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ABSTRACT

Anomaly detection techniques are supposed to identify anomalies from loads of seemingly ho-

mogeneous data and being able to do so can lead us to timely, pivotal and actionable decisions,

saving us from potential human, financial and informational loss. In anomaly detection, an often

encountered situation is the absence of prior knowledge about the nature of anomalies. Such cir-

cumstances advocate for ‘unsupervised’ learning-based anomaly detection techniques. Compared

to its ‘supervised’ counterpart, which possesses the luxury to utilize a labeled training dataset con-

taining both normal and anomalous samples, unsupervised problems are far more difficult. More-

over, high dimensional streaming data from tons of interconnected sensors present in modern day

industries makes the task more challenging. To carry out an investigative effort to address these

challenges is the overarching theme of this dissertation.

In this dissertation, the fundamental issue of similarity measure among observations, which is

a central piece in any anomaly detection technique, is reassessed. Manifold hypotheses suggest

the possibility of low dimensional manifold structure embedded in high dimensional data. In the

presence of such structured space, traditional similarity measures fail to measure the true intrinsic

similarity. In light of this revelation, reevaluating the notion of similarity measure seems more

pressing rather than providing incremental improvements over any of the existing techniques.

A graph theoretic similarity measure is proposed to differentiate and thus identify the anoma-

lies from normal observations. Specifically, the minimum spanning tree (MST), a graph-based

approach is proposed to approximate the similarities among data points in the presence of high

dimensional structured space. It can track the structure of the embedded manifold better than the

existing measures and help to distinguish the anomalies from normal observations. This disser-

tation investigates further three different aspects of the anomaly detection problem and develops

three sets of solution approaches with all of them revolving around the newly proposed MST based
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similarity measure.

In the first part of the dissertation, a local MST (LoMST) based anomaly detection approach

is proposed to detect anomalies using the data in the original space. A two-step procedure is de-

veloped to detect both cluster and point anomalies. The next two sets of methods are proposed in

the subsequent two parts of the dissertation, for anomaly detection in reduced data space. In the

second part of the dissertation, a neighborhood structure assisted version of the nonnegative ma-

trix factorization approach (NS-NMF) is proposed. To detect anomalies, it uses the neighborhood

information captured by a sparse MST similarity matrix along with the original attribute infor-

mation. To meet the industry demands, the online version of both LoMST and NS-NMF is also

developed for real-time anomaly detection. In the last part of the dissertation, a graph regularized

autoencoder is proposed which uses an MST regularizer in addition to the original loss function

and is thus capable of maintaining the local invariance property. All of the approaches proposed in

the dissertation are tested on 20 benchmark datasets and one real-life hydropower dataset. When

compared with the state-of-the-art approaches, all three approaches produce statistically significant

better outcomes.

“Industry 4.0” is a reality now and it calls for anomaly detection techniques capable of process-

ing a large amount of high dimensional data generated in real-time. The proposed MST based sim-

ilarity measure followed by the individual techniques developed in this dissertation are equipped

to tackle each of these issues and provide an effective and reliable real-time anomaly identification

platform.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Anomaly detection: An overview

Anomalies, also referred to as outliers, are loosely defined as data points or a cluster of data points

which lie away from the neighboring points or clusters and are inconsistent with the overall pattern

of the data. It is difficult to come up with a universal definition of anomalies as it often depends on

the context.

Anomalies could be categorized into many different types [1, 2]. They can be global and

distant from the majority of data points or can be local and homogeneously mixed with the regular

data points unless properly separated. In Fig. 1.1, point A1 and A2 are referred to as the global

point anomalies as they are far away from all of the existing clusters (C1, C2, and C3) and data

points. Point A3 is referred to as a local point anomaly. At first look, it seems like a legitimate

point as it lies close to the points in data cluster C1. But, if we magnify the local neighborhood

and compare its position only with respect to the points from cluster C1, point A3 becomes more

visible as an anomaly. Anomalies can also form a cluster. In Fig. 1.1, for example, we can identify

cluster C3 as an anomalous cluster as it is different from the other clusters in size.

There are three broad categories of anomaly detection approaches, depending on the labels of

the data in a training set. Supervised anomaly detection comes into play when we have appropri-

ately labeled training data in advance (both normal and abnormal) so that we can train a model

based on these labeled data and use it to decide the labels of future data. Support Vector Machine

(SVM) [3] or Artificial Neural Network (ANN) [4] are the examples of this approach. But, when

we have only normal instances and no anomalous data, we can still use the normal data to train

a model and classify future observations as anomalies if they deviate from the normalcy. This

normal-data-only approach is known as semi-supervised anomaly detection. One-class SVM [5]
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Figure 1.1: Types of anomalies. (Reprinted from [1])

falls under this category. The most difficult scenario is the absence of any label of the data. As

a result, it is not possible to conduct a supervised training. One, therefore, has to rely entirely on

the structure of the dataset and detect the anomalies, if any, in an unsupervised manner. This last

category is known as unsupervised anomaly detection. Throughout this dissertation, we are going

to work with anomaly detection problems falling into this latest category.
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1.2 Motivation

Anomaly detection problem arises in many real-life applications including but not limited to credit

card fraud detection, cybersecurity, medical image analysis, surveillance, and industrial process

safety. In the current industrial setting, various multi-platform devices, sensors converge into one

centralized, interconnected network and lead to the burst in the availability of unlabeled stream-

ing data points. As a natural consequence, it creates the need for developing suitable analytic

techniques to analyze these high dimensional data stream in an unsupervised fashion and detect

unusual, anomalous behaviors in real-time.

To detect anomalies, using unlabeled data streams pushes us to the territory of unsupervised

learning. Consider the example of a hydropower plant which works as a motivation behind this

dissertation. It operates with turbine systems that are instrumented with dozens of sensors. Each

turbine has subcomponents or functional areas such as several bearing systems, a generator, etc.

Sensors collect various types of data in real-time such as the temperature of oil inside the bearing

systems, vibrations in each functional area, a variety of harmonics in functional areas, and many

more. In total, each turbine collects more than 200 attributes from its sensors. The sensor data is

then stored in a central control system and kept as time stamped historical data points. Anomaly

can be triggered from various sources and can cause a range of problems.

When a service/maintenance engineer suspects that there is a malfunction in a turbine, she/he

extracts a dataset from the control system that contains the collected sensor data for that turbine

for the selected period of time (few weeks to few months), and then stores this data in a rela-

tional database or simply in a .csv file for further analysis. Staring at a spreadsheet of data, a

service/maintenance engineer often wonders if there is an automated, efficient way to distinguish

the anomalies in the turbines. This problem falls under unsupervised anomaly detection because

the historical dataset in the spreadsheet almost surely has both normal data and anomalies. It is

just that the service/maintenance engineers do not know which is what. What makes this problem

3



more challenging is the number of attributes in the data space, amounting to a few hundreds and

making a low-dimensional visualization difficult to carry out. An efficient offline anomaly detec-

tion approach can surely help a lot but still not enough to identify anomalies as they appear which

is vital to protect the health of components. Equally important is to look at the streaming nature

of the data. As data streams arrive in real-time for analysis, examining them one by one manually

is not a practical approach. A pressing need is to have an automatic detection technique that could

provide a list of potential anomalies by evaluating the stored high dimensional data points in small

batches.

1.3 Problem with embedded manifold and a new solution

Now, as we have already laid out the motivation behind our work by illustrating the practical

industrial need, let us move into the technical challenges of an unsupervised anomaly detection

approach that we need to solve.

A fundamental issue in any anomaly detection approach is deciding on the similarity metric

which will be used to distinguish the anomalous observations from the normal ones. Though a

variety of approaches have been proposed in all these years, the vast majority of them rely on the

Euclidean distance and some of its statistical variants. The concept is pretty straightforward: if

||A − B||2 > ||A − C||2, it implies that A and C are more similar. When a minority of data

points are dissimilar from a majority of data points, then the minority of data points are considered

anomalies. However, in high dimensional spaces, pairwise Euclidean distances become similar

and as a result Euclidean distance-based discriminative methods may not be able to differentiate

among the relative position of data points accurately [6].

In a higher dimensional space, data points are also more likely to embed a complicated struc-

ture thus leading to a nonlinear manifold. A manifold is a topological space that locally resembles

Euclidean space near each point but globally it may not. In the presence of such a complicated

space structure, the direct Euclidean distance between two points does not represent their intrinsic
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distance as it may no longer be possible to reach directly from one point to another point through

a straight line. The later problem is more severe as it can occur even in a low dimension and we

want to treat this issue first.

Let us elaborate on the problem of a structured data space and the embedded manifold through

an example illustrated in Fig. 1.2. This example is inspired by the work of [7]. When the data

forms a nonlinear structure in space, the distance measure between two data points on this structure

is then constrained by such structure and should be accordingly construed. Consider the data points

E, D, F in Fig. 1.2(a). With the structure, E-to-D is closer than E-to-F, meaning that E and D are

more similar to each other than E and F. But if using the Euclidean distance, represented by the

dotted lines, EF is shorter than ED, making the learning algorithm to believe E and F more similar

to each other than E and D. Note that this example happens in a 3 dimensional space. It means that

when the space structure exists, the Euclidean distance can break down even in a relatively low-

dimensional space and lead us to the wrong conclusion. A similar real-life example illustrating a

structured space is the flight route selection between two places on the earth’s surface. It is not

the direct Euclidean distance that governs the route selection, but the distance constrained by earth

shape; this space-constrained distance is known as geodesic distance. In Fig. 1.2(a), the solid

green line highlights a geodesic path between E and F.

As it is arguably more difficult to ascertain a priori whether a data space embeds a structure, we

think it is safe to assume the presence of a structured space. This assumption raises a related ques-

tion concerning the computation of the true intrinsic distance among data points without knowing

the shape of the structure beforehand. In this dissertation, we devise a new similarity measure

based on the concept of the minimum spanning tree (MST). What motivates us to choose MST

as a similarity measure is the fact that as the number of data instances increases, the shortest path

distances among data instances provide a good approximation to the geodesic distances.

Before going into further details, let us first look how this MST based similarity concept works.

Suppose that one has a connected edge weighted undirected graph G = (V,E), where V denotes
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(a) Misrepresentation of true intrinsic distance.

E F

D

(b) A possible solution using MST.

E
F

Figure 1.2: Shortcoming of Euclidean distance in a data space embedding complicated structures and a
possible solution.

the collection of vertices and E represents the collection of edges with a real valued weight eij

assigned to each of them, where i, j represent a pair of vertices from V . A minimum spanning

tree is a subset of the edges in E of graph G that connects all the vertices in V , without any cycles

and, with the minimum possible total edge weight. In other words, it is a spanning tree whose

sum of edge weights is as small as possible. Let us define Dij as the distance (Euclidean) between

vertex i and vertex j connected by an edge. The weight, however, does not always mean physical

distances. For example, the weight could represent the amount of flow between a pair of vertices

or sometimes the cost of constructing this edge.

Consider a simple example in Fig. 1.3, left panel, where there are 10 vertices and 16 edges.

Each of the edges has a unique edge length, which is represented by a numeric value. If we want

to connect all the nodes using a subset of the given edges without forming a cycle, there could be

many such combinations, but the one(s) having the minimum total edge length is the MST. MST

may not be unique, but for this example, it is unique and shown in the right panel of Fig. 1.3. The

edges in black color represent the selected nine edges from the 16 in total, forming the MST.

We see that MST compresses the original graph by reducing the total energy, and thereby,
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Figure 1.3: Formation of an MST: the left panel is the initial graph. In the right panel, the dark black edges
form the minimum spanning tree. The total MST weight is 109.

provide a new measure of distance between the vertices. Although the distance between a pair of

immediately connected nodes is still Euclidean, the distance between a general pair of nodes (i.e.,

data points) is not. Rather, it is the summation of many small-step, localized Euclidean distances

hopping from one data point to another point. For example, the new distance between the two

colored vertices is 12 + 11 + 13 + 10 + 9 = 55 (right panel), while their original distance in the

left panel is 23. We store in Mij the new pairwise distance of vertices in the MST for future use

instead of the typical Euclidean distances, Dij . As the MST reflects the connectedness among

data points in a nonlinear manifold, the MST-based distance is the geodesic distance between two

data points, which, according to [7], provides a better metric to differentiate them.

MST [8, 9] has the capability of approximating the geodesic distance in the presence of non-

linear manifold. To achieve that it only uses the knowledge of neighboring points, nothing more

than that. MST can be applied to any dataset after the data points are represented by a graph

object. We can do so by considering each observation as a vertex and the pairwise Euclidean dis-

tances among the vertices as the edge weights. Please refer to Fig. 1.2(b), where MST track the
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geodesic path to provide an approximation of geodesic distance between E and F. There are three

major algorithms [10, 11, 12] that can construct an MST for a given graph. The computational cost

of constructing an MST is O(n logm), where n is the number of edges in the graph and m is the

number of vertices. Here, n is
(
m
2

)
in our applications (one edge for every pair of vertices, i.e., a

fully connected graph), which suggest a time complexity of O(m2) in constructing an MST, and

because of this, an MST can be constructed efficiently even for a large dataset.

1.4 Related works

Anomaly detection methods in the literature can be categorized into some major domains depend-

ing on the main theme of their detection mechanisms. The detection can be carried out both in

the original data space and in a latent space or subspace. The number of variables in latent space

or subspace is generally lower than the original data space. Whatever route we choose to follow,

there are pros and cons associated with each of them which plays a significant role in the accuracy

of the final detection outcomes. So, instead of grouping them based on their detection philosophy,

we want to view the anomaly detection approaches from these two different perspectives as in our

work we decide to contribute in both of these scenarios. For a more clear understanding of the flow

of anomaly detection research, we summarize the major approaches accordingly in Fig. 1.4.

1.4.1 Anomaly detection in original data space

The commonality among the methods highlighted in this subsection is that they all detect anoma-

lies using the original data points without transforming them into latent space or projecting into

subspaces.

1.4.1.1 Distance-based methods

The first variant is the distance-based methods which consider a point as an anomaly if it lies further

away from the majority of the data points [13]. The distance-based criterion entails a number of
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Figure 1.4: Major categorizations of anomaly detection methods.

variants to handle the complexity in real life. For instance, the k-nearest neighbor (k-NN) based

methods compare a candidate data point with its k nearest neighbors, rather than all the data points,

because it was believed doing so enhances the detection capability [14, 15]. Anomaly scores are

also defined as the ratio of the average of the distances from the test point to its k-NN’s and the

average pairwise distance within the k-NN set [16]. One of the major downsides of these distance-

based methods is: if the dataset has multiple clusters of varying density then they would not be

able to separate local anomalies (i.e., anomalies only with respect to a single cluster) successfully.

1.4.1.2 Density-based methods

• Local outlier factor (LOF): The density-based approaches consider a point as an anomaly

if the density around it is considerably lower than the density around its neighbors. The first

of its kind and which is also by far the most popular method as well as the most cited work

in the anomaly detection literature is known as local outlier factor (LOF) [17]. It is based

on an idea called local density which is estimated by the distance at which a point can be

reached by its neighbors. By comparing the local density of an object to the local densities
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of its neighbors, one can identify the anomalies. A drawback of this popular method is

that it works pretty well in the presence of the spherical shaped cluster but fails to identify

the irregular geometric shaped clusters especially when linearly correlated points form a

cluster. Connectivity based anomaly factor (COF) [18] claimed to solve this problem by

introducing a shortest path based chaining approach. The main argument behind COF is

that ‘Low density does not always imply the anomalousness but the low connectivity to

neighboring points surely does’. It differs from LOF by proposing a new incremental way

of calculating the nearest neighbors.

• Variants of LOF: Due to the popularity of LOF method, variants of the LOF method was

introduced within a short span of time to address the problems that could potentially limit

the performance of the original LOF. Influenced outlierness (INFLO) [19] was proposed to

compare the local density of an object to the average of its influence space. It is based on

LOF, but it expands the neighborhood of the object to the influence space of the object and

considers both the original neighborhood and the reverse neighborhood of an object. INFLO

was introduced in order to handle the case where clusters with varying densities are in close

proximity. Local density factor (LDF) [20] computes a kernel density estimation known as

local density estimate (LDE), over a user-given number of k nearest neighbors. The LDF

score is the comparison of LDE for an observation to its neighboring observations. Local

outlier probabilities (LoOP) [21], was introduced which computes a local density based

on the probabilistic set distance for observations, with a user given k nearest neighbors.

The density is compared to the density of the respective nearest neighbors, resulting in the

local outlier probability. The value ranges from 0 to 1, with 1 representing the greatest

outlierness. The advantage of this probability based metric is that now anomaly scores are

more interpretable and can be compared over datasets.

No matter what approach these methods adopt to calculate the local density, they all suffer

from the problem of selecting a suitable value for k (number of nearest neighbors) like all other k-
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NN based models. As we are working in an unsupervised setting it would not be possible to apply

method like cross-validation to estimate a suitable k. In the original paper introducing LOF, it was

suggested to use a range of k values and then for each observation select the k value that results

a maximum anomaly score. In the literature when comparing methods, it is a common practice

to use either the best k or the average result over a range of k values. However, in Section 2, we

propose an adhoc policy for selecting the neighborhood size k.

1.4.1.3 Clustering-based methods

The density-based methods provide a different perspective for identifying anomalies, which is

to consider the data clustering tendency. There are clustering approaches which are specifically

developed for anomaly detection. There are three categories of clustering-based anomaly detection

algorithms. Methods in [22, 23] fall under the first category, which identifies instances that do not

belong to any regular cluster as anomalies. The second group of clustering technique is a variation

of the first group and uses a clustering algorithm to detect clusters and then calculate an anomaly

score by taking the distance from a point to its nearest cluster center. Both of these groups do

not take into account that anomalies can also form clusters and in those cases such methods will

fail to detect these anomalous clusters. The third category of clustering based algorithms [24, 25]

was introduced to tackle this problem which assumes that normal observations belong to large and

dense clusters, whereas anomalous observations belong to small and sparse clusters or lie further

away from the cluster centroid.

1.4.1.4 Angle-based methods

Angle-based methods were introduced with the consideration that angles are a more stable measure

in high dimensions compared to distances [26]. One major limitation of this method is the high

computational time it requires to calculate the angles.

All of the methods discussed in this subsection have different ways of detecting anomalies,
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but they are all similar in at least one aspect; which is the use of the Euclidean distance. We

already argued that the use of Euclidean distance-based metric loses its effectiveness in a data

space embedding inherent structures, which is most likely of high dimensionality. So, no matter

what method we select to modify and develop further or even propose a new method, as long as

we are using the Euclidean distance, we cannot capture the structure of the data and our detection

would be wrong.

We believe that instead of making incremental improvements over any one of the existing

methods, we need to rethink this fundamental issue of how we differentiate data instances in unsu-

pervised learning settings. The current reliance on Euclidean distances appears to run out of steam.

In Section 2, we develop a local MST (LoMST) based anomaly detection approach, capable of de-

tecting anomalies by comparing the connectivity of each point to its neighbors.

1.4.2 Anomaly detection in reduced data space

As more and more high dimensional data comes into play, people start to realize the curse of

dimensionality and how it reduces the effectiveness of the Euclidean metric. Consequently, the

research effort in anomaly detection shifted towards evaluating data points in reduced dimensional

space.

1.4.2.1 Subspace based methods

The key argument in favor of subspace based methods is that not all variables are relevant for

discovering anomalies and it would be wiser to consider relevant subspaces rather than considering

the entire feature set. One could devise different strategies in selecting the subspaces. For instance,

principal components analysis (PCA) [27] renders the subspace that has the largest variances

most relevant, while multidimensional scaling (MDS) [28] selects the subspace that preserves the

interpoint distances in their low dimensional representation. They are both capable of preserving

the original data space structure in linear vector spaces, but they tend to lose the data structure in
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the presence of nonlinear manifolds [7].

A grid-based subspace clustering [29] was proposed for searching sparse, rather than dense,

grid cells to report objects contained within those sparse grid cells as anomalies. High-dimensional

outlying space (HOS) miner [30] ranks a point as an anomaly in any subspace if the sum of

its distance from its k-nearest neighbors crosses a predetermined threshold. Subspace clustering

[31] can be also helpful as anomalies are found in abnormally few clusters or low dimensional

clusters. Subspace outlying degree (SOD) [32] detects an anomaly based on its deviation to the

subspace spanned by a set of reference points. The subspace is formed with those features where

the reference points vary very little. But the success of this method depends on the tuning of

neighborhood parameters just like the k-NN method. HicS (High contrast Subspaces) [33] relies

on finding those subspaces where attributes are correlated (statistically dependent). GLOSS [34]

suggested that global neighborhoods should be considered when detecting anomalies locally in

selected subspaces.

Subspace methods undoubtedly made progress in the unsupervised anomaly detection litera-

ture. But fundamentally, finding out the right subspaces to explore and how to compare anomalies

from different subspaces are still a difficult problem to solve. However, autoencoder [35, 36, 37]

came out as a rescue to solve the problem of finding a proper low dimensional subspace. It does

so by reconstructing the data again from the subspace by minimizing the difference between re-

constructed and original data. So, now, the reduced data space coordinates can be utilized for

unsupervised learning. But, again, it suffers from the problem of embedded manifold due to the

use of Euclidean distance-based similarity measure. Therefore, in Section 4, we propose a new

graph regularized autoencoder which can overcome the problem of a complicated manifold and

thereby generate a low dimensional representation useful for anomaly detection.
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1.4.2.2 Matrix factorization based methods

• NMF for anomaly detection: Matrix factorization based methods have been applied suc-

cessfully for a long time to represent the data in a reduced dimensional space for better

learning and hence achieve the clustering benefits. These methods essentially factorize the

original data matrix into two low rank matrices. One helps us to obtain the mapping of orig-

inal data points to latent space and another depicts how the latent space is created from the

original attributes. These low rank matrices help us to obtain clustering assignments and the

attribute distribution of the clusters. However, these approaches have not gained sufficient

popularity in the anomaly detection community. This may be due to the fact that traditional

matrix factorization like the principal component analysis (PCA) produces low rank matrices

consisting of negative values and positive and negative weights, which tend to cancel each

other in reconstructing the original matrix and hence provide no intuitive meaning, while

on the other hand, one would like to know the ‘meaningful’ attribute distribution of these

clusters for anomaly detection, so as to evaluate the suspicious observations against them.

