16,531 research outputs found

    Optimization and evaluation of variability in the programming window of a flash cell with molecular metal-oxide storage

    Get PDF
    We report a modeling study of a conceptual nonvolatile memory cell based on inorganic molecular metal-oxide clusters as a storage media embedded in the gate dielectric of a MOSFET. For the purpose of this paper, we developed a multiscale simulation framework that enables the evaluation of variability in the programming window of a flash cell with sub-20-nm gate length. Furthermore, we studied the threshold voltage variability due to random dopant fluctuations and fluctuations in the distribution of the molecular clusters in the cell. The simulation framework and the general conclusions of our work are transferrable to flash cells based on alternative molecules used for a storage media

    High Open-Circuit Voltages in Lead-Halide Perovskite Solar Cells - Experiment, Theory and Open Questions

    Full text link
    One of the most significant features of lead-halide perovskites are their ability to have comparably slow recombination despite the fact that these materials are mostly processed from solution at room temperature. The slow recombination allows achieving high open-circuit voltages when the lead-halide perovskite layers are used in solar cells. This perspective discusses the state of the art of our understanding and of experimental data with regard to recombination and open-circuit voltages in lead-halide perovskites. A special focus is put onto open questions that the community has to tackle to design future photovoltaic and optoelectronic devices based on lead-halide perovskites and other semiconductors with similar properties

    Coherent control of photocurrent in a strongly scattering photoelectrochemical system

    Full text link
    A fundamental issue that limits the efficiency of many photoelectrochemical systems is that the photon absorption length is typically much longer than the electron diffusion length. Various photon management schemes have been developed to enhance light absorption; one simple approach is to use randomly scattering media to enable broadband and wide-angle enhancement. However, such systems are often opaque, making it difficult to probe photo-induced processes. Here we use wave interference effects to modify the spatial distribution of light inside a highly-scattering dye-sensitized solar cell to control photon absorption in a space-dependent manner. By shaping the incident wavefront of a laser beam, we enhance or suppress photocurrent by increasing or decreasing light concentration on the front side of the mesoporous photoanode where the collection efficiency of photoelectrons is maximal. Enhanced light absorption is achieved by reducing reflection through the open boundary of the photoanode via destructive interference, leading to a factor of two increase in photocurrent. This approach opens the door to probing and manipulating photoelectrochemical processes in specific regions inside nominally opaque media.Comment: 21 pages, 4 figures, in submission. The first two authors contributed equally to this paper, and should be regarded as co-first author

    Asymptotic solution of a model for bilayer organic diodes and solar cells

    Get PDF
    The current voltage characteristics of an organic semiconductor diode made by placing together two materials with dissimilar electron affinities and ionisation potentials is analysed using asymptotic methods. An intricate boundary layer structure is examined. We find that there are three regimes for the total current passing through the diode. For reverse bias and moderate forward bias the dependency of the voltage on the current is similar to the behaviour of conventional inorganic semiconductor diodes predicted by the Shockley equation and are governed by recombination at the interface of the materials. There is then a narrow range of currents where the behaviour undergoes a transition. Finally for large forward bias the behaviour is different with the current being linear in voltage and is primarily controlled by drift of charges in the organic layers. The size of the interfacial recombination rate is critical in determining the small range of current where there is rapid transition between the two main regimes. The extension of the theory to organic solar cells is discussed and the analogous current voltage curves derived in the regime of interest
    corecore