is not a great participation of utilities in microgrid projects because of 
different reasons. In addition, in a microgrid implementation there are many actors with 
their own interests, for example, utilities, industrial customers, vendors and regulators. 
Hence, the relationships between actors and interactions between them must be analyzed 
to truly understand the socio-technical complexity in microgrids and to propose solutions 
that benefits all the actors. 

The purpose of this questionnaire is to collect primary information to understand the 
interests and concerns of those different actors. 

Each question could be reviewed and answered by you or an expert in the area inside 
your company, and as a second stage we would like to have a teleconference at your 
convenience to discuss about these same questions so you can explain with more detail 
your answers and we can collect more valuable information. 

Questions: 

 

  



115 
 

 

Duke Energy 

400 South Tryon Street, #1331 | Charlotte, NC 28202 

1. What are the incentives to collaborate with potential customers in microgrid projects 
versus simply building your own microgrid, or not building a microgrid? 

 
Questionnaire: 
���� ������ial to demonstrate a customer-centric mindset and deliver solutions based 
�� �	���
���� ���� �� ������ Customers win through enhanced service and the 
utility wins through improved customer satisfaction and the creation of new revenue 
streams. 

 
Additional insights from the interview: 

� Both parties must see value in the project. 
� Most of the customers built their own microgrids. 
� There are not incentives to provide any sort of ability to the customers to island 

themselves. 
� Duke is interested in ways for the utility to invest and the customers so they do 

not have to provide the upfront capital to the project. 
� Depending of the states and jurisdictions, some are very friendly to Utilities, 

some are very strict and do not allow for third party ownership nor third party 
leasing. 

� Duke have account managers to work with the customers to see how they can 
work together. 

2. What are your interests and concerns in the technical aspects when implementing 
microgrids? The next table contains examples of factors that may be relevant for you, 
but feel free to discard and/or add criteria you consider important for your company. 
Please indicate the level of importance of your criteria in low, medium or high. 

 

Table B. 1 Electric Utility 1 Technical interests 

 Importance Not 
apply 

Criterion Low Medium High  
Peak shaving   X   
Interoperability   X  
Cyber security  X   
Ownership of the 
infrastructure 
(microgrid) 

  X  

Standardization  X   
Islandability   X  
Ancillary Services  X   
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Additional insights from the interview: 
Interoperability and plug and play technology because Duke does not want to be 
locked with a specific technology or provider. 
If the customer owns completely the infrastructure, then the utility cannot help too 
much. 

 
3. What are your interests and concerns in the regulatory aspects when implementing 

microgrids? (For example, laws, incentives, restrictions, environmental issues, etc.) 
Questionnaire:  

A regulatory climate opens to exploring new products and services with the utility 
and its customers beyond standard service. 

Additional insights from the interview: 
It is necessary regulatory support. Duke is interest in working with regulation to 
understand pros and cons of doing these kind of projects (microgrids). 
Duke has willingness to explore new alternatives ������� ����	�
��� ����
 ����
dialogue in the past, it was just imposed. 
Duke has to explore how to do with the current law. 

 
4. What are your interests and concerns in the business and financial aspects when 

implementing microgrids? 
The next table contains examples of factors that may be relevant for you, but feel free 
to discard and/or add criteria you consider important for your company. Please 
indicate the level of importance of your criteria in low, medium or high. 

 

Table B. 2 Electric Utility 1 Business interests 

 Importance Not apply 
Criterion Low Medium High  

Implementation and 
maintenance costs 

  X  

Change in incomes    X 
Rate structures   X  
New business 
models 

  X  

Opening up markets    X 
New products and 
services 

  X  

Competitive risks    X 
Energy trading    X 
Load and Price 
forecasting 

   X 
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Additional insights from the interview: 
 
� Duke thinks there is a market now that they have to serve, they are not looking 

for opening new markets. 
� Low and price forecasting is not necessary arbitraging and looking at cycling 

these types of systems based on signaling or something like that. 
� In other jurisdictions, microgrid owners can recover their investments, but the 

savings and payback in Indiana are not the same.  
� Duke is looking microgrids not as a treat, but more as an opportunity.  
� About charging especial rates to the customer to provide a higher quality 

electricity, it will depend on each case. Some areas have microgrids as a service 
model, while other utilities. 

� DER need to have additional control and protection, and the markets that are 
commercializing them are those with high rates and perhaps lower liability.  

� R&D now is focused in the business models; the technology is more mature, but 
there is a need to answer questions related to how to commercialize, scale and 
deploy these microgrids. 
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Consumers energy 
1945 W Parnall Road | Jackson, MI 49201 

  
1. What are the incentives to collaborate with potential customers in microgrid projects 

versus simply building your own microgrid, or not building a microgrid? 

In collaboration, the customer would raise capital (debt) at their risk (construction, 
ownership, sufficient return), reducing the risk profile for the utility. 

2. What are your interests and concerns in the technical aspects when implementing 
microgrids? The next table contains examples of factors that may be relevant for you, 
but feel free to discard and/or add criteria you consider important for your company. 
Please indicate the level of importance of your criteria in low, medium or high. 