For this reason, the nonnegative matrix factorization [38, NMF] method, which imposes

the non-negativity constraint in matrix factorization and only allows additive linear com-

binations of components, comes across as a better candidate for the purpose of anomaly

detection. NMF has the capability of generating both clustering assignments and meaning-

ful attribute distribution in two separate matrices. Immediately after its introduction, NMF

not only becomes a powerful tool for clustering [39], but it also shows enough potential as

an anomaly detection approach [40, 41]. In the presence of complicated manifolds, however,

researchers notice that NMF starts to lose its efficiency [42, 43] as it only tries to approxi-

mate the data without trying to mimic the similarity among observations in the latent space.

In other words, the shortcoming of the original NMF in anomaly detection is attributed to

that it has no provision to include the neighborhood structure information during the calcu-

lation of the factored matrices. So, we once again revisit the fundamental problem related to
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capturing the inherent structure of the dataset.

• Variants of NMF: Two recent versions of NMF tried to tackle this problem. One of them

is the graph regularized NMF [43, GNMF], which regularizes the original NMF formulation

using a Laplacian matrix. But GNMF still constructs the neighborhood similarity matrix

based on simple Euclidean distances. The second NMF variant is the symmetric NMF [42,

SNMF], which uses only the similarity information while excluding the attribute informa-

tion to generate the low rank matrices. In the absence of the attribute information, SNMF

depends on a dense pairwise similarity measure which leads to a computational disadvan-

tage. Also, by abandoning the original attribute information in its formulation, SNMF makes

its detection outcomes less interpretable or ‘meaningful’ than NMF or GNMF. So, capturing

and preserving the neighborhood structure in a computationally efficient way for meaningful

anomaly detection in latent space is still an open problem to solve.

In Section 3, we propose a new neighborhood structure assisted NMF formulation for anomaly

detection which takes into account the importance of neighborhood connectivity into account dur-

ing factorization. To capture the neighborhood similarity, we make use of MST instead of the

Euclidean distance-based similarity and thereby attain the advantage of geodesic similarity.

1.5 Performance metric

To evaluate the performance of the competing approaches in benchmark datasets, we use a pre-

cision at N [44, P@N ] criteria. This is a widely used performance metric in anomaly detection.

When observations are sorted in descending order according to their anomaly scores, the P@N

identifies the proportion of the correct anomalies in the top N ranks. In the circumstance where

the true number of anomalies, |O| is known, like in the benchmark datasets to be described in

Section 1.6, we use that value as our choice of N and treat it as the same cut-off for all methods

in comparison. When N is the number of true anomalies, the number of false alarms is implied

once P@N is calculated, which is N − N × P@N . That is why we only present P@N in the
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benchmark studies. In reality, when the number of true anomalies is not known, the main objective

in anomaly detection is still to increase P@N for a fixed N , i.e., to have a higher detection rate

within the cut-off threshold.

For a dataset DB of size m, consisting of anomaly set O ⊂DB and normal datasets I ⊆DB,

such that DB = O ∪ I , P@N can be formulated as

P@N =
#{o ∈ O | rank(o) ≤ N}

N
, where N = |O|. (1.1)

When N is unknown in practical settings, a good practice is to choose N larger than the esti-

mated number of anomalies but small enough so that it makes follow up identification operations

feasible. The rationale behind this choice lies in the fact that the false positive rate for anomaly

detection problems is generally high, especially compared to the standard used for supervised

learning methods. Despite a relatively high proportion of false positives, anomaly detection meth-

ods can still be useful, particularly used as a pre-screening tool. By narrowing down the candidate

anomalies, it helps human experts a great deal to follow up with each circumstance and decide how

to take proper action or deploy a countermeasure.

1.6 Benchmark datasets

In this study, we use 20 benchmark anomaly detection datasets from [44] for the purpose of per-

formance comparison. In Table 1.1, we summarize the basic characteristics of these 20 datasets.

For all of these benchmark datasets, we know the total number of anomalies and the label of the

individual observation, i.e., whether it is an anomaly or not. There are several versions of these

datasets available depending on the data cleaning and preprocessing steps involved. For our anal-

ysis, we choose to use the normalized version of the datasets with all missing values removed and

categorical variables converted into a numerical format.
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Table 1.1: Public benchmark datasets used in the performance evaluation study.

Dataset
Number of Number of Number of
observations (m) anomalies (|O|) attributes (p)

Annthyroid 7,200 347 21
Arrhythmia 450 12 259
Cardiotocography 2,126 86 21
HeartDisease 270 7 13
PageBlocks 5,473 99 10
Parkinson 195 5 22
Pima 768 26 8
SpamBase 4,601 280 57
Stamps 340 16 9
WBC 454 10 9
Waveform 3,443 100 21
WPBC 198 47 33
WDBC 367 10 30
ALOI 50,000 1,508 27
KDDCup99 60,632 200 41
Shuttle 1,013 13 9
Ionosphere 351 126 32
Glass 214 9 7
Pendigits 9,868 20 16
Lymphography 148 6 19

1.7 Hydropower dataset

Apart from the public benchmark datasets, a real-life dataset generated from a hydropower plant

is also used in the performance comparison study. The hydropower data that was initially received

was time-stamped (a total of seven months worth of data) and divided into different functional

areas (turbines, generators, bearings etc.). The data was collected at 10-minute interval each day.

But it was not always continuous and some days from each of these seven months were missing.

After combining all data across all functional areas, there are 9,508 observations (rows in a data

table) and 222 attribute variables (columns in a data table). Each row has a time stamp assigned

to it. Attribute variables are primarily temperatures, vibrations, pressure, harmonic values, active

power etc.
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We conducted some basic preprocessing and statistical analysis [45] in order to clean the data.

To maintain the similarity with the 20 benchmark datasets, we normalized the data, removed the

duplicate rows as well as the rows with missing values. Additionally, we also did correlation

analysis and plotted histogram, density and box plots. The data preprocessing did yield a small

number of data records that are so far off from other data records. When confirming with the

domain expert who provided the data, it was confirmed that those records were due to a recording

mistake. After removing them, the total number of observations comes down to 9,219.

Here, different from the benchmark datasets, we no longer have the information of the number

of true anomalies. After consulting the operating manager who provided this dataset, we are ad-

vised to report top 100 anomalous time stamps to the manager. The manager would follow up and

check the status of the operation in detail, for instance, by manually examining operational logs

and physical conditions of components, and then confirm us about the validity of the findings.

1.8 Organization of this dissertation

The dissertation proposes three unsupervised anomaly detection algorithms all revolving around

our newly developed MST based dissimilarity metric to capture the geodesic similarity among

observations. These algorithms have the potential to tackle the problem of high dimensional data

with manifold embedding property better than the simple Euclidean distance. In addition, the

dissertation also proposes the online version of these algorithms to handle the streaming data and

enable real-time detections. All of these algorithms are tested on 20 public benchmark datasets

and the real-life hydropower dataset to prove their worth.

The rest of the dissertation is organized as following. Section 2 develops a local MST (LoMST)

based anomaly detection algorithm which detects both local and global anomalies by adopting a

two step procedure. When compared with a wide variety of neighborhood based anomaly de-

tection algorithms, it achieves superior and significantly better detection capability. Section 3

develops a neighborhood structure assisted NMF (NS-NMF) method to prove the fact that neigh-
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borhood structure can essentially help the matrix factorization principles to achieve better anomaly

detection capability and MST based similarity measure is an ideal candidate for such neighbor-

hood approximation. It proposes a new NMF formulation by providing a detailed theoretical and

empirical comparisons with some of the existing state of art formulations. Section 4 argues for the

necessity of dimensionality reduction before applying any anomaly detection algorithm and the

importance of autoencoder mechanism to do it in an unsupervised way. Then a graph regularized

autoencoder is developed to deal with the nonlinear embedding problem which can be extended

into today’s powerful deep learning frameworks and thus applicable to data of any size and type.

Finally, Section 5 summarizes the key contributions and highlights potential extensions beyond

this dissertation.
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2. LOMST: A LOCAL MST BASED ANOMALY DETECTION APPROACH AND ITS

APPLICATION TO HYDROPOWER TURBINES*

In this chapter, we use the concept of MST on a local neighborhood level and develop a local

MST (LoMST) based anomaly detection method. The merit of this method is that it provides

a new distance measure among the observations in the local neighborhood which is capable of 

capturing the relative connectedness of data points/clusters in a complicated manifold. We also

propose a strategy to detect global anomalies as a preprocessing step before detecting local point 

anomalies. The proposed method is compared with 13 popular anomaly detection methods on 

20 benchmark datasets, demonstrating a considerable improvement in its ability of identifying 

anomalies. Furthermore, it is also applied to the dataset generated from a hydropower turbine and 

demonstrates remarkable detection competence.

2.1 Introduction

Our problem is motivated by the anomaly detection problem encountered in a hydropower gener-

ation plant as discussed in Section 1.7. The problem demands for an anomaly detection approach 

that can deal with high dimensional data in a streaming fashion. It was argued in [7] that the higher 

a data space’s dimension, the more likely it embeds an inherent structure forming a nonlinear man-

ifold. As a result, geodesic distance must be used instead of Euclidean distances in a nonlinear

manifold to reflect accurately the distance between data points. We want to note that a complicated 

structure could happen to low dimensional spaces, too, so that the Euclidean-based distance metric 

could lose its effectiveness in low dimensional spaces as well. Empirically, however, people ob-

*Reprinted with permission from “Unsupervised Anomaly Detection Based on Minimum Spanning Tree Approx-
imated Distance Measures and its Application to Hydropower Turbines” by Imtiaz Ahmed, 2019. IEEE Transactions 
on Automation Science and Engineering, 16 (2), 654-667, Copyright 2019 by IEEE.

*Reprinted with permission from “O-LoMST: An Online Anomaly Detection Approach And Its Application In 
A Hydropower Generation Plant” by Imtiaz Ahmed, 2019. 2019 IEEE 15th International Conference on Automation 
Science and Engineering (CASE), 762-767, Copyright 2019 by IEEE.
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serve such instances happening more often in higher dimensional spaces and tend to associate the

loss of effectiveness in Euclidean measures with the high dimensionality [46].

Geodesic distance is the minimum possible distance between two points in a curved surface

like the surface of the earth. It was also shown [7] that as the number of data instances increases,

the shortest path distances among data instances provide the best approximation to the geodesic

distances. Driven by this insight, what we propose here is to use a minimum spanning tree (MST)

to provide an approximation of geodesic distances in a structured space and then use it as the

(dis)similarity metric. More specifically, we model the data observations as a network of nodes

where edges represent the Euclidean distance from one another. An anomalous node would be the

one which is less connected to its neighboring nodes. An MST is a measure that can capture the

relative connectedness among nodes, while at the same time, approximates the geodesic dissimilar-

ities among observations forming a nonlinear manifold. It has been shown in the literature [47, 9, 8]

that MST is indeed a capable approximation of geodesic distances in a high dimensional data space

embedding complicated structures.

There are several positive aspects associated with the proposed approach. First, the distance

between any two nodes in an MST is no longer the direct Euclidean distance between them; rather it

is the new dissimilarity metric which takes into account the overall connectivity among data points

reflecting the complexity in a structured data space. So, the MST-based dissimilarity measure

is a good candidate to approximate the geodesic distance and has the potential to overcome the

limitation of direct Euclidean distance under such circumstances. Next, to take into account the

presence of clusters of different shapes and densities, we develop MST locally and compare a

node’s connectedness with its neighboring cluster only. Doing so enhances the detection ability of

the local, point-wise anomalies.

We are aware that MST has been used to find anomalies [48, 49, 50, 51, 52]. The objective

of most of them [48, 49, 50, 52] is to isolate the clustered anomalies by removing the links of the

global MST one by one. Our attention in this chapter is more about local, point-wise anomalies.
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What was done in [48, 49, 50, 52] is similar to Stage 1 of the proposed method (more details later),

which is really a preprocessing step in our method. Our main attention is on Stage 2, the local

anomaly detection. The concept of [51], is a bit different as the author proposed to label any

new test observation as an anomaly by comparing them to the most concentrated subset of points

in the training sample. To find out the most concentrated subsets the author chooses to apply

the k-point MST. So, this approach is applicable for semi supervised anomaly detection/novelty

detection scenario where we know beforehand that the training sample is free from anomalies and

can utilize it to detect any abnormality in the test sample. This is fundamentally different from the

unsupervised problem we are dealing with. In our case we do not have any information about the

label of the training data. Apart from that our approach utilizes neighborhood-based local MST

which is entirely different from the concept of k-point MST.

The rest of the chapter unfolds as follows: Section 2.2 describes the main idea of our pro-

posed approach and the steps of the algorithm developed. Section 2.3 presents the comparative

performance of our method with respect to other prevalent methods on 20 benchmark datasets.

Section 2.4 describes the online version of the LoMST approach for streaming data. Section 2.5

analyzes the performance of the offline and online algorithms in hydropower dataset. Finally, we

conclude the chapter in Section 2.6.

2.2 MST-based anomaly detection method

As mentioned earlier, our main focus is to come up with a minimum spanning tree-based distance

metric which reflects the dissimilarity among anomalies and normal data points in structured data

spaces. Please refer to 1.3 for a brief discussion of the MST’s role in manifold approximation.

Using MST helps address another complexity often encountered in anomaly detection, which is to

detect pointwise anomalies in the presence of anomalous clusters. Fig. 2.1(a) presents an illus-

trating example in which there are well separated four clusters whose structures are not difficult

to identify. The star shaped symbols represent the local anomalies relative to their nearest cluster.

22



Cluster 4 itself is an anomalous cluster whereas cluster 1, 2 and 3 are regular clusters. Existing

anomaly detection methods such as LOF [17] adjust their view field on anomalies by setting differ-

ent k’s, the value of the nearest neighbors: when a small k is used, the local anomalies are detected

but the anomalous cluster 4 will be unidentified, while when a large k is used, all the instances can

be separated into two parts, namely, Group 1 and Group 2, in which Group 2 contains cluster 4.

Under that circumstance, one has to pay the price of not detecting the local anomalies in Group

1. The reason that using MST can help is because MST can be used as a clustering tool [50, 48]

to isolate the anomalous clusters first. Then, it can be refined to define the dissimilarity distances

in a local setting. This thought points to a two-stage procedure, which is to remove the global

anomalous clusters first and then detect the local point-wise anomalies later; both stages use MST

as the common methodological foundation.

(a) Point-wise anomalies versus anomalous clusters.
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Cluster 2

Cluster 3

Cluster 4 (Anomalous cluster)

Anomalies (Stars)
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(b) Local MST and LoMST score. The total edge
weight of the local MST for N0 is its LoMST score,

i.e., WN0 =E01 + E12 + E23 + E04 +E45 +E36.
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Figure 2.1: Anomaly detection using the proposed framework

Specifically, our detection algorithm proceeds as follows. The first stage is to identify the
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anomalous clusters if they exist. The procedure is similar to the existing work of how MST is

used [48, 49, 50]. First, we build a global MST using all the data points. The specific MST

construction algorithm we use is in [10]. The reason we choose the algorithm in [10] is because

it handles dense graphs well, while the other two algorithms [11, 12] handle sparse graphs better.

And our case is a dense graph.

After the formation of the global MST, we then look for a long edge and treat it as the connect-

ing edge between the anomalous cluster and the rest of the MST. Once this edge is disconnected,

it separates the MST into two groups, and the smaller group is considered an anomalous cluster.

One of the problems of deleting such edges is, in the absence of distant anomalies, normal points

could be isolated and tagged as anomalies instead. So, we have to create a lower bound so that we

can only delete the longest edge that crosses the bound. We decide to use µ+q*σ as the threshold

where µ represents the average of the edge weight and σ represents their standard deviation. Now,

the choice of q entirely depends on the data set and the distribution of anomalies. If we use a high

q, then there will be no candidate edges to be deleted, on the other hand, too small a q will lead to a

large chunk of points detected as anomalies. As we are not sure about the structure of the data set

beforehand, it is not easy to specify the best value for q. In our case, we evaluate several candidate

q values from 2-5 and we found that q =3 works reasonably well for most of the data sets.

This edge deletion procedure will be then iterated on the larger remaining group and see if there

is another, less dominating anomalous cluster, until there is no anomalous long edge detected. This

procedure is equivalent to a Phase I analysis in statistical quality control [53]. We have summarized

the q selection policy for the Arrhythmia data set in Table 2.1 as an example.

Table 2.1: q selection policy for the Arrhythmia data set

Possible options Number of iterations required Number of true anomalies detected Number of false detection
Mean + 3SD (q=3) 2 3 2
Mean + 4SD (q=4) 1 0 0
Mean + 5SD (q=5) 1 0 0
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Once the clustering decomposition stops in the first stage, then we move on to the second stage

of identifying pointwise anomalies which is also the main contribution of our work. In the second

stage, we go into the neighborhood level for each data point to determine its possibility as an

anomaly. The neighborhood is determined by the number of nearest neighbors and parameterized

by k. We will come back later to discuss the procedure of selecting the value of k but for now let

us assume we have a predetermined value for k.

Denote by R the rest of the data points after the anomalous clusters are removed in Stage

1. For any given data point in R, first, isolate its k nearest neighbors and treat them as this data

point’s neighborhood. Then, build an MST in this neighborhood. Considering the nature of these

neighborhood MSTs, they are referred to as local MSTs (LoMST). The total edge length of the

LoMST associated with the original data point is called the LoMST score for this data point and is

considered the metric measuring its connectedness with the rest of the points in the neighborhood

as well as how far away it is from its neighbors. For this reason, the LoMST is used as the

differentiating metric to signal the possibility that the said data point may be an anomaly.

Consider the illustrating example in Fig. 2.1(b). Suppose that we have chosen k = 6 and start

with data point N0. Then, we can locate its neighbors as N1, N2, N3, N4, N5 and N6. The MST

construction algorithm connects N0 to its neighbors in the way as shown in Fig. 2.1(b). For N0,

the total edge weight is WN0 =E01 + E12 + E23 + E04 +E45 +E36, which is deemed the LoMST

score for N0. This procedure will be repeated for other data points and Fig. 2.1(b) shows another

MST, which is for N5 in the dotted edges.

The LoMST score for a selected observation will be compared with its neighbor’s score. Com-

parison can be done in two ways. We can either compareW with the mean of the neighbor’s scores

or with the mean-to-standard deviation ratio of the neighbor’s scores. Our analysis suggests that

both comparison approaches have their own advantages depending on the structure of the dataset.

When there are numerous anomalies, almost forming an anomalous cluster within a neighbor-

hood, it would be better to use the mean-to-standard deviation ratio, as the mean of the neighbor’s
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LoMST scores are severely contaminated by other anomalies. But when the anomalies are very

few, point-wise scattered around, the mean of the LoMST score works just fine. Considering that

we have the first stage to remove some of the anomalous clusters, in this second stage, we then use

the mean comparison of LoMST scores as our default approach.

The step of comparison will be repeated |R| times covering all the nodes in R. Then the com-

parison score will be scaled between 0 and 1 using the maximum and minimum value of the scores.

From now on, we call the normalized scores as the LoMST scores. After that, these LoMST scores

will be sorted in a decreasing sequence, where a greater score implies a higher possibility to be an

anomaly. To compile a complete list of anomalies, we follow the P@N approach as described in

Section 1.6, which is to select a prescribed cut off valueN and flag the topN instances on our tank

list as anomalies. One main reason behind such a detection procedure is that unsupervised detec-

tion methods tend to have a lower detection capability and higher false alarm rate, as compared to

general supervised learning algorithms. As a result, unsupervised detection methods are typically

used as a screening tool, flagging potential anomalies to be further analyzed by either a human

operator or some more expensive procedure. A cut-off is therefore used to ensure the subsequent,

more expensive or time consuming step practical and feasible.

For better technical understanding, the algorithm steps are summarized below. In addition, a

flowchart of the proposed method separated into two stages is also highlighted in Fig. 2.2.

Now, to select an appropriate value for k, we adopt an approach based on the following ob-

servations, illustrated in Fig. 2.3. When we plot the average LoMST scores for a broad range of

k (here 1-100), we observe that at small k values, the average LoMST score tends to fluctuate,

but as we keep increasing k, the average LoMST score will become stable at a certain point. Our

understanding is that when a proper k is chosen, the structure of the data is revealed and the label

of the instances will become almost fixed, thus reflected in a less fluctuating LoMST score. If one

keeps increasing k, there is the possibility that the data structure becomes mismatch with the as-

signed number of clusters and the current assignments of anomalies and normal instances become
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ALGORITHM 1: LoMST algorithm for anomaly detection
Input : Dataset (rows represent observations and columns represent attributes), number of nearest

neighbors, k and cut-off level for identifying anomalies, N .
Output: Anomaly index set, TO

1 Develop set of vertices V , where each vertex represent a separate observation from the dataset;
2 Construct edges by calculating Euclidean distance between each pair of vertices and store them in

E;
3 Construct a global MST using V and E, let S be the set of edges of the resulting MST, where S ⊆

E ;
4 Calculate the mean, µ, and the standard deviation, σ of the edges in S;
5 Initialize R, O1, O2, T , Nr and Lo = � ;
6 Calculate the longest edge from S and store its length in Lo;
7 if Lo ≥ µ + 3σ then
8 Remove this edge from the MST tree formed by edges in S;
9 From the two disconnected trees, let A= {vertices contained in the smaller tree} and B=

{vertices contained in the larger tree};
10 Set S=B and O1=O1 U A;
11 Go to step 6 ;
12 else
13 Set R=S;
14 Go to step 16 ;
15 end
16 for each vertex ri ∈ R do
17 Determine its k nearest neighbors and save them in Nri;
18 Construct a local MST using edges contained in Euv, where u, v ∈ Ni and Euv ⊆ E;
19 end
20 for each vertex ri ∈ R do
21 Calculate the total length of ri’s LoMST, Wri ;
22 Calculate the mean (WNri) of the total length of the LoMSTs associated with all vertices in

Nri;
23 Calculate the LoMST score for ri as Ti = Wri −WNri ;
24 end
25 Normalize the scores stored in T between 0 and 1 and rank them in decreasing order;
26 Identify the top N scores and store the corresponding observations as point anomalies in O2;
27 TO= O1 U O2;
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Figure 2.2: Flowchart of the proposed method.

destabilized again. Consequently, the average LoMST score could fluctuate once again. Based on

this observation, our policy in choosing k is to select a range of k where the average LoMST scores

are stable. If there are more than one stable range, we will then select the first one. Here, for the

Cardiotocography dataset, we can choose a k range from 27-47 and for the Glass dataset we can

choose a k range from 70-95. Within the identified stable range, which k to choose matters but

matters less. What we suggest to select is the k value that returns the maximum standard deviation

of the LoMST scores, because by maximizing the standard deviation among the LoMST scores,

it increases the separation between the normal instances and anomaly instances and facilitates the

detection mission.

