401 research outputs found

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    A new attribute measuring the contour smoothness of 2-D objects is presented in the context of morphological attribute filtering. The attribute is based on the ratio of the circularity and non-compactness, and has a maximum of 1 for a perfect circle. It decreases as the object boundary becomes irregular. Computation on hierarchical image representation structures relies on five auxiliary data members and is rapid. Contour smoothness is a suitable descriptor for detecting and discriminating man-made structures from other image features. An example is demonstrated on a very-high-resolution satellite image using connected pattern spectra and the switchboard platform

    QUANTUM COMPUTING AND HPC TECHNIQUES FOR SOLVING MICRORHEOLOGY AND DIMENSIONALITY REDUCTION PROBLEMS

    Get PDF
    Tesis doctoral en período de exposición públicaDoctorado en Informática (RD99/11)(8908

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Acta Cybernetica : Volume 25. Number 2.

    Get PDF

    Modelling of spectroscopic and structural properties using molecular dynamics

    Get PDF
    The work described here was carried out at the European Lab. for Non-Linear Spectroscopy (LENS) to achieve a better understanding of molecular vibrations employing computer simulations. H-bonds are the main intermolecular interactions affecting vibrational spectra and here it’s shown how they usually induce a (red or blue) shift on the vibrational frequencies of the groups engaged in them, and how this shift nicely correlates with structural properties. H-bonds can be present also in a bifurcated arrangement. In systems such as confined water, this bifurcated configuration has long lifetimes, allowing it to be studied by both spectroscopic and computational means. The computational protocols implemented and adopted here allow for a direct comparison between structural features and vibrational spectra

    AI alignment and generalization in deep learning

    Full text link
    This thesis covers a number of works in deep learning aimed at understanding and improving generalization abilities of deep neural networks (DNNs). DNNs achieve unrivaled performance in a growing range of tasks and domains, yet their behavior during learning and deployment remains poorly understood. They can also be surprisingly brittle: in-distribution generalization can be a poor predictor of behavior or performance under distributional shifts, which typically cannot be avoided in practice. While these limitations are not unique to DNNs -- and indeed are likely to be challenges facing any AI systems of sufficient complexity -- the prevalence and power of DNNs makes them particularly worthy of study. I frame these challenges within the broader context of "AI Alignment": a nascent field focused on ensuring that AI systems behave in accordance with their user's intentions. While making AI systems more intelligent or capable can help make them more aligned, it is neither necessary nor sufficient for alignment. However, being able to align state-of-the-art AI systems (e.g. DNNs) is of great social importance in order to avoid undesirable and unsafe behavior from advanced AI systems. Without progress in AI Alignment, advanced AI systems might pursue objectives at odds with human survival, posing an existential risk (``x-risk'') to humanity. A core tenet of this thesis is that the achieving high performance on machine learning benchmarks if often a good indicator of AI systems' capabilities, but not their alignment. This is because AI systems often achieve high performance in unexpected ways that reveal the limitations of our performance metrics, and more generally, our techniques for specifying our intentions. Learning about human intentions using DNNs shows some promise, but DNNs are still prone to learning to solve tasks using concepts of "features" very different from those which are salient to humans. Indeed, this is a major source of their poor generalization on out-of-distribution data. By better understanding the successes and failures of DNN generalization and current methods of specifying our intentions, we aim to make progress towards deep-learning based AI systems that are able to understand users' intentions and act accordingly.Cette thèse discute quelques travaux en apprentissage profond visant à comprendre et à améliorer les capacités de généralisation des réseaux de neurones profonds (DNN). Les DNNs atteignent des performances inégalées dans un éventail croissant de tâches et de domaines, mais leur comportement pendant l'apprentissage et le déploiement reste mal compris. Ils peuvent également être étonnamment fragiles: la généralisation dans la distribution peut être un mauvais prédicteur du comportement ou de la performance lors de changements de distribution, ce qui ne peut généralement pas être évité dans la pratique. Bien que ces limitations ne soient pas propres aux DNN - et sont en effet susceptibles de constituer des défis pour tout système d'IA suffisamment complexe - la prévalence et la puissance des DNN les rendent particulièrement dignes d'étude. J'encadre ces défis dans le contexte plus large de «l'alignement de l'IA»: un domaine naissant axé sur la garantie que les systèmes d'IA se comportent conformément aux intentions de leurs utilisateurs. Bien que rendre les systèmes d'IA plus intelligents ou capables puisse aider à les rendre plus alignés, cela n'est ni nécessaire ni suffisant pour l'alignement. Cependant, être capable d'aligner les systèmes d'IA de pointe (par exemple les DNN) est d'une grande importance sociale afin d'éviter les comportements indésirables et dangereux des systèmes d'IA avancés. Sans progrès dans l'alignement de l'IA, les systèmes d'IA avancés pourraient poursuivre des objectifs contraires à la survie humaine, posant un risque existentiel («x-risque») pour l'humanité. L'un des principes fondamentaux de cette thèse est que l'obtention de hautes performances sur les repères d'apprentissage automatique est souvent un bon indicateur des capacités des systèmes d'IA, mais pas de leur alignement. En effet, les systèmes d'IA atteignent souvent des performances élevées de manière inattendue, ce qui révèle les limites de nos mesures de performance et, plus généralement, de nos techniques pour spécifier nos intentions. L'apprentissage des intentions humaines à l'aide des DNN est quelque peu prometteur, mais les DNN sont toujours enclins à apprendre à résoudre des tâches en utilisant des concepts de «caractéristiques» très différents de ceux qui sont saillants pour les humains. En effet, c'est une source majeure de leur mauvaise généralisation sur les données hors distribution. En comprenant mieux les succès et les échecs de la généralisation DNN et les méthodes actuelles de spécification de nos intentions, nous visons à progresser vers des systèmes d'IA basés sur l'apprentissage en profondeur qui sont capables de comprendre les intentions des utilisateurs et d'agir en conséquence
    • …
    corecore