10,381 research outputs found

    ROUTING PROTOCOL FOR VEHICULAR ADHOC NETWORK

    Get PDF
    Vehicular Ad hoc network(VANET) are special type of Mobile Adhoc Networks(MANET) where wireless equipped vehicles from a network are continuously travelling along the road. Node movement feature of Vehicular ad hoc network (VANET) closely resembles with that of mobile ad hoc network (MANET) but its high speed mobility and unpredictable movement characteristics are the key contrasting feature from that of MANET. The similarity nature suggests that the prevailing routing protocol of MANET is very much applicable to VANET. However, on the same line, the dissimilarity characteristics result in frequent loss of connectivity. In VANET, topology changes rapidly and there is frequent disconnection which makes it difficult to design an efficient routing protocol for routing data among vehicles called vehicle to vehicle communication. Many routing protocols where implemented like AODV, AOMDV, SD-AOMDV, DSDV, CBDRP. SD-AOMDV adds the speed and direction as two mobility parameter. By enhancing the performance of SD- AOMDV routing protocol, packet delivery ratio, and throughput can be increased and end-to-end delay can be reduce

    Advances on Network Protocols and Algorithms for Vehicular Ad Hoc Networks

    Full text link
    Vehicular Ad Hoc Network (VANET) is an emerging area of wireless ad hoc networks that facilitates ubiquitous connectivity between smart vehicles through Vehicle-to-Vehicle (V2V) or Vehicle-to-Roadside (V2R) and Roadside-to- Vehicle (R2V) communications. This emerging field of technology aims to improve safety of passengers and traffic flow, reduces pollution to the environment and enables in-vehicle entertainment applications. The safety-related applications could reduce accidents by providing drivers with traffic information such as collision avoidances, traffic flow alarms and road surface conditions. Moreover, the passengers could exploit an available infrastructure in order to connect to the internet for infomobility and entertainment applications.Lloret, J.; Ghafoor, KZ.; Rawat, DB.; Xia, F. (2013). Advances on Network Protocols and Algorithms for Vehicular Ad Hoc Networks. Mobile Networks and Applications. 18(6):749-754. doi:10.1007/s11036-013-0490-7S749754186Lloret J, Canovas A, Catalá A, Garcia M (2013) Group-based protocol and mobility model for VANETs to offer internet access. J Netw Comput Appl 36(3):1027–1038. doi: 10.1016/j.jnca.2012.02.009Khokhar RH, Zia T, Ghafoor KZ, Lloret J, Shiraz M (2013) Realistic and efficient radio propagation model for V2X communications. KSII Trans Internet Inform Syst 7(8):1933–1953. doi: 10.3837/tiis.2013.08.011Ghafoor KZ (2013) Routing protocols in vehicular ad hoc networks: survey and research challenges, Netw Protocol Algorithm 5(4). doi: 10.5296/npa.v5i4.4134Ghafoor KZ, Bakar KA, Lloret J, Ke C-H, Lee KC (2013) Intelligent beaconless geographical routing for urban vehicular environments. Wirel Netw 19(3):345–362. doi: 10.1007/s11276-012-0470-zGhafoor KZ, Bakar KA, Lee K, AL-Hashimi H (2010) A novel delay- and reliability- aware inter-vehicle routing protocol. Netw Protocol Algorithms 2(2):66–88. doi: 10.5296/npa.v2i2.427Dias JAFF, Rodrigues JJPC, Isento JN, Pereira PRBA, Lloret J (2011) Performance assessment of fragmentation mechanisms for vehicular delay-tolerant networks. EURASIP J Wirel Commun Netw 2011(195):1–14. doi: 10.1186/1687-1499-2011-195Zhang D, Yang Z, Raychoudhury V, Chen Z, Lloret J (2013) An energy-efficient routing protocol using movement trend in vehicular Ad-hoc networks. Comput J 58(8):938–946. doi: 10.1093/comjnl/bxt028Ghafoor KZ, Lloret J, Bakar KA, Sadiq AS, Mussa SAB (2013) Beaconing approaches in vehicular Ad Hoc networks: a survey. Wirel Pers Commun. doi: 10.1007/s11277-013-1222-9Sadiq AS, Bakar KA, Ghafoor KZ, Lloret J (2013) An