28



(a) Cardioctography dataset. (b) Glass dataset.

Figure 2.3: Select the range of k values.

2.3 Performance comparisons

In this section we wish to evaluate the performance of the MST-based method on a set of bench-

mark testing datasets listed in Table 1.1 compared to an array of well established methods in the

literature.

As our method is dependent on the parameter k, we mainly focus on the nearest neighborhood

based approaches for a fair assessment. [44] provided detailed experimentation on 12 popular

nearest neighborhood approaches based on the 20 aforementioned data sets. These 12 methods

are Connectivity based Outlier Factor (COF), Local Density Factor (LDF), K-Nearest Neighbor

(KNN), Outlier Detection using Indegree Number (ODIN), Local Outlier Factor (LOF), K-Nearest

Neighbor Weight (KNNW), Simplified Local Outlier Factor (SLOF), Local Outlier Probabilities

(LoOP), Influenced Outlierness (INFLO), Local Distance based Outlier Factor (LDOF) and Kernel

Density Estimation Outlier Score (KDEOS). Traditional statistical process control (SPC) based

approach could also be applied in the anomaly detection setting. We implemented one of the

popular methods in SPC, the Hotelling T2 control chart [54]. We tested two versions while using

the Hotelling T2 control chart: one with PCA that reduces the data dimension first and the other

without PCA. It turned out that the T2 control chart without PCA performs slightly better than the

PCA version. Hence, we only include the T2 result without PCA in the comparison tables to save

space. In summary, we compare our MST-based approach with a total of 13 competing methods.

29



There is no guideline in the literature for how best to select k. [44] simply tried a range of k

values (from 1 to 100) to obtain all the results and then choose the best k value for each method. In

the first comparison, we follow the same approach, labeled as the “best k” comparison. The results

are presented in Table 2.2. To better reflect the detection capability as they are compared to one

another, we break down the comparative performance into four major categories, namely Better,

Equal, Close and Worse, as explained in the table. Please note that the “best” k value in Table 2.2

may be different for respective methods.

LoMST shows superior performance and clearly outperforms other methods. In 13 of the 20

data sets, LoMST either exhibits a uniquely best detection performance or is tied with some other

methods to achieve the best detection capability. In only 2 data sets, LoMST performs in the worse

category, meaning that its detection capability is 20% lower than the best alternative. If we rank

each of the 14 methods in a scale of 1 to 14 according to its actual performance in relative to

others, then the average rank for the LoMST method is 2.2, while some of the closest competitors

are COF(3.3), LDF(3.8), KNNW(4.5), KNN(5.0) and LOF(5.1).

Understandably, the “best k” is not practical, as in reality, people do not know the anomalies

while selecting the best k. Since we have come up with a strategy to select a practical value of k,

we use the same k value in the other 12 alternative methods that need the k (SPC does not need

to know k). The performance comparison based on the practical k is presented in Table 2.3. We

use the same performance breakdown as in Table 2.2. Our LoMST method continues to exhibit

superior performance for being uniquely best in five of the 20 data sets and tieing other methods

for achieving the best performance in another five data sets. The number of cases in the worse

category is three. The average rank of the LoMST method is 2.8, slightly lower than that under the

best k condition, while some of the closest competitors are COF(4.2), KNNW(4.3), FBOD(4.9),

KNN(5.3), and LDF(5.7). The mean ranks are included in the table, as the last row. Please find in

Table 2.4 the number of true positive detections of 14 methods under the best k setting, in which

the best performance in every row is highlighted in boldface. To save space, we omit the same
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Table 2.2: Performance comparison based on the best k value
```````````````````````̀

Performance (number of data sets)

Anomaly detection methods
LoMST COF LDF KNN ODIN LOF KNNW SimplifiedLOF LoOP INFLO LDOF FastABOD KDEOS SPC

Better (uniquely best result) 6 0 3 1 1 0 1 0 0 0 0 0 0 1
Equal (equal to the existing best result) 7 5 5 2 1 3 2 2 2 2 1 2 2 0
Close (within 20% of the existing best result) 5 10 6 7 8 8 7 6 6 5 7 5 1 1
Worse (not within 20% of the existing best result) 2 5 6 10 10 9 10 12 12 13 12 13 17 18
Mean relative rank 2.2 3.3 3.8 5.0 7.7 5.1 4.5 5.9 5.8 6.2 7.9 7.0 8.9 11.7

Table 2.3: Performance comparison based on the practical k chosen according to our selection
policy

````````````````````̀
Performance (number of datasets)

Anomaly detection methods
LoMST COF LDF KNN ODIN LOF KNNW SimplifiedLOF LoOP INFLO LDOF FastABOD KDEOS SPC

Better (uniquely best result) 5 2 1 1 2 0 0 0 0 0 0 2 0 1
Equal (achieving best result combinedly) 5 1 4 5 1 3 4 1 1 2 1 2 0 0
Close (within 20% of the best result) 7 11 4 6 8 7 9 8 7 7 6 6 3 3
Worse (not within 20% of the best result) 3 6 11 8 9 10 7 11 12 11 13 10 17 16
Mean Relative Rank 2.8 4.2 5.7 5.3 6.7 6.1 4.3 6.5 5.6 5.8 7.6 4.9 11.7 8.7

table under the practical k as it conveys the same message.

In Section 2.2, we mentioned both the mean-based comparison statistic and the mean-to-

standard deviation based comparison statistic. Tables 2.2 and 2.3 present the comparison results us-

ing the mean-based statistic, which is our recommended default option. We also explore what if we

use the mean-to-standard deviation ratio as the comparison statistic, and the results are presented

in Table 2.5 and Table 2.6, respectively, depending on how k is selected. This time we included a

smaller number of alternative methods in the comparison to save space because the performance

of other methods lags too far behind the LoMST and the top competitors. Our comparison still

shows that the LoMST performs the best among the alternatives, but its relative performance is

slightly worse when using the mean-to-standard deviation ratio, as we expected. As explained in

Section 2.2, our MST-based approach has the first stage of operation that removes the anomalous

clusters, so it generally performs well when using the mean-based comparison statistic.

We further conduct some statistical test and see if the performance difference between the

proposed method and its competitors is significant. For this purpose, we use a non-parametric

method, the Friedman test [55]. Let na be the number of anomaly detection methods and nd be
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Table 2.4: Number of true positive detections of the 14 methods in the best k setting

LoMST COF LDF KNN ODIN LOF KNNW SimplifiedLOF LoOP INFLO LDOF FastABOD KDEOS SPC
WBC 8 8 8 8 4 8 8 6 4 4 4 7 1 5
Waveform 35 27 29 23 9 21 22 20 17 15 11 8 8 0
HeartDisease 5 4 4 4 4 4 4 4 4 4 2 2 1 0
WDBC 6 6 7 6 5 6 6 6 6 6 5 5 1 4
Glass 3 3 3 1 2 3 1 3 3 3 2 1 1 1
SpamBase 78 55 48 76 65 55 76 44 55 55 52 64 41 68
WPBC 14 11 13 10 12 10 9 10 10 11 13 10 14 5
Stamps 6 5 4 3 3 4 4 4 4 4 5 6 4 2
Parkinson 4 3 3 3 2 3 2 2 2 3 2 3 3 1
Lymphography 6 6 6 6 5 6 6 6 6 6 6 6 6 4
Ionosphere 108 107 104 107 99 105 108 104 101 101 101 108 97 119
PIMA 8 7 3 6 3 3 6 3 3 3 3 6 5 2
Shuttle 7 7 7 6 7 5 6 6 5 5 3 3 6 3
Cardiotocography 30 28 28 30 18 22 31 27 26 23 25 29 15 18
Arrhythmia 5 5 5 3 3 3 3 3 3 3 3 3 2 0
PageBlocks 46 45 48 46 40 45 47 47 45 43 44 45 12 38
Pendigits 4 3 1 0 0 1 1 1 1 0 1 1 1 0
KDDCup99 39 5 4 87 9 3 43 0 5 2 0 0 10 0
ALOI 314 346 226 261 357 319 265 316 336 345 0 0 193 69
Annthyroid 39 47 60 36 55 53 41 41 51 54 57 35 46 22

Table 2.5: Performance comparison based on best k value for alternative neighborhood
comparison statistic

`````````````````````````̀
Performance (number of datasets)

Anomaly detection methods

LoMST COF LDF KNN KNNW

Better(uniquely best result) 7 1 3 1 1
Equal(equal to the existing best result) 4 5 5 4 2
Close(within 20% of the existing best result) 7 9 6 5 9
Worse(not within 20% of the existing best result) 2 5 6 10 8
Mean Relative Rank 3.0 3.1 3.5 4.8 4.5

the number of data sets. We define a matrix Ra whose entries in each row represent the detection

method’s rank for that specific data set. If there are tied values, we assign to each tied value the

average of the ranks that would have been assigned without ties. For example, suppose we have

two tied methods both with rank 7. If there is no tie, they should be assigned rank 7 and rank 8.

A Friedman test then uses the average of them, which is 7.5, as the rank value for both of these

methods instead of 7. Under the null hypothesis that all methods perform the same, the Friedman
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Table 2.6: Performance comparison based on our k selection policy for alternative neighborhood
comparison statistic

```````````````````````̀
Performance (number of datasets)

Anomaly detection methods
LoMST COF LDF KNN KNNW

Better(uniquely best result) 6 0 1 1 0
Equal(achieving best result combinedly) 2 2 5 5 3
Close(within 20% of the best result) 8 12 7 8 10
Worse(not within 20% of the best result) 4 6 7 6 7
Mean Relative Rank 3.8 4.4 5.6 5.0 4.2

statistic,

χ2
F =

12nd
na(na + 1)

(
na∑
l=1

Ra2l −
na(na + 1)2

4

)
, (2.1)

follows a Chi-squared distribution with na− 1 degrees of freedom, where Ral is the average value

of column l = 1, 2, . . . , na. We have done the tests for both best k and practical k settings and

found the p-values (1.27 × 10−12 and 1.07 × 10−10, respectively) significant enough to reject the

null hypothesis.

To find out whether our method is significantly different from other methods, we also con-

ducted some post hoc analysis. Fig. 2.4 presents the post hoc analysis on the ranking data for the

practical k setting, showing that the LoMST’s ranking is significantly higher (lower in numeric

sense) than other competing algorithms at the 0.05 level of significance. The detailed pairwise

comparisons using respective p-values for both best k and practical k settings are presented in

Table 2.7. The p-values are calculated using Conover post-hoc test [56]. We have used False

Discovery Rate (FDR) approach [57] to adjust the p-values for multiple comparisons. Other than

between COF and LoMST, which shows a marginal significance, all other pairwise comparisons

shown a sufficiently significant difference, suggesting that the LoMST is superior and produces a

better performance.

We summarize our method’s performance with respect to the data size in Table 2.8. It is ev-
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Figure 2.4: Post hoc analysis on the ranking data obtained by the Friedman test. This analysis is under the
practical k setting.

ident from the table that our method performs well and came out as the best method in a wide

range of scenarios. If we look at the two extreme considering highest number of observations

(m=60,632, KDDCup99 data set) and the highest number of attributes (p = 259, Arrhythmia data

set), we see that our method performs reasonably well in both cases. So, we can at least guarantee

the success of our method up to this point if not beyond. In addition, we think that our method will

perform better when the number of anomalies is in the range of less than a hundred to few hun-

dreds. Also, it is our understanding that our method will be more suitable for the big data extreme

(number of observations>>number of attributes) rather than the high-dimension data (number of

attributes>>number of observations).

In general, the proposed technique will perform better in the presence of nonlinear man-

34



Table 2.7: P-values of pairwise comparison of LoMST method with the competing methods.

Best k Practical k
COF 1.28× 10−1 6.47× 10−2

LDF 3.18× 10−2 2.96× 10−4

KNN 3.78× 10−4 2.24× 10−3

ODIN 2.03× 10−8 6.11× 10−6

LOF 5.66× 10−5 2.01× 10−5

KNNW 1.95× 10−3 4.02× 10−2

SLOF 2.16× 10−6 3.92× 10−6

LoOP 2.02× 10−6 2.77× 10−4

INFLO 8.13× 10−7 9.79× 10−5

LDOF 1.30× 10−9 1.44× 10−8

FABOD 1.02× 10−7 1.14× 10−2

KDEOS 1.28× 10−11 7.04× 10−17

SPC 3.08× 10−18 1.05× 10−9

ifolds in a data space. Unfortunately, there is no known efficient method to test the data space

structure quickly, meaning that finding out whether the data space is a flat linear vector space or

not usually depends on using different distance metrics to try a detection task. If using MST or

other graph-based distances produces the same/similar outcome as using the Euclidean distance,

then it implies that the data space is flat and linear; otherwise, it implies that the data space em-

beds a complicated structure. It is, therefore, safer to use the MST-based method, because even

if there is no complicated structure in the data space, the MST can approximate the Euclidean

distance between two points, too. The downside in such circumstance is that using MST costs

more computationally. Still, since our primary concern now is to boost the detection capability in

unsupervised anomaly detection, we think the computational expense is a necessary evil to bear

with.

Another important point is, in practical sense we do not know the number of the true anomalies

to set N . As explained earlier, N is usually chosen in practice to be larger than potential number

of anomalies but small enough to make the subsequent identification operations feasible. For

anomaly detection problems, the false alarm rate is generally high, in order to boost the detection
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Table 2.8: Performance of the LoMST method

Dataset
Number of observations over Number of Number of Number of Rank Rank
number of attributes observations attributes anomalies (Best ’k’ setting) (Practical ’k’ setting)

Arrhythmia 2 450 259 12 1 1
SpamBase 81 4601 57 280 1 1
KDDCup99 1479 60632 41 200 3 2
WPBC 6 198 33 47 1 3
Ionosphere 11 351 32 126 2 3
WBC 51 367 30 10 1 1
ALOI 1852 50000 27 1508 7 7
Parkinson 9 195 22 5 1 1
Annthyroid 343 7200 21 347 11 10
Waveform 164 3443 21 100 1 1
Cardiotocography 102 2126 21 86 2 3
Lymphography 8 148 19 6 1 1
Pendigits 617 9868 16 20 1 2
HeartDisease 21 270 13 7 1 1
PageBlocks 548 5473 10 99 4 7
Stamps 38 340 9 16 1 6
Shuttle 113 1013 9 13 1 1
WDBC 13 454 9 10 2 2
Pima 96 768 8 26 1 1
Glass 31 214 7 9 1 1

capability. This is a common phenomenon in all anomaly detection methods. To see this point,

consider the following example. In the WBC dataset, there are 10 true anomalies and 213 normal

instances. When using N = 20 as the cutoff, meaning that the LoMST method flags 20 instances

as anomalies, 10 of the 20 are truly anomalies and 10 are falsely tagged as anomalies. As such, the

detection rate is 10/10 (100%), whereas the false alarms are 10/20 (50% of all alarms). We would

argue that despite the relatively high proportion of the false alarms, the anomaly detection method

is still practically useful, particularly as a pre-screening tool. By narrowing down the candidate

anomalies from the whole set to 20, which is an order of magnitude decrease in data amount, it

helps human experts a great deal to follow up with each circumstance and decide how to improve

their processes. We believe that a fully automated anomaly detection is not yet realistic in the

near future, due to the challenging nature of the problem and the relatively lack of advancement in

the state-of-the-art. Therefore, a useful pre-screening tool, as the current anomaly detection offers,

would be valuable in filling the void, while researchers strive for the ultimate, full automation goal.
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2.4 O-LoMST: An online local MST based anomaly detection algorithm

With the increasing availability of streaming data, industries nowadays are striving for an auto-

mated online anomaly detection algorithm that can analyze data stream and detect anomalous

patterns in real-time. Such an online algorithm should detect anomalies on the fly, without storing

all, or a very long stretch of, the historical data. It should be able to update its control mecha-

nism for anomaly detection upon receiving new data. Moreover, the algorithm must work in an

unsupervised way; i.e., in the absence of class labeling information a priori. These fundamental

requirements limit the application of traditional anomaly detection approaches in streaming scenar-

ios. In this section, we want to propose an online anomaly detection method, based on the offline

LoMST method we just developed. As the offline method specifically handle the issue of nonlinear

manifold embedding in data spaces and use a minimum spanning tree to approximate and capture

the manifold structures, leading to a much enhanced detection ability, the primary objective is now

to make the offline method applicable to streaming data and address the aforementioned unique

online issues.

Traditional anomaly detection algorithms detect anomalies through the comparison of candi-

date data points with all observations in the historical data set. However, the same cannot be done

when data are arriving in the streaming form, i.e., the data appear as a single stream or in small

batches. In streaming data, an algorithm can only see the current batch and has limited informa-

tion about the past, because the algorithm cannot, or does not want to, store all the previous data.

Instead the algorithm only “memorizes" a handful of the most recent historical data, in order to

avoid large storage requirements or for other practical considerations. The offline LoMST [58] in-

deed needs the knowledge of the nearest neighbors based on the whole dataset. To reach a verdict

about a current data points, the offline method uses the information of all the past and current data

points; all these actions need to be avoided, should the algorithm be made online compatible to

handle streaming data.
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Instead of storing all past data points, a streaming algorithm should presumably devise and

make use of an indicator variable that can summarize the common characteristics of the past ob-

servations. The algorithm should embody a provision to continually update this indicator to reflect

information received via the arrival of new data, as well as update the decision threshold that will be

used for deciding in real-time whether an observation is an anomaly or not. All these are precisely

the goals of our research undertaking reported in this section, namely that we propose an online

version of the LoMST, referred to as online LoMST (O-LoMST), which has the aforementioned

online capabilities.

A number of online anomaly detection algorithms have also been proposed recently. The first

variety includes those which are partially online, [59, 60] meaning that they have an initial of-

fline phase to learn about the regular (normal) clusters and their characteristics, and then detect

anomalies online using the knowledge from the offline phase. The online part is self adaptive and

the control mechanism (e.g., cluster center) gets periodically updated according to the changes ob-

served in incoming data. The second variety includes the online version of the subspace algorithms

[61, 62] which have been introduced to deal with the difficulties associated with high dimensional

data stream. There are also online algorithms [63, 64] that use statistical tests to detect anomalies

in real-time. All these online methods have the same limitations as their offline counterparts, which

is that they do not have the provision to deal with data with inherent nonlinear manifold structure.

That is why we believe that converting the offline LoMST still warrants the research effort. The

resulting online method is to be explained in the following subsection.

2.4.1 O-LoMST algorithm

To construct the regular, offline version of MST, one uses all the data points, which is not possible

in the presence of the streaming data. In streaming scenarios, data points arrive either as a single

entity or in small batches. Meanwhile, we do not want to store all the previous data points in

memory while building and updating the MST, in order to be more efficient and save storage
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space.

To solve this problem, we use a local version of the regular MST in a streaming fashion. By

“local MST”, we mean that instead of using all the data points, the MST is to be constructed using

the nearby points only. To facilitate the subsequent presentation, let us define some notations first.

Denote each streaming batch by the index, j, and their size as Bj . Denote by tj the data point

that is currently under evaluation. To reduce the search space for neighbors, we choose to use a

fixed-size candidate set of neighbors. It consists of the data points which are in close temporal

vicinity to the time stamp under consideration, decided by a user controlled parameter, c. Given a

c, the closest available c data points with respect to tj form the candidate set. Certain care needs to

be taken to locate the c closest neighbors. Although the neighbors are generally in the ±c/2 range

around tj , a temporal truncation can make the data spread asymmetrically before and after tj . For

example, suppose that we are evaluating the 50th time stamp from a batch that runs the time stamp

index from 1 to 100 and c = 30. Then the time stamps ranging from 51–65 and 35–49 form the

candidate set. But if the batch size is 60, meaning that the time stamp index runs from 1 to 60, then

the time stamps 51–60 and 30–49 would form the candidate set instead.

Given a candidate set, Qtj , a search is conducted to find the k nearest neighbors of tj , so that,

‖tj − x1‖2<‖tj − x2‖2<· · ·<‖tj − xk‖2<· · ·<‖tj − xc‖2, where x1, . . . , xk, . . . , xc ∈ Qtj . We

refer to the k nearest neighbors (NN), i.e., from x1 to xk, as the temporal k-NN of tj and store

them in Ntj , i.e., Ntj = {x1, x2, . . . , xk}.

After identifying the neighbors, we use those neighbor points along with tj to build a dense

graph object, i.e., fully connected graph. To create the MST from this dense graph, there are many

different approaches. We choose to use Prim’s algorithm [10] due to its effectiveness in the case of

the fully connected graph. The algorithm selects a total of k edges from a collection of
(
k+1
2

)
edges

stored in Etj = {etj ,x1 , · · · , etj ,xk , ex1,x2 , · · · , ex1,xk , · · · , exk−1,xk}, such that sum of the length of

the selected edges are minimum. Here etj ,xk denotes the edge between two data points, tj and xk;

other similar notations follow this convention. The selected edges by the Prim’s algorithm are the

39



edges in the resulting MST, connecting tj and its neighbors. The total length of this MST is stored

in Wtj . This above step is then repeated for the remaining data points in batch j.

After a local MST is constructed for all time stamps in batch j, the connectedness of time

stamp tj is then compared with that of its neighbors, as expressed in (2.2), and the difference is

denoted by Ltj , such as

Ltj = Wtj −WNrtj
, (2.2)

where WNrtj
is the average of the total tree length associated with data points, other than tj , in

Ntj . This comparison score, Ltj , is to be used for the final anomaly evaluation.

