459 research outputs found

    Estimating Dependency, Monitoring and Knowledge Discovery in High-Dimensional Data Streams

    Get PDF
    Data Mining – known as the process of extracting knowledge from massive data sets – leads to phenomenal impacts on our society, and now affects nearly every aspect of our lives: from the layout in our local grocery store, to the ads and product recommendations we receive, the availability of treatments for common diseases, the prevention of crime, or the efficiency of industrial production processes. However, Data Mining remains difficult when (1) data is high-dimensional, i.e., has many attributes, and when (2) data comes as a stream. Extracting knowledge from high-dimensional data streams is impractical because one must cope with two orthogonal sets of challenges. On the one hand, the effects of the so-called "curse of dimensionality" bog down the performance of statistical methods and yield to increasingly complex Data Mining problems. On the other hand, the statistical properties of data streams may evolve in unexpected ways, a phenomenon known in the community as "concept drift". Thus, one needs to update their knowledge about data over time, i.e., to monitor the stream. While previous work addresses high-dimensional data sets and data streams to some extent, the intersection of both has received much less attention. Nevertheless, extracting knowledge in this setting is advantageous for many industrial applications: identifying patterns from high-dimensional data streams in real-time may lead to larger production volumes, or reduce operational costs. The goal of this dissertation is to bridge this gap. We first focus on dependency estimation, a fundamental task of Data Mining. Typically, one estimates dependency by quantifying the strength of statistical relationships. We identify the requirements for dependency estimation in high-dimensional data streams and propose a new estimation framework, Monte Carlo Dependency Estimation (MCDE), that fulfils them all. We show that MCDE leads to efficient dependency monitoring. Then, we generalise the task of monitoring by introducing the Scaling Multi-Armed Bandit (S-MAB) algorithms, extending the Multi-Armed Bandit (MAB) model. We show that our algorithms can efficiently monitor statistics by leveraging user-specific criteria. Finally, we describe applications of our contributions to Knowledge Discovery. We propose an algorithm, Streaming Greedy Maximum Random Deviation (SGMRD), which exploits our new methods to extract patterns, e.g., outliers, in high-dimensional data streams. Also, we present a new approach, that we name kj-Nearest Neighbours (kj-NN), to detect outlying documents within massive text corpora. We support our algorithmic contributions with theoretical guarantees, as well as extensive experiments against both synthetic and real-world data. We demonstrate the benefits of our methods against real-world use cases. Overall, this dissertation establishes fundamental tools for Knowledge Discovery in high-dimensional data streams, which help with many applications in the industry, e.g., anomaly detection, or predictive maintenance. To facilitate the application of our results and future research, we publicly release our implementations, experiments, and benchmark data via open-source platforms

    Unsupervised Anomaly Detection of High Dimensional Data with Low Dimensional Embedded Manifold

    Get PDF
    Anomaly detection techniques are supposed to identify anomalies from loads of seemingly homogeneous data and being able to do so can lead us to timely, pivotal and actionable decisions, saving us from potential human, financial and informational loss. In anomaly detection, an often encountered situation is the absence of prior knowledge about the nature of anomalies. Such circumstances advocate for ‘unsupervised’ learning-based anomaly detection techniques. Compared to its ‘supervised’ counterpart, which possesses the luxury to utilize a labeled training dataset containing both normal and anomalous samples, unsupervised problems are far more difficult. Moreover, high dimensional streaming data from tons of interconnected sensors present in modern day industries makes the task more challenging. To carry out an investigative effort to address these challenges is the overarching theme of this dissertation. In this dissertation, the fundamental issue of similarity measure among observations, which is a central piece in any anomaly detection techniques, is reassessed. Manifold hypotheses suggests the possibility of low dimensional manifold structure embedded in high dimensional data. In the presence of such structured space, traditional similarity measures fail to measure the true intrinsic similarity. In light of this revelation, reevaluating the notion of similarity measure seems more pressing rather than providing incremental improvements over any of the existing techniques. A graph theoretic similarity measure is proposed to differentiate and thus identify the anomalies from normal observations. Specifically, the minimum spanning tree (MST), a graph-based approach is proposed to approximate the similarities among data points in the presence of high dimensional structured space. It can track the structure of the embedded manifold better than the existing measures and help to distinguish the anomalies from normal observations. This dissertation investigates further three different aspects of the anomaly detection problem and develops three sets of solution approaches with all of them revolving around the newly proposed MST based similarity measure. In the first part of the dissertation, a local MST (LoMST) based anomaly detection approach is proposed to detect anomalies using the data in the original space. A two-step procedure is developed to detect both cluster and point anomalies. The next two sets of methods are proposed in the subsequent two parts of the dissertation, for anomaly detection in reduced data space. In the second part of the dissertation, a neighborhood structure assisted version of the nonnegative matrix factorization approach (NS-NMF) is proposed. To detect anomalies, it uses the neighborhood information captured by a sparse MST similarity matrix along with the original attribute information. To meet the industry demands, the online version of both LoMST and NS-NMF is also developed for real-time anomaly detection. In the last part of the dissertation, a graph regularized autoencoder is proposed which uses an MST regularizer in addition to the original loss function and is thus capable of maintaining the local invariance property. All of the approaches proposed in the dissertation are tested on 20 benchmark datasets and one real-life hydropower dataset. When compared with the state of art approaches, all three approaches produce statistically significant better outcomes. “Industry 4.0” is a reality now and it calls for anomaly detection techniques capable of processing a large amount of high dimensional data generated in real-time. The proposed MST based similarity measure followed by the individual techniques developed in this dissertation are equipped to tackle each of these issues and provide an effective and reliable real-time anomaly identification platform

