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Abstract—From the view of routing protocols in Underwater
Sensor Networks (UWSNs), mobile data-gathering mechanisms
using Autonomous Underwater Vehicle (AUV) have received sig-
nificant attention because of data collection capability via short-
range communications. In this paper, a new Cluster-based AUV-
aided Data Collection scheme (CADC) for large-scale UWSNs is
proposed to make a trade-off between energy saving and data
gathering latency. Our scheme consists of three phases: discovery
phase, clustering phase, and data gathering phase. Neighbouring
information is exchanged and then collected by AUV during
the discovery phase. The collected information is used in the
clustering phase in order to determine the cluster heads and
members. Then, the AUV tour is planned such that all cluster
heads are visited while shortening the tour length of the AUV.
To cluster the sensors and cover their heads with the shortest
possible tour, we first propose an optimal algorithm to find the
global optimal solution, and then propose an efficient algorithm
to obtain the near-optimal solution in the less computational
time. CADC is scalable and also applicable in both connected
and disconnected networks. In terms of energy-latency trade-off,
CADC can effectively keep the tour length short while prolonging
the network lifetime compared to those of mobile data-gathering
approaches. The effectiveness of CADC is validated through
an extensive simulation study which reveals the performance
improvement in the packet delivery ratio, energy saving, and
data gathering latency.

I. INTRODUCTION

Underwater sensor networks have obtained a tremendous

interest in a wide range of aquatic applications, such as explo-

ration of ocean resource, environmental monitoring, battlefield

surveillance, disaster prevention, pollution monitoring, etc [1]–

[3]. Underwater sensors are usually distributed in a large-scale

marine environment to collect data and transfer them to a

destination, which may be a static sink, or a mobile sink (e.g.

AUV) [4]–[6].

In a static sink model, underwater sensors close to the

sink consume much more energy than other sensors because

of relaying more data packets. Thus, these nodes may fail

sooner affecting the network connectivity. This problem can be

exacerbated in large-scale UWSNs. However, data-gathering

using AUV is more suitable for large-scale networks due to

reducing the number of transmissions and balancing the energy

consumption [7].

AUV is a mobile sink equipped with a powerful transceiver,

moving through the underwater area to continuously collect

data packets from sensors [4]. The data-gathering tour is

periodically initiated from a static base station, followed

by collecting data packets from sensors, and completed by

transferring data packets to the static base station [8]. Using

a mobile sink contributes to prolong the lifetime of sensors

since any packet relay is bounded within a given number of

hops.
In AUV tour planning, there is a trade-off between energy

saving and data gathering latency [9]. If AUV traverses within

the transmission range of each sensor directly to collect data

without any data packet relay, the maximum energy saving

can be achieved for sensors. However, data gathering latency

is increased due to increase in the tour length. Thus, it is

more appropriate to decrease the data gathering latency by

performing the local aggregation in a subset of sensors as

cluster heads and transferring the aggregated data to AUV.

It should be noted that the local data aggregation should be

bounded to a few number of transmission hops to adequately

handle the increased energy consumption and packet loss.
In this paper, a new Cluster-based AUV-aided Data Col-

lection scheme (CADC) is presented to minimise tour length,

packet loss, energy consumption, and latency. In CADC, a

subset of underwater sensors is selected as cluster heads

to collect data from affiliated sensors and transfer the data

to AUV when it arrives. Furthermore, by affiliating sensors

with cluster heads, any packet relay is bounded within a few

number of hops which decreases the chance of collisions

and packet loss. Limiting multi-hop relay to a certain level

also reduces the energy consumption at sensors. To this end,

we first propose a modified branch-and-bound algorithm to

find the global optimal solution, and then propose a heuristic

algorithm to obtain the near-optimal solution. In CADC, we

take advantage of randomness and greediness to create some

local solutions, and to find an acceptable solution among them

using less computational time. The effectiveness of CADC

is verified by comparing with other existing mobile data-

gathering approaches in UWSNs.
The rest of this paper is organized as follows. In Section

II, we review the related work on mobile data gathering in

UWSNs. In Section III, we provide a detailed description of

the system model. In Section IV, CADC is presented in details.