The mean and standard deviation (SD) of all the comparison scores in a particular batch will

be calculated, respectively, using (2.3) and (2.4), as:

µj =
1

Bj

Bj∑
tj=1

Ltj . (2.3)

σj =

√√√√ 1

Bj

Bj∑
tj=1

(Ltj − µj)2. (2.4)

These batch-specific mean and SD scores will be used to update the overall mean and SD from

earlier batches, using the formula in (2.5) and (2.6), respectively, upon receiving new observations.

Here µold and σold is the mean and SD value that are available to us prior to seeing the observations

in the jth batch.

µnew =
1∑j
i=1Bi

[
Bj · µj +

j−1∑
i=1

Bi · µold

]
, (2.5)
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σ2
new =

1∑j
i=1Bi

[
Bj · σ2

j +

j−1∑
i=1

Bi · σ2
old

]

+

∑j−1
i=1 Bi ·Bj

(
∑j

i=1Bi)2
· (µold − µj)2.

(2.6)

To reflect any major change in the data generation process, (e.g., seasonal changes, mainte-

nance operations, installation of new equipment etc.), we choose to divide the detection process

into blocks and restart the mean and SD update process at the beginning of each block. The dura-

tion of each block can be selected by the domain expert based on the process under consideration.

To decide on whether a time stamp is an anomaly or not, we use µnew± 3σnew, the typical 3-sigma

control limits, as the threshold. If Ltj is greater than the threshold, the corresponding tj is marked

as an anomaly. After a batch of streaming points are evaluated, the mean and SD scores will be

updated, and the same procedure will be repeated on the next available batch. Once all the batches

from a block are completed, the detection process will restart again from the next block.

For a clear understanding, the algorithm steps are summarized in Algorithm 2.

2.5 Application to the hydropower plant data

Now we want to evaluate the performance of both offline and online version of the LoMST ap-

proach on hydropower data. Besides our own LoMST method, we have also applied two other

popular anomaly detection methods on the same hydropower data. The two other methods are:

LOF [17] and SOD [32] method. LOF represents the 12 neighborhood-based methods considered

for comparison in Section 2.3 and is arguably the most popular method in the anomaly detection

literature. SOD is a representative of the subspace methods and we are curious to see how a sub-

space method could do to the real application data. However, we want to mention here that finding

the right subspace is usually even harder than finding the candidate anomalies, and as a result, the

neighborhood-based methods often outperform the subspace-based methods. For instance, if we

compare SOD based on the practical k approach with LoMST and the other 13 methods in Sec-
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ALGORITHM 2: O-LoMST algorithm for anomaly detection
Input : Block size, Z, streaming batch size, Bj in a block, number of candidate for neighbor

selection, c, number of temporal neighbors, k
Output: List of anomalous time stamps from batch j, denoted as aj

1 for each block of size Z do
2 Initialize µ and σ;
3 for each streaming batch j do
4 for each time stamp t ∈ batch j do
5 Form a set of candidate temporal neighbors, Qtj ;
6 Determine the k nearest neighbors and save them in Ntj ;
7 Construct a local MST using time stamp tj and its neighbors in Ntj ;
8 Calculate the total length of the resulting MST, Wtj ;
9 Calculate the mean, WNtj

, of the total length of the local MSTs associated with all
neighbors in Ntj ;

10 Calculate the LoMST score for tj as Ltj = Wtj −WNtj
;

11 end
12 Calculate the mean, µj , and SD, σj , of the LoMST scores;
13 Update the overall mean, µ, and SD, σ;
14 List the time stamps as anomalies if Ltj ≥ µ + 3σ and store them in aj ;
15 Store the recent c/2 time stamps of batch j and discard others;
16 end
17 end

tion 2.3, its ranking in the four categories would be 0, 0, 8, 12 and its average ranking would be

6.4, much worse than the top competitors.

For all three methods, we need to specify the value of the nearest neighbors k. Selecting a

suitable value for the neighborhood parameter, k, is not an easy task. This value is dependent on

the size of the clusters present in the system. Ideally, we should select a value which is larger than a

potential anomalous cluster but smaller than the regular cluster. In this case, we were lucky enough

to get a suggestion from the domain expert about the possible size of an anomaly cluster. Based

on the domain expert’s suggestion, we decide to consider the value of k in a range of 10-20 and

find the anomaly scores for each k in the range. Then we took the average of these scores as the

final anomaly score for each of the instances. We followed this principle for both the LOF method

and our offline LoMST method. For SOD, we need to select two parameters instead of one: one

is k, while the other one is the number of reference points for forming the subspace. To maintain
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the comparability with LoMST and LOF, we choose k = 15 for SOD, which is the middle point of

the above-suggested range. Concerning the number of reference points, it should be smaller than k

but not too small a value that may render instability in SOD. We explore a few options and finally

settle on 10. Below 10, the SOD method becomes unstable.

We also include the online version of the LoMST we proposed in the last section. In order to

evaluate the performance of the proposed approach for streaming data, we pass the time stamps

from the hydropower dataset in small batches to mimic the streaming scenario. We choose a fixed

batch size, B = 100 and a block size, Z = 7000, meaning that in total there are 92 batches divided

into 2 blocks to cover all of the time stamps. We have used k = 15 as neighborhood size. For the

temporal neighborhood size, c, we settle on the set of 50 candidate time stamps, i.e., c = 50, which

is a half of the batch size.

After choosing these algorithmic parameters, we have applied our online detection method to

all 92 batches and detected a total number of 207 anomalous data points. The anomaly detection

procedure regarding a particular batch is shown in Fig. 2.5. After each streaming batch, analysts

can carefully evaluate the anomalies detected, pinpoint the root cause of these anomalies, and take

proper actions if necessary. We suggest the practitioners to stop the entire process if they detect

too many anomalies, e.g., more than 60% in a batch. Because too many anomalies signal a major

change in the process. Consequently, operators should carefully examine the process for any major

malfunction.

We report the top 100 anomalies identified by each method according to their anomaly scores

(the bigger the score, the more likely it is anomalous) in Table 2.9. Due to the space limitation, we

skip some rows in the table. The performance of the offline methods is reasonably consistent as

14 out of the top 30 probable anomalies identified by these methods are common. This similarity

continues even if we go beyond 30 time stamps. These three methods work differently, especially

that SOD is from another family of methods and completely different than LOF and LoMST. In

spite of their differences, they have returned similar results for the hydropower dataset. This serves

43



Figure 2.5: Anomaly detection in a streaming batch

as a way to cross validate the detecting outcomes, as the true anomalies are unknown. We report

the top 100 time stamps as anomalies to the data provider. The domain expert checks the physical

system and agrees that these present valid concerns and the method provides valuable tips for

trouble shooting.

The three methods do have differences in their detection outcomes. LOF method completely

missed the 4th of July time stamps, although almost half of the 100 top anomaly prone timestamps

returned by both SOD and LoMST method belong to this day. We investigate the issue and find that

most of the timestamps in July corresponds to low active power, whereas the timestamps from 4th

of July are marked with abnormally high active power. The rest of the attributes behaves identically

as other days of July. We know that when the number of attributes increases, nearest neighborhood

methods usually fall short of detecting anomalies if abnormal values only happen to one or few

dimensions. This is where the subspaces method can do better (if the abnormal value subspace

is successfully identified). It is therefore not surprising to see that the SOD method detects these

anomalies correctly, but it is truly encouraging to see that LoMST is capable of detecting these

anomalies, even though LoMST a neighborhood-based method. It supports our claim that MST

approximates the intrinsic distance among observations in a structured data space. On the other
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hand, LOF and LoMST, being a local method, successfully identified point anomalies on the 16th

of April, while SOD method failed to identify them. In a nutshell, LoMST method attains the merit

of subspace-based methods without losing the benefits of local neighborhood-based methods.

We also observe that findings from the online LoMST are very similar to those by the offline

LoMST, which substantiates the success of the online LoMST approach. As this is an unsupervised

problem, we do not have the luxury to have a training set containing a mix of normal and anomalous

values. The only way to verify the sanity of the outcome is to ask the domain expert and the

operator of the system to double check. They can analyze the detected anomalies one by one,

inspect the particular components in the plant, and feedback to us with their understandings. We

consider ourselves extremely lucky here as the domain experts confirm the reasonableness of the

detection outcomes.

If we look very closely to the anomalous time stamps, we observe that anomalies from all four

approaches have similar patterns and they can be conveniently grouped into some particular days.

Even if the individual time stamps are not exactly the same, they fall into the same group. We have

listed these anomaly prone days in Table 2.10, and we note that they are very similar irrespective

of the detection methods used. If we compare the performance of online and regular LoMST

approach, we can observe that, out of 11 anomaly prone days, they share 9 of them. Despite

the online features employed by O-LoMST, for instance, using only the current batch combined

with summary statistics from prior batches, the online algorithm does not seem to sacrifice the

detection performance too much. Comparing LoMST with LOF and SOD, the online LoMST in

fact outperforms offline LOF and SOD in terms of overall detection performance.

Anomaly detection does not immediately reveal the root causes causing the anomalies. Finding

out which variables contribute to the anomalies provides a nice interpretability of each anomaly

and helps the domain expert to verify the root causes and then fix them (if genuine). Given that

the anomalies are identified now, the original unsupervised learning problem is translated into a

supervised learning problem, and for that, we build a classification and regression tree (CART)
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Table 2.9: Summary of the top 100 anomalies returned by the four approaches.

O-LoMST LoMST LOF SOD
4/16/2015 23:10 4/16/2015 16:00 4/16/2015 16:00 7/4/2015 0:00
7/4/2015 4:20 4/16/2015 23:10 4/16/2015 23:10 7/4/2015 4:20
7/4/2015 4:30 7/4/2015 4:40 9/13/2015 7:00 7/4/2015 4:30
7/4/2015 4:40 7/4/2015 4:50 9/13/2015 19:30 7/4/2015 4:40
9/13/2015 19:00 7/4/2015 5:00 9/13/2015 19:40 7/4/2015 5:30
9/13/2015 21:40 7/4/2015 5:20 9/14/2015 0:40 7/4/2015 5:40
9/14/2015 0:40 7/4/2015 5:30 9/14/2015 1:00 7/4/2015 5:50
9/14/2015 1:00 7/4/2015 6:20 9/14/2015 1:10 7/4/2015 6:20
9/14/2015 1:10 7/4/2015 9:10 9/14/2015 2:00 7/4/2015 6:30
9/14/2015 1:50 7/4/2015 9:30 9/14/2015 2:10 7/4/2015 6:50
9/14/2015 8:00 7/4/2015 9:40 9/14/2015 8:00 7/4/2015 7:00
9/14/2015 8:10 7/4/2015 9:50 9/14/2015 8:10 7/4/2015 7:50
9/14/2015 8:20 7/4/2015 10:10 9/14/2015 8:20 7/4/2015 8:20
9/14/2015 8:30 7/4/2015 10:20 9/14/2015 8:30 7/4/2015 8:30
9/14/2015 8:40 7/4/2015 10:30 9/14/2015 8:40 9/13/2015 7:00
9/14/2015 8:50 7/4/2015 10:40 9/16/2015 10:50 9/13/2015 21:40
9/14/2015 9:00 7/4/2015 10:50 9/17/2015 11:30 9/14/2015 1:00
9/14/2015 9:10 7/4/2015 11:10 10/3/2015 14:40 9/14/2015 1:10
9/14/2015 9:20 7/4/2015 11:20 10/4/2015 3:10 9/14/2015 1:50
.................. .................. .................. ..................
9/15/2015 20:50 7/4/2015 13:50 10/13/2015 5:45 9/14/2015 8:00
9/16/2015 10:30 9/13/2015 7:00 10/13/2015 6:35 9/14/2015 8:10
9/16/2015 10:50 9/13/2015 19:10 10/13/2015 8:15 9/14/2015 13:05
9/16/2015 11:00 9/14/2015 1:00 10/14/2015 7:55 9/16/2015 10:50
9/17/2015 11:30 9/14/2015 1:10 10/14/2015 8:15 9/16/2015 11:00
10/3/2015 14:40 9/14/2015 8:00 10/14/2015 23:15 10/3/2015 14:40
10/4/2015 3:10 9/14/2015 8:10 10/14/2015 23:35 10/4/2015 3:10
10/4/2015 3:40 9/14/2015 13:20 11/2/2015 9:56 10/4/2015 4:20
10/4/2015 4:10 9/14/2015 13:50 1/2/2016 9:10 10/4/2015 4:30
10/4/2015 4:20 9/14/2015 14:10 1/2/2016 9:20 10/13/2015 5:45
10/4/2015 4:30 9/16/2015 10:50 1/2/2016 9:30 10/13/2015 6:35
10/4/2015 9:00 10/13/2015 8:15 1/2/2016 21:40 10/13/2015 8:25
.................. .................. .................. ..................
10/13/2015 5:25 10/14/2015 7:25 1/9/2016 6:50 10/14/2015 7:25
10/13/2015 5:35 10/14/2015 7:35 1/9/2016 18:00 11/2/2015 9:56
10/13/2015 5:45 1/2/2016 9:10 1/9/2016 18:10 1/2/2016 1:30
10/14/2015 7:25 1/2/2016 9:20 1/9/2016 18:20 1/2/2016 9:10
10/14/2015 7:35 1/2/2016 9:30 1/9/2016 18:30 1/2/2016 9:20
10/14/2015 7:55 1/9/2016 6:50 1/9/2016 18:40 1/2/2016 21:40
.................. .................. .................. ..................
1/9/2016 18:00 1/9/2016 18:40 1/11/2016 11:30 1/9/2016 6:50
1/9/2016 18:10 1/11/2016 1:30 1/11/2016 11:40 1/9/2016 18:30
1/9/2016 18:20 1/11/2016 11:50 1/11/2016 11:50 1/11/2016 1:30
1/9/2016 18:30 1/11/2016 12:00 1/11/2016 12:00 1/11/2016 11:30
1/9/2016 18:40 1/11/2016 13:00 1/11/2016 13:00 1/11/2016 12:00
1/11/2016 13:40 1/11/2016 13:50 1/11/2016 13:50 1/11/2016 13:50
1/11/2016 13:50 1/12/2016 11:20 1/11/2016 14:40 1/11/2016 14:40
1/11/2016 14:40 1/12/2016 11:30 1/12/2016 11:20 1/12/2016 11:20
1/12/2016 11:20 1/12/2016 11:40 1/12/2016 11:30 1/12/2016 11:30
.................. .................. .................. ..................
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Table 2.10: Most anomaly prone days according to the four methods

O-LoMST LoMST LOF SOD
April 16th April 16th April 16th July 4th
July 4th July 4th September 13th September 13th
September 13th September 13th September 14th September 14th
September 14th September 14th October 3rd October 3rd
October 3rd October 4th October 4th October 4th
October 4th October 13th October 13th October 13th
October 13th October 14th October 14th October 14th
October 14th January 2nd January 2nd January 2nd
November 1st January 9th January 9th January 9th
January 9th January 11th January 11th January 11th
January 11th January 12th January 12th January 12th

[65] using the R package rpart with the package’s default parameter values. We at first discard

the July 4th timestamps from the top 100 time stamps, as the reason for them was quite straight

forward. We proceed with the remaining of the top 100 timestamps and assign them a response

value of 1, and all other data records (outside the top 100 timestamps) in the dataset a response

value of 0 (meaning normal condition). The resulting tree is shown in Fig. 2.6.

From this decision tree we can see that the variable Oil Temperature of Bearing 4, Air Pressure,

Turbine Vertical Vibration and Delta Oil temp - Air Temp of Bearing 1 can correctly classify 25

anomalies based on the right combination of their conditions. One such condition is when the oil

temperature of bearing 4 is less than 27.216 degrees Celsius, the turbine generator almost surely

behaves strangely, and this condition leads to eleven anomalous observations consistently. When

we report this finding to the domain expert, he deems this a key finding. During the subsequent

preventive maintenance operation of the said turbine, it is confirmed that bearing 4 indeed needs

repair to avoid future damage or costly interruption of the turbine operation.

2.6 Summary

We proposed a new dissimilarity metric based on the concept of minimum spanning tree for iso-

lating local, point-wise anomalies from the normal observations in a structured data space. Rather
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 Oil Temperature 
Bearing4 

1.000 
(n=11, err=0.0) 

< 27.216 

Turbine Vertical 
Vibration 

0.714 
(n=7, err=1.4) 

< 942.849 

>= 27.216 

 

Air Pressure 

Delta. Oil. Temp. 
Air.Temp.Beaning1 0.005 

(n=9176, err=44.8) 

0.000 
(n=16, err=0.0) 

1.000 
(n=9, err=0.0) 

>= 942.849 

< 0.451 

< 14.806 >=14.806 

>= 0.451 
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Figure 2.6: Decision tree based on the anomalies identified by LoMST method.

than applying MST to the entire dataset, we choose to follow a two-stage procedure. At first, a

global MST is used to separate the distant anomalous clusters from the rest of the dataset. Then we

build local MSTs for the remaining instances to detect point wise anomalies. The proposed MST-

based method is effective and registers the best performance when it is compared with a wide array

of methods on 20 benchmark datasets. The superiority of the proposed method inspires us to apply

it to a real-life hydropower dataset. The MST-based method is successful in detecting different

families of anomalies, achieving the merit of subspace-based methods without losing the benefits

of local neighborhood-based methods. The validity of the anomalies detected is cross validated

by two other anomaly detection methods and confirmed by the domain experts and maintenance

operators who provided us the hydropower data in the first place. Root causes and threshold values

for key attributes that contribute to the anomalies are determined in the form of a decision tree. The

generated knowledge from the anomaly detection analyses helps service engineers monitor the tur-

bine operation continuously, and potentially diagnose and predict the malfunctions of turbines in

time. To keep up with the industry needs we also develop an online version of the LoMST method

which proves to be equally effective when compared with the offline version.
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3. NS-NMF: A NEIGHBORHOOD STRUCTURE ASSISTED NONNEGATIVE MATRIX

FACTORIZATION APPROACH FOR UNSUPERVISED POINT ANOMALY DETECTION

Dimensionality reduction is considered as an important step for ensuring competitive performance

in unsupervised learning such as anomaly detection. Nonnegative matrix factorization (NMF) is

a popular and widely used method to accomplish this goal. But NMF, together with its recent,

enhanced version, like graph regularized NMF or symmetric NMF, does not have the provision to

include the neighborhood structure information and, as a result, may fail to provide satisfactory

performance in presence of nonlinear manifold structure. To address that shortcoming, we propose

to consider and incorporate the neighborhood structural similarity information within the NMF

framework by modeling the data through a minimum spanning tree. We label the resulting method

as the neighborhood structure assisted NMF. By comparing the formulation and properties of the

neighborhood structure assisted NMF with other versions of NMF including graph regularized

NMF and symmetric NMF, it is apparent that the inclusion of the neighborhood structure infor-

mation using minimum spanning tree makes a key difference. We further devise both offline and

online algorithmic versions of the proposed method. Empirical comparisons using twenty bench-

mark datasets as well as an industrial dataset extracted from a hydropower plant demonstrate the

superiority of the neighborhood structure assisted NMF and support our claim of merit.

3.1 Introduction

Matrix factorization (MF) is one popular framework for finding the low dimensional embedding

in a high dimensional dataset. MF based approaches have been employed successfully to rep-

resent and group high dimensional data for better learning capability. Methods which can be

described using the traditional matrix factorization framework such as the principal component

analysis (PCA) produces low rank matrices consisting of negative values and positive and negative

weights, which tends to cancel each other in reconstructing the original matrix, and hence provides
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no intuitive meaning. The nonnegative matrix factorization [38, NMF] method, which imposes the

non-negativity constraint in matrix factorization and only allows additive linear combinations of

components, comes out as a better candidate for finding the low dimensional representation of high

dimensional data. NMF has the capability of generating both clustering assignments and mean-

ingful attribute distribution in two separate matrices. Immediately after its introduction, NMF not

only becomes a powerful tool for clustering [39], but it also shows enough potential in anomaly

detection [66, 40, 41].

In the presence of complicated manifolds, however, researchers notice that NMF starts to lose

its efficiency [42, 43] as it only tries to approximate the data without trying to mimic the similarity

among observations in the latent space. In other words, the shortcoming of the original NMF is

attributed to that it has no provision to include the neighborhood structure information during the

calculation of the factored matrices and thus cannot approximate the manifold embedded in the

data.

Our research finds it beneficial to include the structural similarity information of data, along

with the original attribute information, in the objective function of an NMF-based method. Our

specific approach is as follows. First, we convert the original data matrix into a graph object where

each node represents an observation and each edge represents the virtual connection between a pair

of data points. Then we apply a minimum spanning tree [10, MST] on the graph to build a similar-

ity matrix which is sparse and thus leading to computational efficiency. We refer to the resulting

method in this chapter as the neighborhood structure assisted NMF (NS-NMF). We demonstrate

the benefit of the neighborhood structure assisted NMF in the task of anomaly detection. Our study

will show that clustering benefits in low dimensional space and consideration of the local invari-

ance property in obtaining those clusters make neighborhood structure assisted NMF a powerful

anomaly detection method.

We want to note that two recent versions of the NMF method are closely related to what we

propose in this chapter. One of them is the graph regularized NMF [43, GNMF], which regularizes
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the original NMF formulation using a Laplacian matrix. Different from the proposed neighbor-

hood structure assisted NMF, GNMF constructs the similarity matrix based on simple Euclidean

distances. Our numerical testing shows furthermore that GNMF, when employed for anomaly de-

tection, is rather sensitive to two of its tuning parameters: the number of nearest neighbors and

a regularization parameter. By contrast, the neighborhood structure assisted NMF does not need

the neighborhood parameter and its detection outcome appears to be much less sensitive to its reg-

ularization parameter. The second NMF variant is the symmetric NMF [42, SNMF], which uses

only the similarity information while excluding the attribute information to generate the low rank

matrices. In the absence of the attribute information, SNMF depends on a dense pairwise similar-

ity measure which leads to computational disadvantage unlike MST. By abandoning the original

attribute information in its formulation, SNMF makes its detection outcomes less interpretable or

‘meaningful’ than NS-NMF or GNMF. Comparing the neighborhood structure assisted NMF with

other versions of NMF (plain NMF, GNMF and SNMF) over 20 benchmark datasets shows a clear

and evident advantage of the proposed method.

