1,454 research outputs found

    A cluster-based mobile data-gathering scheme for underwater sensor networks

    Get PDF

    An efficient AUV-aided data collection in underwater sensor networks

    Get PDF

    Self-organizing Fast Routing Protocols for Underwater Acoustic Communications Networks

    Get PDF
    To address this problem, in this thesis we propose a cross-layer proactive routing initialization mechanism that does not require additional measurements and, at the same time, is energy efficient. Two routing protocols are proposed: Self-Organized Fast Routing Protocol for Radial Underwater Networks (SOFRP) for radial topology and Self-organized Proactive Routing Protocol for Non-uniformly Deployed Underwater Networks (SPRINT) for a randomly deployed network. SOFRP is based on the algorithm to recreate a radial topology with a gateway node, such that packets always use the shortest possible path from source to sink, thus minimizing consumed energy. Collisions are avoided as much as possible during the path initialization. The algorithm is suitable for 2D or 3D areas, and automatically adapts to a varying number of nodes. In SPRINT the routing path to the gateway is formed on the basis of the distance, measured by the signal strength received. The data sending node prefers to choose the neighbor node which is closest to it. It is designed to achieve high data throughput and low energy consumption of the nodes. There is a tradeoff between the throughput and the energy consumption: more distance needs more transmission energy, and more relay nodes (hops) to the destination node affects the throughput. Each hop increases the packet delay and decreases the throughput. Hence, energy consumption requires nearest nodes to be chosen as forwarding node whereas the throughput requires farthest node to be selected to minimize the number of hops. Fecha de lectura de Tesis Doctoral: 11 mayo 2020Underwater Wireless Sensor Networks (UWSNs) constitute an emerging technology for marine surveillance, natural disaster alert and environmental monitoring. Unlike terrestrial Wireless Sensor Networks (WSNs), electromagnetic waves cannot propagate more than few meters in water (high absorption rate). However, acoustic waves can travel long distances in underwater. Therefore, acoustic waves are preferred for underwater communications, but they travel very slow compare to EM waves (typical speed in water is 1500 m/s against 2x10^8 m/s for EM waves). This physical effect makes a high propagation delay and cannot be avoided, but the end-to-end packet delay it can be reduced. Routing delay is one of the major factors in end-to-end packet delay. In reactive routing protocols, when a packet arrives to a node, the node takes some time to select the node to which the data packet would be forwarded. We may reduce the routing delay for time-critical applications by using proactive routing protocols. Other two critical issues in UWSNs are determining the position of the nodes and time synchronization. Wireless sensor nodes need to determine the position of the surrounding nodes to select the next node in the path to reach the sink node. A Global Navigation Satellite System (GNSS) cannot be used because of the very short underwater range of the GNSS signal. Timestamping to estimate the distance is possible but the limited mobility of the UWSN nodes and variation in the propagation speed of the acoustic waves make the time synchronization a challenging task. For these reasons, terrestrial WSN protocols cannot be readily used for underwater acoustic networks

    Raising awareness for water polution based on game activities using internet of things

    Get PDF
    Awareness among young people regarding the environment and its resources and comprehension of the various factors that interplay, is key to changing human behaviour towards achieving a sustainable planet. In this paper IoT equipment, utilizing sensors for measuring various parameters of water quality, is used in an educational context targeting at a deeper understanding of the use of natural resources towards the adoption of environmentally friendly behaviours. We here note that the use of water sensors in STEM gameful learning is an area which has not received a lot of attention in the previous years. The IoT water sensing and related scenaria and practices, addressing children via discovery, gamification, and educational activities, are discussed in detail

    Proteus II: design and evaluation of an integrated power-efficient underwater sensor node

    Get PDF
    We describe the design and evaluation of an integrated low-cost underwater sensor node designed for reconfigurability, allowing continuous operation on a relatively small rechargeable battery for one month. The node uses a host CPU for the network protocols and processing sensor data and a separate CPU performs signal processing for the ultrasonic acoustic software-defined Modulator/Demodulator (MODEM). A Frequency Shift Keying- (FSK-) based modulation scheme with configurable symbol rates, Hamming error correction, and Time-of-Arrival (ToA) estimation for underwater positioning is implemented. The onboard sensors, an accelerometer and a temperature sensor, can be used to measure basic environmental parameters; additional internal and external sensors are supported through industry-standard interfaces (I2C, SPI, and RS232) and an Analog to Digital Converter (ADC) for analog peripherals. A 433 MHz radio can be used when the node is deployed at the surface. Tests were performed to validate the low-power operation. Moreover the acoustic communication range and performance and ToA capabilities were evaluated. Results show that the node achieves the one-month lifetime, is able to perform communication in highly reflective environments, and performs ToA estimation with an accuracy of about 1-2 meters