Section V gives simulation results and some discussions. In

Section VI, we conclude the paper.

II. RELATED WORK

In this section, we briefly review some of underwater mobile

data-gathering protocols.
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Mobicast [10] is a mobile data-gathering protocol in which

AUV traverses a predetermined circle path to collect data

packets from sensors in different geographic regions called

3-D zone of references (3-D ZOR). In Mobicast, there is no

use of clustering mechanism and sensors should relay the data

packets to AUV in a single hop or multi-hop transmissions.

To deal with the presence of various water currents and void

areas, a larger covering area surrounding the 3-D ZOR is

considered to find alternative paths to deliver the packet to all

sensors. This covering area involves more sensors resulting in

more energy consumption. Furthermore, collecting data from

all sensors in the sensing field is not possible because only

sensors within 3-D ZORs can be investigated.

In AEERP (AUV aided Energy Efficient Routing Protocol)

[11], AUV traverses a predetermined elliptical trajectory in

each cycle. The sensors are divided into two categories: gate-

ways and members. The gateway sensors only can communi-

cate with an AUV, and they are selected based on the nearness

to AUV trajectory and their remaining energy. Members are

then allocated to the gateways sensors using a Shortest Path

Tree (SPT). However, there is no bound on the hop distance

from members to a gateway sensor which causes an increase

in energy consumption in a broader network.

In AURP (AUV-aided underwater routing protocol) [12],

multiple AUVs are used as a relay to collect data packets

from gateway nodes and then forward to a sink. Each gateway

is responsible for gathering data from underwater sensors.

Thus, the sink and gateways should periodically broadcast

their interest in receiving data to be used by sensors for

choosing the next hop such that the path length is minimised.

In AURP, it is mentioned that gateways and the trajectory of

AUVs can be determined dynamically or before deployment;

however, this procedure and the resulting overhead has not

been investigated thoroughly. Moreover, an AUV trajectory is

a fixed elliptical path which reduces the flexibility in confront

of different sensor deployment strategies.

AUV PN [13] is a mobile data-gathering protocol in which

underwater sensors are clustered around several CHs while

an AUV is employed to visit some identified locations to

collect the aggregated data. AUV partitions the network using

the Voronoi criteria and then travels the network field in a

predefined lawn-mower pattern to broadcast the information.

By receiving this information, sensors elects a CH using the

cluster set-up phase of the LEACH protocol. Each CH also

partitions its cluster into several sub-clusters and selects a

Path Node (PN) for each sub-cluster with the responsibility to

collect data from its members. During data-gathering phase,

AUV travels to the nearest CH to obtain the list of PNs

and then visits each PN to collect data. After visiting all

PNs in a cluster, AUV travels to the next nearest CH and

repeat the same procedure until all CHs are visited. However,

there are some constraints which can confine the AUV PN

performance. The AUV tour is not optimal, and it crosses

over itself. By broadening the network size, sensors should

transmit the data packets with higher power because they are

placed farther away from PNs. The network-partitioning has

a complicated procedure, and it is performed with substantial

overhead in energy and communication.

III. SYSTEM MODEL

In this section, the network architecture and acoustic prop-

agation model are described in details.

A. Network architecture

A typical mobile data-gathering UWSN has a 3D network

topology consisted of underwater sensors, a single data sink,

and a mobile data sink (AUV) [13]. Underwater sensors are

distributed in a two-dimensional plane with a fixed depth. Each

sensor can control its depth using a pressure gauge and fish-

like bladder apparatus [14], [15]. It is assumed that sensors

are static or anchored to the bottom of the ocean. They are

homogeneous regarding transmission range and power.

The static sink is located on the water surface, which

can communicate with AUV and monitoring centre using an

acoustic and radio modem, respectively. The AUV operates

at a fixed depth above the underwater sensors, and it has the

freedom to move in all directions. Underwater sensors are not

required to know their full geographical coordinates; however,

AUV can obtain sensors coordinates by marking the locations

where it receives data from them [16]. It is also assumed that

AUV is supplied with unlimited energy and memory.