To root our development in the background of anomaly detection, we would like to note that

anomaly detection is related naturally to clustering, as researchers argue that detecting anomalies

is to separate the data points into two classes—normal or regular versus abnormal, irregular, or

anomalous [67, 22, 23, 68, 69, 25]. NMF based (or rather, all MF based) methods fall under the

umbrella of clustering-based approaches as they also try to group the data in the low dimensional

feature space, which appears to be in line with the subspace-based methods advocated for anomaly

detection [30, 32, 46, 31, 33, 34].

The major contributions of our research reported here can be summarized as follows. First, we

propose and design a new objective function, which incorporates neighborhood similarity informa-

tion, to be used in the NMF framework for conducting data dimension reduction and data grouping.

This neighborhood structure assisted NMF is the central piece in our subsequent anomaly detec-

tion procedure. Second, we compare the formulation and properties of the neighborhood structure
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assisted NMF with other variants of NMF (GNMF and SNMF) and highlight the similarities and

differences between them. This provides an in-depth understanding of how the neighborhood

structure assisted NMF makes a difference in anomaly detection. Last but not the least, we pro-

vide both offline and online algorithmic implementations of the proposed neighborhood structure

assisted NMF method to enhance its practical usefulness.

The rest of the chapter unfolds as follows. Section 3.2 describes the detailed formulation of the

neighborhood structure assisted NMF. Section 3.3 discusses the similarities and differences among

the proposed approach, GNMF and SNMF. Section 3.4 presents the proposed NS-NMF algorithm

in a structured way for both offline and online versions. Section 3.5 compares the proposed NS-

NMF method with other NMF variants on 20 benchmark datasets. We also apply these methods to

a hydropower dataset. Finally, we summarize the chapter in Section 3.6.

3.2 Neighborhood structure assisted NMF and its application in anomaly detection

Anomaly detection is by and large an unsupervised learning problem as the class labels of data

records are unknown in the training set and one has to depend on the structure of the data to flag

a potential anomaly. To differentiate the anomalies from the normal background one may need

to solve two problems. The first is to find the appropriate local contexts/communities as latent

feature groups and their respective members, and the second is to extract the standard character-

istics of these communities in terms of the original features so that they can serve as a basis for

comparison. We use these communities to compare and judge all the data points for flagging and

short listing potential anomalies. NMF apparently provides an effective solution to both of these

problems. However, as we have pointed out earlier, the traditional NMF framework does not take

into consideration the neighborhood structure of the data points while doing clustering in latent

space and thereby produce unsatisfactory results. Also, approximating the neighborhood struc-

ture in the presence of nonlinear manifold is not straightforward either. In this section, we try to

bridge this knowledge gap by proposing a graph-based approach to approximate the neighborhood

52



structure and develop a new neighborhood structure assisted NMF formulation for anomaly detec-

tion. The formulation considers the local invariance property while obtaining the low dimensional

representation and thus should intuitively work better than the competing approaches.

3.2.1 Basic NMF framework

In NMF [38], a data matrix A ∈ Rm×p
+ , of which columns and rows represent the attributes and

observations respectively, is factorized into two low rank matrices, namely, W ∈ Rm×K
+ and

H ∈ RK×p
+ , such that the inner product of these factorized matrices approximate the original data

matrix. Here, K represents the number of latent feature groups and it is required to be equal or

less than the smaller of m and p. NMF tries to project the data with high dimensional features

into a low dimensional latent space so that the original observations can be seen as a weighted

linear combination of the newly formed basis vectors corresponding to each latent feature group.

The rows of H, each of which is a 1 × p vector, represent the basis vectors, whereas the weights

come from W. For example, any row i from the original matrix can be reconstructed through (3.1)

below:

ai =
K∑
k=1

Wikhk, (3.1)

where ai represents the ith row of A, hk represents the kth row of H, andWik is the (i, k)th element

of W.

To solve for the factored matrices, one needs to minimize the Frobenius norm of the difference

between the original data matrix and the inner product of the factored matrices, as shown in (3.2).

min
W>0,H>0

‖A−WH‖2F . (3.2)

where ‖ · ‖F denotes the Frobenius norm and the constraints, W > 0 and H > 0, mean that both
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W and H are nonnegative matrices.

3.2.2 Capturing neighborhood structure using MST

NMF finds its way in solving clustering problems when [70] show that NMF can be made equiva-

lent to clustering approaches by formulating in a different way. In other words, it turns out that if

properly formulated, NMF could have the advantages of regular clustering frameworks. As men-

tioned earlier, while doing clustering, NMF does not consider neighborhood structure information.

But the neighborhood structure information should have been considered for the benefit of clus-

tering or detection, as structurally similar observations in the original space ought to maintain the

similarity in the latent space. To tackle this problem, we propose to extract the neighborhood struc-

ture information from the original data matrix via the modeling of a minimum spanning tree and

then incorporate the structure information during the calculation of the NMF factored matrices, so

as to make the resulting method more suitable for anomaly detection.

To discover the intrinsic structure in data, a popular undertaking is to form a graph object

using the original data matrix A. Each observation is represented by a node, which is connected

with other nodes through a weighted edge with the weight being the pairwise Euclidean distance

between them. A simple graph like this has its disadvantage—the similarity matrix thus generated

would be too dense to be incorporated in the NMF setting for large datasets. In our treatment, we

instead use the MST for constructing the similarity matrix among data points and doing so leads

to a sparse similarity matrix.

Once we apply MST on the graph object resulting from the original data matrix A having m

observations, what we get is a square matrix, Y ∈ Rm×m
+ , showing the pairwise connectedness

and distance. A strictly positive value in Y represents the distance between two connected nodes

in the resulting MST, whereas a zero indicates the disconnection between the two nodes. Different

from the complete graph, Y of MST is supposed to be a sparse matrix, rather than a dense matrix.

We further convert it into a pairwise similarity matrix, S, by inverting only the positive entries of
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Y, as following:

Sij =


1
Yij
, if Yij > 0,

0, otherwise.

where Sij and Yij are, respectively, the (i, j)th elements of S and Y. This matrix is called a

similarity matrix because a high value in S is the result of two nodes close to each other in the

resulting MST, implying their similarity and likely the same cluster membership. On the other

hand, a zero value means that two nodes are not directly connected and less likely similar to each

other. Whether or not they may still belong to the same cluster depends largely on the two nodes’

association with the common neighbors. Understandably, if two points have very low similarity

and do not have connection through any common neighbors, they most probably belong to two

separate clusters. Creating the similarity matrix is because we intend for S to guide the basic NMF

process to group the similar observations into the same cluster, obtain the proper cluster centroids

in the form of basis vectors, and subsequently use the cluster centroids in the action of anomaly

detections.

3.2.3 Proposed NS-NMF formulation

By taking into account both the original attribute matrix A and the MST based neighborhood

similarity matrix S, we propose the following NS-NMF formulation to obtain the low rank factored

matrices W and H:

min
W>0,H>0

∥∥S−WWT
∥∥2
F

+ α ‖A−WH‖2F + γ(‖W‖2F + ‖H‖2F ), (3.3)

where ‖W‖2F and ‖H‖2F are the regularization terms added to the objective function to avoid

overfitting, γ is the regularization parameter controlling the extent of overfitting. The first term is

apparently the newly added structure similarity term, whereas the second term is the original NMF

cost function, and the parameter α is used to tradeoff between these two cost functions and takes

values between 0 and 1.
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The merit of NS-NMF is to make sure that data points coming from the same background or

from the same neighborhood are grouped into the same cluster. NMF in its original setting only

tries to find the basis vectors that best approximate the data. While NMF can achieve successes by

doing so in the presence of simple Euclidean structure, it does not appear effective in the presence

of complicated intrinsic data structure. In those cases, NMF may achieve the data approximation

objective but the clustering assignments may not be appropriate. But making proper clustering

assignments is important for anomaly identification. As we see in (4.10), factoring out the right

hk is the key piece for computing the anomaly score and plays a decisive role in the subsequent

anomaly detection.

The MST-based neighborhood structure approximates the geodesic distance between data in-

stances via the multi-hop edge connection on the tree graph, which are considered a much better

representation of complicated data structures and similarity between data instances than simple

Euclidean distances [47, 9, 8]. The geodesic distance measures the minimum possible distance

between two points in a curved space (like the surface of the earth), or more generally speaking,

in a structured space. By incorporating the MST structural similarity measure in the NMF, the re-

sulting method produces better clustering assignments with respective cluster centroids extracted

from H; doing so, we believe, helps substantially the mission of anomaly detection.

3.2.4 Local anomaly detection

Now, let us take a look at how the proposed NS-NMF can help us in distinguishing anomalies from

the normal observations. The low rank factored matrices generated from NS-NMF provide us with

the information we are seeking to solve the two problems discussed at the beginning of this section

pertinent to anomaly detection. Each entry of W measures the extent of an observation’s associ-

ation with all K latent groups/clusters, whereas a row of H represents the average characteristics

of one of the latent groups/clusters. To measure how an observation is deviating from its local

context/group/community, we measure the Euclidean distance between the observation’s original
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attribute values and the average characteristics of that local community to which it belongs to. In

other words, we create an anomaly score for observation i, which is calculated as in (4.10):

ASi = ‖ai − hk‖2 when observation i belongs to local community k. (3.4)

We repeat this process for all observations and rank the scores, {ASi, i = 1, . . . ,m}, in descending

order.

In the practice of anomaly detection, it is common that once applied to the data, a method ranks

the top N instances as potential anomalies and treats the rest of data instances as normal instances.

One main reason for such a decision process is that unsupervised anomaly detection methods tend

to have a lower detection capability and higher false alarm rate. As a result, unsupervised detection

methods are typically used as a screening tool, flagging potential anomalies to be further analyzed

by either a human operator or some more expensive procedure. A cut-off is therefore used to ensure

the subsequent, more expensive or time consuming step practical and feasible. In this chapter also,

we follow this practice to declare the observations with topN scores as anomalies where the cut-off

threshold N is prescribed based on the cost/feasibility considerations.

3.3 NS-NMF relative to other NMFs

In this section, we want to highlight the similarities and contrast of the proposed NS-NMF with

some of the related approaches, principally GNMF and SNMF so that the readers get a better

understanding of how the proposed method made the difference.

First, we present the formulations of the three methods in (3.5)–(3.7). To capture the essence of

the NS-NMF method, we rewrite our original formulation in (4.9) by ignoring the third component

of the objective function, because the third term is a regularization term to avoid overfitting, and as

such, having it or not does not change the essence concerning which piece of information is used

in the matrix factorization. The new formulation of NS-NMF in (3.7) now has two terms. We also
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change the position of α for easiness of comparison.

GNMF : min
W,H>0

λ · tr(WTLW) + ‖A−WH‖2F . (3.5)

SNMF : min
W>0

∥∥S−WWT
∥∥2
F
. (3.6)

NS-NMF : min
W,H>0

1

α
·
∥∥S−WWT

∥∥2
F

+ ‖A−WH‖2F . (3.7)

Conceptually and formulation-wise, GNMF is the closest to the proposed NS-NMF. We notice

that both NS-NMF and GNMF formulations have the same second component. This second com-

ponent comes from the original NMF formulation and is used to obtain two factor matrices from

the original data matrix, one of which is the attribute matrix.

Admittedly, the authors of GNMF are the first to shed light on the necessity of considering

neighborhood similarity information in the original NMF process. According to [43], the low

rank approximation should be obtained as in (3.5), rather than in (3.2), in order to incorporate the

neighborhood similarity information. The specific mechanism of incorporating the neighborhood

similarity information in (3.5) is through the use of a graph Laplacian matrix, denoted by L. The

graph Laplacian matrix L can be obtained by L = T− S̃, where T is a diagonal matrix also known

as degree matrix [43, 70] and S̃ is the adjacency matrix. The adjacency matrix is calculated using

the Euclidean structured neighborhood information after converting the original data into a graph

object. The model has two main parameters, namely, q, the number of the nearest neighbors to

be specified in order to form the similarity matrix, and λ, the regularization parameter. The value

of λ can take any nonnegative value. When it takes the value of zero, the formulation ignores the

neighborhood similarity completely and GNMF reduces to the original NMF.

SNMF, on the other hand, promotes the idea that one should probably consider the neighbor-

hood similarity information only while obtaining the factored matrices. The factorization of the

similarity matrix S generates a clustering assignment matrix W that is also constrained to be non-
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negative. The authors of SNMF believe that doing so captures the inherent cluster structure from

the graph representation of the original data matrix. [42] argue, and present case studies in support

of, that the traditional NMF is not ideal for handling datasets with nonlinear structures. Compared

to the plain NMF, SNMF can deal with complicated patterns and generate more accurate clus-

tering assignments. [42] also point out that the SNMF formulation is in fact equivalent to some

graph clustering methods including spectral clustering [70]. [42] present an example to show that

adding the non-negativity constraints help the clustering objective and also that SNMF performs

more robustly compared to other clustering methods, as SNMF does not depend on the eigenvalue

structure which tends to provide inaccurate results if certain conditions are violated.

SNMF formulation takes basically the first component of the NS-NMF formulation, because

SNMF ignores the original NMF portion and uses the similarity information alone. SNMF focuses

only on the accuracy of clustering assignments but for the mission of anomaly detection we need

something more. What we need is to have a basis for comparison, so that we can pinpoint anoma-

lies by looking at their deviation from the average characteristics of associated cluster. The second

portion of the NS-NMF formulation helps us obtain a cluster centroid matrix which summarizes

the attribute distribution of the latent feature groups, thereby providing the basis for detecting the

anomalies from the clusters. For this reason, NS-NMF, which keeps the second term, is more

meaningful for anomaly detection than SNMF. Even the first term, although appears the same in

both SNMF and NS-NMF formulations, is not really the same, because the respective similarity

matrix S used therein is different. SNMF uses the traditional Euclidean distance-based similarity

metric considering the full graph, while that in NS-NMF comes from an MST. The similarity ma-

trix in SNMF is too dense, making SNMF to suffer in case of approximating complex structures.

Unsurprisingly, SNMF is computationally more expensive than NS-NMF.

Coming back to GNMF, which has the same second term as NS-NMF and poised to be more

suitable for anomaly detection. The first term in both NS-NMF and GNMF formulations has a

strong connection. It can be shown that when using the same similarity matrix S, GNMF and
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NS-NMF can be made (nearly) equivalent.

To facilitate the understanding of this connection, let us consider adding an orthogonality

constraint on W. This is not exactly required in the original formulations but [70] shows that

minimizing
∥∥S−WWT

∥∥2
F

retains the orthogonality of W approximately. Suppose that the sym-

metric normalized Laplacian matrix is used, i.e., the original L is pre- and post-multiplied by T−
1
2 ,

then we have

L = I−T−
1
2 S̃T−

1
2 ,

where without ambiguity, we still use L to denote the symmetric normalized Laplacian matrix.

Furthermore, denote by S = T−
1
2 S̃T−

1
2 the newly generated normalized similarity/adjacency

matrix. As such, the first term in GNMF can be made equivalent to that of NS-NMF by considering

the following minimization formulation.

min
W>0

tr(WTLW) = min
W>0

tr(WT (I−T−
1
2 S̃T−

1
2 )W)

= min
W>0

tr(WT (I− S)W)

= min
W>0

tr(WTW)− tr(WTSW)

= min
W>0;WTW=I

tr(I)− tr(WTSW).

(3.8)

At the last expression, we use the orthogonality constraint on W, as mentioned above. Minimizing

(3.8) with respective to a nonnegative W does not change its minimization outcome if we add a

term that does not depend on W and multiply the W-depending term by a constant. Let us add

one term, tr(STS), to the last expression of (3.8) and multiply tr(WTSW) by two. As such, we
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end up with an equivalent minimization problem as follows:

min
W>0

tr(WTLW) is equivalent to min
W>0;WTW=I

tr(I)− 2tr(WTSW) + tr(STS)

= min
W>0;WTW=I

tr[(S−WWT )T (S−WWT )]

= min
W>0;WTW=I

∥∥S−WWT
∥∥2
F
.

(3.9)

The above derivation makes it apparent that if one uses the same similarity matrix S in both

GNMF and NS-NMF formulations, then GNMF is practically the same as NS-NMF. Of course,

which S to use creates the difference between GNMF and NS-NMF. GNMF uses only a fixed small

subset of the neighborhood/adjacency information to obtain a Euclidean distance based similarity

matrix and then convert it to a graph Laplacian form. A prescribed neighborhood size, q, is one of

the parameters used in GNMF. NS-NMF’s similarity matrix, on the other hand, is based on an MST

and differs from that of GNMF. NS-NMF does not need the neighborhood size parameter, due to

its use of MST. Both methods use a regularization parameter, which is α (0 − 1) in NS-NMF and

λ (≥ 0) in GNMF; these regularization parameters are in fact equivalent. Our numerical analysis

shows that GNMF is sensitive to both of its parameters, q and λ, while the NS-NMF is reasonably

less sensitive to its parameter α. We believe that this is a benefit of using the MST-based similarity

matrix.

3.4 Algorithmic implementation of NS-NMF

In this section, we discuss the implementation of the formulation proposed in Section 3.2 in details.

We provide two algorithmic procedures, one is an accelerated offline implementation, i.e., which

processes all the observations at the same time to evaluate their anomalousness and another is

an online implementation, i.e., which processes observations one at a time for real-time anomaly

detection.
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3.4.1 Accelerated offline implementation

A number of algorithms have already been proposed to solve the original NMF problem and its

variants. However, most of them are computationally expensive and not ideal for handling the

big data scenario. In this chapter, we choose to utilize a distributed version of the stochastic gra-

dient descent (SGD) algorithm [41, 71] which enables us to achieve an accelerated and parallel

optimization scheme. In the traditional SGD, one updates the parameters at each round by going

through a single training point at a time, whereas in the distributed version, we update the param-

eters by processing multiple independent blocks of training data in parallel and thereby taking the

computational advantage. Here, independence means that parameter update of one block will not

affect the parameter update of any other block, this property is also known as the interchangeable

property [41, 71]. To design a distributed SGD, we define a loss function as in (4.4), which is just

the block-wise summation of the objective function defined in (4.9)

LS,A(W,H) =
∑
{i,j,k}

(∥∥∥Sij −WiWjT
∥∥∥2
F

+
γ

2B

∥∥Wi
∥∥2
F

+
γ

2B

∥∥Wj
∥∥2
F

+
α

2

∥∥∥Aik −WiHkT
∥∥∥2
F

+
α

2

∥∥∥Ajk −WjHkT
∥∥∥2
F

+
γ

B

∥∥Hk
∥∥2
F

)
=
∑
{i,j,k}

Li,j,k(W
i,Wj,Hk).

(3.10)

where B represents the number of splits in each dimension and it controls the number of blocks

created in S and A. We essentially divide S and A into blocks and the position of each block

is represented by the superscripts, i, j, k. Suppose that we have a 100 × 100 matrix and B = 5.

Then we will have 5 blocks with each containing 400 (i.e., a 20 × 20 matrix) training points. To

process and approximate a block Sij , we need to update parameter block Wi and Wj . Likewise,

to approximate a block of Aik, we need to update Wi and Hk. As we have to process blocks from

two separate matrices S and A, with parameters to be updated connecting each other, we define
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the blocks to be processed from these two matrices as an instance set {Sij,Aik,Ajk}.

To achieve distributed and parallel processing, we need to process randomly generated instance

sets at each round parallelly and it is possible only if they are interchangeable and as a result do

not affect the resulting parameter updates {Wi,Wj,Hk} of one another. According to [71], the

interchangeability occurs only when the superscripts of the blocks do not coincide. For example,

{S15,A13,A53} and {S23,A24,A34} are two interchangeable instances as they have entirely dif-

ferent superscripts. Now, as we have defined both the loss function and the instance sets, parameter

update can be calculated according to (3.11) where θi,j,k = {Wi,Wj,Hk} and εt is the step size

at current iteration.

θt+1
i,j,k = θt

i,j,k − εt∆Li,j,k(θti,j,k). (3.11)

The algorithm steps are summarized in Algorithm 3, including the construction of MST based

similarity matrix, the NMF optimization procedure, and the detection of anomalies.

3.4.2 Online implementation

The offline implementation discussed above possess the advantage of parallel blockwise imple-

mentation but lacks the ability of instantaneous update and real-time anomaly score computing. It

requires to see all the data at once and hence build the MST using all the instances even before

the execution of the algorithm. To evaluate an observation in real-time, we need to find a way

to update both weight matrix W and basis matrix H incrementally when new samples arrive in

a streaming fashion. In addition, we need to make sure that, such an update will not require the

entire data matrix and the MST weights to reside in the memory.

There have been quite a few efforts in developing the online version of the plain NMF [72, 73,

74, 75, 76], although comparatively fewer attempts have been made in terms of online GNMF [77].

It is so because adding geometric structures to guide the NMF process makes the online update

more difficult as we need to calculate the geometric weights on the fly. In this section we layout
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ALGORITHM 3: Offline implementation of NS-NMF algorithm for anomaly detection
Input : A, α, N , γ, B, K
Output: List of anomalous nodes lfinal

1 Generate a set of vertices V , where each vertex represent a separate observation from the dataset;
2 Construct edges by calculating Euclidean distance between each pair of vertices using their

attribute values from the dataset and store them in E;
3 Construct a MST using V and E and generate the pairwise similarity matrix S from the resultant

pairwise MST distance matrix;
4 Initialize W and H randomly;
5 Partition S and A and corresponding W and H into blocks;
6 while not converged do
7 Randomly generate a collection of instance sets from blocked S and A,

U = {{i1, j1, k1}, {i2, j2, k2}, {i3, j3, k3}, .....} such that any two are interchangeable;
8 for (i, j, k) ∈ U in parallel do
9 W

′i ←Wi − εt∆WiLi,j,k;
10 W

′j ←Wj − εt∆WjLi,j,k (if i 6= j);
11 H

′k ← Hk − εt∆HkLi,j,k;
12 Wi ←W

′i,Wj ←W
′j ,Hk ← H

′k;
13 Non negativity projection for Wi,Wj and Hk;
14 end
15 end
16 for k = 1 : K (number of latent features) do
17 Make the clustering assignment according to the largest entry in each row of W;
18 Calculate the local anomaly scores of the cluster members according to (4.10) and store them

in ASi ;
19 end
20 Store the accumulated list of nodes with anomaly scores from all the clusters as

ltotal = {AS1, AS2, . . . , ASm};
21 Return the nodes associated with top N local anomaly scores as final anomalies in lfinal;

the online implementation of NS-NMF.