    Using Data Mining to Handle Missing Data in Multi-Hop Sensor Network Applications

    Get PDF
    ABSTRACT A sensor's data loss or corruption, aka sensor data missing, is a common phenomenon in modern wireless sensor networks. It is more severe for multi-hop sensor network (MSN) applications where sensor data reach the base station via other sensors; hence a sensor's failure can cause multiple missing data. In this paper we present MASTER-M, a data estimation framework based on data clustering and association rule mining to estimate the values of missing sensor data for MSN. Estimating, instead of resending, the missing sensor data is becoming popular as it may reduce query response time and sensor energy consumption; however the current works cater to only single-hop sensor networks. To fill this gap, our novel technique addresses the issues related to MSN, such as simultaneous missing sensors and missing spatially correlated sensors. It consists of three steps: 1) clustering sensors online; 2) capturing association rules between sensors inside each cluster, and 3) estimating the values of the missing data using the obtained association rules. Experimental results on both real-life sensor data and synthetic sensor data demonstrate the efficacy of MASTER-M in terms of estimation accuracy compared to the existing techniques. Moreover, we also present experiments showing the supremacy of data estimation by MASTER-M in terms of energy savings over re-transmission of missing data

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Scalable Learning Adaptive to Unknown Dynamics and Graphs

    Get PDF
    University of Minnesota Ph.D. dissertation.June 2019. Major: Electrical/Computer Engineering. Advisor: Georgios B. Giannakis. 1 computer file (PDF); xii, 174 pages.With the scale of information growing every day, the key challenges in machine learning include the high-dimensionality and sheer volume of feature vectors that may consist of real and categorical data, as well as the speed and the typically streaming format of data acquisition that may also entail outliers and misses. The latter may be present, either unintentionally or intentionally, in order to cope with scalability, privacy, and adversarial behavior. These challenges provide ample opportunities for algorithmic and analytical innovations in online and nonlinear subspace learning approaches. Among the available nonlinear learning tools, those based on kernels have merits that are well documented. However, most rely on a preselected kernel, whose prudent choice presumes task-specific prior information that is generally not available. It is also known that kernel-based methods do not scale well with the size or dimensionality of the data at hand. Besides data science, the urgent need for scalable tools is a core issue also in network science that has recently emerged as a means of collectively understanding the behavior of complex interconnected entities. The rich spectrum of application domains comprises communication, social, financial, gene-regulatory, brain, and power networks, to name a few. Prominent tasks in all network science applications are those of topology identification and inference of nodal processes evolving over graphs. Most contemporary graph-driven inference approaches rely on linear and static models that are simple and tractable, but also presume that the nodal processes are directly observable. To cope with these challenges, the present thesis first introduces a novel online categorical subspace learning approach to track the latent structure of categorical data `on the fly.' Leveraging the random feature approximation, it then develops an adaptive online multi-kernel learning approach (termed AdaRaker), which accounts not only for data-driven learning of the kernel combination, but also for the unknown dynamics. Performance analysis is provided in terms of both static and dynamic regrets to quantify the novel learning function approximation. In addition, the thesis introduces a kernel-based topology identification approach that can even account for nonlinear dependencies among nodes and across time. To cope with nodal processes that may not be directly observable in certain applications, tensor-based algorithms that leverage piecewise stationary statistics of nodal processes are developed, and pertinent identifiability conditions are established. To facilitate real-time operation and inference of time-varying networks, an adaptive tensor decomposition based scheme is put forth to track the topologies of time-varying networks. Last but not least, the present thesis offers a unifying framework to deal with various learning tasks over possibly dynamic networks. These tasks include dimensionality reduction, classification, and clustering. Tests on both synthetic and real datasets from the aforementioned application domains are carried out to showcase the effectiveness of the novel algorithms throughout
    corecore