B. Acoustic propagation model

The Thorp model [17] is used for describing the underwater

acoustic channel model. The path loss or acoustic channel

attenuation over distance d can be represented as [17]:

A(d, f) = A0d
kα(f)d (1)

where f is the signal frequency and α(f) is the absorption

coefficient which is determined by the Thorp model. Further-

more, A0 denotes a unit-normalizing constant, and k is the

geometric spreading factor which is set to 1.5 for practical

scenarios. The underwater noises are dominant in the different

frequency regions and are composed of four main components

of turbulence PNt(f), shipping PNs(f), waves PNw(f) and

thermal energy PNth(f) which can be represented as [18]:

PN(f) = PNt(f) + PNs(f) + PNw(f) + PNth(f) (2)

The signal-to-noise ratio (SNR) over distance d with the

signal frequency f can be expressed as [17]:

SNR(d, f) =
PR(f)

A(d, f)PN(f)
(3)

where PR(f) denotes the transmission power with frequency

f at the forwarding node. To receive the data packet without

any error, SNR at the receiver should be greater than the

detection threshold. The bit error probability over distance d
can be computed by [14]:

Pe(d) =
1

2

(
1−

√
SNRavg(d, f)

1 + SNRavg(d, f)

)
(4)

where SNRavg(d, f) is the average signal-to-noise ratio over

distance d with frequency f which can be calculated using Eq.
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Fig. 1: Mobile data gathering within two hops

3. Accordingly, the delivery probability of a data packet with

size n bits over distance d can be expressed as follows [14]:

P = (1− Pe(d))
n (5)

IV. CADC DETAILS

In this section, our proposed scheme (CADC) is presented.

A. Overview

The primary goal of a tour-planning routing protocol is

to find an efficient way of regularly collecting data from

sensors. To this end, cluster-based tour-planing approaches

have attracted much attention. In CADC, as a cluster-based

scheme, our primary goal is to find a subset of sensors as

Cluster Heads (CHs) to cover affiliated sensors within limited

number of hops and then to find a short tour for AUV to visit

each CH in a certain order. Each cluster head can buffer all

collected data from its cluster members and upload them to

AUV when it arrived within a single-hop vicinity of the CH.

In order to perform this task, our scheme is divided into three

phases: discovery phase, clustering phase, and data gathering

phase. Fig. 1 shows an example of mobile data gathering

technique in which sensors are clustered with a maximum of

two hops distance from a CH.

During the initial phases of discovery and clustering, un-

derwater sensors should discover neighbouring nodes to form

the required clusters. The number of transmission hops that

connects nodes to the cluster heads has a crucial role in the

energy consumption.

In UWSNs, relay hop count should be bounded due to a

number of reasons. First, underwater environment is very noisy

which can increase the chance of packet failure by forwarding

a packet over several hops [1]. Second, energy efficiency can

be achieved by limiting the number of packet transmissions.

Third, there is a limitation on the sensor buffering capacity.

Thus, it is not practical to allocate a high number of sensors

to a CH for local data aggregation.

The relay hop bound, d, is a system parameter which can

be set based on the application priorities on the energy saving

and delay. For delay-tolerant applications, d is set to a small

value to save more energy at sensors. Mobile data-gathering

protocols are usually suitable for the applications which are

almost delay-insensitive [13].

For the clustering and tour planning, we first solve the

problem using an optimal algorithm, and then an efficient

algorithm is presented in order to solve the problem in a less

computational time. In our heuristic scheme, CHs are selected

using a greedy iterative search manner.

The data-gathering phase has the largest share of the net-

work energy consumption. However, the performance of this

phase is mostly dependent on the efficiency of clustering

phase. During the data-gathering phase, AUV continuously

starts its tour from a static sink, which can be placed anywhere

on the surface, collects data packets from CHs and then returns

to the static sink to forward all gathered data.

B. Discovery phase

In discovery phase, neighbouring information should be

exchanged between sensors to be used during clustering phase.

