441 research outputs found

    Collision-Free Humanoid Reaching: Past, Present and Future

    Get PDF

    Challenges and Solutions for Autonomous Robotic Mobile Manipulation for Outdoor Sample Collection

    Get PDF
    In refinery, petrochemical, and chemical plants, process technicians collect uncontaminated samples to be analyzed in the quality control laboratory all time and all weather. This traditionally manual operation not only exposes the process technicians to hazardous chemicals, but also imposes an economical burden on the management. The recent development in mobile manipulation provides an opportunity to fully automate the operation of sample collection. This paper reviewed the various challenges in sample collection in terms of navigation of the mobile platform and manipulation of the robotic arm from four aspects, namely mobile robot positioning/attitude using global navigation satellite system (GNSS), vision-based navigation and visual servoing, robotic manipulation, mobile robot path planning and control. This paper further proposed solutions to these challenges and pointed the main direction of development in mobile manipulation

    Path Planning Based on Parametric Curves

    Get PDF
    Parametric curves are extensively used in engineering. The most commonly used parametric curves are, BĂ©zier, B-splines, (NURBSs), and rational BĂ©zier. Each and every one of them has special features, being the main difference between them the complexity of their mathematical definition. While BĂ©zier curves are the simplest ones, B-splines or NURBSs are more complex. In mobile robotics, two main problems have been addressed with parametric curves. The first one is the definition of an initial trajectory for a mobile robot from a start location to a goal. The path has to be a continuous curve, smooth and easy to manipulate, and the properties of the parametric curves meet these requirements. The second one is the modification of the initial trajectory in real time attending to the dynamic properties of the environment. Parametric curves are capable of enhancing the trajectories produced by path planning algorithms adapting them to the kinematic properties of the robot. In order to avoid obstacles, the shape modification of parametric curves is required. In this chapter, an algorithm is proposed for computing an initial BĂ©zier trajectory of a mobile robot and subsequently modifies it in real time in order to avoid obstacles in a dynamic environment

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Context-aware design and motion planning for autonomous service robots

    Get PDF

    Modeling human-likeness in approaching motions of dual-arm autonomous robots

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper addresses the problem of obtaining human-like motions with an anthropomorphic dual-arm torso assembled on a mobile platform. The focus is set on the coordinated movements of the robotic arms and the robot base while approaching a table to subsequently perform a bimanual manipulation task. For this, human movements are captured and mapped to the robot in order to compute the human dual-arm synergies. Since the demonstrated synergies change depending on the robot position, a recursive Cartesian-space discretization is presented based on these differences. Thereby, different movements of the arms are assigned to different regions of the Cartesian space. As an application example, a motion-planning algorithm exploiting this information is proposed and used.Postprint (published version

    Robots that Learn and Plan — Unifying Robot Learning and Motion Planning for Generalized Task Execution

    Get PDF
    Robots have the potential to assist people with a variety of everyday tasks, but to achieve that potential robots require software capable of planning and executing motions in cluttered environments. To address this, over the past few decades, roboticists have developed numerous methods for planning motions to avoid obstacles with increasingly stronger guarantees, from probabilistic completeness to asymptotic optimality. Some of these methods have even considered the types of constraints that must be satisfied to perform useful tasks, but these constraints must generally be manually specified. In recent years, there has been a resurgence of methods for automatic learning of tasks from human-provided demonstrations. Unfortunately, these two fields, task learning and motion planning, have evolved largely separate from one another, and the learned models are often not usable by motion planners. In this thesis, we aim to bridge the gap between robot task learning and motion planning by employing a learned task model that can subsequently be leveraged by an asymptotically-optimal motion planner to autonomously execute the task. First, we show that application of a motion planner enables task performance while avoiding novel obstacles and extend this to dynamic environments by replanning at reactive rates. Second, we generalize the method to accommodate time-invariant model parameters, allowing more information to be gleaned from the demonstrations. Third, we describe a more principled approach to temporal registration for such learning methods that mirrors the ultimate integration with a motion planner and often reduces the number of demonstrations required. Finally, we extend this framework to the domain of mobile manipulation. We empirically evaluate each of these contributions on multiple household tasks using the Aldebaran Nao, Rethink Robotics Baxter, and Fetch mobile manipulator robots to show that these approaches improve task execution success rates and reduce the amount of human-provided information required.Doctor of Philosoph
    • …
    corecore