27,959 research outputs found

    Tunable superlattice p-i-n photodetectors: characteristics, theory, and application

    Get PDF
    Extended measurements and theory on the recently developed monolithic wavelength demultiplexer consisting of voltage-tunable superlattice p-i-n photodetectors in a waveguide confirmation are discussed. It is shown that the device is able to demultiplex and detect two optical signals with a wavelength separation of 20 nm directly into different electrical channels at a data rate of 1 Gb/s and with a crosstalk attenuation varying between 20 and 28 dB, depending on the polarization. The minimum acceptable crosstalk attenuation at a data rate of 100 Mb/s is determined to be 10 dB. The feasibility of using the device as a polarization angle sensor for linearly polarized light is also demonstrated. A theory for the emission of photogenerated carriers out of the quantum wells is included, since this is potentially a speed limiting mechanism in these detectors. It is shown that a theory of thermally assisted tunneling by polar optical phonon interaction is able to predict emission times consistent with the observed temporal response

    The Informational Model of Consciousness: Mechanisms of Embodiment/Disembodiment of Information

    Get PDF
    It was shown recently that information is the central concept which it is to be considered to understand consciousness and its properties. Arguing that consciousness is a consequence of the operational activity of the informational system of the human body, it was shown that this system is composed by seven informational components, reflected in consciousness by corresponding cognitive centers. It was argued also that consciousness can be connected to the environment not only by the common senses, but also by a special connection pole to the bipolar properties of the universe, allowing to explain the associated phenomena of the near-death experiences and other special phenomena. Starting from the characteristics of this model, defined as the Informational Model of Consciousness and to complete the info-communication panorama, in this paper it is analyzed the info-connectivity of the informational system with the body itself. The brain areas where the activity of each informational component are identified, and a definition of consciousness in terms of information is proposed. As the electrical connectivity by means of the nervous system was already proved, allowing the application of the analysis and developing tools of the information science, a particular attention is paid to the non-electrical mechanisms implied in the internal communication. For this, it is shown that the key mechanisms consists in embodiment/disembodiment processes of information during the inter and intra communication of the cells. This process can be modeled also by means of, and in correlation with specific concepts of the science and technology of information, referred to network communication structures, and is represented by epigenetic mechanisms, allowing the acquired trait transmission to the offspring generation. From the perspective of the informational model of consciousness, the human organism appears therefore as a dynamic reactive informational system, actuating in correlation with matter for adaptation, by embodiment/disembodiment processes of information

    Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s On-Off Keying

    Get PDF
    Electro-optic modulators for high-speed on-off keying (OOK) are key components of short- and mediumreach interconnects in data-center networks. Besides small footprint and cost-efficient large-scale production, small drive voltages and ultra-low power consumption are of paramount importance for such devices. Here we demonstrate that the concept of silicon-organic hybrid (SOH) integration is perfectly suited for meeting these challenges. The approach combines the unique processing advantages of large-scale silicon photonics with unrivalled electro-optic (EO) coefficients obtained by molecular engineering of organic materials. In our proof-of-concept experiments, we demonstrate generation and transmission of OOK signals with line rates of up to 100 Gbit/s using a 1.1 mm-long SOH Mach-Zehnder modulator (MZM) which features a {\pi}-voltage of only 0.9 V. This experiment represents not only the first demonstration of 100 Gbit/s OOK on the silicon photonic platform, but also leads to the lowest drive voltage and energy consumption ever demonstrated at this data rate for a semiconductor-based device. We support our experimental results by a theoretical analysis and show that the nonlinear transfer characteristic of the MZM can be exploited to overcome bandwidth limitations of the modulator and of the electric driver circuitry. The devices are fabricated in a commercial silicon photonics line and can hence be combined with the full portfolio of standard silicon photonic devices. We expect that high-speed power-efficient SOH modulators may have transformative impact on short-reach optical networks, enabling compact transceivers with unprecedented energy efficiency that will be at the heart of future Ethernet interfaces at Tbit/s data rates

    Theory of directed transportation of electronic excitation between single molecules through photonic coupling

    Get PDF
    The primary result of UV-Visible photon absorption by complex organic molecules is the population of short-lived electronic excited states. Transportation of their excitation energy between single molecules, formally mediated by near-field interactions, may occur between the initial absorption and eventual fluorescence emission events, commonly on an ultrafast timescale. The routing of energy flow is typically effected by a sequence of pairwise transfer steps over numerous molecules, rather than a single step over the same overall distance. Directionality emerges when there is structure in the molecular organisation. For a chemically heterogeneous system with local order, and with suitable molecular dispositions, automatically unidirectional transfer can be exhibited as the result of a 'spectroscopic gradient'. However it is also possible to exert control over the directionality of excitation flow by the operation of external influences. Examples are the application of an electrical or optical stimulus to the system - achieved by the incorporation of an ancillary polar species, the application of a static electric field or electromagnetic radiation. Most significantly, based on the latter option, an all-optical method has recently been determined that enables excitation transportation to be completely switched on or off, such that the energy flow is subject to controllable photoactivated gating. It is already apparent that this photonic process, termed Optically Controlled Resonance Energy Transfer, has potentially numerous applications. For example, it represents a new basis for optical transistor action

    Solitonic Effects of the Local Electromagnetic Field on Neuronal Microtubules

    Get PDF
    Current wisdom in classical neuroscience suggests that the only direct action of the electric field in neurons is upon voltage-gated ion channels which open and close their gates during the passage of ions. The intraneuronal biochemical activities are thought to be modulated indirectly either by entering into the cytoplasm ions that act as\ud second messengers, or via linkage to the ion channels enzymes. In this paper we present a novel possibility for subneuronal processing of information by cytoskeletal microtubule tubulin tails and we show that the local electromagnetic field supports information that could\ud be converted into specific protein tubulin tail conformational states. Long-range collective coherent behavior of the tubulin tails could be modelled in the form of solitary waves such as sine-Gordon kinks, antikinks or breathers that propagate along the microtubule outer\ud surface, and the tubulin tail soliton collisions could serve as elementary computational gates that control cytoskeletal processes. The biological importance of the presented model is due to the unique biological enzymatic energase action of the tubulin tails, which is experimentally verified for controlling the sites of microtubule-associated protein\ud attachment and the kinesin transport of post-Golgi vesicles

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, nei-ther silicon nor metals exhibit appreciable second-order optical nonlinearities, thereby making efficient electro-optic modulators challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid integration, which combine SOI waveguides and plasmonic nanostructures with organic electro-optic cladding materials
    corecore