Let us assume that the observations, A = [a1, a2, . . . , ad−1, ad], are generated in a streaming

fashion, where ad represents the dth data sample just arrived and its attribute information. Upon

its arrival, the dth component of the weight matrix and basis matrix need to be updated so that the

instantaneous anomaly score can be calculated. For this dth data sample we can write our NS-NMF

objective function by ignoring the regularization component as following:
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Fd = α ‖Ad −WdHd‖2F +
∥∥Sd −WdW

T
d

∥∥2
F
,

which is equivalent to, (recall (3.9))

α ‖Ad −WdHd‖2F + tr(WT
d LdWd)

= α
d∑
i=1

p∑
j=1

((Ad)ij − (WdHd)ij)
2 +

K∑
k=1

d∑
i=1

d∑
j=1

(WT
d )ki(Ld)ij(Wd)jk

=

[
α
d−1∑
i=1

p∑
j=1

((Ad−1)ij − (Wd−1Hd)ij)
2 +

K∑
k=1

d−1∑
i=1

d−1∑
j=1

(WT
d−1)ki(Ld)ij(Wd−1)jk

]

+

[
α

p∑
j=1

((ad)j − (wdHd)j)
2 +

K∑
k=1

d−1∑
i=1

(WT
d )ki(Ld)id(wd)k +

K∑
k=1

d−1∑
j=1

(wT
d )k(Ld)dj(Wd)jk

+
K∑
k=1

(wT
d )k(Ld)dd(wd)k

]

= Fd−1 + fd.

(3.12)

Apparently, the NS-NMF objective function in (3.12) is divided into two parts—Fd−1 denotes

the cost up to the (d − 1)th sample and fd denotes the cost of the dth sample, whereas wd and ad

denote, respectively, the last row of Wd and Ad. This strategy is known as the incremental NMF

in the literature [78, 79, 80]. As the number of samples increases, new observations will have

minor influence on the basis matrix, so that updating only the weight vector of the last sample will

suffice.

In light of this thought, we can consider the first d − 1 rows of Wd equal to Wd−1. To

compute the cost of dth sample, i.e., fd, we need to establish an updating policy for the basis

matrix component (Hd)kj and weight matrix component (wd)k. We can utilize the gradient descent

approach to derive the update policy as following:

(wd)
t+1
k = (wd)

t
k − δk

∂Fd

∂(wd)tk
, (3.13)
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(Hd)
t+1
kj = (Hd)

t
kj − θkj

∂Fd

∂(Hd)tkj
. (3.14)

In (3.13) and (3.14), δ and θ denote the step sizes, t denotes the iteration number, k = 1, 2, . . . , K,

and j = 1, 2, . . . , p. The step sizes are chosen as in (3.15) and (3.16), following the work in [43]

and [72]:

δk =
(wd)

t
k

2(α((wd)tHd
t(Hd

t)T +
∑d

i=1(Td)idwt
i)k
, (3.15)

θkj =
(Hd)

t
kj

2α(WT
d−1Wd−1Ht

d + (wt+1
d )Twt+1

d Ht
d)kj

. (3.16)

Substituting (3.15) and (3.16) into (3.12) and (3.13), we obtain the updating policy as follows:

(wd)
t+1
k = (wd)

t
k

(αad(H
t
d)
T +

∑d−1
i=1 (Sd)idw

t
i)k

(α(wd)tHt
d(H

t
d)
T + (Td)ddwt

d)k
, (3.17)

(Hd)
t+1
kj = (Hd)

t
kj

(WT
d−1Ad + (wt+1

d )Tad)kj

(WT
d−1Wd−1Ht

d + (wt+1
d )Twt+1

d Ht
d)kj

, (3.18)

where Sd and Td represent, respectively, the MST based weight matrix and degree matrix.

If we look at (3.18), it requires all the data samples before the dth one to compute the update

but doing so will significantly increase the memory requirements. To overcome the problem, we

can use the strategy of cumulative summation. Let us first introduce two variables Ud and Vd with

initial values U0 = V0 = 0. Then using (3.19) and (3.20), we can rewrite the update policy for

Hd as in (3.21) which now no longer needs to memorize all the samples.
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Ud =
d∑
i=1

wT
i wi

= Ud−1 + wT
dwd

(3.19)

Vd =
d∑
i=1

wT
i ai

= Vd−1 + wT
d ad

(3.20)

(Hd)
t+1
kj = (Hd)

t
kj

(Vd)kj
Ud(Ht

d)kj
(3.21)

Another problem with (3.17) is that in order to update (wd)k, we need to reconstruct the

MST with all the data samples every time as a new sample comes in. Again, doing so slows

down the online operation. To address this problem, we adopt the combination of local MST [81]

and buffering strategy [82, 77]. In a local MST, for each observation we construct an MST with

its neighbors only. These neighbors can be chosen in a temporal fashion. In other words, the

neighbors of the dth sample (which just arrives) are the samples having arrived in a specified time

window before it, say, in the window of dating back to time instance d − z, where z is the size

of the time window. If z =50, it means that the MST will be constructed based on the dth sample

and the most recent 50 samples arrived before the dth sample. The buffering strategy states that

instead of discarding all the old data samples, one maintains a buffer of specified size, Q. After the

buffer is full for the first time, any new sample will be added to the buffer while the buffer drops

the oldest one and thereby keeps its size the same. To connect the two approaches, we set the time

window size the same as the buffer size, i.e., Q = z. Consequently, we can rewrite the updating

policy for (wd)k as

(wd)
t+1
k = (wd)

t
k

(αad(H
t
d)
T +

∑d−1
i=d−z(Sd)idw

t
i)k

(α(wd)tHt
d(H

t
d)
T + (Td)ddwt

d)k
. (3.22)
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The algorithm steps are summarized in Algorithm 4. There are three phases of the algorithm,

after the initialization, we proceed to these phases. Steps 5–8 summarizes the first phase, i.e.,

d < z, where the new samples are added along with initialization of the weight vectors. When

the buffer is full for the first time, i.e., d = z, it starts the second phase, in which an MST is

constructed and the offline NS-NMF algorithm helps obtain the weights and basis vectors. Step

9–13 summarizes this phase. After that, the algorithm enters the third and final phase, i.e., d > z,

where the update of the weight and basis vectors and calculation of the anomaly scores are carried

out from Steps 14–23. In this phase, a gradient descent approach is used to obtain the updated

weight and basis values for each new sample. Steps 16–20 summarizes the iterations on t, which

are required for the convergence of gradient descent approach.

Similar to the offline counterpart, the assignment of an observation to the kth cluster is made

according to the largest entry in wd. After that, we can compute the anomaly score of the dth

observation as in (3.23). Now, we can either choose a threshold and mark the observation as

anomaly on the fly if its anomaly score crosses the threshold or we can store the anomaly scores to

do the evaluation later. In this work, we test both of the options. For the benchmark datasets, which

do not have any timestamps marking, we decide to go for the second option. What this means is

that while we run the online algorithm to get the anomaly scores on the fly from the streaming

data, the declaration of anomaly is again based on selecting the top N scores as anomalies, same

as we do in our offline scenario. On the other hand, for the hydropower dataset, we do have the

associated timestamps and therefore we know the order of the observations. So, we decide to go

with the first option and mark anomalies on the fly.

ASd = ‖ad − (Hd)k‖2 when observation d belongs to local community k. (3.23)
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ALGORITHM 4: Online implementation of NS-NMF algorithm for anomaly detection
Input : Current observation, ad, trade-off parameter, α, buffer size, z, and the number of clusters,

K
Output: Current basis matrix, Hd, and anomaly score, ASd

1 Initialize H0 with random values;
2 Initialize U0 = V0 = 0;
3 Initialize A0 = W0 = S0 = φ;
4 while a new observation ad arrives do
5 Draw the current sample ad;
6 Initialize weight coefficient wd with random values;
7 Append ad to Ad−1 and assign it to Ad;
8 Append wd to Wd−1 and assign it to Wd;
9 if d = z then

10 Construct MST using the observations in Ad and store the weights in Sd;
11 Apply offline NS-NMF to obtain Wd and Hd;
12 Calculate Ud and Vd using (3.19) and (3.20);
13 end
14 if d > z then
15 Construct MST using the observations in Ad and obtain sd;
16 repeat
17 Use (3.22) to update wt+1

d using sd and Hd;
18 Use (3.19) and (3.20) to update Ud and Vd with wt+1

d ;
19 Use (3.22) to update Ht+1

d ;
20 until Convergence;
21 Delete the first row vector from both Ad and Wd;
22 Calculate the anomaly score for the dth observation using (3.23) and store it in ASd
23 end
24 end

3.5 Comparative performance analysis of NS-NMF

We want to evaluate the performance of the proposed NS-NMF method for anomaly detection

compared to the original NMF as well as GNMF and SNMF. In Section 3.5.1, we apply the com-

petitive methods to benchmark datasets. In Section 4.4.1, we apply the competitive methods to

hydropower plant.

First, let us take a look at the parameter selection policies for the competing methods. The

number of latent features or clusters, K is needed for all of the NMF-based methods. In this
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study we use K = 5. We have also explored the possibility of using K = 2, 10, 15, 20 and 25

and found that the relative performance of the competing methods remains the same in all cases.

Based on our experiments with different K’s, we observe that the NMF-based anomaly detection

methods perform better when K is in the range of 5 − 15. We settle for K = 5 because it results

in overall good detection performances for all competing methods. The cut-off value, N , required

to generate the final anomaly list for both offline and online version, is taken as the number of true

anomalies in the benchmark dataset studies, as discussed above. Other than these two parameters

that are common to all methods, the rest of the parameters are algorithm-specific. We summarize

the parameter choices in Table 3.1. For SNMF and GNMF, we adopt the best settings described

in their original papers. For NS-NMF, as mentioned earlier, its performance is not sensitive to the

choice of α. We settle at α = 0.8 by conducting a few simple trials.

Table 3.1: Parameter values and settings used for NS-NMF, GNMF and SNMF.

Competing Number of
Other settings

methods latent factors, K

Offline NS-NMF 5
Parameter controlling the influence of NMF, α = 0.8
Regularizer for controlling overfitting, γ = 0.2

Online NS-NMF 5
Parameter controlling the influence of NMF, α = 0.8
Buffer size, z = B = 20

GNMF 5
Manifold regularizer, λ = 100
Neighborhood graph construction parameter, q = 5
Weighting scheme for adjacency matrix: 0− 1

SNMF 5 Gaussian similarity measure for constructing S

3.5.1 Performance comparison using publicly available datasets

We present the comparison of detection performance of the four offline methods on the 20 bench-

mark datasets in Table 3.2. For this comparison, we only consider the offline version of NS-NMF

because the competitors are offline, so it is a bit unfair if we compare the online version of NS-

NMF. For this reason, NS-NMF means the offline NS-NMF in the comparison shown in Table 3.2,