Each sensor is required to obtain and maintain neighbouring

information. To this end, each sensor should have a neighbour-

ing table to maintain the IDs of neighbouring sensors within

its transmission range.

In the discovery phase, each underwater sensor broadcasts

a control packet including the packet type and sensor ID.

Upon receiving a control packet, each receiving sensor updates

its neighbouring table based on the newly discovered sensor.

Each receiving sensor also measures its relative distance to

the sending sensor via the difference between the initial and

received signals strengths and keeps it in the neighbouring

table. The initial signal strength is known to each node as

all the nodes are homogeneous in terms of the transmission

power.

Broadcasting a control packet at the same time by under-

water sensors may result in collisions in the network. Thus,

the transmission time of each sensor should randomly be

selected from a predefined interval [18]. After the information

exchange, AUV needs to travel the entire sensing field to

collect sensors information and marks their locations. After

the exploring of all sensors, AUV returns to the static sink to

upload the sensor list.

C. Optimal Clustering Algorithm

In this section, we propose a modified branch-and-bound

technique to find an optimal solution for the mobile data-

gathering problem. In CADC, by having one-hop adjacency

information, the d-hop degree of each sensor can be calculated.

To perform the branch-and-bound algorithm, having only one-

hop adjacency information of all sensors is sufficient. We

also need the sensors geographical coordinates to calculate the

distances. These information are gathered during the discovery

phase.

In the next step, the main objective is to find a subset of

sensors as CHs in which the shortest path passes through

them while other sensors are covered within the relay hop

bound of those CHs. This problem belongs to the class of NP-

hard problems. It can be proved by the fact that, by reducing

the transmission range of sensors below a certain level in a

way that all sensors become unreachable from each other, the

travelling salesman problem (TSP) which is NP-hard can be

reduced to a special case of our problem in polynomial time.
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Algorithm 1 Optimal Algorithm

1: procedure Backtrack(S, T , l, lengthSoFar, minCost)
2: if S is empty then
3: tourLength = lengthSoFar + Distance(T(l), T(0))
4: if tourLength < minCost then
5: minCost = tourLength
6: for each j > l do
7: T ∗(j) ←− ∅

8: end for
9: end if

10: end if
11: if S is not empty then
12: for each si ∈ S do
13: Remove si from S, and T (l) ←− si
14: Remove d neigh(si) from S
15: newLength = lengthSoFar + Distance(T(l), T(l-1))
16: if newLength < minCost then
17: L = Backtrack(S, T, l+1, lengthSoFar, minCost)
18: if L < minCost then
19: minCost = L
20: T ∗(l) ←− T (l)
21: end if
22: end if
23: Reinsert si and d neigh(si) in S
24: T (l) ←− ∅

25: end for
26: end if
27: return minCost
28: end procedure

A branch-and-bound technique to obtain the global optimal

solution for this problem is presented in Algorithm 1. This

recursive algorithm tries to look at all possible tours while

it skips the recursive calls for those that will never find an

optimal solution.

Let S = {s1, s2, ..., sn} be a set of sensors and T be the

sequence of sensors already visited (an ordered set). In the

initial call, S contains all sensors and T contains only sink

(T (0) = Sink ID). The variable lengthSoFar is used to

maintain the length of the partially constructed tour so far and

minCost gives the length of the best tour found so far. In the

initial call, we set ∞ for minCost and 1 for the index l.

In lines 11-12, all possible choices that can extend the partial

solution constructed so far are generated. T maintains the

partial solution constructed so far and S contains the list of

sensors that still need to be visited. To try a new choice, an

unvisited sensor from S is removed and appended to the T ,

and its d-hop neighbouring sensors in S are removed as well

(Lines 13-14). In lines 15-16, we compute a lower bound on

the length of any solutions that can be found in that branch

which is called newLength. The lower bound is compared

with the best solution found so far, and if this solution cannot

lead to an optimal solution, we prune the branch. Otherwise,

we explore the branch to look for a better solution (line 17).

