1,102 research outputs found

    Finite element methods for integrated aerodynamic heating analysis

    Get PDF
    This report gives a description of the work which has been undertaken during the second year of a three year research program. The objectives of the program are to produce finite element based procedures for the solution of the large scale practical problems which are of interest to the Aerothermal Loads Branch (ALB) at NASA Langley Research Establishment. The problems of interest range from Euler simulations of full three dimensional vehicle configurations to local analyses of three dimensional viscous laminar flow. Adaptive meshes produced for both steady state and transient problems are to be considered. An important feature of the work is the provision of specialized techniques which can be used at ALB for the development of an integrated fluid/thermal/structural modeling capability

    3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries

    Full text link
    Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular processes using these observed geometries. Enabling such simulations requires watertight meshing of electron micrograph images into 3D volume meshes, which can then form the basis of computer simulations of such processes using numerical techniques such as the Finite Element Method. In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to bridge the gap between poorly conditioned meshes generated from segmented micrographs and boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology explored at three different length scales and show that the resulting meshes are suitable for finite element simulations. This work is an important step towards making physical simulations of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on emerging structural data will enable realistic physical models and advance discovery at the interface of geometry and cellular processes. We posit that a new frontier at the intersection of computational technologies and single cell biology is now open.Comment: 39 pages, 14 figures. High resolution figures and supplemental movies available upon reques

    Virtual reality surgery simulation: A survey on patient specific solution

    Get PDF
    For surgeons, the precise anatomy structure and its dynamics are important in the surgery interaction, which is critical for generating the immersive experience in VR based surgical training applications. Presently, a normal therapeutic scheme might not be able to be straightforwardly applied to a specific patient, because the diagnostic results are based on averages, which result in a rough solution. Patient Specific Modeling (PSM), using patient-specific medical image data (e.g. CT, MRI, or Ultrasound), could deliver a computational anatomical model. It provides the potential for surgeons to practice the operation procedures for a particular patient, which will improve the accuracy of diagnosis and treatment, thus enhance the prophetic ability of VR simulation framework and raise the patient care. This paper presents a general review based on existing literature of patient specific surgical simulation on data acquisition, medical image segmentation, computational mesh generation, and soft tissue real time simulation

    Heterogeneous volumetric data mapping and its medical applications

    Get PDF
    With the advance of data acquisition techniques, massive solid geometries are being collected routinely in scientific tasks, these complex and unstructured data need to be effectively correlated for various processing and analysis. Volumetric mapping solves bijective low-distortion correspondence between/among 3D geometric data, and can serve as an important preprocessing step in many tasks in compute-aided design and analysis, industrial manufacturing, medical image analysis, to name a few. This dissertation studied two important volumetric mapping problems: the mapping of heterogeneous volumes (with nonuniform inner structures/layers) and the mapping of sequential dynamic volumes. To effectively handle heterogeneous volumes, first, we studied the feature-aligned harmonic volumetric mapping. Compared to previous harmonic mapping, it supports the point, curve, and iso-surface alignment, which are important low-dimensional structures in heterogeneous volumetric data. Second, we proposed a biharmonic model for volumetric mapping. Unlike the conventional harmonic volumetric mapping that only supports positional continuity on the boundary, this new model allows us to have higher order continuity C1C^1 along the boundary surface. This suggests a potential model to solve the volumetric mapping of complex and big geometries through divide-and-conquer. We also studied the medical applications of our volumetric mapping in lung tumor respiratory motion modeling. We were building an effective digital platform for lung tumor radiotherapy based on effective volumetric CT/MRI image matching and analysis. We developed and integrated in this platform a set of geometric/image processing techniques including advanced image segmentation, finite element meshing, volumetric registration and interpolation. The lung organ/tumor and surrounding tissues are treated as a heterogeneous region and a dynamic 4D registration framework is developed for lung tumor motion modeling and tracking. Compared to the previous 3D pairwise registration, our new 4D parameterization model leads to a significantly improved registration accuracy. The constructed deforming model can hence approximate the deformation of the tissues and tumor

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    Real-time Error Control for Surgical Simulation

    Get PDF
    Objective: To present the first real-time a posteriori error-driven adaptive finite element approach for real-time simulation and to demonstrate the method on a needle insertion problem. Methods: We use corotational elasticity and a frictional needle/tissue interaction model. The problem is solved using finite elements within SOFA. The refinement strategy relies upon a hexahedron-based finite element method, combined with a posteriori error estimation driven local hh-refinement, for simulating soft tissue deformation. Results: We control the local and global error level in the mechanical fields (e.g. displacement or stresses) during the simulation. We show the convergence of the algorithm on academic examples, and demonstrate its practical usability on a percutaneous procedure involving needle insertion in a liver. For the latter case, we compare the force displacement curves obtained from the proposed adaptive algorithm with that obtained from a uniform refinement approach. Conclusions: Error control guarantees that a tolerable error level is not exceeded during the simulations. Local mesh refinement accelerates simulations. Significance: Our work provides a first step to discriminate between discretization error and modeling error by providing a robust quantification of discretization error during simulations.Comment: 12 pages, 16 figures, change of the title, submitted to IEEE TBM
    • …
    corecore