70



Table 3.2: Performance comparison among the NMF approaches.
``````````````````````̀

Performance (number of datasets)

Anomaly detection methods
NS-NMF NMF GNMF SNMF

Better (uniquely best result) 12 0 0 2
Equal (equal to the existing best result) 6 3 4 4
Close (within 20% of the best result) 0 4 2 4
Worse (not within 20% of the best result) 2 13 14 10
Mean relative rank 1.1 3.0 2.6 2.2

Table 3.3, and Figure 3.1.

To better reflect the methods’ comparative edge, we break down the comparison into four

major categories in Table 3.2, namely Better, Equal, Close and Worse, as explained in the table.

NS-NMF outperforms other methods by showing uniquely best detection performance on 12 out

of 20 datasets and tying for the best in another six cases. Only in two cases, NS-NMF is obviously

worse than the best performer. SNMF achieves the uniquely best performance in those two cases,

while NMF and GNMF tie for some best performance but never beat others outright. If we rank

each of these four methods in a scale of 1 (best) to 4 (worst), then the mean rank for NS-NMF is

1.1, which is far ahead of other methods, with SNMF at 2.2 mean rank, GNMF 2.6 mean rank, and

NMF 3.0 mean rank.

We apply the Friedman test [55] as we did in Section 2.3. We find the p-value (4.11 × 10−6)

significant enough to reject the null hypothesis.

We also perform a post hoc analysis of the four methods in terms of their ranking perfor-

mance. Fig. 3.1 presents the post hoc analysis on the ranking data and it indicates that the ranking

of NS-NMF is significantly better than the other three approaches at the 0.05 level of significance.

The detailed pairwise comparisons between NS-NMF and each of the three methods are presented

in Table 3.3. The p-values are calculated using the Conover post-hoc test [56]. We employ the

Bonferroni correction [83] to adjust the p-values for multiple comparisons. All the pairwise com-
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Figure 3.1: Post hoc analysis on the ranking data obtained by the Friedman test.

parisons show a sufficiently significant difference.

In Table 3.4, we summarize the number of true detections by the competing methods. We

notice that the offline NS-NMF either outperforms or is no worse than NMF and GNMF in every

single case. GNMF performs worse than the regular NMF in four cases. We use the best parameter

setting for GNMF as recommended by its authors. We do observe the sensitive nature of GNMF

to its parameters and acknowledge the possibility that some other parameter combinations might

produce a better outcome. However, parameter selection in unsupervised learning settings is a

difficult task, as the common approaches working well for supervised learning like cross validation

does not work in the unsupervised circumstances. Therefore, the sensitivity of GNMF is certainly

72



Table 3.3: The p-values of pairwise comparisons between the NS-NMF method with each of the
three competing methods.

Competing methods p-value
NS-NMF vs NMF 1.64× 10−18

NS-NMF vs GNMF 2.86× 10−15

NS-NMF vs SNMF 1.20× 10−9

a shortcoming. SNMF’s performance is better than that of NMF and GNMF, although still overall

worse than the offline NS-NMF. SNMF is the slowest in terms of computational time and it does

not appear scalable on big datasets. For example, in the case of the ALOI dataset that has 50,000

observations, SNMF takes almost eight hours to generate the index of the anomalous observations,

whereas offline NS-NMF takes one quarter of that time to complete the task, with the majority of

its time spent on MST construction. NMF and GNMF are much faster and take around 12 mins

and 35 mins, respectively, in processing the same dataset.

Here we also include the results from the online version of NS-NMF because we would like to

draw a comparison between the offline and online NS-NMF and see how much efficiency the online

NMF maintains while using a small subset of data to compute the anomaly scores. Unsurprisingly,

the offline version comes out superior in 14 out of the 20 cases. On the other hand, for most of

the cases with the exception of the case of Annthyroid, the online version does not perform

that much worse than the offline version and never comes out as the uniquely worst performer

among the methods. A bit surprisingly, the online version even beats its offline counterpart in three

cases. It seems to suggest that in some cases, having a longer memory and global data connection

may hurt the detection. Overall, we deem the online NS-NMF a competent and promising online

anomaly detection algorithm.
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Table 3.4: Number of true positive detections of the competing NMF methods. Bold entries
represent the best detection performance in a respective dataset.

Dataset
Offline Online NMF GNMF SNMF
NS-NMF NS-NMF

WBC 9 7 8 8 7
Waveform 6 31 0 1 26
Heart 4 4 3 4 4
WDBC 8 6 8 6 7
Glass 4 1 0 0 1
Spambase 36 38 21 23 28
WPBC 16 11 11 11 13
Stamps 5 2 1 2 4
Parkinson 3 3 2 3 2
Lymphography 5 3 5 3 5
Ionosphere 82 68 51 38 65
PIMA 9 4 8 3 2
Shuttle 4 1 1 1 3
Cardiotocography 19 11 13 19 33
Arrhythmia 5 3 3 3 3
Page blocks 38 38 24 38 38
Pendigits 0 1 0 0 0
KDD 87 81 56 82 78
ALOI 151 121 91 97 84
Annthyroid 40 18 13 12 24

3.5.2 Application to a power plant example

The industry dataset used in this study comes from a hydropower plant. The top 100 anomalies

identified by the three methods are shown in Table 3.5. We use both online and offline version of

NS-NMF. To detect anomalies on the fly, we use the threshold update policy similar to [84] for the

online algorithm. To save space we skip some rows in the table. We observe that altogether these

three methods have 33 common anomalous time stamps among the top 100 anomalies, whereas

offline NS-NMF, online NS-NMF and GNMF produce similar outcomes and share 49 common

time stamps. These common findings serve as an indirect way of cross validating the sanity of the

detection outcomes.
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Table 3.5: Summary of the top 100 anomalies.

Offline NS-NMF Online NS-NMF GNMF SNMF
7/4/2015 11:30 7/4/2015 11:50 7/4/2015 11:30 4/15/2015 16:50
7/4/2015 11:40 7/4/2015 12:00 7/4/2015 11:40 4/15/2015 18:30
7/4/2015 11:50 7/4/2015 12:20 7/4/2015 11:50 4/15/2015 20:10
7/4/2015 12:00 7/4/2015 12:30 7/4/2015 12:00 4/15/2015 22:30
7/4/2015 12:10 7/4/2015 12:50 7/4/2015 12:10 4/15/2015 22:50
7/4/2015 12:20 7/4/2015 1:00 7/4/2015 12:20 4/16/2015 2:50
7/4/2015 12:30 7/4/2015 1:30 7/4/2015 12:30 4/16/2015 4:30
.................. .................. .................. ..................

9/13/2015 19:00 9/14/2015 7:40 7/4/2015 14:40 4/18/2015 23:10
9/14/2015 2:40 9/14/2015 7:50 7/8/2015 12:20 4/19/2015 4:00
9/14/2015 8:00 9/14/2015 8:00 7/8/2015 18:00 4/19/2015 21:40
9/14/2015 8:10 9/14/2015 8:10 9/15/2015 21:20 4/19/2015 23:40
9/14/2015 8:20 9/14/2015 8:20 9/15/2015 21:40 4/20/2015 8:20
9/14/2015 8:30 9/14/2015 8:30 10/3/2015 18:50 7/4/2015 11:30

9/14/2015 13:00 9/14/2015 8:50 10/3/2015 19:10 7/4/2015 11:50
9/14/2015 13:10 9/14/2015 13:00 10/3/2015 19:20 7/4/2015 12:00
.................. .................. .................. ..................

10/3/2015 20:50 10/3/2015 20:20 10/3/2015 22:20 7/4/2015 15:00
10/3/2015 21:00 10/3/2015 20:30 10/3/2015 22:30 7/4/2015 15:10
10/3/2015 21:10 10/3/2015 20:40 10/3/2015 22:40 7/4/2015 15:20
10/3/2015 21:20 10/3/2015 20:50 10/3/2015 22:50 7/4/2015 15:30
10/3/2015 21:30 10/3/2015 21:30 10/3/2015 23:00 7/4/2015 15:40
10/3/2015 21:40 10/3/2015 21:50 10/3/2015 23:10 7/4/2015 15:50
10/3/2015 21:50 10/3/2015 21:20 10/3/2015 23:20 7/4/2015 16:00
.................. .................. .................. ..................

10/4/2015 0:00 10/3/2015 23:40 10/4/2015 17:20 7/4/2015 18:10
10/4/2015 0:10 10/3/2015 23:50 10/4/2015 17:30 7/8/2015 12:20
10/4/2015 0:20 10/4/2015 0:00 10/4/2015 17:40 7/8/2015 15:50

10/4/2015 23:40 10/4/2015 0:10 10/4/2 015 17:50 7/8/2015 18:00
10/4/2015 23:50 10/4/2015 0:20 10/4/2015 18:00 9/17/2015 4:40
10/5/2015 1:00 10/4/2015 0:30 10/4/20 15 18:10 9/17/2015 4:50
10/5/2015 1:30 10/4/2015 22:50 10/4/2015 18:20 9/17/2015 5:00
.................. .................. .................. ..................

10/5/2015 4:30 10/13/2015 17:25 10/5/2015 3:30 10/3/2015 20:40
10/5/2015 4:40 10/13/2015 17:30 10/5/2015 3:40 10/3/2015 21:50
10/5/2015 4:50 10/13/2015 17:35 10/5/2015 3:50 10/3/2015 22:00

10/13/2015 16:35 10/13/2015 17:45 10/5/2015 4:00 10/3/2015 22:10
10/13/2015 16:45 10/13/2015 18:20 10/5/2 015 4:10 10/3/2015 22:20
10/13/2015 16:55 10/13/2015 18:30 10/5/2015 4:20 10/3/2015 22:30
.................. .................. .................. ..................

1/2/2016 21:20 1/11/2016 18:10 10/13/2015 17:05 10/13/2015 17:25
1/2/2016 21:30 1/12/2016 11:20 10/13/2015 17:15 10/13/2015 17:35
1/2/2016 21:40 1/12/2016 11:30 10/13/2015 17:25 10/13/2015 17:45

1/12/2016 11:20 1/12/2016 11:40 10/13/2015 17:35 10/14/2015 18:35
1/12/2016 11:30 1/12/2016 12:10 10/13/2015 17:45 1/3/2016 7:00
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Apart from the common detection outcomes, we find that the anomalous time stamps belong

to a few anomaly-prone days, which are listed in Table 3.6. It is also noticeable that anomalies

occur in chunks, and in most cases, the observations in the close time vicinity of an anomalous

time stamp are also returned as anomalies. When we report these time stamps to the operating

manager, he agrees, after his own verification, that most of these findings present valid concerns

and indeed require trouble shooting.

While there is a good common ground shared by these methods, the competing methods do

perform differently at certain aspect. Despite the close performance between GNMF and NS-NMF,

GNMF entirely misses the anomalous stamps on September 13th, September 14th, January 2nd, and

January 12th. SNMF likewise misses those dates, but does detect one time stamp on January 12th.

The offline NS-NMF successfully identified all of those time stamps, but misses some potential

anomalous time stamps in the month of April, and so does the online NS-NMF. The online NS-

NMF also misses the anomalies on September 13th and January 2nd. SNMF successfully detects

the April dates. All of them misses the January 9th anomalies which are deemed as abnormal by

the operating manager and his team. The operating manager also indicated that July 8th, September

17th, January 3rd time stamps do not appear to be anomalies, after their extensive closer-look that

yields no intelligible outcomes. These dates are identified as anomalous by SNMF but not by

NS-NMF or GNMF. The operating manager registers the offline version of NS-NMF as the most

competitive method followed by the online counter part among the competitors.

Detecting the anomalies does not tell us directly the root cause behind the abnormal behaviors.

But anomaly detection outcomes can be used to assign class labels to the respective data records.

A simple follow-up is to build a classification and regression tree on the labeled datasets, which

can reveal which variable, or variable combination, is actually leading to these anomalous con-

ditions. Doing so injects the interpretability to an unsupervised learning problem and can advise

proper actions to address the anomalous condition and prevent future damage, disruption, or even

catastrophe. An example of such exercise can be found in [81, 45] and we will not repeat it here.
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Table 3.6: Most anomaly prone days identified by the three methods.

July 4th, 2015
September 13th, 2015
September 14th, 2015
October 3rd, 2015
October 5th, 2015
October 13th, 2015
October 14th, 2015
January 2nd, 2016
January 12th, 2016

3.6 Summary

In this chapter, we propose a neighborhood structure assisted nonnegative matrix factorization

method and demonstrate its application in anomaly detection. We argue that in the absence of

the similarity information, the original NMF basis vectors are not enough to represent and sepa-

rate complicated clusters in the reduced feature space. To represent and summarize the complex

data structure information in a similarity matrix, we use a minimum spanning tree to capture the

neighborhood connectivity information and to approximate the geodesic distance between data

instances. The current approaches that use the Euclidean distance based similarity metric is not

capable of approximating the true data space structure and those approaches using the complete

graphs become computationally expensive. We develop a joint optimization framework to obtain

the clustering indicator and the attribute distribution matrix, and then, we devise an anomaly score

to flag potential point-wise anomalies. We use a parallel block stochastic gradient descent method

to compute these factored matrices for fast implementation. We also design an online algorithm

to render the proposed method applicable for analyzing streaming data. The specific action of

modeling the neighborhood structure appears to make an appreciable impact, as NS-NMF demon-

strates clear advantage in the task of anomaly detection in an extensive empirical study using 20

benchmark datasets and one hydropower dataset.
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4. GRAPH REGULARIZED AUTOENCODER FOR ANOMALY DETECTION

Dimensionality reduction is a crucial first step for many unsupervised learning tasks including

anomaly detection. Autoencoder is a popular mechanism to accomplish the goal of dimensionality

reduction. In order to make dimensionality reduction effective for high-dimensional data embed-

ding nonlinear low-dimensional manifold, it is understood that some sort of geodesic distance

metric should be used to discriminate the data samples. Inspired by the success of neighborhood

aware shortest path based geodesic approximators such as ISOMAP, in this work, we propose to

use minimum spanning tree (MST) to approximate the local neighborhood structure and generate

structure-preserving distances among data points. We use this MST-based distance metric to re-

place the Euclidean distance metric in the embedding function of autoencoders and develop a new

graph regularized autoencoder, which outperforms, over 20 benchmark anomaly detection datasets,

the plain autoencoder using no regularizer as well as the autoencoders using the Euclidean-based

regularizer. We furthermore incorporate the MST regularizer into two generative adversarial net-

works and find that using the MST regularizer improves the performance of anomaly detection

substantially for both generative adversarial networks.

4.1 Introduction

Autoencoder [35, 36, 37] is a widely used tool in many unsupervised learning tasks such as clus-

tering and anomaly detection [85, 86]. It is an efficient dimensionality reduction mechanism,

converting a data matrix X ∈ Rm×p, of which columns and rows represent the attributes and ob-

servations respectively to a dimension-reduced output Z ∈ Rm×l, such that l < p, but preferably

l � p. Autoencoders frame the unsupervised problem of dimensionality reduction through the

use of a pair of encoder and decoder—while the encoder reduces X to Z, the decoder reconstructs

Z to an X′ ∈ Rm×p, which is of the same dimension as X. The goal of finding the optimal

low-dimensional representation Z is to be accomplished by designing the encoder/decoder pair to
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minimize the reconstruction error between X and X′. Please see the illustration in Fig. 4.1.

 

𝒁 

 

 

Figure 4.1: Autoencoder framework using feed-forward neural networks. Blue circles represent
nodes/neurons and dotted lines represent neuron connections.

By producing the low-dimensional Z, an autoencoder does not automatically perform clus-

tering or anomaly detection. Yet, people argue that once a good low-dimensional representation

of the high-dimensional original data is obtained, the subsequent tasks become much easier and

manageable. For this reason, autoencoders are considered a key technique to address one of the

challenges in unsupervised learning, especially when dimensionality reduction is inevitably neces-

sary for achieving good performances. While the general idea of autoencoders can be materialized

by various choices of encoder and decoder, the practical ones in use are almost invariably artificial

neural networks (ANN), as depicted in Fig. 4.1.

Researchers recognize important benefits in using the autoencoder approach for tasks like

anomaly detection. Autoencoder can handle complex data in large quantity, thanks to the current

advancement in deep neural networks. With deep neural networks serving as an encoder/decoder,

one can reach to the latent space through multiple steps of nonlinear transformation, which can
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help unfold data with complex intrinsic structure and greatly facilitate the subsequent detection

objective.

It is not surprising that the loss function characterizing the reconstruction error between X

and X′ plays a crucial role in a successful autoencoder design. The choice of loss function of-

ten depends on the ultimate learning tasks, e.g., binary classification, multi-class classification,

or regression, and the typical choices include cross-entropy, Kullback-Leibler divergence, mean

squared error, and mean absolute error. These loss functions, however, do not have any provision

to preserve the neighborhood structure in the reduced representation. But preserving the neigh-

borhood structure while reducing the data dimension is demonstrably critical and in fact a key

requirement studied in the nonlinear embedding research [87, 88, 7, 89, 90, 43].

Dimensionality reduction problems are closely related to the manifold approximation or intrin-

sic structure recovery problem. According to the manifold hypothesis [6, 91], high dimensional

data tend to lie on a low-dimensional manifold embedded in the high-dimensional space. An

autoencoder, if properly designed can help us to find the proper low-dimensional manifold embed-

ding. In doing so, autoencoders need an additional embedding component in the loss function to

ensure that data points maintain the structural similarity in the low dimensional space as they are

in the original, high-dimensional space.

The first question to address is how to measure the similarity between data points given the

possibility of an embedded manifold structure. We cannot use traditional distance metrics such

as the Euclidean distance [7]. The consensus is that one would need to use some sort of geodesic

distance metrics in the presence of nonlinear manifold structure, and for that, there are already

a few efforts made to incorporate the nonlinear embedding methods in the autoencoder frame-

work [92, 93, 94, 95, 96, 97]. The current embedding approaches choose to utilize either the

Laplacian eigenmap (LE) [89] or the locally linear embedding (LLE) [88] methods and combine

both reconstruction and embedding loss functions. But they still have one major limitation in com-

mon, which is the use of Euclidean distance as a measure of similarity during the calculation of
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the embedding representation.

We propose to use a minimum spanning tree (MST) [10], a graph-based approach, to approx-

imate the geodesic distance among data points in lieu of Euclidean distances. Then, it raises a

second problem, which is, how to preserve the MST approximated intrinsic structure in the latent

space created by the autoencoder. Here, we see an opportunity to provide an integrated solution to

both the intrinsic structure recovery and the preservation problems. We devise a graph regularizer

based on MST and plant it inside the autoencoder framework as an extra loss-function component,

in addition to the original reconstruction loss. We provide two alternative formulations for the

graph regularizer, both of which guide the autoencoder to preserve the original data structure when

generating the latent features. These latent features in turn help detect the anomalies or rare events

from the data.

We apply the resulting graph regularized autoencoder to 20 benchmark datasets to demonstrate

its merit in terms of enhanced capability and robustness in anomaly detection. In order to highlight

the efficacy of using MST, we compare our graph regularized autoencoder with the autoencoders

using no regularizer at all, as well as with the autoencoders of which the regularizer is built on

Euclidean distance. To further demonstrate the superiority of our graph regularizer we incorporate

it in two generative adversarial network (GAN)-based anomaly detection methods [98, 99]. We

find that adding the MST based graph regularizer significantly improves the detection capability

of the existing GAN based methods.

The main contribution of this work is that we advance the understanding and practice of de-

signing an autoencoder mechanism for performing dimensionality reduction as well as enhancing

its ability for subsequent anomaly detection. The resulting new design is a graph regularized au-

toencoder using MST to approximate the manifold structure and guide the generation of latent

features.

The rest of this chapter unfolds as follows. Section 4.2 discusses the basic concepts and the
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working mechanism of autoencoders. Section 4.3 describes the formulation and design of the

proposed graph regularized autoencoder. Section 4.4 compares the proposed graph regularized au-

toencoder with other autoencoder variants on 20 benchmark datasets for the purpose of anomaly

detection. The section also demonstrates the performance enhancement when the proposed graph

regularizer is added to the GAN-based anomaly detection approaches. Finally, we provide a sum-

mary in Section 4.5.

4.2 Autoencoder framework

An autoencoder framework consists of three basic components, as listed below:

• Encoder,

• Decoder, and

• Loss function

We provide a concise summary in this section explaining how autoencoder works. We also explain

the idea of embedding loss functions and highlight possible choices of loss function that we could

borrow from the literature of nonlinear embedding based methods.

4.2.1 Basic setup

In its simplest form, an encoder is a feed-forward neural network which reduces the dimension

of the original data and maps it to a latent space. This funneling process can be done in one step

or through multiple steps which depends on the number of layers chosen for the architecture. A

simple one layer encoding mechanism (gφ) is summarized in (4.1),

Z = gφ(X) = h(WencX + benc), (4.1)
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where φ = (Wenc,benc) contains two sets of parameters: the weight (Wenc) and the bias (benc)

parameters of the encoder. They are to be learned during the training process. Now, in the presence

of a multi-layer encoder, one needs to repeat the encoding process multiple times until reaching

the bottleneck layer. In that case, each layer will have its own weight and bias parameters. In (4.1),

h(·) is known as the activation function. The nonlinear mapping of the data is induced through this

function. There are many available activation functions to choose from, including but not limited

to, the sigmoid function, hyperbolic function, and ReLU function. In (4.2), a sigmoid function is

shown, which is differentiable and monotonic.

h(y) =
1

1 + e−y
. (4.2)

The sigmoid function maps the data onto the real line between 0 and 1 and is the most commonly

used when one intends to predict probabilities or the response is scaled between 0 and 1. Instead

of choosing one common activation function for all layers, we can also choose different activation

functions for different layers.

Decoder is essentially another neural network, trying to reconstruct the original data from the

compressed Z in the latent space. The number of nodes or dimension in the output layer of the

decoder must be same as the original input data. Like encoding, decoding can also be done in a

single step or through multiple steps. If one chooses to encode through multiple steps, or in other

words, to gradually reduce the dimension of data to reach the bottleneck, the decoder should also

follow the same philosophy, but it will be done in a reverse order, i.e., to gradually increase the

dimension back to that of the original data space. The decoding mechanism, fθ, is summarized in

(4.3).

X′ = fθ(Z) = h(WdecZ + bdec). (4.3)

Similar to the encoder, there are two parameters in this decoding process, θ = (Wdec,bdec), and

they are also to be learned during the training process. Concerning the activation function in the

decoder, we can opt for the same one we choose for encoder layers or we can try a different one.
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Fig. 4.1 presents an example, where layer 1 is the input layer, layer 4 is the bottleneck layer,

and layer 7 is the output layer. The weight matrices, Wenc = (W1,W2,W3), are the corre-

sponding to the connections between layers 1 and 2, layers 2 and 3, and layers 3 and 4, and

Wdec = (W4,W5,W6) to the connections between layers 4 and 5, layers 5 and 6; and layers 6

and 7, respectively. Here, W1 ∈ R5×7, b1 ∈ R5×1, and other weight matrices and bias vectors can

be likewise constructed.

To achieve an effective representation in the latent space, the autoencoder design is to minimize

a loss function, L(·), that quantifies the reconstruction error between X and X′. One of the most

widely used loss functions is the squared error loss, as in (4.4).

min
φ,θ

L(X,X′) = ‖X−X′‖2F . (4.4)

The autoencoder concept can be materialized using many different types of neural networks

such as the feedforward neural networks, convolutional neural networks (CNN), recurrent neural

networks (RNN), and most recently, GAN. In this chapter, we limit ourselves mostly in the regime

of feedforward neural network.

4.2.2 Embedding loss function

To unearth meaningful, effective latent representations in the presence of nonlinear manifold, au-

toencoders need to have an additional loss component to take care of the embedding problem.

The plain autoencoder and the nonlinear embedding approaches can be combined together, and

researchers have used a joint loss framework as following [92]:

min
φ,θ

L(X,X′) +
∑

1≤i<j≤m

G(zi, zj,Dij), (4.5)

84



where the first loss component, L(·), reflects the autoencoder’s reconstruction loss, and the second

component, G(·), captures the embedding loss. In the embedding loss function, zi, zj are the

hidden representation of any two points and Dij summarizes the Euclidean distance between the

same two points in the original space. The embedding loss function actually tries to minimize the

differences between an original pairwise distance and the corresponding pairwise distance in the

hidden space. There are two popular nonlinear embedding functions used:

1. Multidimensional scaling (MDS)

G(Z) =
∑
i<j

(Dij − ‖zi − zj‖2)
2. (4.6)

In this approach, the main objective is to preserve the inter-point distances in the hidden

space [100]. In other words, MDS tries to minimize the difference between the pairwise

Euclidean distances, Dij , in the original space and their counterpart in the hidden space. In

practice, the minimum of thisG(·) function is given by the eigen-decomposition of the Gram

matrix of high dimensional data in X after double centering it.

2. Laplacian eigenmap (LE)

In a Laplacian eigenmap, the local properties are generated based on the pairwise similarities

among data points [89]. The low dimensional representation is calculated in such a way so

that data points closer in the original space should maintain the relative closeness compared

to other pairs of data points in the hidden space. It means that if two points are highly similar,

then the reward of minimizing the distance between them will be higher compared to another

pair of points whose extent of similarity is comparatively lower. In practice, the Gaussian

similarity measure is one of the most widely used form of similarity measure. The LE uses
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the following formulation as its embedding function:

minG(Z) =
1

2

∑
i<j

‖zi − zj‖22Wij = ZTLZ, (4.7)

where Wij is the adjacency matrix of the graph, used as the weight to the distances in the

hidden space. The second expression is a result by invoking the spectral graph theory. In

above equation, L is the graph Laplacian matrix, which can be obtained by L = S −W

where S is a diagonal matrix, also known as the degree matrix [43, 70].

4.3 Graph regularized autoencoder

In this section, we propose the graph regularizer and show how it can be incorporated in the autoen-

coder framework. We also discuss the relevant design issues of the graph regularized autoencoder

framework and how it can be used to detect anomalies. As the graph regularizer is based on MST,

please refer to 1.3 for a brief discussion of the MST’s role in manifold approximation.

4.3.1 Proposed graph regularized autoencoder

To design the graph regularizer, we decide to stick with the two embedding loss functions we

introduce in Section 4.2.2 but our proposal is to incorporate the MST distance in place of Euclidean

distance. For the MDS framework, we replace the pairwise Euclidean distances, Dij with the MST-

based distances Mij in (4.6). For the LE framework, unlike the traditional LE embedding, we

define our similarity measure, Wij through the inverse of MST-based distances Mij . Specifically,

Wij =


1
Mij

, if Mij > 0,

0, otherwise.
(4.8)

The proposed graph regularized autoencoder framework is expressed as a minimization of the
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joint loss function of the reconstruction error and the MST-based embedding function, as in (4.9)

below:

min
φ,θ

L(X,X′) +G(Z), (4.9)

where

G(Z) =


∑

i<j(Mij − ‖zi − zj‖2)
2

or

1
2

∑
i<j ‖zi − zj‖22Wij = ZTLZ,

L(·, ·) is the same as in (4.4),

Z = gφ(X) = h(WencX + benc),

X′ = fθ(Z) = h(WdecZ + bdec),

φ = (Wenc,benc), θ = (Wdec,bdec).

Using this joint loss, we guide the autoencoder reconstruction mechanism using a graph reg-

ularizer, so that it maintains the manifold structure in the low-dimensional space. We, therefore,

refer to this proposed autoencoder as the graph regularized autoencoder. We want to note that

this is a general framework, as one can involve in this framework different types of autoencoding

mechanism and choose various neural network architectures.

4.3.2 Anomaly detection

As mentioned earlier, an autoencoder does not necessarily produce an outcome for anomaly detec-

tion right away. To flag data points, one assigns the data points an anomaly score to signify how

much it is different from normal observations.

To generate anomaly scores, we can follow two routes. The first option is to use the recon-
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struction error associated with a data point, defined below:

ASi = ‖xi − xi
′‖22 . (4.10)

We repeat this process for all observations and rank the scores, {ASi, i = 1, . . . ,m}, in descending

order, where a higher value suggests more likely to be anomalous.

The second option is to extract the low dimensional representation and then feed it to some

existing anomaly detection approaches to detect the anomalies. Using this option, we in this work

make use of two existing anomaly detection approaches. One is our local minimum spanning tree

(LoMST) [81] and another is the connectivity outlier factor (COF) [101].

In LoMST, a local MST is formed for each observation and its k-nearest neighbors. A LoMST

score is calculated for each node, which is the total edge length of the local MST associated with

the node. The anomaly score for a node is then calculated as the difference between this node’s

LoMST score and the average of its k-nearest neighboring nodes’ LoMST scores. For this method,

a local neighborhood size, k, needs to be specified a priori.

COF introduces a new distance measure known as the average chaining distance to reflect the

isolation of a data point from other points. Chaining is defined as a way to connect the nearest

neighbors of an observation by calculating the shortest path incrementally starting from the obser-

vation itself without producing a cycle. The length of this chain is known as the chaining distance.

The corresponding anomaly scores are calculated by comparing the individual average chaining

distance to its neighbors’ chaining distances. For this method, again, the neighborhood size, k,

needs to be specified a priori.

Regardless of which option we choose to produce the anomaly scores, we have to select a cut-

off value to flag a data point as an anomaly. For this purpose, we choose the simplest approach,

which is to flag the top N scores as anomalies, with the value of N pre-determined. Unsuper-
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vised anomaly detection methods are typically used as a first-step screening tool, flagging poten-

tial anomalies to be further analyzed and authenticated by more complex and expensive procedure.

The choice of N is usually a trade-off between the goal of covering all possible anomalies and the

desire to make the authentication of anomalies manageable, i.e., make the more expensive or time

consuming subsequent steps practical and feasible.

4.3.3 Design of graph regularized autoencoder framework

To reach an efficient design for our graph regularized framework, we have to settle on some im-

portant parameters and components essential for an autoencoder:

4.3.3.1 Hidden layer dimension

For an autoencoder, the most important parameter is arguably the number of nodes in the hidden

or bottleneck layer, Z. The intrinsic dimension of the embedding layer is also a critical parameter

from the manifold approximation perspective. If the dimension is chosen too small, useful features

might be collapsed onto each other and then become entangled, while if the dimension is too large,

the projections might become noisy and unstable [102].

Unfortunately, after many years of research in this area, there is still no consensus on how to

choose this hidden layer dimension. After much investigation, we in this work choose to follow

the procedure established in [103]. The main steps for the intrinsic dimension estimation method

are as follows:

1. For each data point, i, calculate the ratio of the distance of the nearest and second nearest

neighbors from this point, µi = r2
r1

.

2. Calculate the empirical distribution of µi by sorting them in ascending order, Femp(µi) = i
m

.

3. Fit a straight line through the origin and the points (log µi,− log(1− Femp(µi))).
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4. Estimate the slope of this line. Round the estimated slope value to the nearest integer and

use it as the intrinsic dimension, l

There are a couple of advantages to this method leading to our choice. The method uses minimal

neighborhood information to find out the intrinsic dimension, and because of that, it runs rather

efficiently as compared to other approaches. Moreover, we find that the method also saves us from

adverse impact of dataset inhomogeneity in the estimation process.

4.3.3.2 Additional components and hyperparameters

Apart from the three main components discussed in Section 4.2.1, we use two auxiliary com-

ponents in our graph regularized autoencoder. The auxiliary components are not specific to an

autoencoder but play important roles in a neural network’s training process. The first one is batch

normalization [104], which is to normalize the data before passing to the autoencoding process.

Once the input features are normalized to be on the same scale, the weights associated with them

would also be on the same scale. Doing so helps avoid an uneven distribution of weights during

the training process and prevent the learning algorithm from spending too much time oscillating

in the plateau looking for a global minimum. Generally speaking, normalization helps train the

network faster.

The second component is known as dropout [105]. Dropout is a regularization method that

helps in reducing the chance of overfitting. When applied to a layer, it means some nodes of that

layer will be randomly dropped off, along with all of their incoming and outgoing connections.

If dropout is applied, then the layers will look like consisting of a different number of nodes and

connectivity to the prior layer. Dropout, since what it does is to make the nodes on a layer have a

random probability of being ignored, ensures that the resulting neural network does not rely on any

particular input node. As a result, the resulting neural network will not give too much attention,

which is often unwarranted, to any particular group of features. The dropout probability needs to

be assigned during the training process. Generally, it could be set as 0.5 [105], which is proved to
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be optimal for varieties of network architectures and tasks.

As autoencoders follow neural network architectures, one also needs to choose the values

of a few standard hyperparameters. They include the number of layers, the choice of activation

function, how to initialize the weight and bias values, optimization strategy and the number of

epochs during the optimization etc. We summarize in Table 4.1 our choices regarding parameters

and components of the graph regularized autoencoder.

Table 4.1: Strategy adopted regarding parameters and components of the graph regularized
framework.

Parameters/Components Setting adopted
Number of hidden layers 2
Activation function Sigmoid
Dropout probability 0.5
Initialization strategy Xavier
Optimization strategy Gradient Descent
Number of epochs 500

4.3.3.3 Denoising graph regularized autoencoder

Basic autoencoder technology is sometimes criticized by arguing that the reconstructed output can

be just a copy of the input provided. To prevent such risk, a variant of autoencoder is introduced,

known as Denoising Autoencoder [106]. It takes partially corrupted input and reconstruct the

original input with the autoencoder starting from this corrupted input. In this way, the autoencoder

cannot simply memorize the training data and copy the input to its output.

There are two underlying assumptions present in this approach. First, the higher level rep-

resentations are relatively stable and robust to the corruption of the input. Second, to perform

denoising well, the model can extract features that capture useful structure in the input data. The

steps of the denoising version of autoencoder is outlined below:
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1. The initial input X is corrupted into X̃ through stochastic mapping, X̃ = qp(X̃ | X). Some

examples of the corruption process are to add Gaussian noises, salt and pepper noises, or the

like.

2. The corrupted input X̃ is then mapped to a hidden representation with the same process of

the standard autoencoder, Z = gφ(X̃) = h(WencX̃ + benc).

3. From the hidden representation the decoder reconstructs Y = fθ(Z)

4. The loss function then becomes L = ‖X−Y‖2F

During our experimentation, we find that the traditional practice of incorporating noise, as

outlined above, is not effective in anomaly detection. So, we devise a new way of incorporating

noise in the input data which actually helps us in achieving better latent space representation and

consequently improves the detection of anomalies. In this approach, the noisy version of each

data point is constructed as the average of its first 5 nearest neighbors as in (4.11). This idea of

reconstruction from neighbors is actually on par with the concept of LLE [88], a popular nonlinear

embedding approach. The choice of 5 neighbors is arbitrary here, which can be replaced with any

meaningful value.

x̃i =
1

5

k=5∑
k=1,k 6=i

xk, (4.11)

where xk is the kth nearest neighbors of point xi. If an observation is different from its neigh-

bors, the reconstruction loss would be high; the thought process aligns with the very definition of

anomaly.

4.3.4 Conceptual difference with other autoencoder frameworks

To highlight how our graph regularized autoencoder differs as compared to the works discussed

in Section 4.1, we summarize them in Table 4.2. All of these autoencoder models are proposed

for learning tasks such as clustering, classification, or anomaly detection. Under the heading of
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“autoencoder variants,” we mainly consider denoising autoencoder and autoencoder with GAN.

Table 4.2: Summary of autoencoder models. Here (X) indicates the model includes the criteria.
``````````````````̀

Papers

Criteria Reconstruction Multilayer Embedding Embedding Autoencoder
loss network loss (Euclidean) loss (Geodesic) variants

Hinton et al. [36] X X
Yu et al.[92] X X
Huang et al.[93] X X X
Lu et al.[94] X X X
Jia et al.[95] X X X
Wei et al.[96] X X
Ji et al.[97] X X X
Schlegl et al.[98] X X X
Zenati et al.[99] X X X
MST regularized autoencoder X X X X

As highlighted in the table, the main difference is the different distance metrics introduced in

the embedding function. There are two groups of alternatives that we will compare with in the next

section of performance analysis. The first group is the methods listed in rows 1–7, for which either

no embedding loss is used (using (4.4)) or the embedding loss is based on Euclidean distance

(using (4.5)–(4.7)). The second group is the methods listed in rows 8–9 which are the GAN-

based autoencoders. Our purpose is to demonstrate the impact on anomaly detection by using the

MST-based metric in the embedding function when the proposed MST regularized autoencoder is

compared with the above two groups of methods.