The minCost is an upper bound on the length of the best

tour, and it is improved every time by finding a shorter tour

(lines 18-19). Whenever a shorter tour is found, the current

sensor (as a CH) is maintained in T ∗ which finally gives us

the optimal tour (line 20). In line 23-24, we undo the selection

and reinsert sensor i and its members in S, and remove sensor

i from T .

When T is a complete solution and S is empty, we compute

the length of the tour represented by T and compare it with

minCost (lines 2-4). If T is a shorter tour, the minCost is

updated, and then the existing T ∗ members with an index more

than l are removed (lines 5-7). This is because the number of

visiting points in each solution can be different so the visiting

points from the previous solution should be removed (line 7)

or updated (line 20).

At the end, minCost returns the length of the optimal tour,

and T ∗ contains the optimal tour itself. After finding the CHs,

each remaining sensor is able to find at least one CH in its

d-hop range. Finally, each non-CH sensor is assigned to a CH

with the closest distance.

If the number of sensors is n, the worst case complexity of

this algorithm remains the same as that of the Brute Force

which is given as O(n!). The branch-and-bound technique

makes the algorithm much faster; however, the time-saving

depends on the order of generated tours. As the complexity

of this algorithm is very high, it is obvious that this algo-

rithm is inefficient for a high-density network. Therefore, an

approximation algorithm, which do not always find an optimal

solution, is required, but can obtain near-optimal solutions with

less complexity.

D. Heuristic Clustering Algorithm

In this section, we propose a new heuristic algorithm to

solve the problem approximately. Our proposed algorithm is

a greedy randomized adaptive search which can obtain an

acceptable solution in a limited amount of time. The proposed

algorithm is performed iteratively, while taking advantage of

randomness and greediness to obtain an acceptable solution

among the local optimal solutions. The greediness provides

faster convergence to a local minimum while decreasing the

search time in each iteration [19]. The randomisation con-

tributes in achieving different solutions in each local search.

Before explaining the algorithm, it should be mentioned

that which criteria are used to select a solution among all

the local solutions found so far. Some major features can be

used to obtain a shorter tour. First, the number of CHs should

preferably be the smallest under the constraint of the relay

hop bound. Second, the selected CHs should be distributed

close to the sink. A heuristic algorithm using these criteria is

proposed in Algorithm 2.

Let S = {s1, s2, ..., sn} be a set of sensors and Φ be a

temporary set to maintain the selected CHs at each iteration.

The variable numCH shows the number of CHs of the best

solution found so far, and totalDist shows the total distance

of all these CHs to the sink. In the beginning, their initial

value is set to infinite (lines 2-3).

In our algorithm, at each iterative, a randomised and greed-

ily biased solution is generated. The maxitr can determine

the maximum number of iterations (line 4). Increasing the
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Algorithm 2 CADC Algorithm

1: procedure CADC(S, maxitr, Φ)
2: numCH = ∞
3: totalDist = ∞
4: for k = 1 to maxitr do
5: Select λ randomly from interval [0, 1]
6: Clustering(S, λ, Φ)
7: for each si ∈ Φ do
8: dist = dist+Distance(si, Sink)
9: end for

10: if |Φ| < numCH and dist < totalDist then
11: numCH = |Φ|
12: totalDist = dist
13: Φ∗ ←− Φ
14: end if
15: end for
16: end procedure

number of iterations can lead to exploring a better solution.

λ is a real parameter which receives a random value from

interval [0, 1] (line 5). Then, the clustering function is called

to generate a randomised and greedily biased solution in which

some sensors are selected as the CHs while the rest can be

assigned to them as members subject to the relay hop bound

constraint (line 6).

After finding any solution, the total distances of all CHs to

the sink is calculated, and its value is stored in the variable

dist (lines 7-9). If the number of CHs of a solution is less than

the numCH and dist is less than the totalDist, this solution

is maintained as a better solution in Φ∗, and the values of

numCH and totalDist are updated accordingly (lines 10-13).