 

Table B. 3 Electric Utility 2 Technical interests 

 Importance Not 
apply 

Criterion Low Medium High  

Peak shaving    X  

Interoperability   X  

Cyber security   X  

Ownership of the infrastructure 
(microgrid) 

 X   

Standardization   X  

Market Impact (demand forecast, 
resource adequacy) 

  X  

Regulator Impact (stranded cost, 
ratemaking equity, reliability standards 

 X   

 

3. What are your interests and concerns in the regulatory aspects when implementing 
microgrids? (For example, laws, incentives, restrictions, environmental issues, etc.) 

Stranded cost recovery, ratemaking equity, interoperability, and establishing 
expectations for reliability standards. 
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4. What are your interests and concerns in the business and financial aspects when 
implementing microgrids? 

The next table contains examples of factors that may be relevant for you, but feel free 
to discard and/or add criteria you consider important for your company. Please 
indicate the level of importance of your criteria in low, medium or high. 
 

Table B. 4 Electric Utility 2 Business interests 

 Importance Not apply 

Criterion Low Medium High  

Implementation and 
maintenance costs 

  X  

Change in incomes  X   

Rate structures  X   

New business 
models 

 X   

Opening up markets   X  

New products and 
services 

  X  

Competitive risks   X  

Energy trading  X   

Load and Price 
forecasting 

  X  
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Summary of Electric Utilities responses 
 
1. What are the incentives to collaborate with potential customers in microgrid projects 

versus simply building your own microgrid, or not building a microgrid? 
 

� ����� ���	 �		�
��� �� ����
	����� � ��	�����-centric mindset and deliver 
solutions based on cust����	� ��
�	 �
� 
���	� Customers win through enhanced 
service and the utility wins through improved customer satisfaction and the 
creation of new revenue streams. 

� Consumers Energy: In collaboration, the customer would raise capital (debt) at 
their risk (construction, ownership, sufficient return), reducing the risk profile for 
the utility. 
 

2. What are your interests and concerns in the technical aspects when implementing 
microgrids? The next table contains examples of factors that may be relevant for you, 
but feel free to discard and/or add criteria you consider important for your company. 
Please indicate the level of importance of your criteria in low, medium or high. 

 

Table B. 5 Electric Utilities Technical interests summary 

 Importance Not 
apply 

Criterion Low Medium High  
Peak shaving   Duke 

Energy 
Consumers 
Energy 

 

Interoperability   Duke 
Energy 
Consumers 
Energy 

 

Cyber security  Duke 
Energy 

Consumers 
Energy 

 

Ownership of the 
infrastructure 
(microgrid) 

 Consumers 
Energy 

Duke 
Energy 

 

Standardization  Duke 
Energy 

Consumers 
Energy 

 

Islandability   Duke 
Energy 

 

Ancillary Services  Duke 
Energy 
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3. What are your interests and concerns in the regulatory aspects when implementing 
microgrids? (For example, laws, incentives, restrictions, environmental issues, etc.) 
� Duke Energy:  

A regulatory climate opens to exploring new products and services with the utility 
and its customers beyond standard service. 

� Consumers Energy: 
Stranded cost recovery, ratemaking equity, interoperability, and establishing 
expectations for reliability standards. 
 

4. What are your interests and concerns in the business and financial aspects when 
implementing microgrids? 
The next table contains examples of factors that may be relevant for you, but feel free 
to discard and/or add criteria you consider important for your company. Please 
indicate the level of importance of your criteria in low, medium or high. 

Table B. 6 Electric Utilities Business interests summary 

 Importance Not apply 
Criterion Low Medium High  

Implementation and 
maintenance costs 

  Duke 
Energy 
Consumers 
Energy 

 

Change in incomes  Consumers 
Energy 

 Duke 
Energy 

Rate structures  Consumers 
Energy 

Duke 
Energy 

 

New business 
models 

 Consumers 
Energy 

Duke 
Energy 

 

Opening up markets   Consumers 
Energy 

Duke 
Energy 

New products and 
services 

  Duke 
Energy 
Consumers 
Energy 

 

Competitive risks   Consumers 
Energy 

Duke 
Energy 

Energy trading  Consumers 
Energy 

 Duke 
Energy 

Load and Price 
forecasting 

  Consumers 
Energy 

Duke 
Energy 
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Appendix C Microgrid simulation characteristics of the case study 

 

This appendix details the values and characteristics of the elements used in the 

microgrid simulation showed in Figure 5.1. as part of the generic case study. 

 

 

Figure C. 1 PV inputs 
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Figure C. 2 AOC 15/50 Wind turbine inputs 

 

Figure C. 3 150 KW Diesel generator inputs 
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Figure C. 4 Grid inputs 

 

Figure C. 5 Primary Load inputs (2.5 MWh/d 207 kW peak) 

 



125 
 

 

 

Figure C. 6 Converter inputs 

 

Figure C. 7 S4KS25P Battery inputs 
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Figure C. 8 Solar resource inputs 

 

Figure C. 9 Wind resource inputs 
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