Let us visualize, by using a toy example in Fig. 4.2, the impact of MST and the effectiveness

of low-dimensional projection obtained by the MST regularized autoencoder. Fig. 4.2(a) repre-

sents the well-known Swiss swirl data structure (a type of nonlinear manifold structure) and the

MST approximation of this structure (the black edges). Here, the data points are color coded to

help visualize their relative positions. We obtain a 2D representation of the Swiss swirl by three

different methods: the principal component analysis (PCA), as in Fig. 4.2(b); an autoencoder using

Euclidean distance embedding function, as in Fig. 4.2(c), and our MST-regularized autoencoder,
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(a) A 3D Swiss roll data and its MST approximation. (b) Representation in 2D using PCA.

(c) Representation in 2D using Euclidean distance
regularized autoencoder.

(d) Representation in 2D using our MST regularized
autoencoder under MDS formulation.

Figure 4.2: MST regularized autoencoder can maintain the structural similarity in low dimensional
representation.

as Fig. 4.2(d). The proposed approach is able to maintain the structural similarity presented in the

high-dimensional space as expected, when the data is projected to the lower dimension, while the

other two approaches did not.

4.4 Performance analysis of graph regularized autoencoder

This section is devoted for evaluating the performance of the proposed graph regularized autoen-

coder framework for anomaly detection on benchmark datasets. At first, in Section 4.4.1, we

compare the detection performance with the plain autoencoder with no regularizer at all and also

with the autoencoders with the Euclidean distance-based regularizer. We discuss the effect of us-

ing denoising version of the autoencoder and present results using our special denoising option.
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Table 4.3: Performance comparison of the autoencoder approaches.
hhhhhhhhhhhhhhhhhhhhhhh

Result (number of datasets)

Autoencoders MST MST Euclidean Euclidean No
regularizer regularizer regularizer regularizer regularizer
(MDS) (LE) (MDS) (LE)

Better (uniquely best result) 8 8 0 0 0
Equal (equal to the existing best result) 3 4 3 2 0
Close (within 20% of the best result) 3 3 5 6 2
Worse (not within 20% of the best result) 6 5 12 12 18

In Section 4.4.2, we incorporate the MST based graph regularizer into two GAN-based anomaly

detection approaches and demonstrate its positive impact.

4.4.1 Performance comparison

We present the detection performance of five autoencoder variants in Table 4.3. The first two are

the two formulations of the proposed MST-based regularizer under the MDS formulation and LE

formulation, respectively. The third and fourth are the Euclidean distance based regularizer as in

(4.6) and (4.7) respectively. The fifth one is the plain autoencoder with no regularizer. To better

reflect the methods’ comparative edge, we break down the comparison into four major categories

in Table 4.3, namely Better, Equal, Close and Worse, as explained in the table. In this comparison,

we use the reconstruction loss generated from the autoencoder to mark the anomalies (the first

option mentioned in Section 4.3.2.

From Table 4.3, we see that MST-regularized methods outperform the other variants of autoen-

coder. Individually, each method produces 11–12 best detection results and is within the best re-

sults for another three cases. Together, the two MST-regularized methods produce the 16 uniquely

best detection cases out of the 20 total cases. The two formulations, MDS versus LE, do not seem

to make a big difference. The Euclidean distance-based regularizer is shown, on the other hand, to

be inferior than the MST regularizer. However, the Euclidean distance-based regularizer performs

better than the no regularizer scenario; the latter never scores any best detection but rather often

lies far away from the best performer.
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Table 4.4 presents the number of true detections by the competing methods. Table 4.3 is

summarized based on the information in Table 4.4. In the first column of Table 4.4, the parenthesis

besides each dataset’s name contains the number of nodes in the input layer followed by the number

of the nodes used in the two hidden layers. The last hidden layer node represents the intrinsic

dimension of the dataset estimated by using the method in Section 4.3.3.1.

In the performance analysis, we find that the batch normalization and dropout options do not

improve the detection results but help achieve faster convergence. We believe having these options

could be more helpful, should we use more layers in the encoder/decoder networks. For generating

the results in Table 4.4, we in fact did not use these options; but the results would be more or less

the same, had we included either or both options.

We keep the number of epochs at 500. When we increase the number of epochs from 500,

the performance tends to get better but may happen very marginally. We also test on having

different numbers of layers, but this is a trickier problem. It turns out to be that having more layers

sometimes helps but in other cases adversely affects the performance.

In Section 4.3.2, we mention the second option of flagging anomalies, which is to take the

dimension-reduced output, Z, and feed it to an existing anomaly detection method. We implement

the second option, which is using the MST regularizer with the MDS formulation for dimension-

ality reduction and then use either LoMST or COF to conduct the subsequent anomaly detection.

For LoMST, we select the neighborhood size, k following the best k scenario guideline discussed

in [81]. We do that for each of the 20 datasets and then use the same k for the COF setting too.

Table 4.5 presents the number of true detections made by the LoMST and COF approaches. We

compare them with the detection resulting from using the reconstruction loss to flag the anomalies.

We see that the second-option anomaly detection approach in general performs better, especially

the one using LoMST. This confirms the merit of autoencoder as a dimension-reducing mechanism

enabling or enhancing the subsequent anomaly detection task.
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Table 4.4: Number of true positive detections of the competing autoencoder methods. Bold
entries represent the best detection performance in a respective dataset.

Dataset
MST MST Euclidean Euclidean No
regularizer regularizer regularizer regularizer regularizer
(MDS) (LE) (MDS) (LE)

WBC (9, 8, 6) 7 8 6 6 4
Heart(13, 9, 4) 3 2 2 2 2
Cardiotocography (21, 12, 3) 30 32 29 30 26
SPAMBASE (52, 25, 3) 38 27 31 29 18
PIMA (8, 7, 6) 1 4 4 4 2
WDBC (30, 16, 9) 4 4 4 4 2
Glass (7, 6, 4) 1 1 0 0 0
Shuttle (9, 5, 1) 0 1 0 0 0
Stamps (9, 7, 4) 3 9 3 5 0
Ionosphere (32, 16, 8) 74 67 63 59 58
WPBC (33, 16, 9) 10 14 10 11 7
KDDCup99 (41, 20, 2) 89 93 83 85 39
Lymphography (19, 12, 4) 3 5 3 4 1
Arrhythmia (259, 100, 17) 4 3 2 2 2
Pendigits (16, 10, 6) 1 0 0 0 0
Parkinsons (22, 15, 4) 0 2 0 0 0
ALOI (27, 12, 4) 397 371 371 337 152
Annthyroid (21, 12, 4) 13 11 10 8 4
Waveform (21, 19, 17) 13 10 9 6 2
PBLOCK (10, 6, 3) 19 19 19 17 12

Lastly, we explore the benefit of the denoising action. Table 4.6 presents the comparison of our

MST regularized autoencoder under MDS formulation with regular and proposed new denoising

option. We can see that the regular denoising option does not help much compared to the detection

obtained without applying any sort of denoising in column 2 of Table 4.4. However, our proposed

denoising option can improve the detection performance compared to the regular denoising process

in the majority of the cases.
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Table 4.5: Comparison between reconstruction loss based detection and those using an existing
anomaly detection methods after the MST-regularizer.

Dataset LoMST COF Reconstr-
uction loss

WBC (9,8,6) 7 5 7
Heart(13,9,4) 4 1 3
Cardiotocography (21,12, 3) 23 12 30
SPAMBASE(52,25,3) 51 34 38
PIMA (8,7,6) 6 1 1
WDBC (30,16,9) 7 7 4
Glass (7, 6, 4) 3 1 1
Shuttle (9,5,1) 3 2 0
Stamps (9, 7, 4) 9 6 3
Ionosphere (32,16,8) 101 86 74
WPBC (33,16,9) 14 13 10
KDDCup99 (41,20,2) 91 77 89
Lymphography(19,12,4) 4 3 3
Arrhythmia (259, 100, 17) 5 4 4
Pendigits (16, 10, 6) 0 1 1
Parkinsons (22,15,4) 4 2 0
ALOI (27, 12, 4) 375 322 397
Anthyroid (21, 12, 4) 23 22 13
Waveform (21, 19, 17) 24 20 13
PBLOCK (10,6,3) 38 22 19

4.4.2 Influence of the MST based graph regularizer

GAN has been called one of the most interesting ideas proposed in the last 10 years [107]. We

would like to see how our graph regularizer impacts GAN-based anomaly detection once it is

incorporated into its loss function.

We consider two GAN-based anomaly detection approaches. The first one is known as the

AnoGAN [98]. AnoGAN involves training a deep convolutional GAN, and, at inference, using

the trained GAN to recover a latent representation for each test data point. The anomaly score

is measured by taking the sum of reconstruction loss and discrimination loss. The reconstruction

loss (also called the residual loss) measures how well the resulting GAN is able to reconstruct the
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Table 4.6: Change in detection outcomes using the new denoising approach under the MDS
formulation.

Dataset
With Regular With new
denoising denoising option

WBC (9,8,6) 7 7
Heart(13,9,4) 3 4
Cardiotocography (21,12, 3) 30 30
SPAMBASE(52,25,3) 38 40
PIMA (8,7,6) 1 1
WDBC (30,16,9) 4 6
Glass (7, 6, 4) 1 1
Shuttle (9,5,1) 0 1
Stamps (9, 7, 4) 3 3
Ionosphere (32,16,8) 74 76
WPBC (33,16,9) 10 11
KDDCup99 (41,20,2) 91 89
Lymphography(19,12,4) 3 4
Arrhythmia (259, 100, 17) 4 5
Pendigits (16, 10, 6) 1 1
Parkinsons (22,15,4) 1 2
ALOI (27, 12, 4) 394 387
Anthyroid (21, 12, 4) 13 15
Waveform (21, 19, 17) 6 19
PBLOCK (10,6,3) 19 25

data from the representative latent points using the trained generator, whereas the discrimination

loss measures the performance of the discriminator of the GAN, which is to separate the real data

from the fake sample generated by the generator of the GAN. The discrimination loss ensures

that the generated data point from the latent space lies on the data manifold. To test the impact

of our MST-based graph regularizer, we incorporate the MST-based regularizer as an additional

loss component in the discriminator. If a test point is an anomaly, both of reconstruction loss and

discrimination loss would be high.

The second approach that we consider, known as the adversarially learned anomaly detec-

tion [99, ALAD]. It is claimed to be an improvement over AnoGAN. In contrast to AnoGAN,

ALAD uses bi-directional GANs, where an encoder network is used to map data samples to latent
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Table 4.7: Performance of GAN-based anomaly detection with and without the MST regularizer.

Method Precision Recall F1 score
AnoGAN 0.7461 0.758 0.752
(1000 iteration, with regularizer)
AnoGAN 0.4399 0.4469 0.4434
(1000 iteration, without regularizer)
AnoGAN 0.3514 0.357 0.3541
(100 iteration, with regularizer)
AnoGAN 0.1378 0.14 0.1389
(100 iteration, without regularizer)
ALAD 0.1901 0.473 0.2712
(100 iteration, with regularizer)
ALAD 0.0304 0.0585 0.04
(100 iteration, without regularizer)
ALAD 0.3584 0.3641 0.3612
(500 iteration, with regularizer)
ALAD 0.1877 0.4476 0.2645
(500 iteration, without regularizer)

variables. This design enables ALAD to avoid the computationally expensive inference procedure

required by AnoGAN as the latent space coordinates can now be generated by using a single feed-

forward pass through the encoder network. ALAD also incorporates other ideas to stabilize the

GAN training procedure. We add our MST regularizer as an additional loss measurement during

the encoder training process to test the impact of such modification.

Table 4.7 presents the performance of these two GAN-based anomaly detection approaches

with and without the MST regularizer. The dataset used here is KDDCup99. We use the parameters

and other choices as suggested by ALAD’s authors [99]. We use their code shared at GitHub,

modify it to incorporate the MST regularizer, and generate the evaluation scores, which include

precision, recall, and F1 score. It is evident that the MST regularizer improves the detection

performance for both approaches.
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4.5 Summary

To obtain a useful representation of high dimensional data, we need to preserve the intrinsic struc-

ture of the data during the process of dimensionality reduction. In this chapter, we propose a new

graph-based approach to approximate the manifold structure embedded in the data. We design two

separate frameworks for incorporating this graph-based mechanism as an additional regularizer to

an autoencoder. The proposed graph regularized autoencoder framework helps process complex

data in high dimensions and obtain an effective low-dimensional latent space representation. We

argue that adding this graph regularizer enhances an autoencoder’s performance in the applica-

tion of anomaly detection. To support our claim, we present a detailed performance comparison

study using 20 benchmark anomaly detection datasets, where the graph regularized autoencoder

clearly outperforms two competing autoencoder variants: the autoencoder with Euclidean regular-

izer and the autoencoder with no regularizer at all. To further demonstrate the positive impact that

can be made by this graph regularizer, we incorporate it into two GAN-based anomaly detection

approaches and compare the detection results before and after adding the regularizer. As we an-

ticipated, GAN with the graph regularizer performs substantially better than their no-regularizer

counterparts. In summary, we believe that autoencoders work more efficiently when a graph regu-

larizer is added.

We investigate a number of issues related to the design of an autoencoder with the graph

regularizer. One issue that still eludes us is how to choose the optimal number of layers in the

encoder/decoder network design. This issue may be resolved by adopting some of the most recent

methods in the AutoML research [108]. Another issue is that our proposed method is limited

to numeric data. We believe that the proposed framework can be extended to tackle big data

scenarios considering categorical, image and even sequential data but doing so requires changing

the depth and type of autoencoder networks, most likely, making full use of modern deep learning

techniques.
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5. SUMMARY AND CONCLUSIONS

In this section, the overall contributions of this dissertation are summarized. Potential future ex-

tensions beyond the scope of this dissertation are also outlined.

5.1 Summary of contributions

The underlying theme of this dissertation is to address the issue of anomaly detection of higher

dimensional streaming data with an embedded low dimensional manifold. Towards this theme,

a new MST-based similarity measured is proposed and three sets of anomaly detection methods

are developed using the newly designed similarity measure. These methods produce promising

performances for anomaly detection in the context of high dimensional streaming data. Through

this dissertation study, the following insights are gained.

The first and foremost important insight is that in the presence of structured space, Euclidean

distance cannot measure the true intrinsic distance between data points and geodesic distance

should be capitalized to measure the true structure constrained distance. This phenomenon ex-

plains the substandard performance of existing anomaly detection approaches employing the Eu-

clidean distance metric in high dimensional datasets. In this dissertation, the minimum spanning

tree (MST), a graph theoretic approach is proposed to approximate the geodesic distance and mea-

sure the similarity among observations instead of Euclidean distances.

The second insight is that to detect local anomalies, connectedness needs to be measured on the

neighborhood level. A local MST appears to be an effective way of quantifying the connectedness.

Using LoMST for anomaly detection, which compares the local connectedness of each observa-

tion to that of its neighbors, outperforms nearly all neighborhood-based competitors. In using the

LoMST, the same as while using other neighborhood-based methods, the choice of the neighbor

size is a crucial decision to make. This dissertation devises a principled approach, which is to max-
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imize the standard deviation of the LoMST scores. Empirical analysis supports the effectiveness

of this decision process.

The third insight is that ensuring the local invariance property is central to generate a faithful

low dimensional embedding. Preserving the local invariance implies that observations maintain

the relative closeness in the latent space just like the original space. NMF and autoencoder are

among the most popular approaches to create latent space. NMF does so through linear mapping

of observations while autoencoder can accomplish nonlinear mapping. However, both NMF and

autoencoder do not have any provision for preserving the local neighborhood similarity in the la-

tent space. The newly devised MST based similarity measure provides an effective solution in both

circumstances. A revised NMF formulation (NS-NMF) by taking into account the MST approxi-

mated similarity outperforms the original NMF model in the task of anomaly detection. A detailed

theoretical investigation by comparing NS-NMF with state of art NMF formulations (GNMF and

SNMF) confirms that the supremacy in detection is directly attributed to the specific treatment of

capturing the neighborhood similarity using the MST. In autoencoder, when an MST-based graph

regularizer is added along with the traditional loss function of squared errors, the anomaly detection

performance becomes much better compared with the no regularizer or Euclidean distance-based

regularizer situation. The ability of the MST based regularizer for a better approximation of the

geodesic distances helps produce finer separation of the normal and anomalous observations.

Last but not least, the massive amount of data generated nowadays from the interconnected

network of sensors and machines calls for real-time processing due to storage limitations as well

as the need to take immediate actions when warranted. However, traditional anomaly detection

algorithms are predominantly offline and require an online conversion to meet real-time decision

making needs. Keeping these needs in mind, the online versions of the offline methods are de-

veloped. The online versions entertain a number of advantages, such as it uses only the current

batch of a small number of observations and provision to continually update the variables linked

to detection process to keep up with the underlying process, and it updates the decision threshold,
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upon receiving the new batch of observations, for deciding in real-time whether an observation is

an anomaly or not. The online versions produce comparable outcomes when compared with their

offline counterparts. These online approaches can assist the industries to track down any anomaly

as soon as it appears and also help prevent any major breakdown or equipment shutdown.

5.2 Further study

Unsupervised learning is undoubtedly one of the least understood territories of machine learning.

Yann LeCun, a prominent data scientist and machine learning expert once said: ‘If intelligence is

a cake, the bulk of the cake is unsupervised learning’. So, it goes without saying that there exist

many ways to explore the area of unsupervised anomaly detection and extend this dissertation as

well. The manifold hypotheses suggests to consider the possibility of low dimensional embedded

manifold, but the truth is the true structure cannot be visualized and consequently it makes the true

intrinsic distances among points hard to measure. One can only try to approximate these distances

as closely as possible. Still there is no mathematical theorem suggesting an ideal geodesic measure.

Empirically MST shows promising performance, but the detailed theoretical study can be carried

out in the future.

To implement the online approach, temporal and local neighborhood are needed to be consid-

ered. So, there comes always a question of suitable neighborhood size selection. In the dissertation,

an adhoc policy is proposed but still there lies a scope to propose a global policy. There are num-

ber of issues related to the design parameter selection in autoencoder, waiting to be settled. Most

importantly, the number of neurons to be considered in the hidden layer of an autoencoder is still

an open problem and needs to be explored. In the dissertation, only the numeric data is considered.

So, there remains scope to extend the proposed methods to include the image data. Image data

are rich and traditional feed-forward neural network-based autoencoders cannot be utilized. One

might adopt convolutional neural network-based autoencoding policy and add graph regularizer on

top of that.
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In the dissertation, it is proposed to convert the dataset into a graph object and then apply the

MST to measure the similarity among the observations. These similarities are used later in the

anomaly detection approaches. But instead of using the similarity, one can use the graph itself as

an input the neural network model and develop a graph neural network model, which is one of the

promising research areas in deep neural network. Sometimes it is also important to understand the

anomalies along with the detection. So, a study can be carried out to investigate the root causes

behind the detected anomalies and interpret them in terms of the attributes. It can eventually help

to pinpoint emerging anomaly patterns.

Finally, it is worth noting that the anomaly detection approaches proposed in the dissertation

are generic and can be applied to any domain. Domain specific physical constraints can be gener-

ated and added to the model to make a particular approach more suitable for an application area.
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