In the clustering procedure, at each step, a sensor is ran-

domly selected from the candidate sensors with a high d-hop

degree value, and other sensors that are in d-hop adjacency to

the selected sensor, are removed from the candidate list. The

clustering procedure is shown in Algorithm 3. Let Φ be the

list of CHs which is initially set to empty and C be the set of

candidate sensors which contains all sensors at the beginning

(lines 2-3). The variable l is used to maintain and calculate

the number of CHs which is initially set to 0 (line 4).

The clustering procedure continues as long as the C is

not empty (line 5). At each step, a sub-graph induced by

C is constructed and maintained in G(C) to be used to

recalculate d-hop degree of all candidates (lines 6-9). Let dmin

and dmax be the minimum and maximum d-hop degree of

G(C), respectively (lines 10-11). All candidate sensors with

higher d-hop value than dmin + λ(dmax − dmin), are placed

in a Restricted Candidate Set (RCS). One sensor is randomly

selected from RCS and added to Φ. The selected sensor and

its d-hop neighbours are also removed from C (lines 12-16).

The procedure ends when C is empty, and it gives us Φ as a

solution which its optimality is compared in the main function

(Algorithm 2). At the end, each non-CH sensor should be

assigned to a CH with the closest distance.

It should be noted that Φ∗ only provides us with the list of

selected CHs of an optimal local solution and not the order of

Algorithm 3 Clustering Algorithm

1: procedure Clustering(S, λ, Φ)
2: Φ ←− ∅

3: C ←− S
4: l = 0
5: while |C| > 0 do
6: G(C)←− Sub-graph induced by C
7: for each si ∈ C do
8: Calcultae d deg(si) with respect to G(C)
9: end for

10: dmin = min{d deg(si) | si ∈ C}
11: dmax = max{d deg(si) | si ∈ C}
12: RCS = {si ∈ C | d deg(si) ≥ dmin+λ(dmax−dmin)}
13: Select si at random from the RCS
14: Remove si and d neigh(si) from C
15: l = l + 1
16: Φ(l)←− si
17: end while
18: end procedure

visiting them during the data-gathering phase.

E. Data gathering phase

After the heuristic clustering phase, the main objective is

to find a short path passes through all CHs. Finding such a

path is considered as a Travelling Salesman Problem (TSP)

which belongs to the class of NP-complete problems [20]. We

therefore use a greedy heuristic approach offering comparably

fast running time and still yielding near-optimal solutions [20].

Following this approach, if the number of CHs is N , a tour

is gradually constructed by repeatedly adding the shortest edge

to the tour as long as there is no cycle with less than N edges,

or no CH with a degree more than 2. The greedy algorithm

can be summarised as follows:

1. All edges should be sorted in increasing order of length.

2. The shortest edge is included in the tour if

• No early cycle is formed, and

• No vertices has a degree of 3

3. Does tour include N edges? If no, step 2 is repeated.

The complexity of this greedy algorithm to create a path is

given as O(n2log2(n)) [20].

Once a tour is generated by the greedy algorithm, it can

be optimised using some heuristic techniques. We use 2-opt

algorithm which is a basic local search algorithm to take a

route that crosses over itself and convert it to a tour without

any crossed line [21]. The main idea is to incrementally

improve an initial tour by removing two edges from the tour,

reconnecting the two paths created, and replacing the current

tour with new tour if it decreases the length of the tour. This

procedure is continued by swapping all possible pairs of edges

in the tour until no 2-opt improvements can be found.

After the tour planning, AUV initiates the data gathering

phase. It should visit each CH based on the planned tour

to collect the data and return to the static sink to upload

the aggregated data. Meanwhile, each sensor monitors the

environment and sends data packets to its CH with a fixed data
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rate. Transmitting data by sensors to their CHs is independent

from AUV activity. In this way, data packets are buffered in

CHs and are transferred to AUV when it arrives.

When AUV becomes close to a CH, it announces its

arrival using a control packet. Then, CH starts transmitting the

collected data to AUV. After collecting data from a CH, AUV

travels to the next CH and repeats the same procedure until it

returns to the static sink. The next round of data gathering is

then initiated in a similar way.