    Energy-Efficient Packet Forwarding Scheme Based on Fuzzy Decision-Making in Underwater Sensor Networks

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) are subjected to a multitude of real-life challenges. Maintaining adequate power consumption is one of the critical ones, for obvious reasons. This includes proper energy consumption due to nodes close to and far from the sink node (gateway), which affect the overall energy efficiency of the system. These wireless sensors gather and route the data to the onshore base station through the gateway at the sea surface. However, finding an optimum and efficient path from the source node to the gateway is a challenging task. The common reasons for the loss of energy in existing routing protocols for underwater are (1) a node shut down due to battery drainage, (2) packet loss or packet collision which causes re-transmission and hence affects the performance of the system, and (3) inappropriate selection of sensor node for forwarding data. To address these issues, an energy efficient packet forwarding scheme using fuzzy logic is proposed in this work. The proposed protocol uses three metrics: number of hops to reach the gateway node, number of neighbors (in the transmission range of a node) and the distance (or its equivalent received signal strength indicator, RSSI) in a 3D UWSN architecture. In addition, the performance of the system is also tested with adaptive and non-adaptive transmission ranges and scalable number of nodes to see the impact on energy consumption and number of hops. Simulation results show that the proposed protocol performs better than other existing techniques or in terms of parameters used in this scheme

    Energy-Efficient Routing Protocol for Selecting Relay Nodes in Underwater Sensor Networks Based on Fuzzy Analytical Hierarchy Process

    Get PDF
    The use of underwater sensor networks (UWSNs) offers great advantages in many automatic observation services such as water monitoring (ocean, sea, etc.) and registering of geological events (landslides, earthquakes). However, UWSNs have many more limitations than terrestrial sensor networks (smaller bandwidth, higher delays, etc.) with new requirements such as low power consumption by nodes or being able to select appropriate routes in a dynamic topology due to water currents and movements. To cope with these problems, the use of a routing protocol is very important. In this paper we propose a routing technique that adapts to changes in the network topology, avoiding multiple retransmissions that would affect its overall performance. This protocol is energy-efficient and is implemented using a fuzzy analytical hierarchical process (FAHP) under multi-criteria decision making (MCDM) to make an intelligent routing decision based on objectives, criteria and alternatives. To select the next node on the route, several comparison matrices are used: number of hops, distances to the sink node, and number of neighbors. The results show that the proposed setup behaves similarly to other existing underwater sensor network routing schemes using fuzzy schemes such as SPRINT.This research was funded in part by the Spanish Ministry of Science and Innovation through the project “NAUTILUS: Swarms of underwater autonomous vehicles guided by artificial intelligence: its time has come” (Grant: PID2020-112502RB/AEI/10.13039/501100011033). Partial funding for open access charge: Universidad de Málag

    TDA-MAC : TDMA without clock synchronization in underwater acoustic networks

    Get PDF
    This paper investigates the application of underwater acoustic sensor networks for large scale monitoring of the ocean environment. The low propagation speed of acoustic signals presents a fundamental challenge in coordinating the access to the shared communication medium in such networks. In this paper, we propose two medium access control (MAC) protocols, namely, Transmit Delay Allocation MAC (TDA-MAC) and Accelerated TDA-MAC, that are capable of providing time division multiple access (TDMA) to sensor nodes without the need for centralized clock synchronization. A comprehensive simulation study of a network deployed on the sea bed shows that the proposed protocols are capable of closely matching the throughput and packet delay performance of ideal synchronized TDMA. The TDA-MAC protocols also significantly outperform T-Lohi, a classical contention-based MAC protocol for underwater acoustic networks, in terms of network throughput and, in many cases, end-To-end packet delay. Furthermore, the assumption of no clock synchronization among different devices in the network is a major advantage of TDA-MAC over other TDMA-based MAC protocols in the literature. Therefore, it is a feasible networking solution for real-world underwater sensor network deployments

    Underwater Wireless Sensor Networks: How Do Acoustic Propagation Models Impact the Performance of Higher-Level Protocols?

    Get PDF
    Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios
    corecore