intelligent vertical handover scheme for audio and video streaming in heterogeneous vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0465-8Khamayseh YM (2013) Network size estimation in VANETs. Netw Protocol Algorithm 5(3):136–152. doi: 10.5296/npa.v5i6.3838Rawat DB, Popescu DC, Yan G, Olariu S (2011) Enhancing VANET performance by joint adaptation of transmission power and contention window size. IEEE Trans Parallel Distrib Syst 22(9):1528–1535Yan G, Rawat DB, Bista BB. Provisioning vehicular ad hoc networks with quality of services. Int J Space-Based Situated Comput 2(2):104–111Rawat DB, Bista BB, Yan G, Weigle MC (2011) Securing vehicular ad-hoc networks against malicious drivers: a probabilistic approach, International Conference on Complex, Intelligent, and Software Intensive Systems Pp. 146–151. June 30, 2011Sun W, Xia F, Ma J, Fu T, Sun Y. An optimal ODAM-based broadcast algorithm for vehicular Ad-Hoc Networks. KSII Trans Internet Inform Syst 6(12): 3257–3274Vinel AV, Dudin AN, Andreev SD, Xia F (2010) Performance modeling methodology of emergency dissemination algorithms for vehicular ad-hoc networks, 6th Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), Pp. 397–400AL-Hashimi HN, Bakar KA, Ghafoor KZ (2010) Inter-domain proxy mobile IPv6 based vehicular network. Netw Protocol Algorithm 2(4):1–15. doi: 10.5296/npa.v2i4.488Ghafoor KZ, Bakar KA, Mohammed MA, Lloret J (2013) Vehicular cloud computing: trends and challenges, in the book “mobile computing over cloud: technologies, services, and applications”. IGI GlobalYan G, Rawat DB, Bista BB (2012) Towards secure vehicular clouds, Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS 2012), Pp. 370–375Fernández H, Rubio L, Reig J, Rodrigo-Peñarrocha VM, Valero A (2013) Path loss modeling for vehicular system performance and communication protocols evaluation. Mobile Netw Appl. doi: 10.1007/s11036-013-0463-xAllouche Y, Segal M (2013) A cluster-based beaconing approach in VANETs: near optimal topology via proximity information. Mobile Netw Appl. doi: 10.1007/s11036-013-0468-5Merah AF, Samarah S, Boukerche A, Mammeri A (2013) A sequential patterns data mining approach towards vehicular route prediction in VANETs. Mobile Netw Appl. doi: 10.1007/s11036-013-0459-6Zhang D, Huang H, Zhou J, Xia F, Chen Z (2013) Detecting hot road mobility of vehicular Ad Hoc Networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0467-6El Ajaltouni H, Boukerche A, Mammeri A (2013) A multichannel QoS MAC with dynamic transmit opportunity for. Mobile Netw Appl. doi: 10.1007/s11036-013-0475-6Reñé S, Esparza O, Alins J, Mata-Díaz J, Muñoz JL (2013) VSPLIT: a cross-layer architecture for V2I TCP services over. Mobile Netw Appl. doi: 10.1007/s11036-013-0473-8Blanco B, Liberal F (2013) Amaia Aguirregoitia, application of cognitive techniques to adaptive routing for VANETs in city environments. Mobile Netw Appl. doi: 10.1007/s11036-013-0466-7Kim J, Krunz M (2013) Spectrum-aware beaconless geographical routing protocol for cognitive radio enabled vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0476-5Dias JAFF, Rodrigues JJPC, Isento JNG, Niu J (2013) The impact of cooperative nodes on the performance of vehicular delay-tolerant networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0464-9Sadiq AS, Bakar KA, Ghafoor KZ, Lloret J, Khokhar R (2013) An intelligent vertical handover scheme for audio and video streaming in heterogeneous vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0465-8Machado S, Ozón J, González AJ, Ghafoor KZ (2013) Structured peer-to-peer real time video transmission over vehicular Ad Hoc networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0461-zLin C, Wu G, Xia F, Yao L (2013) Enhance the attacking efficiency of the node compromise attack in vehicular Ad-hoc network using connected dominating set. Mobile Netw Appl. doi: 10.1007/s11036-013-0469-

