78 research outputs found

    On the design of tone-free ΣΔ modulators

    Get PDF

    New strategies for low noise, agile PLL frequency synthesis

    Get PDF
    Phase-Locked Loop based frequency synthesis is an essential technique employed in wireless communication systems for local oscillator generation. The ultimate goal in any design of frequency synthesisers is to generate precise and stable output frequencies with fast switching and minimal spurious and phase noise. The conflict between high resolution and fast switching leads to two separate integer synthesisers to satisfy critical system requirements. This thesis concerns a new sigma-delta fractional-N synthesiser design which is able to be directly modulated at high data rates while simultaneously achieving good noise performance. Measured results from a prototype indicate that fast switching, low noise and spurious free spectra are achieved for most covered frequencies. The phase noise of the unmodulated synthesiser was measured −113 dBc/Hz at 100 kHz offset from the carrier. The intermodulation effect in synthesisers is capable of producing a family of spurious components of identical form to fractional spurs caused in quantisation process. This effect directly introduces high spurs on some channels of the synthesiser output. Numerical and analytic results describing this effect are presented and amplitude and distribution of the resulting fractional spurs are predicted and validated against simulated and measured results. Finally an experimental arrangement, based on a phase compensation technique, is presented demonstrating significant suppression of intermodulation-borne spurs. A new technique, pre-distortion noise shaping, is proposed to dramatically reduce the impact of fractional spurs in fractional-N synthesisers. The key innovation is the introduction in the bitstream generation process of carefully-chosen set of components at identical offset frequencies and amplitudes and in anti-phase with the principal fractional spurs. These signals are used to modify the Σ-Δ noise shaping, so that fractional spurs are effectively cancelled. This approach can be highly effective in improving spectral purity and reduction of spurious components caused by the Σ-Δ modulator, quantisation noise, intermodulation effects and any other circuit factors. The spur cancellation is achieved in the digital part of the synthesiser without introducing additional circuitry. This technique has been convincingly demonstrated by simulated and experimental results

    High-speed nested cascaded MASH Digital Delta-Sigma Modulator-based divider controller

    Get PDF
    The MASH Digital Delta-Sigma Modulator (DDSM) based divider controller represents a speed bottleneck in state of the art commercial PLL-based fractional-N frequency synthesizers. As next generation systems require higher phase detector frequencies, there is a need to make ever faster divider controllers. This paper describes a fine-grained nested cascaded MASH DDSM which is significantly faster than state of the art divider controllers, thereby eliminating the current speed bottleneck