V. EXPERIMENTAL RESULTS

In this section, the details of our simulation study and also

the performance results are presented. We first compare the

performance of the proposed algorithm with that of the optimal

solution in a small network. Finally, we conduct extensive

simulations in large networks to evaluate the performance of

CADC against other existing mobile data gathering schemes,

AUV PN [13], and AEERP [11].

A. Performance Metrics

We use the following metrics for the performance evaluation

of proposed algorithms.

Tour length: It is defined as the total travelled distance by

AUV in each data gathering round.

Number of cluster heads: It indicates the number of CHs

which should be visited by AUV during the data gathering

phase.

End-to-end delay: It is defined as the average delay time

taken from the moment of the creation of packets at sensors

until successfully being delivered to the static sink.

Energy tax: The energy tax shows the average energy

consumed per message to deliver a packet to the static sink

successfully.

Relay hop count: It shows the average number of relay hop

counts from sensors to their CHs.

Packet Delivery Ratio (PDR): It is defined as the ratio of

the number of packets successfully received by the sink node

to the number of packets sent by the sensors.

B. Performance comparison with optimal solution

The branch-and-bound algorithm becomes infeasible to ob-

tain the optimal solution in large UWSNs because the problem

is NP-hard. Therefore, we have managed to compare the

optimal solution with the results of the proposed scheme for

small UWSNs.

1) Simulation setup: The number of sensors varies from

10 to 40. Sensors are randomly deployed in a 500m× 500m
field with a fixed depth. The static sink is placed at point (0,

250, 0). The transmission range is set to 100 meters for each

sensor. We consider d equal to 2 for the optimal solution and

the proposed scheme. All the results are averaged over 50 runs

for randomly generated topologies.
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2) Results: We can observe in Fig. 2 that the tour length

increases when the network is sparse (10 to 25 sensors)

because the CHs selection is confined to the small number of

sensors and consequently CHs are placed far from each other

and sink. However, in a dense network (25 to 40 sensors), the

tour length reduces because there is a higher chance to find

the CHs with less dispersion from each other, and also more

proximity to the sink. It is apparent that the length of CADC

tour is very close to the optimal solution.

As can be seen in Fig. 3, the number of CHs also increases

by increasing the number of sensors from 10 to 25 because

the network is still sparse and more sensors have a chance to

become a CH. However, by further increasing the number of

sensors, network become dense and consequently fewer CHs

are required to cover all sensors all over the network field. The

CADC has the lower number of CHs because its main criteria

to select a group of CHs is based on the minimum number of

CHs.

Fig. 4 shows the average relay hop count increases when

the number of sensors increases. It is because by deploying

more sensors in the field, more sensors can be placed in the

d-hop distance of CHs. The lower average relay hop count

contributes to more energy saving.

C. CADC performance

In this section, we assess the performance of our pro-

posed algorithm against other existing data-gathering schemes,

AUV PN and AEERP, in terms of the tour length, end-to-end

delay, packet delivery ratio, and energy tax.

1) Simulation setup: The underwater acoustic communica-

tion channel described in Section III is used in our simulation.

We deploy the sensors (ranging from 100 to 500) randomly

in a two-dimensional plane 1000m × 1000m at a depth of

300 m of a 3D underwater environment. The transmission
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power and the power threshold for receiving a packet are

set to 105 dB re μ Pa and 10 dB re μ Pa, respectively.

Each sensor consumes 50 W and 0.158 W energy for sending

and receiving a packet, respectively, while the idle power

consumption is 0.008 W . The signal frequency fdata is set

to 20 kHz and the acoustic signal propagation speed is 1500

m/s. The transmission range of each sensor is considered as

100 meters.

Each sensor generates a data packet every 100 seconds. The

bit rate is set to 10 kbps, and the data packet size is fixed at

1024 bits. The static sink is placed at the corner of the network

topology with (0, 500, 0) coordinates. The speed and depth of

AUV are set to 4 m/s and 250 m, respectively. We consider

d equal to 2 for CADC. All the results are averaged over 50

runs for randomly generated topologies while the simulation

time for each run is set to 12 hours.

