40 research outputs found

    Recognition of elementary upper limb movements in an activity of daily living using data from wrist mounted accelerometers

    No full text
    In this paper we present a methodology as a proof of concept for recognizing fundamental movements of the humanarm (extension, flexion and rotation of the forearm) involved in ‘making-a-cup-of-tea’, typical of an activity of daily-living (ADL). The movements are initially performed in a controlled environment as part of a training phase and the data are grouped into three clusters using k-means clustering. Movements performed during ADL, forming part of the testing phase, are associated with each cluster label using a minimum distance classifier in a multi-dimensional feature space, comprising of features selected from a ranked set of 30 features, using Euclidean and Mahalonobis distance as the metric. Experiments were performed with four healthy subjects and our results show that the proposed methodology can detect the three movements with an overall average accuracy of 88% across all subjects and arm movement types using Euclidean distance classifier

    Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist

    No full text
    In this paper we present a method for recognising three fundamental movements of the human arm (reach and retrieve, lift cup to mouth, rotation of the arm) by determining the orientation of a tri-axial accelerometer located near the wrist. Our objective is to detect the occurrence of such movements performed with the impaired arm of a stroke patient during normal daily activities as a means to assess their rehabilitation. The method relies on accurately mapping transitions of predefined, standard orientations of the accelerometer to corresponding elementary arm movements. To evaluate the technique, kinematic data was collected from four healthy subjects and four stroke patients as they performed a number of activities involved in a representative activity of daily living, 'making-a-cup-of-tea'. Our experimental results show that the proposed method can independently recognise all three of the elementary upper limb movements investigated with accuracies in the range 91–99% for healthy subjects and 70–85% for stroke patients

    An AAL collaborative system: the AAL4ALL and a mobile assistant case study

    Get PDF
    "15th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2014, Amsterdam, The Netherlands, October 6-8, 2014"The areas of Ambient Assisted Living (AAL) and Intelligent Systems (IS) are in full development, but there are still some issues to be resolved. One issue is the myriad of user oriented solutions that are rarely built to interact or integrate with other systems available in the market. In this paper we present the AAL4ALL project and the UserAccess implementation, showing a novel approach towards virtual organizations, interoperability and certification. The aim of this project is to provide a collaborative network of services and devices that connect every user and product from other developers, building a heterogeneous ecosystem. Thus establishing an environment for collaborative care systems, which may be available to the users in from of safety services, comfort services and healthcare services.Project "AAL4ALL", co-financed by the European Community Fund FEDER, through COMPETE - Programa Operacional Factores de Competitividade (POFC). Foundation for Science and Technology (FCT), Lisbon, Portugal, through Project PEst-C/CTM/LA0025/2013 and the project PEst-OE/EEI/UI0752/2014. Project CAMCoF - Context-aware Multimodal Communication Framework fund-ed by ERDF -European Regional Development Fund through the COMPETE Pro-gramme (operational programme for competitiveness) and by National Funds through the FCT - Fundação para a CiĂȘncia e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-028980

    Deep Learning for Fatigue Estimation on the Basis of Multimodal Human-Machine Interactions

    Full text link
    The new method is proposed to monitor the level of current physical load and accumulated fatigue by several objective and subjective characteristics. It was applied to the dataset targeted to estimate the physical load and fatigue by several statistical and machine learning methods. The data from peripheral sensors (accelerometer, GPS, gyroscope, magnetometer) and brain-computing interface (electroencephalography) were collected, integrated, and analyzed by several statistical and machine learning methods (moment analysis, cluster analysis, principal component analysis, etc.). The hypothesis 1 was presented and proved that physical activity can be classified not only by objective parameters, but by subjective parameters also. The hypothesis 2 (experienced physical load and subsequent restoration as fatigue level can be estimated quantitatively and distinctive patterns can be recognized) was presented and some ways to prove it were demonstrated. Several "physical load" and "fatigue" metrics were proposed. The results presented allow to extend application of the machine learning methods for characterization of complex human activity patterns (for example, to estimate their actual physical load and fatigue, and give cautions and advice).Comment: 12 pages, 10 figures, 1 table; presented at XXIX IUPAP Conference in Computational Physics (CCP2017) July 9-13, 2017, Paris, University Pierre et Marie Curie - Sorbonne (https://ccp2017.sciencesconf.org/program

    Ensemble residual network-based gender and activity recognition method with signals

    Get PDF
    Nowadays, deep learning is one of the popular research areas of the computer sciences, and many deep networks have been proposed to solve artificial intelligence and machine learning problems. Residual networks (ResNet) for instance ResNet18, ResNet50 and ResNet101 are widely used deep network in the literature. In this paper, a novel ResNet-based signal recognition method is presented. In this study, ResNet18, ResNet50 and ResNet101 are utilized as feature extractor and each network extracts 1000 features. The extracted features are concatenated, and 3000 features are obtained. In the feature selection phase, 1000 most discriminative features are selected using ReliefF, and these selected features are used as input for the third-degree polynomial (cubic) activation-based support vector machine. The proposed method achieved 99.96% and 99.61% classification accuracy rates for gender and activity recognitions, respectively. These results clearly demonstrate that the proposed pre-trained ensemble ResNet-based method achieved high success rate for sensors signals. © 2020, Springer Science+Business Media, LLC, part of Springer Nature

    A framework for anomaly detection in activities of daily living using an assistive robot

    Get PDF
    This paper presents an overview of an ongoing research to incorporate an assistive robotic platform towards improved detection of anomalies in daily living activities of older adults. This involves learning human daily behavioural routine and detecting deviation from the known routine which can constitute an abnormality. Current approaches suffer from high rate of false alarms, therefore, lead to dissatisfaction by clients and carers. This may be connected to behavioural changes of human activities due to seasonal or other physical factors. To address this, a framework for anomaly detection is proposed which incorporates an assistive robotic platform as an intermediary. Instances classified as anomalous will first be confirmed from the monitored individual through the intermediary. The proposed framework has the potential of mitigating the false alarm rate generated by current approaches
    corecore