    Issues and Challenges of Video Dissemination in VANET and Routing Protocol: Review

    Get PDF
    New technology called Vehicular Ad-hoc Networks (VANETs), this topology quick changing and frequent disconnection has taken huge attention within last years and makes it complex to design an active routing protocol to routing data among vehicles, Vehicle to Vehicle (V2V) communication and Vehicle to roadside Infrastructure (V2I). Routing protocols which existing for VANETs don’t efficient upon meet all traffic scenarios. Hence, the study of an efficient routing protocol has received significant recognition. Therefore, it is really essential to distinguish the pros and cons of routing protocols that can be done for additional growth or development of any new routing protocol. This study present different aspects of VANET technologies that form a real life vehicular network. More detail for the potential applications and current initiatives for the vehicle networks are covered. In addition, brief discussion of existing related work on video streaming in VANETs which are focused on different protocol stack layers. Finally, provides a comprehensive background on vehicular communication networks. Also, the surveys different routing techniques that have improved video broadcasting functionality to achieve acceptable QoS over VANETs

    AEGRP: an enhanced geographical routing protocol for vanet

    Get PDF
    Vehicular ad hoc network (VANET), is a derivative type of mobile ad hoc networks with its unique characteristics and an essential part of intelligent transportation system (ITS). In VANET, the vehicles can disseminate information to certain or all vehicles within a region for different applications. Applications can be categorized as safety, convenience and comfort of the driver and passengers such as traffic conditions, accident detection, roadway safety, mobile sensing, and infotainment. These promising applications require intelligent and efficient routing protocols, which are capable of adapting rapidly changing topologies, high mobility in the network. Geographic routing protocols have become a popular routing type because of its simplicity and low overhead features, but recent research has recognized these protocols are not considering many particular constraints of the vehicular environment. However, existing routing protocols offered limited performance due to frequent disconnectivity, high signal interference in the presence of obstacles and lead to network delay and overhead issues. The main objective of this paper is to design an enhanced geographical routing protocol that addresses the network delay problems and provide necessary improvements over conventional geographic routing in light of constraints of these environments

    A RELIABILITY-BASED ROUTING PROTOCOL FOR VEHICULAR AD-HOC NETWORKS

    Get PDF
    Vehicular Ad hoc NETworks (VANETs), an emerging technology, would allow vehicles to form a self-organized network without the aid of a permanent infrastructure. As a prerequisite to communication in VANETs, an efficient route between communicating nodes in the network must be established, and the routing protocol must adapt to the rapidly changing topology of vehicles in motion. This is one of the goals of VANET routing protocols. In this thesis, we present an efficient routing protocol for VANETs, called the Reliable Inter-VEhicular Routing (RIVER) protocol. RIVER utilizes an undirected graph that represents the surrounding street layout where the vertices of the graph are points at which streets curve or intersect, and the graph edges represent the street segments between those vertices. Unlike existing protocols, RIVER performs real-time, active traffic monitoring and uses this data and other data gathered through passive mechanisms to assign a reliability rating to each street edge. The protocol then uses these reliability ratings to select the most reliable route. Control messages are used to identify a node’s neighbors, determine the reliability of street edges, and to share street edge reliability information with other nodes

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    A probability-based multimetric routing protocol for vehicular ad hoc networks in urban scenarios