    Design and implementation of a wideband sigma delta ADC

    Get PDF
    Abstract. High-speed and wideband ADCs have become increasingly important in response to the growing demand for high-speed wireless communication services. Continuous time sigma delta modulators (CTƩ∆M), well-known for their oversampling and noise shaping properties, offer a promising solution for low-power and high-speed design in wireless applications. The objective of this thesis is to design and implement a wideband CTƩ∆M for a global navigation satellite system(GNSS) receiver. The targeted modulator architecture is a 3rdorder single-bit CTƩ∆M, specifically designed to operate within a 15 MHz signal bandwidth. With an oversampling ratio of 25, the ADC’s sampling frequency is set at 768 MHz. The design goal is to achieve a theoretical signal to noise ratio (SNR) of 55 dB. This thesis focuses on the design and implementation of the CTƩ∆M, building upon the principles of a discrete time Ʃ∆ modulator, and leveraging system-level simulation and formulations. A detailed explanation of the coefficient calculation procedure specific to CTƩ∆ modulators is provided, along with a "top-down" design approach that ensures the specified requirements are met. MATLAB scripts for coefficient calculation are also included. To overcome the challenges associated with the implementation of CTƩ∆ modulators, particularly excess loop delay and clock jitter sensitivity, this thesis explores two key strategies: the introduction of a delay compensation path and the utilization of a finite impulse response (FIR) feedback DAC. By incorporating a delay compensation path, the stability of the modulator can be ensured and its noise transfer function (NTF) can be restored. Additionally, the integration of an FIR feedback DAC addresses the issue of clock jitter sensitivity, enhancing the overall performance and robustness of the CTƩ∆M. The CTƩ∆Ms employ the cascade of integrators with feed forward (CIFF) and cascade of integrators with feedforward and feedback (CIFF-B) topologies, with a particular emphasis on the CIFF-B configuration using 22nm CMOS technology node and a supply voltage of 0.8 V. Various simulations are performed to validate the modulator’s performance. The simulation results demonstrate an achievable SNR of 55 dB with a power consumption of 1.36 mW. Furthermore, the adoption of NTF zero optimization techniques enhances the SNR to 62 dB.Laajakaistaisen jatkuva-aikaisen sigma delta-AD-muuntimen suunnittelu ja toteutus. Tiivistelmä. Nopeat ja laajakaistaiset AD-muuntimet ovat tulleet entistä tärkeämmiksi nopeiden langattomien kommunikaatiopalvelujen kysynnän kasvaessa. Jatkuva-aikaiset sigma delta -modulaattorit (CTƩ∆M), joissa käytetään ylinäytteistystä ja kohinanmuokkausta, tarjoavat lupaavan ratkaisun matalan tehonkulutuksen ja nopeiden langattomien sovellusten suunnitteluun. Tämän työn tarkoituksena on suunnitella ja toteuttaa laajakaistainen jatkuva -aikainen sigma delta -modulaattori satelliittipaikannusjärjestelmien (GNSS) vastaanottimeen. Arkkitehtuuriltaan modulaattori on kolmannen asteen 1-bittinen CTƩ∆M, jolla on 15MHz:n signaalikaistanleveys. Ylinäytteistyssuhde on 25 ja AD muuntimen näytteistystaajuus 768 MHz. Tavoitteena on saavuttaa teoreettinen 55 dB signaalikohinasuhde (SNR). Tämä työ keskittyy jatkuva-aikaisen sigma delta -modulaattorin suunnitteluun ja toteutukseen, perustuen diskreettiaikaisen Ʃ∆-modulaattorin periaatteisiin ja systeemitason simulointiin ja mallitukseen. Jatkuva-aikaisen sigma delta -modulaattorin kertoimien laskentamenetelmä esitetään yksityiskohtaisesti, ja vaatimusten täyttyminen varmistetaan “top-down” -suunnitteluperiaatteella. Liitteenä on kertoimien laskemiseen käytetty MATLAB-koodi. Jatkuva-aikaisten sigma delta -modulaattoreiden erityishaasteiden, liian pitkän silmukkaviiveen ja kellojitterin herkkyyden, voittamiseksi tutkitaan kahta strategiaa, viiveen kompensointipolkua ja FIR takaisinkytkentä -DA muunninta. Viivekompensointipolkua käyttämällä modulaattorin stabiilisuus ja kohinansuodatusfunktio saadaan varmistettua ja korjattua. Lisäksi FIR takaisinkytkentä -DA-muuntimen käyttö pienentää kellojitteriherkkyyttä, parantaen jatkuva aikaisen sigma delta -modulaattorin kokonaissuorituskykyä ja luotettavuutta. Toteutetuissa jatkuva-aikaisissa sigma delta -modulaattoreissa on kytketty peräkkäin integraattoreita myötäkytkentärakenteella (CIFF) ja toisessa sekä myötä- että takaisinkytkentärakenteella (CIFF-B). Päähuomio on CIFF-B rakenteessa, joka toteutetaan 22nm CMOS prosessissa käyttäen 0.8 voltin käyttöjännitettä. Suorityskyky varmistetaan erilaisilla simuloinneilla, joiden perusteella 55 dB SNR saavutetaan 1.36 mW tehonkulutuksella. Lisäksi kohinanmuokkausfunktion optimoinnilla SNR saadaan nostettua 62 desibeliin

    Design of a 14-bit fully differential discrete time delta-sigma modulator

    Get PDF
    Analog to digital converters play an essential role in modern mixed signal circuit design. Conventional Nyquist-rate converters require analog components that are precise and highly immune to noise and interference. In contrast, oversampling converters can be implemented using simple and high-tolerance analog components. Moreover, sampling at high frequency eliminates the need for abrupt cutoffs in the analog anti-aliasing filters. A noise shaping technique is also used in DS converters in addition to oversampling to achieve a high resolution conversion. A significant advantage of the method is that analog signals are converted using simple and high-tolerance analog circuits, usually a 1-bit comparator, and analog signal processing circuits having a precision that is usually much less than the resolution of the overall converter. In this thesis, a technique to design the discrete time DS converters for 25 kHz baseband signal bandwidth will be described. The noise shaping is achieved using a switched capacitor low-pass integrator around the 1-bit quantizer loop. A latched-type comparator is used as the quantizer of the DS converter. A second order DS modulator is implemented in a TSMC 0.35 µm CMOS technology using a 3.3 V power supply. The peak signal-to-noise ratio (SNR) simulated is 87 dB; the SNDR simulated is 82 dB which corresponds to a resolution of 14 bits. The total static power dissipation is 6.6 mW
    corecore