2) The impact of sensor density: In this set of simulations,

the impact of sensor density on performance metrics are

examined. We change the number of sensors from 50 to 500.

The results for the tour length, end-to-end delay, number of

cluster heads, packet delivery ratio, and energy tax are plotted

in Figs. 5, 6, 7, 8, and 9, respectively.

From Fig. 5 and 6, we can see that the tour length and the

average end-to-end delay of AUV PN is higher than CADC.

This is because, in AUV PN, AUV starts its tour from the

static sink and travels to the closest CH to obtain the list of

Path Nodes (PNs) and then visits them to collect data packets;

however, it is not much focused on shortening the length of

the tour. The constructed tour by AUV PN is a tour with so

many crossed lines which increases the tour length. However,

in CADC, the tour is constructed using a greedy approach

and optimised by a 2-opt algorithm before the AUV travelling.

The AEERP tour is an elliptical path which is short and fixed;

however, it has the lowest performance in terms of packet

delivery ratio and energy efficiency as can be seen in Figs. 8,
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and 9.

Fig. 7 shows the number of CHs for each approach with

different sensor density. Moving from 50 to 100 sensors, we

can see an increase in the number of CHs for CADC because

the network is not yet fully-connected. With more than 100

sensors, the network becomes dense and well-connected, and

it can be covered by the lower number of CHs. However, in

AEERP, the number of CHs is increased when the network

becomes dense because more sensors can be distributed around

the elliptical path and become a CH. Finally, it can be observed

that AUV PN always has the fixed number of CHs (including

PNs).

From Fig. 8, we can see that CADC can obtain a higher

packet delivery ratio compared to other approaches. This is

because all the packet transmissions are bounded to d = 2
hops. However, in AUV PN, there is no bound for the distance

between the members and PNs. Therefore, the packet failure is

higher because of the path loss or acoustic channel attenuation

over a longer distance. In AEERP, there is also no hop bound

limitation from the members to the CHs, and it is obvious

that the packet failure probability is high when the number of

relays increases. Another issue is that the void area can occur

between some members and CHs when the network is sparse.

Thus, the packet delivery ratio in AEERP is very low when

the network is sparse.

Fig. 9 shows the average energy consumed per message

in each protocol. It is observed that the energy consumption

of CADC is considerably less than AEERP. It is because the

number of transmissions is significantly reduced by bounding

the relay hop to lower values. In AEERP, when the network is

sparse, the energy is wasted due to the void problem. When the

network is high density, the void problem mostly disappears,

but the boundless hop distance between the members and

CHs still keeps its energy consumption higher than other

approaches.
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In addition to having a shorter tour, CADC consumes less

energy than AUV PN, when the number of sensors varies from

50 to 300. This is because, in AUV PN with less than 300

sensors, the number of cluster heads is less than CADC. Thus,

sensors are placed in a longer distance to CHs which require

them to send their packets with a higher power. The larger

number of CHs results in a shorter distance between sensors

and CHs, and therefore saving more energy. With more than

300 sensors, CADC consumes a little bit more energy than

AUV PN to trade off energy against lower latency as shown

in Fig. 5. Moreover, in AUV PN, some CHs do not participate

in data collecting, and AUV only visits them to obtain the list

of PNs. Thus, the number of CHs which participate in local

data collecting is less than the actual value.

VI. CONCLUSION

In large-scale UWSNs, where multi-hop routing is quite

a challenging task because of adverse channel conditions

and the presence of void areas, an AUV-aided mobile data

collection mechanism seems to be necessary to maintain the

network performance. In this paper, we proposed a mobile

data-gathering scheme for UWSNs by exploiting a trade-off

between energy and data gathering latency. In the proposed

scheme, called CADC, a group of sensors are selected as CHs

to collect data locally from their members. A near-optimal tour

is then planned by AUV to visit all those CHs to gather data

packets and upload them to a static sink on the surface. CADC

is highly scalable and also applicable in both connected and

disconnected networks. The simulation results illustrated that

CADC can shorten the tour length while maintaining the relay

hop bound, resulting in a better trade-off between energy and

data-gathering latency.
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