    Get PDF
    Vehicular Ad hoc Networks have received considerable attention in recent years and are considered as one of the most promising ad-hoc network technologies for intelligent transport systems. Vehicular Ad hoc Networks have special requirements and unique characteristics (e.g., special mobility patterns, short life links, rapid topology changes) which make the design of suitable routing protocols, a challenge. Consequently, an efficient routing protocol that fits with VANETs’ requirements and characteristics is a crucial task to obtain a good performance in terms of average percentage of packet losses and average end-to-end packet delay. To attain this goal, we propose a novel probabilistic multimetric routing protocol (ProMRP) that is specially designed for VANETs. ProMRP estimates the probability for each neighbor of the node currently carrying the packet, to successfully deliver a packet to destination. This probability is computed based on four designed metrics: distance to destination, node’s position, available bandwidth and nodes’ density. Furthermore, an improved version of ProMRP called EProMRP is also proposed. EProMRP includes an algorithm that accurately estimates the current position of nodes in the moment of sending the packet instead of using the last updated position obtained from the previous beacon message. Simulations are carried out in a realistic urban scenario using OMNeT++/VEINS/SUMO, including real maps from the OpenStreetMaps platform. Simulation results show a better performance of ProMRP and EProMRP compared to recent similar proposals found in the literature in terms of packet losses and end-to-end packet delay, for different vehicles’ densities.Peer ReviewedPostprint (published version

    Performance Analysis of Intersection Based Algorithm in VANET with Traffic Light Considerations

    Get PDF
    ABSTRACT: Vehicular Ad hoc Networks is an emerging technology. In Vehicular safety algorithm, the source vehicle that detects an accident can generate a warning message and propagate it to the succeeding vehicles to notify drivers before they reach to the potential danger zone on the road. The main application of VANET is in Intelligent Transportation System providing various applications such safety and non-safety related services. VANET is subclass of Mobile Ad hoc Network. Dynamic topology change and high speeds of nodes creates a distinction from MANET. In this paper we discuss the impact of traffic light employed at intersections on the routing process. This paper proposes an effective and reliable routing protocol that takes traffic lights into consideration. KEYWORDS: ITS, GPSR, MANET, V2I, V2V, VANET I . INTRODUCTION During the last few years vehicular communication is attracting growing attention from both academic and industrial point of view. This is because of its applications ranging from road safety to traffic control and up to infotainment. Vehicular ad-hoc networks (VANETs) are self organized networks built up from moving vehicles. VANETs are instantiation of Mobile Ad-hoc Networks (MANETs). As in MANETs, packet forwarding in VANET takes place through multi hop relaying. But certain features distinguish VANETs from MANETs. These include high mobility of nodes, frequent network partition, constraints on roadways, etc. These characteristics pose technical challenges to implement high performance Vehicular networks. Possible applications [1-2] can be generally classified as safety and non safety applications. Safety applications include cooperative driving, accident avoidance etc. Non-safety applications include traffic information, toll service, internet access, games, entertainment etc. Success of VANET applications depends on how data is routed between nodes. The history of VANET routing protocols starts with MANET routing protocols such as Ad-hoc On Demand Distance Vector routing (AODV) Designing a routing protocol for urban environment is quite challenging task since the traffic lights deployed at intersections divide the road in to different segments. The nodes move at constrained speeds through these segments. In such an environment intersection based routing protocols are highly reliable. In intersection based routing, when vehicles move on straight road, they forward by greedy forwarding. When they reach an intersection a decision is made whether to forward in same direction or to perpendicular direction. Many intersection based routing protocols have been proposed to carry efficient routing in VANET. But only few protocols consider traffic lights. The communication in the VANET appears in such forms i.e. Intra-Vehicle (InV), Vehicle-to-Vehicle (V2V), and Vehicle-to-Infrastructure (V2I) communications [5]. This communication takes place with the help of communicatio
    • …
    corecore